JP2010084706A - Control system for variable cylinder internal combustion engine - Google Patents

Control system for variable cylinder internal combustion engine Download PDF

Info

Publication number
JP2010084706A
JP2010084706A JP2008256701A JP2008256701A JP2010084706A JP 2010084706 A JP2010084706 A JP 2010084706A JP 2008256701 A JP2008256701 A JP 2008256701A JP 2008256701 A JP2008256701 A JP 2008256701A JP 2010084706 A JP2010084706 A JP 2010084706A
Authority
JP
Japan
Prior art keywords
valve
cylinder
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256701A
Other languages
Japanese (ja)
Other versions
JP5083156B2 (en
Inventor
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008256701A priority Critical patent/JP5083156B2/en
Publication of JP2010084706A publication Critical patent/JP2010084706A/en
Application granted granted Critical
Publication of JP5083156B2 publication Critical patent/JP5083156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control system for a variable cylinder internal combustion engine wherein technology for satisfactory operation is developed in either case: where in a cylinder-reduced operation, at least either one of the intake and exhaust valves of a resting cylinder is suspended in a closed-valve state; and where in a cylinder-reduced operation, the intake and exhaust valves of the resting cylinder are operated. <P>SOLUTION: By the control system, operations of the internal combustion engine 1 can be switched between the whole cylinder operation and a cylinder-reduced operation. The control system includes an EGR system 30, an intake valve-timing variable-mechanism 9, and an exhaust valve-timing variable-mechanism 10; the following relation is established: a desired fresh-air amount in the whole cylinder operation>a target fresh-air amount in the valve-operation cylinder-reduced operation>a target fresh-air amount in the valve-stopped cylinder-reduced operation; and the fresh-air amount is made different from each other between the valve-stopped cylinder-reduced operation and the valve-operated cylinder-reduced operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可変気筒内燃機関の制御装置に関する。   The present invention relates to a control device for a variable cylinder internal combustion engine.

内燃機関の運転を、全気筒を稼動させて運転する全気筒運転と、一部の気筒を稼動させ残りの気筒を休止させて運転する減筒運転との間で切り替えることが知られている。そして、EGR装置を用いて、全気筒運転と減筒運転とで内燃機関に供給するEGRガス量を異ならせる技術が開示されている(例えば、特許文献1参照)。
特開2004−27971号公報 特開平5−321706号公報 特開平8−74610号公報
It is known to switch the operation of an internal combustion engine between an all-cylinder operation in which all cylinders are operated and a reduced-cylinder operation in which some cylinders are operated and the remaining cylinders are deactivated. And the technique of making EGR gas amount supplied to an internal combustion engine different by all-cylinder driving | operation and reduction-cylinder driving | operation using an EGR apparatus is disclosed (for example, refer patent document 1).
JP 2004-27971 A Japanese Patent Laid-Open No. 5-321706 JP-A-8-74610

ところで、減筒運転時には、休止気筒の吸気弁及び排気弁を閉弁状態で停止させる場合と、休止気筒の吸気弁及び排気弁を作動させる場合とがある。   By the way, during the reduced-cylinder operation, there are a case where the intake valve and exhaust valve of the deactivated cylinder are stopped in a closed state and a case where the intake valve and exhaust valve of the deactivated cylinder are operated.

減筒運転時において休止気筒の吸気弁及び排気弁を閉弁状態で停止させる場合には、吸入空気量(新気量)が多いと、本来休止気筒に供給されるべき吸入空気(新気)も稼動気筒に供給される。このため、稼動気筒に供給される新気量が多くなり、新気量及びEGRガス量を合わせた総吸入空気量(総吸気量)のうちのEGRガス量の割合を示すEGR率が下がり、内燃機関から排出されるNOxが増加し、排気エミッションが悪化する。   When stopping the intake valve and exhaust valve of the deactivated cylinder in the closed state during the reduced-cylinder operation, if the intake air amount (fresh air amount) is large, the intake air (fresh air) that should be originally supplied to the deactivated cylinder Is also supplied to the working cylinder. For this reason, the amount of fresh air supplied to the operating cylinder increases, and the EGR rate indicating the ratio of the amount of EGR gas in the total amount of intake air (total amount of intake air) that combines the amount of fresh air and the amount of EGR gas decreases. NOx discharged from the internal combustion engine increases, and exhaust emission deteriorates.

一方、減筒運転時において休止気筒の吸気弁及び排気弁を作動させる場合には、休止気筒に新気を取り込みその新気がそのまま排出されて排気となるため、減筒運転時において休止気筒の吸気弁及び排気弁を閉弁状態で停止させる場合に比して排気量が多くなる。このため、ターボチャージャの作動による過給圧が高くなる。よって、内燃機関に供給されるべき総吸気量が増加する。ここで、減筒運転時において休止気筒の吸気弁及び排気弁を作動させる場合に、減筒運転時において休止気筒の吸気弁及び排気弁を閉弁状態で停止させる場合と同じ新気量を供給するだけであると、新気量が足りず内燃機関に供給されるべき増加した総吸気量を得るために内燃機関にEGRガス量が多く供給されることになる。これにより、内燃機関に供給されるEGRガス量が過剰に多くなり失火に至る場合がある。   On the other hand, when operating the intake valve and the exhaust valve of the idle cylinder during the reduced cylinder operation, fresh air is taken into the idle cylinder and the fresh air is discharged as it is to become exhaust. The amount of exhaust increases compared to when the intake valve and the exhaust valve are stopped in the closed state. For this reason, the supercharging pressure by the action | operation of a turbocharger becomes high. Therefore, the total intake amount to be supplied to the internal combustion engine increases. Here, when operating the intake valve and exhaust valve of the idle cylinder during the reduced cylinder operation, the same fresh air amount as when stopping the intake valve and exhaust valve of the idle cylinder during the reduced cylinder operation is supplied. If only this is done, a large amount of EGR gas is supplied to the internal combustion engine in order to obtain an increased total intake air amount to be supplied to the internal combustion engine due to insufficient fresh air amount. As a result, the amount of EGR gas supplied to the internal combustion engine may increase excessively, leading to misfire.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、可変気筒内燃機関の制御装置において、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を閉弁状態で停止させている場合と、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合とのどちらであっても、内燃機関を良好に運転させる技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a variable cylinder internal combustion engine in which at least one of an intake valve and an exhaust valve of a deactivated cylinder is closed during a reduced cylinder operation. An object of the present invention is to provide a technique for operating an internal combustion engine satisfactorily regardless of whether it is stopped or when the intake valve and exhaust valve of a deactivated cylinder are operated during reduced-cylinder operation.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の運転を全気筒運転と減筒運転との間で切り替え可能な可変気筒内燃機関の制御装置であって、
前記内燃機関の排気通路から排気の一部をEGRガスとして取り込み、前記内燃機関の吸気通路へ当該EGRガスを還流させるEGR装置と、
前記内燃機関の各気筒における吸気弁及び排気弁の少なくとも一方の開閉特性を変更可
能とする可変動弁機構と、
減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合と、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合とで、吸入空気量を異ならせる吸入空気量制御手段と、
を備えることを特徴とする可変気筒内燃機関の制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A control device for a variable cylinder internal combustion engine capable of switching the operation of the internal combustion engine between full cylinder operation and reduced cylinder operation,
An EGR device that takes in a part of exhaust gas from the exhaust passage of the internal combustion engine as EGR gas and recirculates the EGR gas to the intake passage of the internal combustion engine;
A variable valve mechanism capable of changing an opening / closing characteristic of at least one of an intake valve and an exhaust valve in each cylinder of the internal combustion engine;
When at least one of the intake and exhaust valves of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced cylinder operation, and the intake and exhaust valves of the idle cylinder are operated during the reduced cylinder operation. The intake air amount control means for making the intake air amount different depending on the case,
A control apparatus for a variable cylinder internal combustion engine.

本発明では、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合と、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合とで、吸入空気量を異ならせるようにした。   In the present invention, at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in a closed state via the variable valve mechanism during the reduced cylinder operation, and the intake valve and the exhaust valve of the idle cylinder are reduced during the cylinder reduction operation. The amount of intake air is different depending on when the is operated.

本発明によると、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合には、吸入空気量を少なくできる。このため、本来休止気筒に供給されるべき吸入空気は稼動気筒に供給されなくなる。これにより、吸入空気量及びEGRガス量を合わせた総吸入空気量のうちのEGRガス量の割合を示すEGR率が下がることを抑制し、内燃機関から排出されるNOxが増加することを抑制し、排気エミッションが悪化することを抑制できる。   According to the present invention, when at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced cylinder operation, the intake air amount can be reduced. For this reason, the intake air that should originally be supplied to the idle cylinder is not supplied to the operating cylinder. As a result, the EGR rate indicating the ratio of the EGR gas amount in the total intake air amount including the intake air amount and the EGR gas amount is suppressed from decreasing, and NOx discharged from the internal combustion engine is suppressed from increasing. The exhaust emission can be prevented from deteriorating.

一方、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合には、休止気筒に吸入空気を取り込みその吸入空気がそのまま排出されて排気となるため、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合に比して排気量が多くなる。このため、ターボチャージャの作動による過給圧が高くなる。よって、内燃機関に供給されるべき吸入空気量及びEGRガス量を合わせた総吸入空気量が増加する。ここで、本発明によると、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合には、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合に比して吸入空気量を多くできる。よって、吸入空気量を多く内燃機関に供給するので、内燃機関に供給されるべき増加した総吸入空気量を得るために内燃機関にEGRガス量が多く供給されることが抑制される。これにより、内燃機関に供給されるEGRガス量が過剰に多くなり失火に至ることが抑制できる。   On the other hand, when the intake and exhaust valves of the idle cylinder are operated during the reduced cylinder operation, intake air is taken into the idle cylinder and the intake air is discharged as it is to become exhaust. As compared with the case where at least one of the intake valve and the exhaust valve is stopped in a closed state via the variable valve mechanism, the exhaust amount increases. For this reason, the supercharging pressure by the action | operation of a turbocharger becomes high. Therefore, the total intake air amount that is the sum of the intake air amount and the EGR gas amount to be supplied to the internal combustion engine increases. Here, according to the present invention, when the intake valve and the exhaust valve of the idle cylinder are operated during the reduced cylinder operation, at least one of the intake valve and the exhaust valve of the idle cylinder is provided with the variable valve mechanism during the reduced cylinder operation. The amount of intake air can be increased as compared with the case where the valve is stopped in the closed state. Therefore, since a large amount of intake air is supplied to the internal combustion engine, a large amount of EGR gas supplied to the internal combustion engine is suppressed in order to obtain an increased total intake air amount to be supplied to the internal combustion engine. Thereby, it can suppress that the amount of EGR gas supplied to an internal combustion engine increases excessively, and it leads to misfire.

したがって、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を閉弁状態で停止させている場合には、排気エミッションが悪化することを抑制できる。また、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合には、内燃機関に供給されるEGRガス量が過剰に多くなり失火に至ることが抑制できる。このように、どちらの場合であっても、内燃機関を良好に運転させることができる。   Accordingly, when at least one of the intake valve and the exhaust valve of the deactivated cylinder is stopped in the closed state during the reduced-cylinder operation, it is possible to suppress deterioration of the exhaust emission. Further, when the intake valve and the exhaust valve of the idle cylinder are operated during the reduced-cylinder operation, it is possible to suppress the amount of EGR gas supplied to the internal combustion engine from excessively increasing and causing misfire. Thus, in either case, the internal combustion engine can be operated satisfactorily.

前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の吸入空気量を、全気筒運転時の吸入空気量よりも減らし、且つ、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量よりも増やすとよい。   The intake air amount control means reduces the intake air amount when the intake valve and exhaust valve of the deactivated cylinder are operated during the reduced cylinder operation, than the intake air amount during the all cylinder operation, and during the reduced cylinder operation. It is preferable to increase the intake air amount when at least one of the intake valve and the exhaust valve of the deactivated cylinder is stopped in the closed state via the variable valve mechanism.

本発明によると、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合には、吸入空気量を最も少なくして最適な量とすることができる。また、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合には、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を可変動弁機構を介して閉弁状態で停止させている場合に比して吸入空気量を多くして最適な量とすることができる。   According to the present invention, when at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in a closed state via the variable valve mechanism during the reduced cylinder operation, the intake air amount is minimized and the optimum It can be an amount. Further, when the intake valve and exhaust valve of the idle cylinder are operated during the reduced cylinder operation, at least one of the intake valve and the exhaust valve of the idle cylinder is closed via the variable valve mechanism during the reduced cylinder operation. The amount of intake air can be increased to an optimum amount as compared with the case where the operation is stopped.

前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量を、全気筒運
転時の吸入空気量を全気筒数で割り稼動気筒数を掛けた量とするとよい。
The intake air amount control means determines the intake air amount when all cylinders are operated when at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced cylinder operation. The amount of intake air at that time may be divided by the total number of cylinders and multiplied by the number of operating cylinders.

本発明によると、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量を最適な量とすることができる。   According to the present invention, the intake air amount when the at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced-cylinder operation can be set to an optimal amount. it can.

前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の吸入空気量を、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量を減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の過給圧で割り、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の過給圧を掛けた量とするとよい。   The intake air amount control means allows the intake air amount when the intake valve and exhaust valve of the deactivated cylinder are operated during the reduced cylinder operation, and allows at least one of the intake valve and exhaust valve of the deactivated cylinder during the reduced cylinder operation. When the intake air amount is stopped in the closed state via the variable valve mechanism, at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the cylinder reduction operation. It is good to divide by the supercharging pressure in the case where the engine is in operation and multiply the supercharging pressure in the case where the intake valve and exhaust valve of the idle cylinder are operated during the reduced cylinder operation.

本発明によると、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の吸入空気量を最適な量とすることができる。   According to the present invention, the intake air amount when the intake valve and the exhaust valve of the idle cylinder are operated during the reduced cylinder operation can be set to an optimal amount.

本発明によると、可変気筒内燃機関の制御装置において、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を閉弁状態で停止させている場合と、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合とのどちらであっても、内燃機関を良好に運転させることができる。   According to the present invention, in the control apparatus for a variable cylinder internal combustion engine, when at least one of the intake valve and the exhaust valve of the deactivated cylinder is stopped in the closed state during the reduced cylinder operation, and the intake valve of the deactivated cylinder during the reduced cylinder operation The internal combustion engine can be operated satisfactorily regardless of whether the exhaust valve is operated.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る可変気筒内燃機関の制御装置を適用する内燃機関及びその吸気系・排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4ストロークサイクル・ディーゼルエンジンである。内燃機関1は、車両に搭載されている。内燃機関1のシリンダヘッド3には、気筒2内の燃焼室4に連通する吸気ポート5と排気ポート6とが各々設けられている。シリンダヘッド3には、吸気ポート5を開閉する吸気弁7と、排気ポート6を開閉する排気弁8とが設けられている。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the control device for a variable cylinder internal combustion engine according to the present embodiment is applied and its intake system and exhaust system. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-stroke cycle diesel engine having four cylinders 2. The internal combustion engine 1 is mounted on a vehicle. The cylinder head 3 of the internal combustion engine 1 is provided with an intake port 5 and an exhaust port 6 that communicate with the combustion chamber 4 in the cylinder 2. The cylinder head 3 is provided with an intake valve 7 for opening and closing the intake port 5 and an exhaust valve 8 for opening and closing the exhaust port 6.

吸気弁7には、当該吸気弁7の開閉特性を変更する可変動弁機構が設けられている。この可変動弁機構として、吸気弁7の開閉特性である開閉時期(バルブタイミング)の変更を行う吸気弁バルブタイミング可変機構9を備えている。吸気弁バルブタイミング可変機構9は、吸気弁7の開閉タイミングを連続的に変更する機構である。   The intake valve 7 is provided with a variable valve mechanism that changes the opening / closing characteristics of the intake valve 7. As this variable valve mechanism, an intake valve valve timing variable mechanism 9 for changing an opening / closing timing (valve timing) which is an opening / closing characteristic of the intake valve 7 is provided. The intake valve valve timing variable mechanism 9 is a mechanism for continuously changing the opening / closing timing of the intake valve 7.

排気弁8には、当該排気弁8の開閉特性を変更する可変動弁機構が設けられている。この可変動弁機構として、排気弁8の開閉特性である開閉時期(バルブタイミング)の変更を行う排気弁バルブタイミング可変機構10を備えている。排気弁バルブタイミング可変機構10は、排気弁8の開閉タイミングを連続的に変更する機構である。   The exhaust valve 8 is provided with a variable valve mechanism that changes the opening / closing characteristics of the exhaust valve 8. As this variable valve mechanism, there is provided an exhaust valve valve timing variable mechanism 10 for changing an opening / closing timing (valve timing) which is an opening / closing characteristic of the exhaust valve 8. The variable exhaust valve valve timing mechanism 10 is a mechanism for continuously changing the opening / closing timing of the exhaust valve 8.

シリンダヘッド3には、内燃機関1の気筒2内に燃料を噴射する燃料噴射弁11が設けられている。   The cylinder head 3 is provided with a fuel injection valve 11 that injects fuel into the cylinder 2 of the internal combustion engine 1.

シリンダヘッド3には、吸気ポート5に連通する吸気通路12と、排気ポート6に連通する排気通路13とが接続されている。   An intake passage 12 that communicates with the intake port 5 and an exhaust passage 13 that communicates with the exhaust port 6 are connected to the cylinder head 3.

内燃機関1に接続された吸気通路12の途中には、排気のエネルギを駆動源として作動
するターボチャージャ14のコンプレッサ14aが配置されている。
In the middle of the intake passage 12 connected to the internal combustion engine 1, a compressor 14a of a turbocharger 14 that operates using exhaust energy as a drive source is disposed.

コンプレッサ14aよりも上流の吸気通路12には、外部から取り込み内燃機関1に供給する吸入空気量(新気量)を検出するエアフローメータ15が配置されている。コンプレッサ14aよりも下流の吸気通路12には、吸気と外気とで熱交換を行うインタークーラ16が配置されている。インタークーラ16よりも下流の吸気通路12には、内燃機関1に供給する新気量を調節するスロットル弁17が配置されている。スロットル弁17は、電動アクチュエータにより開閉される。これら吸気通路12及びそれに配置された機器が内燃機関1に吸入空気を取り入れるための吸気系を構成している。   An air flow meter 15 that detects the amount of intake air (fresh air amount) that is taken in from the outside and supplied to the internal combustion engine 1 is disposed in the intake passage 12 upstream of the compressor 14a. An intercooler 16 that performs heat exchange between the intake air and the outside air is disposed in the intake passage 12 downstream of the compressor 14a. A throttle valve 17 that adjusts the amount of fresh air supplied to the internal combustion engine 1 is disposed in the intake passage 12 downstream of the intercooler 16. The throttle valve 17 is opened and closed by an electric actuator. These intake passages 12 and devices arranged in the intake passages 12 constitute an intake system for taking intake air into the internal combustion engine 1.

一方、内燃機関1に接続された排気通路13の途中には、ターボチャージャ14のタービン14bが配置されている。タービン14bは排気通路13を流れる排気によって駆動され、コンプレッサ14aは駆動されたタービン14bと共に回転して吸気通路12を流れる吸入空気(新気)を過給する。   On the other hand, a turbine 14 b of a turbocharger 14 is arranged in the middle of the exhaust passage 13 connected to the internal combustion engine 1. The turbine 14b is driven by exhaust gas flowing through the exhaust passage 13, and the compressor 14a rotates with the driven turbine 14b to supercharge intake air (fresh air) flowing through the intake passage 12.

タービン14bよりも下流の排気通路13には、排気浄化装置18が配置されている。排気浄化装置18は、酸化触媒と当該酸化触媒の後段に配置されたディーゼルパティキュレートフィルタ(以下単にフィルタという)とを有して構成される。フィルタには吸蔵還元型NOx触媒(以下単にNOx触媒という)が担持されている。フィルタは、排気通路13を流通する排気中の煤(SOOT)やSOFなどの粒子状物質(Particulate Matter:以下PMという)を捕集する特性を有する。またNOx触媒は、排気空燃比がリーンであるときに排気通路13を流通する排気中のNOxやSOxを吸蔵する特性を有する。これら排気通路13及びそれに配置された機器が内燃機関1から排気を排出させるための排気系を構成している。   An exhaust purification device 18 is disposed in the exhaust passage 13 downstream of the turbine 14b. The exhaust purification device 18 is configured to include an oxidation catalyst and a diesel particulate filter (hereinafter simply referred to as a filter) disposed at a subsequent stage of the oxidation catalyst. The filter carries a NOx storage reduction catalyst (hereinafter simply referred to as NOx catalyst). The filter has a characteristic of collecting particulate matter (Particulate Matter: hereinafter referred to as PM) such as soot (SOOT) and SOF in the exhaust gas flowing through the exhaust passage 13. The NOx catalyst has a characteristic of storing NOx and SOx in the exhaust gas flowing through the exhaust passage 13 when the exhaust air-fuel ratio is lean. The exhaust passage 13 and the devices arranged in the exhaust passage 13 constitute an exhaust system for exhausting exhaust gas from the internal combustion engine 1.

そして、内燃機関1には、排気通路13内を流通する排気の一部を吸気通路12へ還流(再循環)させるEGR装置(Exhaust Gas Recirculation System)30が備えられている。本実施例では、EGR装置30によって還流される排気をEGRガスと称している。   The internal combustion engine 1 is provided with an EGR device (Exhaust Gas Recirculation System) 30 that recirculates (recirculates) part of the exhaust gas flowing through the exhaust passage 13 to the intake passage 12. In this embodiment, the exhaust gas recirculated by the EGR device 30 is referred to as EGR gas.

EGR装置30は、EGRガスが流通するEGR通路31と、EGR通路31を流通するEGRガスの流量を調節するEGR弁32と、を有する。   The EGR device 30 includes an EGR passage 31 through which EGR gas flows, and an EGR valve 32 that adjusts the flow rate of the EGR gas through the EGR passage 31.

EGR通路31は、タービン14bよりも上流側の排気通路13と、スロットル弁17よりも下流側の吸気通路12とを接続している。このEGR通路31を通って、排気がEGRガスとして高圧で内燃機関1へ送り込まれる。   The EGR passage 31 connects the exhaust passage 13 upstream of the turbine 14 b and the intake passage 12 downstream of the throttle valve 17. Through this EGR passage 31, exhaust gas is sent to the internal combustion engine 1 as EGR gas at a high pressure.

EGR弁32は、EGR通路31の通路断面積を調整することにより、該EGR通路31を流れるEGRガスの量を調節する。このEGR弁32は、電動アクチュエータにより開閉される。   The EGR valve 32 adjusts the amount of EGR gas flowing through the EGR passage 31 by adjusting the passage sectional area of the EGR passage 31. The EGR valve 32 is opened and closed by an electric actuator.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御装置であるECU19が併設されている。このECU19は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御する装置である。   The internal combustion engine 1 configured as described above is provided with an ECU 19 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 19 is a device that controls the operating state of the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the request of the driver.

ECU19には、エアフローメータ15、クランクポジションセンサ20、及びアクセルポジションセンサ21などの各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU19に入力されるようになっている。   Various sensors such as an air flow meter 15, a crank position sensor 20, and an accelerator position sensor 21 are connected to the ECU 19 through electrical wiring, and output signals from these various sensors are input to the ECU 19.

一方、ECU19には、吸気弁バルブタイミング可変機構9、排気弁バルブタイミング可変機構10、及び燃料噴射弁11、並びに、スロットル弁17及びEGR弁32の電動
アクチュエータが電気配線を介して接続されており、該ECU19によりこれらの機器が制御される。
On the other hand, the ECU 19 is connected to the intake valve valve timing variable mechanism 9, the exhaust valve valve timing variable mechanism 10, the fuel injection valve 11, and the electric actuators of the throttle valve 17 and the EGR valve 32 through electric wiring. The ECU 19 controls these devices.

ECU19は、クランクポジションセンサ20やアクセルポジションセンサ21などの出力信号を受けて内燃機関1の運転状態を判別し、判別された機関運転状態に基づいて内燃機関1や上記機器を電気的に制御する。   The ECU 19 receives the output signals from the crank position sensor 20 and the accelerator position sensor 21, etc., determines the operating state of the internal combustion engine 1, and electrically controls the internal combustion engine 1 and the above devices based on the determined engine operating state. .

ところで、本実施例の内燃機関1は、内燃機関1の運転を、内燃機関1の有する4つの全気筒に燃料噴射弁11から燃料を供給して全気筒を稼動させて運転する全気筒運転と、例えば2気筒を稼動させ2気筒を休止させるような、一部の気筒に燃料噴射弁11から燃料を供給して当該一部の気筒を稼動させ残りの気筒の燃料供給を停止して当該残りの気筒を休止させて運転する減筒運転との間で切り替えることが可能となっている可変気筒内燃機関である。減筒運転は、車両の車速が低速域に移行した場合や、車両が停止して内燃機関1がアイドリング運転に移行した場合等に、燃費向上のために行われる。   By the way, the internal combustion engine 1 according to the present embodiment is configured such that the operation of the internal combustion engine 1 is an all-cylinder operation in which all four cylinders of the internal combustion engine 1 are operated by supplying fuel from the fuel injection valves 11 to operate all the cylinders. For example, for example, two cylinders are operated and two cylinders are deactivated, fuel is supplied from the fuel injection valve 11 to some cylinders, the some cylinders are operated, and the fuel supply to the remaining cylinders is stopped, and the remaining cylinders are stopped. This is a variable-cylinder internal combustion engine that can be switched between a reduced-cylinder operation in which the cylinders are operated while being stopped. The reduced-cylinder operation is performed to improve fuel efficiency when the vehicle speed shifts to a low speed range, or when the vehicle stops and the internal combustion engine 1 shifts to idling operation.

ここで、減筒運転時には、休止気筒の吸気弁7及び排気弁8を、吸気弁バルブタイミング可変機構9及び排気弁バルブタイミング可変機構10を介して閉弁状態で停止させる場合(以下、この場合を弁停止減筒運転という)と、休止気筒の吸気弁7及び排気弁8を稼動時と同様に作動させる場合(以下、この場合を弁作動減筒運転という)と、がある。   Here, at the time of reduced cylinder operation, when the intake valve 7 and the exhaust valve 8 of the idle cylinder are stopped in a closed state via the intake valve valve timing variable mechanism 9 and the exhaust valve valve timing variable mechanism 10 (hereinafter, this case) Is referred to as “valve stop reduced cylinder operation”, and when the intake valve 7 and exhaust valve 8 of the idle cylinder are operated in the same manner as in operation (hereinafter, this case is referred to as “valve operated reduced cylinder operation”).

弁停止減筒運転は、休止気筒において吸気弁バルブタイミング可変機構9及び排気弁バルブタイミング可変機構10を介して吸気弁7及び排気弁8を閉弁状態で停止させ、休止気筒に新気が取り込まれることを防止する。これにより、休止気筒から冷たい新気のままの排気が排出されることを防止し、排気温度を上昇させて、排気浄化装置18の暖機を行うことができる。   In the stop cylinder reduction operation, in the idle cylinder, the intake valve 7 and the exhaust valve 8 are stopped in the closed state via the intake valve valve timing variable mechanism 9 and the exhaust valve timing variable mechanism 10, and fresh air is taken into the idle cylinder. To prevent it. Thereby, it is possible to prevent the exhaust from the cold fresh air from being discharged from the idle cylinder, to raise the exhaust temperature, and to warm up the exhaust purification device 18.

一方、弁作動減筒運転は、休止気筒において稼動時と同様に各行程に合わせて吸気弁7及び排気弁8を作動させるので、休止気筒では新気を取り込みその新気がそのまま排出されて排気となる。これにより、休止気筒から冷たい新気のままの排気が排出され、排気温度を低下させて、排気浄化装置18の過昇温を回避できる。また、ターボチャージャ14の作動による高い過給圧が必要なときに、休止気筒からも排気を排出することにより、排気量を増加させて、ターボチャージャ14の効率を上昇させることができる。   On the other hand, in the valve-operated reduced cylinder operation, the intake valve 7 and the exhaust valve 8 are operated in accordance with each stroke similarly to the operation in the idle cylinder, so that fresh air is taken in the idle cylinder and the fresh air is discharged as it is. It becomes. As a result, the cool fresh air exhaust is discharged from the idle cylinder, and the exhaust temperature is lowered, so that the excessive temperature rise of the exhaust purification device 18 can be avoided. Further, when a high supercharging pressure due to the operation of the turbocharger 14 is required, the exhaust amount is also discharged from the idle cylinder, so that the exhaust amount can be increased and the efficiency of the turbocharger 14 can be increased.

このように、状況に応じて、弁停止減筒運転と弁作動減筒運転とを使い分けることができる。   Thus, the valve stop reduced cylinder operation and the valve operated reduced cylinder operation can be used properly according to the situation.

ここで、弁停止減筒運転時には、新気量が多いと、本来休止気筒に供給されるべき新気も稼動気筒に供給される。このため、稼動気筒に供給される新気量が多くなり、新気量及びEGRガス量を合わせた総吸入空気量(総吸気量)のうちのEGRガス量の割合を示すEGR率が下がり、内燃機関1から排出されるNOxが増加し、排気エミッションが悪化する。また、EGR弁32がエアフローメータ15で検出される新気量に基づいて制御されるため、休止気筒分の新気量を除いた量を目標新気量としないと、新気量が多すぎてEGRガスが入らず、正しいEGR率が得られない。   Here, at the time of valve stop reduction cylinder operation, if the amount of fresh air is large, fresh air that should originally be supplied to the deactivated cylinder is also supplied to the operating cylinder. For this reason, the amount of fresh air supplied to the operating cylinder increases, and the EGR rate indicating the ratio of the amount of EGR gas in the total amount of intake air (total amount of intake air) that combines the amount of fresh air and the amount of EGR gas decreases. NOx discharged from the internal combustion engine 1 increases, and exhaust emission deteriorates. In addition, since the EGR valve 32 is controlled based on the fresh air amount detected by the air flow meter 15, the amount of fresh air is too large unless the target fresh air amount is the amount excluding the fresh air amount for the idle cylinders. Therefore, the EGR gas does not enter and the correct EGR rate cannot be obtained.

一方、弁作動減筒運転時には、休止気筒でも新気がそのまま排出されて排気となるため、弁停止減筒運転時に比して排気量が多くなる。このため、ターボチャージャ14の作動による過給圧が高くなる。よって、内燃機関1に供給されるべき総吸気量が増加する。ここで、弁作動減筒運転時に、弁停止減筒運転時と同じ新気量を供給するだけであると、新気量が足りず内燃機関1に供給されるべき増加した総吸気量を得るために内燃機関1にEGRガス量が多く供給されることになる。これにより、内燃機関1に供給されるEGRガ
ス量が過剰に多くなり失火に至る場合がある。
On the other hand, at the time of valve-operated reduced cylinder operation, fresh air is discharged as it is even in the deactivated cylinder and becomes exhaust gas. Therefore, the amount of exhaust becomes larger than that at the time of valve stopped reduced cylinder operation. For this reason, the supercharging pressure by the operation of the turbocharger 14 is increased. Therefore, the total intake amount to be supplied to the internal combustion engine 1 increases. Here, when only the same amount of fresh air as that at the time of valve stop reduction cylinder operation is supplied during the valve operation reduction cylinder operation, the increase in the total intake air amount to be supplied to the internal combustion engine 1 is obtained due to insufficient fresh air amount. Therefore, a large amount of EGR gas is supplied to the internal combustion engine 1. Thereby, the amount of EGR gas supplied to the internal combustion engine 1 may increase excessively, leading to misfire.

そこで、本実施例では、弁停止減筒運転時と、弁作動減筒運転時とで、新気量を異ならせるようにした。すなわち、弁停止減筒運転時と、弁作動減筒運転時とで、異なる目標新気量を設定し、エアフローメータ15で検出される実際の新気量がそれぞれの目標新気量となるようにスロットル弁17及びEGR弁32を制御するようにした。   Therefore, in this embodiment, the fresh air amount is made different between the valve stop reduced cylinder operation and the valve operated reduced cylinder operation. That is, different target fresh air amounts are set for the valve stop reduced cylinder operation and the valve operated reduced cylinder operation so that the actual fresh air amount detected by the air flow meter 15 becomes the respective target fresh air amount. The throttle valve 17 and the EGR valve 32 are controlled.

具体的には、弁停止減筒運転時の目標新気量は、
弁停止減筒運転時の目標新気量=全気筒運転時の目標新気量×稼動気筒数/全気筒数・・・(式1)
で算出される量に設定する。
Specifically, the target fresh air volume during valve stop reduced cylinder operation is
Target fresh air volume during valve stop reduced cylinder operation = Target fresh air volume during all cylinder operation x number of operating cylinders / total number of cylinders (Equation 1)
Set to the amount calculated in.

これにより、弁停止減筒運転時の新気量を、全気筒運転時の新気量を全気筒数で割り稼動気筒数を掛けた量とすることができる。   As a result, the amount of fresh air during valve stop reduced cylinder operation can be made equal to the amount of fresh air during all cylinder operation divided by the number of all cylinders and multiplied by the number of operating cylinders.

また、弁作動減筒運転時の目標新気量は、
弁作動減筒運転時の目標新気量=弁停止減筒運転時の目標新気量×弁作動減筒運転時の過給圧/弁停止減筒運転時の過給圧・・・(式2)
で算出される量に設定する。
Also, the target fresh air volume during valve operation reduced cylinder operation is
Target fresh air volume during valve-operated reduced cylinder operation = Target fresh air quantity during valve-stop reduced cylinder operation x Supercharging pressure during valve-operated reduced cylinder operation / Supercharged pressure during valve-stop reduced cylinder operation (Expression) 2)
Set to the amount calculated in.

これにより、弁作動減筒運転時の新気量を、弁停止減筒運転時の新気量を弁停止減筒運転時の過給圧で割り、弁作動減筒運転時の過給圧を掛けた量とすることができる。   As a result, the amount of fresh air during valve-operated reduced cylinder operation is divided by the boost pressure during valve-operated reduced cylinder operation divided by the boost pressure during valve-operated reduced cylinder operation, It can be the multiplied amount.

なお、弁停止減筒運転時の目標新気量及び弁作動減筒運転時の目標新気量は、予め実験や検証等により燃料噴射量と機関回転数から導き出せるようマップ化しておく。   The target fresh air amount at the time of valve stop reduced cylinder operation and the target fresh air amount at the time of valve operation reduced cylinder operation are mapped in advance so that they can be derived from the fuel injection amount and the engine speed by experiments and verification.

ここで、弁作動減筒運転時の過給圧は弁停止減筒運転時の過給圧よりも高く、弁作動減筒運転時の目標新気量が全気筒運転時の目標新気量よりも少ない。したがって、図2(a)に示すように燃料噴射量及び機関回転数が同じで丸印の状態であれば、図2(b)に示すように、
全気筒運転時の目標新気量>弁作動減筒運転時の目標新気量>弁停止減筒運転時の目標新気量
の関係が成立する。
Here, the supercharging pressure during valve-operated reduced cylinder operation is higher than that during valve-stop reduced cylinder operation, and the target fresh air amount during valve-operated reduced cylinder operation is higher than the target fresh air amount during all cylinder operation. There are few. Therefore, as shown in FIG. 2B, if the fuel injection amount and the engine speed are the same as shown in FIG.
The relationship of target fresh air amount during all cylinder operation> target fresh air amount during valve operation reduced cylinder operation> target fresh air amount during valve stop reduced cylinder operation is established.

すなわち、弁作動減筒運転時の新気量を、全気筒運転時の新気量よりも減らし、且つ、弁停止減筒運転時の新気量よりも増やす関係が成立する。   That is, a relationship is established in which the fresh air amount during the valve-actuated reduced cylinder operation is reduced below the fresh air amount during the all-cylinder operation and is increased more than the fresh air amount during the valve stop reduced cylinder operation.

本実施例によると、弁停止減筒運転時には、目標新気量が全気筒運転時や弁作動減筒運転時の目標新気量よりも少ないので、新気量が他の場合に比して最も少ない最適量となる。このため、本来休止気筒に供給されるべき新気は、内燃機関1に取り込まれなくなり、稼動気筒に供給されなくなる。これにより、EGR率が下がることを抑制し、内燃機関1から排出されるNOxが増加することを抑制し、排気エミッションが悪化することを抑制できる。また、EGR弁32がエアフローメータ15で検出される新気量に基づいて制御されており、休止気筒分の新気量を除いた量を目標新気量とするので、新気量が最適量となりEGRガスも最適量入り、正しいEGR率を得ることができる。   According to this embodiment, during the valve stop reduced cylinder operation, the target fresh air amount is smaller than the target fresh air amount during all cylinder operation or valve operated reduced cylinder operation, so the fresh air amount is smaller than in other cases. The smallest optimal amount. For this reason, fresh air that should be supplied to the deactivated cylinder is not taken into the internal combustion engine 1 and is not supplied to the operating cylinder. Thereby, it can suppress that an EGR rate falls, can suppress that NOx discharged | emitted from the internal combustion engine 1 increases, and can suppress that exhaust emission deteriorates. Further, since the EGR valve 32 is controlled based on the fresh air amount detected by the air flow meter 15 and the target fresh air amount is obtained by subtracting the fresh air amount for the deactivated cylinder, the fresh air amount is the optimum amount. The EGR gas is contained in an optimum amount, and a correct EGR rate can be obtained.

一方、弁作動減筒運転時には、休止気筒に新気を取り込みその新気がそのまま排出されて排気となるため、弁停止減筒運転時に比して排気量が多くなる。このため、ターボチャージャ14の作動による過給圧が高くなる。よって、内燃機関1に供給されるべき新気量及びEGRガス量を合わせた総吸気量が増加する。ここで、本実施例によると、弁作動減
筒運転時には、目標新気量が弁停止減筒運転時に比して多く、新気量が弁停止減筒運転時に比して多い最適量となる。よって、新気量をより多く内燃機関1に供給するので、内燃機関1に供給されるべき増加した総吸気量を得るために内燃機関1にEGRガス量が多く供給されることが抑制される。これにより、内燃機関1に供給されるEGRガス量が過剰に多くなり失火に至ることが抑制できる。
On the other hand, at the time of valve-operated reduced cylinder operation, fresh air is taken into the deactivated cylinder, and the new air is discharged as it is to become exhaust gas. For this reason, the supercharging pressure by the action | operation of the turbocharger 14 becomes high. Therefore, the total intake air amount that combines the fresh air amount and the EGR gas amount to be supplied to the internal combustion engine 1 increases. Here, according to this embodiment, during valve operation reduced cylinder operation, the target fresh air amount is greater than during valve stop reduced cylinder operation, and the new air amount is greater than that during valve stop reduced cylinder operation. . Therefore, since a larger amount of fresh air is supplied to the internal combustion engine 1, it is possible to suppress the supply of a large amount of EGR gas to the internal combustion engine 1 in order to obtain an increased total intake air amount to be supplied to the internal combustion engine 1. . Thereby, it can suppress that the amount of EGR gas supplied to the internal combustion engine 1 increases excessively and leads to misfire.

したがって、弁停止減筒運転時には、排気エミッションが悪化することを抑制できる。また、弁作動減筒運転時には、内燃機関1に供給されるEGRガス量が過剰に多くなり失火に至ることが抑制できる。このように、どちらの場合であっても、内燃機関1を良好に運転させることができる。   Therefore, it is possible to suppress the exhaust emission from deteriorating during the valve stop reducing cylinder operation. Further, during valve operation reduced cylinder operation, it is possible to suppress the amount of EGR gas supplied to the internal combustion engine 1 from excessively increasing and causing misfire. Thus, in either case, the internal combustion engine 1 can be operated satisfactorily.

次に、本実施例による全気筒運転及び減筒運転制御ルーチンについて説明する。図3は、本実施例による全気筒運転及び減筒運転制御ルーチンを示したフローチャートである。本ルーチンは、ECU19により所定の時間毎に繰り返し実行される。   Next, an all-cylinder operation and reduced-cylinder operation control routine according to this embodiment will be described. FIG. 3 is a flowchart showing an all-cylinder operation and reduced-cylinder operation control routine according to this embodiment. This routine is repeatedly executed by the ECU 19 every predetermined time.

ステップS101では、減筒運転が可能であるか否かを判別する。具体的には、各種センサの出力値から内燃機関1の運転状態を検出し、車両の車速が低速域に移行したり、車両が停止して内燃機関1がアイドリング運転に移行したりしたときに減筒運転が可能と判断する。   In step S101, it is determined whether or not the reduced cylinder operation is possible. Specifically, when the operation state of the internal combustion engine 1 is detected from the output values of various sensors and the vehicle speed shifts to a low speed range, or the vehicle stops and the internal combustion engine 1 shifts to idling operation. Judge that reduced-cylinder operation is possible.

ステップS101において減筒運転不可能と否定判定された場合には、ステップS102へ移行する。ステップS101において減筒運転可能と肯定判定された場合には、ステップS103へ移行する。   If it is determined in step S101 that the reduced cylinder operation is not possible, the process proceeds to step S102. If it is determined in step S101 that the reduced-cylinder operation is possible, the process proceeds to step S103.

ステップS102では、4つの全気筒を稼動する全気筒運転を実施する。本ステップの処理の後、本ルーチンを一旦終了する。   In step S102, all-cylinder operation for operating all four cylinders is performed. After the processing of this step, this routine is once ended.

一方、ステップS103では、弁停止減筒運転が可能か否かを判別する。具体的には、排気浄化装置18の暖機が必要な場合に、弁停止減筒運転が可能と判断する。また、排気浄化装置18の過昇温の回避が必要な場合や、高い過給圧が必要な場合に、弁停止減筒運転が不可能と判断する。   On the other hand, in step S103, it is determined whether or not the valve stop reduced cylinder operation is possible. Specifically, when the exhaust purification device 18 needs to be warmed up, it is determined that the valve stop reduced cylinder operation is possible. Further, when it is necessary to avoid overheating of the exhaust purification device 18 or when a high supercharging pressure is required, it is determined that the valve stop reduced cylinder operation is impossible.

ステップS103において弁停止減筒運転可能と肯定判定された場合には、ステップS104へ移行する。ステップS103において弁停止減筒運転不可能と否定判定された場合には、ステップS106へ移行する。   If it is determined in step S103 that the valve stop reduced cylinder operation is possible, the process proceeds to step S104. If it is determined in step S103 that the valve stop reduced cylinder operation is not possible, the process proceeds to step S106.

ステップS104では、(式1)で算出される弁停止減筒運転時の目標新気量を、予め実験や検証等により作成した図2(a)に示すようなマップを用い、燃料噴射弁11の燃料噴射量とクランクポジションセンサ20から検出される機関回転数から導き出す。   In step S104, the fuel injection valve 11 uses a map as shown in FIG. 2 (a) in which the target fresh air amount at the time of the valve stop reduction cylinder operation calculated by (Equation 1) is created in advance by experiment, verification, or the like. This is derived from the amount of fuel injection and the engine speed detected from the crank position sensor 20.

ステップS105では、予め定めた気筒を休止すると共に、休止気筒において吸気弁バルブタイミング可変機構9及び排気弁バルブタイミング可変機構10を介して吸気弁7及び排気弁8を閉弁状態で停止させ、弁停止減筒運転を実施する。このとき、エアフローメータ15で検出される実際の新気量が、ステップS104で導き出された弁停止減筒運転時の目標新気量となるように、スロットル弁17及びEGR弁32を制御する。本ステップの処理の後、本ルーチンを一旦終了する。なお、ステップS104−105を実行するECU19が本発明の吸入空気量制御手段に相当する。   In step S105, the predetermined cylinder is deactivated, and in the deactivated cylinder, the intake valve 7 and the exhaust valve 8 are stopped in the closed state via the intake valve valve timing variable mechanism 9 and the exhaust valve valve timing variable mechanism 10, and the valve Implement stop-cylinder operation. At this time, the throttle valve 17 and the EGR valve 32 are controlled such that the actual fresh air amount detected by the air flow meter 15 becomes the target fresh air amount at the time of valve stop reduction cylinder operation derived in step S104. After the processing of this step, this routine is once ended. In addition, ECU19 which performs step S104-105 corresponds to the intake air amount control means of this invention.

一方、ステップS106では、(式2)で算出される弁作動減筒運転時の目標新気量を、予め実験や検証等により作成した図2(a)に示すようなマップを用い、燃料噴射弁1
1の燃料噴射量とクランクポジションセンサ20から検出される機関回転数から導き出す。
On the other hand, in step S106, fuel injection is performed using the map shown in FIG. 2 (a), in which the target fresh air amount during the valve-operated reduced cylinder operation calculated by (Equation 2) is created in advance through experiments, verifications, and the like. Valve 1
1 and the engine speed detected from the crank position sensor 20.

ステップS107では、予め定めた気筒を休止すると共に、休止気筒においても稼動時と同様に吸気弁7及び排気弁8を作動させ、弁作動減筒運転を実施する。このとき、エアフローメータ15で検出される実際の新気量が、ステップS106で導き出された弁停止減筒運転時の目標新気量となるように、スロットル弁17及びEGR弁32を制御する。本ステップの処理の後、本ルーチンを一旦終了する。なお、ステップS106−107を実行するECU19が本発明の吸入空気量制御手段に相当する。   In step S107, the predetermined cylinder is deactivated, and also in the deactivated cylinder, the intake valve 7 and the exhaust valve 8 are operated in the same manner as during operation, and the valve operation reduced cylinder operation is performed. At this time, the throttle valve 17 and the EGR valve 32 are controlled so that the actual fresh air amount detected by the air flow meter 15 becomes the target fresh air amount at the time of valve stop reducing cylinder operation derived in step S106. After the processing of this step, this routine is once ended. In addition, ECU19 which performs step S106-107 is equivalent to the intake air amount control means of this invention.

以上説明した本ルーチンによれば、弁停止減筒運転と弁作動減筒運転のどちらであっても、内燃機関1を良好に運転させることができる。そして、状況に応じて、全気筒運転と弁停止減筒運転と弁作動減筒運転とを使い分けることができる。   According to this routine described above, the internal combustion engine 1 can be operated satisfactorily in either the valve stop reduction cylinder operation or the valve operation reduction cylinder operation. And according to a situation, all cylinder operation, valve stop reduction cylinder operation, and valve operation reduction cylinder operation can be used properly.

なお、本実施例では、弁停止減筒運転では、休止気筒において吸気弁バルブタイミング可変機構9及び排気弁バルブタイミング可変機構10を介して吸気弁7及び排気弁8の両方を閉弁状態で停止させる構成とした。しかし本発明はこれに限られない。弁停止減筒運転では休止気筒に新気が取り込まれることを防止できればよい。このため、例えば吸気弁バルブタイミング可変機構9を介して吸気弁7を閉弁状態で停止させるだけの構成でもよいし、排気弁バルブタイミング可変機構10を介して排気弁8を閉弁状態で停止させるだけの構成でもよい。   In the present embodiment, in the valve stop reduced cylinder operation, both the intake valve 7 and the exhaust valve 8 are stopped in the closed state via the intake valve valve timing variable mechanism 9 and the exhaust valve valve timing variable mechanism 10 in the closed cylinder. It was set as the structure made to do. However, the present invention is not limited to this. In the valve stop reduced cylinder operation, it is only necessary to prevent fresh air from being taken into the idle cylinder. For this reason, for example, the configuration may be such that the intake valve 7 is stopped in the closed state via the intake valve valve timing variable mechanism 9, or the exhaust valve 8 is stopped in the closed state via the exhaust valve valve timing mechanism 10. It is possible to have a configuration that only allows

本発明に係る可変気筒内燃機関の制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The control device for a variable cylinder internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention.

実施例1に係る内燃機関及びその吸気系・排気系の概略構成を示す図。1 is a diagram showing a schematic configuration of an internal combustion engine and an intake system / exhaust system thereof according to Embodiment 1. FIG. (a)は実施例1に係る目標新気量を導き出すためのマップ、並びに、(b)は実施例1に係る全気筒運転時、弁停止減筒運転時、及び弁作動減筒運転時における燃料噴射量及び機関回転数が同じときの目標新気量を示す図。(A) is a map for deriving the target fresh air amount according to the first embodiment, and (b) is during all cylinder operation, valve stop reduced cylinder operation, and valve operated reduced cylinder operation according to the first embodiment. The figure which shows the target fresh air amount when a fuel injection amount and an engine speed are the same. 実施例1に係る全気筒運転及び減筒運転制御ルーチンを示すフローチャート。3 is a flowchart showing an all-cylinder operation and reduced-cylinder operation control routine according to the first embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 シリンダヘッド
4 燃焼室
5 吸気ポート
6 排気ポート
7 吸気弁
8 排気弁
9 吸気弁バルブタイミング可変機構
10 排気弁バルブタイミング可変機構
11 燃料噴射弁
12 吸気通路
13 排気通路
14 ターボチャージャ
14a コンプレッサ
14b タービン
15 エアフローメータ
17 スロットル弁
18 排気浄化装置
19 ECU
20 クランクポジションセンサ
21 アクセルポジションセンサ
30 EGR装置
31 EGR通路
32 EGR弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Cylinder head 4 Combustion chamber 5 Intake port 6 Exhaust port 7 Intake valve 8 Exhaust valve 9 Intake valve valve timing variable mechanism 10 Exhaust valve valve timing variable mechanism 11 Fuel injection valve 12 Intake passage 13 Exhaust passage 14 Turbocharger 14a Compressor 14b Turbine 15 Air flow meter 17 Throttle valve 18 Exhaust gas purification device 19 ECU
20 Crank position sensor 21 Accelerator position sensor 30 EGR device 31 EGR passage 32 EGR valve

Claims (4)

内燃機関の運転を全気筒運転と減筒運転との間で切り替え可能な可変気筒内燃機関の制御装置であって、
前記内燃機関の排気通路から排気の一部をEGRガスとして取り込み、前記内燃機関の吸気通路へ当該EGRガスを還流させるEGR装置と、
前記内燃機関の各気筒における吸気弁及び排気弁の少なくとも一方の開閉特性を変更可能とする可変動弁機構と、
減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合と、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合とで、吸入空気量を異ならせる吸入空気量制御手段と、
を備えることを特徴とする可変気筒内燃機関の制御装置。
A control device for a variable cylinder internal combustion engine capable of switching the operation of the internal combustion engine between full cylinder operation and reduced cylinder operation,
An EGR device that takes in a part of exhaust gas from the exhaust passage of the internal combustion engine as EGR gas and recirculates the EGR gas to the intake passage of the internal combustion engine;
A variable valve mechanism capable of changing an opening / closing characteristic of at least one of an intake valve and an exhaust valve in each cylinder of the internal combustion engine;
When at least one of the intake and exhaust valves of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced cylinder operation, and the intake and exhaust valves of the idle cylinder are operated during the reduced cylinder operation. The intake air amount control means for making the intake air amount different depending on the case,
A control apparatus for a variable cylinder internal combustion engine, comprising:
前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の吸入空気量を、全気筒運転時の吸入空気量よりも減らし、且つ、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量よりも増やすことを特徴とする請求項1に記載の可変気筒内燃機関の制御装置。   The intake air amount control means reduces the intake air amount when the intake valve and exhaust valve of the deactivated cylinder are operated during the reduced cylinder operation, than the intake air amount during the all cylinder operation, and during the reduced cylinder operation. 2. The variable cylinder internal combustion engine according to claim 1, wherein at least one of the intake valve and the exhaust valve of the deactivated cylinder is larger than an intake air amount when the valve is stopped in a closed state via the variable valve mechanism. Engine control device. 前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量を、全気筒運転時の吸入空気量を全気筒数で割り稼動気筒数を掛けた量とすることを特徴とする請求項2に記載の可変気筒内燃機関の制御装置。   The intake air amount control means determines the intake air amount when all cylinders are operated when at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the reduced cylinder operation. The control apparatus for a variable cylinder internal combustion engine according to claim 2, wherein the intake air amount at that time is divided by the total number of cylinders and multiplied by the number of operating cylinders. 前記吸入空気量制御手段は、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の吸入空気量を、減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の吸入空気量を減筒運転時に休止気筒の吸気弁及び排気弁の少なくとも一方を前記可変動弁機構を介して閉弁状態で停止させている場合の過給圧で割り、減筒運転時に休止気筒の吸気弁及び排気弁を作動させている場合の過給圧を掛けた量とすることを特徴とする請求項2又は3に記載の可変気筒内燃機関の制御装置。   The intake air amount control means allows the intake air amount when the intake valve and exhaust valve of the deactivated cylinder are operated during the reduced cylinder operation, and allows at least one of the intake valve and exhaust valve of the deactivated cylinder during the reduced cylinder operation. When the intake air amount is stopped in the closed state via the variable valve mechanism, at least one of the intake valve and the exhaust valve of the idle cylinder is stopped in the closed state via the variable valve mechanism during the cylinder reduction operation. 4. The amount obtained by dividing by the supercharging pressure when the engine is in operation and multiplying by the supercharging pressure when operating the intake valve and exhaust valve of the idle cylinder during the reduced cylinder operation. Control device for variable cylinder internal combustion engine.
JP2008256701A 2008-10-01 2008-10-01 Control device for variable cylinder internal combustion engine Expired - Fee Related JP5083156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256701A JP5083156B2 (en) 2008-10-01 2008-10-01 Control device for variable cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256701A JP5083156B2 (en) 2008-10-01 2008-10-01 Control device for variable cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010084706A true JP2010084706A (en) 2010-04-15
JP5083156B2 JP5083156B2 (en) 2012-11-28

Family

ID=42248902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256701A Expired - Fee Related JP5083156B2 (en) 2008-10-01 2008-10-01 Control device for variable cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP5083156B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164739A (en) * 1979-06-07 1980-12-22 Nissan Motor Co Ltd Turbocharged engine
JPS6045767A (en) * 1983-08-23 1985-03-12 Mazda Motor Corp Exhaust recirculating device in controlled cylinder number engine
JP2005220880A (en) * 2004-02-09 2005-08-18 Toyota Motor Corp Control device for multi-cylinder internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164739A (en) * 1979-06-07 1980-12-22 Nissan Motor Co Ltd Turbocharged engine
JPS6045767A (en) * 1983-08-23 1985-03-12 Mazda Motor Corp Exhaust recirculating device in controlled cylinder number engine
JP2005220880A (en) * 2004-02-09 2005-08-18 Toyota Motor Corp Control device for multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JP5083156B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
EP2181260B1 (en) Control apparatus and control method for internal combustion engine
RU2581684C2 (en) Exhaust gas recycling system with fixed content
US10087859B2 (en) Partial deactivation of an internal combustion engine
JP4816811B2 (en) Control device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP2010096049A (en) Control device of internal combustion engine
US20180266365A1 (en) Exhaust gas control apparatus of internal combustion engine
WO2008152491A1 (en) Exhaust gas recirculation system for internal combustion engine and exhaust gas recirculation system control method
JP2008303763A (en) Exhaust emission control device for internal combustion engine
EP2418369A1 (en) System for controlling exhaust gas temperature of an internal combustion engine with an exhaust gas after-treatment device and prime mover including same
JP2009264335A (en) Multistage supercharging system for internal combustion engine
JP2009002275A (en) Control system of internal combustion engine
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP5679185B2 (en) Control device for internal combustion engine
JP2006207382A (en) Surging prevention device for turbocharger
JP4265382B2 (en) Premixed compression ignition internal combustion engine
JP4765966B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2009085094A (en) Exhaust gas recirculation device for engine
JP2009299506A (en) Intake air control device for internal combustion engine
JP2009191660A (en) Control device of internal combustion engine
JP5083156B2 (en) Control device for variable cylinder internal combustion engine
JP6641405B2 (en) Engine control device
JP6939986B2 (en) Internal combustion engine exhaust purification device temperature control method and internal combustion engine control device
CN111417772B (en) Method and device for controlling internal combustion engine for vehicle
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5083156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees