JP2010084693A - Engine valve - Google Patents

Engine valve Download PDF

Info

Publication number
JP2010084693A
JP2010084693A JP2008256275A JP2008256275A JP2010084693A JP 2010084693 A JP2010084693 A JP 2010084693A JP 2008256275 A JP2008256275 A JP 2008256275A JP 2008256275 A JP2008256275 A JP 2008256275A JP 2010084693 A JP2010084693 A JP 2010084693A
Authority
JP
Japan
Prior art keywords
umbrella
heat
valve
engine valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256275A
Other languages
Japanese (ja)
Inventor
Shigeki Yamada
茂樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2008256275A priority Critical patent/JP2010084693A/en
Priority to DE102009042545A priority patent/DE102009042545B4/en
Priority to US12/568,726 priority patent/US20100077983A1/en
Publication of JP2010084693A publication Critical patent/JP2010084693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine valve capable of reducing thermal load without increasing the cost. <P>SOLUTION: In this engine valve 1 equipped with a shaft 2 and an umbrella 3, a heat insulating film 4 comprising a ceramics material is formed on an umbrella front 3b and an umbrella back 3c out of the surface of the umbrella part 3, and the heat input amount is suppressed. On the other hand, on the surface of the shaft 2, a heat transfer film 5 comprising aluminum nitride or chromium nitride is formed, and a heat radiation property is enhanced. This engine valve is preferably a solid exhaust valve inside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コストが嵩むことなく熱負荷を軽減し得るエンジンバルブに関する。   The present invention relates to an engine valve that can reduce a thermal load without increasing cost.

近年では、自動車の高性能化に伴うエンジンの高出力化が一層進んでいる。しかし、エンジンの高出力化が進むと、それだけエンジンにおける燃焼温度が高くなり、エンジン構成部品の破損や早期劣化の要因になる。したがって、従来では燃焼温度を抑えるため、空燃比を燃料リッチにすることがあった。しかし、燃料リッチの状態で燃焼させると排気ガス中のHCが増加して排気ガス規制を満たさない。近年では、環境問題の点から排気ガス規制はより強まる傾向にある。そこで、理論空燃比で燃焼させて排気ガス規制を満たしながら高出力化を達成することが求められる。しかし、理論空燃比で高出力化すると高温化は避けられず、エンジン構成部品の改良が必須となる。   In recent years, the engine output has been further increased along with the higher performance of automobiles. However, as the engine output increases, the combustion temperature in the engine increases accordingly, causing damage to engine components and early deterioration. Therefore, conventionally, in order to suppress the combustion temperature, the air-fuel ratio may be made rich in fuel. However, if combustion is performed in a fuel-rich state, HC in the exhaust gas increases and does not satisfy the exhaust gas regulations. In recent years, exhaust gas regulations tend to become stronger due to environmental issues. Therefore, it is required to achieve high output while satisfying exhaust gas regulations by burning at the stoichiometric air-fuel ratio. However, if the output is increased at the stoichiometric air-fuel ratio, higher temperatures are unavoidable, and improvement of engine components is essential.

このような問題が生じ得るエンジン構成部品として、例えばエンジンの燃焼室に吸排気するエンジンバルブがある。エンジンバルブは軸部の一端に傘部を有する構造となっており、燃焼室に面する傘表から入熱され、バルブシートと当接するフェース部、及びバルブガイドと摺接する軸部を介して放熱される。その上で、吸気バルブは吸入空気により傘裏からも放熱され得るが、排気バルブは高温の排気ガスによって傘裏からも入熱され、吸気バルブよりも排気バルブの方が高温となり易い。   As an engine component that may cause such a problem, for example, there is an engine valve that sucks and exhausts air into a combustion chamber of the engine. The engine valve has a structure having an umbrella part at one end of the shaft part, and heat is input from the umbrella surface facing the combustion chamber, and heat is dissipated through the face part contacting the valve seat and the shaft part slidingly contacting the valve guide. Is done. In addition, the intake valve can dissipate heat from the back of the umbrella by the intake air, but the exhaust valve also receives heat from the back of the umbrella by the high-temperature exhaust gas, and the exhaust valve tends to be hotter than the intake valve.

エンジンバルブの作動中の温度は、上記のような入熱と放熱とのバランスにより支配されるが、特に排気バルブにおいては入熱量に比べて放熱量が小さくなり易く、エンジンの運転条件によっては傘部が高温となり、熱負荷が増大する。そのため、従来のエンジンバルブには、耐久性に考慮して高温特性に優れるマルテンサイト系やオーステナイト系の耐熱鋼が使用されている。また、ニッケル合金、アルミニウム合金、マグネシウム合金、あるいはチタン合金などを使用して軽量化を図る例もある。しかし、耐熱鋼は比較的高価であり、アルミニウム合金などは耐熱強度の点で問題がある。例えば、エンジンバルブの傘部は900℃以上の高温になることがあり、ニッケル合金は850℃までは耐熱強度を維持できるが、900℃程度にまで昇温すると耐熱強度が不足する。   The temperature during operation of the engine valve is governed by the balance between heat input and heat dissipation as described above. In particular, the exhaust valve tends to have a smaller heat dissipation amount than the heat input amount. The part becomes hot and the heat load increases. For this reason, martensitic and austenitic heat-resistant steels having excellent high-temperature characteristics in consideration of durability are used for conventional engine valves. There are also examples of reducing the weight by using a nickel alloy, an aluminum alloy, a magnesium alloy, a titanium alloy, or the like. However, heat-resistant steel is relatively expensive, and aluminum alloys have a problem in terms of heat-resistant strength. For example, the umbrella part of the engine valve may be at a high temperature of 900 ° C. or higher, and the nickel alloy can maintain the heat resistance strength up to 850 ° C., but if the temperature rises to about 900 ° C., the heat resistance strength is insufficient.

そこで、エンジンバルブ自体の構成を改良することでエンジンバルブの熱負荷を軽減することが提案されている。例えば特許文献1では、エンジンバルブを中空として、主に軸部からの放熱性を高めている。一方、特許文献2や特許文献3では、傘部表面にセラミックス系の断熱材料からなる被膜を形成して、入熱量を低減している。   Therefore, it has been proposed to reduce the thermal load on the engine valve by improving the configuration of the engine valve itself. For example, in Patent Document 1, the engine valve is hollow, and heat dissipation from the shaft portion is mainly enhanced. On the other hand, in Patent Document 2 and Patent Document 3, a film made of a ceramic heat insulating material is formed on the surface of the umbrella portion to reduce the amount of heat input.

特開2007−32465号公報JP 2007-32465 A 特開2003−307105号公報JP 2003-307105 A 特開平4−311611号公報JP-A-4-311611

しかし、特許文献1のように中空バルブとするには製造コストが嵩むと共に、特に排気バルブにおいては熱効率の点から空洞内にナトリウム等の冷媒を充填することが必要であり、材料コストも嵩む。そもそも、傘部からの入熱量が多量であると、放熱性にも限界がある。一方、特許文献2や特許文献3のエンジンバルブは、傘部の断熱被膜により入熱量がある程度抑えられるが、入熱量低減効果にもある程度の限界があり、軸部からの放熱性については特に考慮されていない。   However, manufacturing a hollow valve as in Patent Document 1 increases the manufacturing cost, and particularly in the exhaust valve, it is necessary to fill the cavity with a refrigerant such as sodium from the viewpoint of thermal efficiency, and the material cost also increases. In the first place, if the amount of heat input from the umbrella is large, there is a limit to heat dissipation. On the other hand, in the engine valves of Patent Document 2 and Patent Document 3, the heat input is suppressed to some extent by the heat insulating coating on the umbrella part, but there is a certain limit to the effect of reducing the heat input, and heat dissipation from the shaft part is particularly considered. It has not been.

そこで、特許文献1のような中空バルブと特許文献2や特許文献3のような傘部に断熱被膜を有するエンジンバルブとを組み合わせることも考えられるが、上述のように中空バルブとするにはコスト高となる。   Therefore, it is conceivable to combine a hollow valve as in Patent Document 1 and an engine valve having a heat insulating coating on an umbrella portion as in Patent Document 2 and Patent Document 3, but it is costly to make a hollow valve as described above. Become high.

そこで、本発明はこのような問題を解決するためになされたものであり、コストが嵩むことなく熱負荷を低減し得るエンジンバルブを提供することを目的とする。   Accordingly, the present invention has been made to solve such a problem, and an object thereof is to provide an engine valve that can reduce a thermal load without increasing cost.

本発明は、軸部の一端に傘部を備えるエンジンバルブにおいて、傘部の表面に断熱材料からなる断熱被膜を有し、且つ軸部の表面には伝熱性の良好な伝熱被膜を有することを特徴とする。軸部はバルブガイドに摺接し、傘部はバルブシートに当接するフェース部を有する。なお、傘裏とは、一定の面積を有する傘表から棒状の軸部に至る、フェース部よりも上方の部位であり、首部ということもできる。伝熱被膜は、例えば窒化アルミ又は窒化クロムからなる被膜とすることができる。   The present invention provides an engine valve having an umbrella part at one end of a shaft part, having a heat insulating film made of a heat insulating material on the surface of the umbrella part, and having a heat transfer film having a good heat transfer property on the surface of the shaft part. It is characterized by. The shaft portion is in sliding contact with the valve guide, and the umbrella portion has a face portion that is in contact with the valve seat. The back of the umbrella is a part above the face part from the front of the umbrella having a certain area to the rod-shaped shaft part, and can also be called a neck part. The heat transfer film can be a film made of, for example, aluminum nitride or chromium nitride.

本発明は、中空バルブに適用することもできるが、特に、内部が中実な排気バルブに対して適用することが好ましい。排気ガスが排気ポートへ排出される際、図3に示すように、排気ガスは排気バルブの傘裏に沿うように排気される。このとき、傘裏は傘表よりも断面積が小さく熱容量が小さい。したがって、傘表よりも熱容量の小さい傘裏の方が熱負荷がより大きくなる。そこで、断熱被膜は、傘裏と傘表の双方に形成することが好ましいが、特に排気バルブにおいて傘表と傘裏のうちのいずれか一方のみに形成する場合は、少なくとも傘裏へ優先的に形成することが好ましい。なお、断熱被膜を傘表のみに形成しても、十分な入熱量低減効果は得られる。当該断熱被膜は、例えばセラミックス系材料からなる被膜とすることができる。   The present invention can be applied to a hollow valve, but is particularly preferably applied to an exhaust valve having a solid inside. When the exhaust gas is discharged to the exhaust port, the exhaust gas is exhausted along the back of the exhaust valve as shown in FIG. At this time, the back of the umbrella has a smaller cross-sectional area and a smaller heat capacity than the front of the umbrella. Therefore, the thermal load is larger on the back of the umbrella having a smaller heat capacity than on the front of the umbrella. Therefore, it is preferable to form the heat insulation coating on both the umbrella back and the front of the umbrella, but in particular, when forming on only one of the umbrella front and the back of the umbrella in the exhaust valve, at least the umbrella back is given priority. Preferably formed. Even if the heat insulating coating is formed only on the umbrella surface, a sufficient heat input reduction effect can be obtained. The said heat insulation film can be made into the film which consists of ceramic materials, for example.

本発明では、断熱被膜により傘部への入熱量が低減される。そのうえで、さらに軸部には伝熱被膜が形成されていることにより、ある程度高い入熱量があっても、軸部において良好に放熱されるので、エンジンバルブ全体の熱負荷を良好に軽減できる。これにより、バルブ材料選択の幅が拡がると共に、必ずしもエンジンバルブを中空とする必要もなくなる。   In the present invention, the heat input to the umbrella portion is reduced by the heat insulating coating. In addition, since the heat transfer film is further formed on the shaft portion, even if there is a certain amount of heat input, heat is radiated well in the shaft portion, so that the thermal load on the entire engine valve can be reduced well. This increases the range of valve material selection and does not necessarily require the engine valve to be hollow.

従来では、窒化アルミ又は窒化クロムからなる被膜を有するエンジンバルブは存在しなかったが、当該窒化アルミや窒化クロムなどの窒化物からなる被膜は、耐熱性と共に伝熱性が良好であり、エンジンバルブの伝熱被膜として好適である。   Conventionally, an engine valve having a coating made of aluminum nitride or chromium nitride has not existed. However, a coating made of nitride such as aluminum nitride or chromium nitride has good heat transfer and good heat transfer, and Suitable as a heat transfer coating.

内部が中実な排気バルブであれば、本発明の効果を最大限に得られる。すなわち、内部が中実なエンジンバルブに本発明を適用すれば、製造コスト及び材料コストを抑えられる。また、吸気バルブよりも高温となり易い排気バルブに本発明を適用すれば、熱負荷低減効果が大きい。   If the exhaust valve is solid, the effect of the present invention can be obtained to the maximum. That is, if the present invention is applied to an engine valve having a solid interior, manufacturing costs and material costs can be suppressed. Moreover, if the present invention is applied to an exhaust valve that tends to be hotter than an intake valve, the effect of reducing the thermal load is great.

本発明を排気バルブに適用する場合に、断熱被膜を少なくとも傘裏に形成しておけば、熱容量が傘表よりも小さい傘裏の熱負荷を効率よく低減できる。また、断熱被膜を少なくとも傘表に形成しておけば、燃焼室からの直接的な入熱量も低減できる。断熱被膜をセラミックス系材料としていれば、的確に入熱量を低減できる。   When the present invention is applied to an exhaust valve, if the heat insulating coating is formed at least on the back of the umbrella, the thermal load on the back of the umbrella having a smaller heat capacity than that of the front of the umbrella can be efficiently reduced. Further, if the heat insulating coating is formed at least on the umbrella surface, the direct heat input from the combustion chamber can also be reduced. If the heat insulating coating is made of a ceramic material, the amount of heat input can be accurately reduced.

図1に示すように、エンジンバルブ1は、棒状の軸部2と、当該軸部の一端に末広がりの傘部3とを備える。傘部3は、後述のバルブシート19に当接するフェース部3aを有する。なお、本発明は中空バルブにも適用できるが、以下には中実バルブに適用した好適な例について説明する。また、本発明は吸気バルブに適用することも可能であるが、より高温となり易い排気バルブに適用した好適な例について説明する。   As shown in FIG. 1, the engine valve 1 includes a rod-shaped shaft portion 2 and an umbrella portion 3 that spreads at one end of the shaft portion. The umbrella part 3 has a face part 3 a that comes into contact with a valve seat 19 described later. In addition, although this invention is applicable also to a hollow valve, the suitable example applied to the solid valve below is demonstrated. Although the present invention can be applied to an intake valve, a preferred example applied to an exhaust valve that tends to be hotter will be described.

そのうえで、傘部3の表面のうち、燃焼室に臨む傘表3bと排気ポート18(図2参照)に臨む傘裏(首部)3cには、フェース部3aを避けるように断熱材料からなる断熱被膜4が形成されている。一方、軸部2の表面には、良好な伝熱性を有する伝熱被膜5が形成されている。   In addition, on the umbrella surface 3b facing the combustion chamber and the umbrella back (neck portion) 3c facing the exhaust port 18 (see FIG. 2) on the surface of the umbrella portion 3, a heat insulating coating made of a heat insulating material so as to avoid the face portion 3a. 4 is formed. On the other hand, a heat transfer film 5 having good heat transfer properties is formed on the surface of the shaft portion 2.

断熱材料としては、耐熱性及び断熱性を有するセラミックス系材料を好適に挙げることができる。例えば、アルミナ、コージェライト、ジルコニア、ジルコン、酸化チタン、マグネシアなどのセラミックス系酸化物、炭化ケイ素などのセラミックス系炭化物、及び窒化ケイ素などのセラミックス系窒化物のほか、ケイ酸アルミニウム、酸化クロム、WC+Co合金、WC+Ni+W+Cr32合金、Cr32+Ni−Cr合金なども挙げられる。断熱被膜4の膜厚は、断熱効果と軽量化を勘案して、0.1〜2mm程度とすることが好ましい。なお、断熱被膜4は単層としてもよいし複数積層してもよい。 Suitable examples of the heat insulating material include ceramic materials having heat resistance and heat insulating properties. For example, ceramic oxides such as alumina, cordierite, zirconia, zircon, titanium oxide, magnesia, ceramic carbides such as silicon carbide, and ceramic nitrides such as silicon nitride, aluminum silicate, chromium oxide, WC + Co alloy, WC + Ni + W + Cr 3 C 2 alloy, and also such as Cr 3 C 2 + Ni-Cr alloy. The film thickness of the heat insulating coating 4 is preferably about 0.1 to 2 mm in consideration of the heat insulating effect and weight reduction. The heat insulating coating 4 may be a single layer or a plurality of layers.

伝熱材料としては、良好な伝熱性と共に耐熱性も有する窒化アルミや窒化クロムが好適である。伝熱被膜5の膜厚は、放熱性及び軽量化を勘案して1〜100μm程度とすることが好ましい。なお、本発明では、排気バルブ1自体の材料は特に限定されず、従来公知の材料を使用できるが、これらの材料から成るバルブ本体(基材)表面に自然酸化膜が形成されていると、伝熱性が阻害される。したがって、伝熱被膜5を形成する前に、基材表面の酸化膜を除去しておくことが好ましい。また、伝熱被膜5は、軸部2の全体に形成してもよいが、少なくともバルブガイド12(図2参照)と摺接し得る範囲に形成しておく。材料コストの点からは、バルブガイド12と摺接し得る範囲のみに形成しておくことが好ましい。   As the heat transfer material, aluminum nitride or chromium nitride having good heat transfer properties and heat resistance is suitable. The film thickness of the heat transfer coating 5 is preferably about 1 to 100 μm in consideration of heat dissipation and weight reduction. In the present invention, the material of the exhaust valve 1 itself is not particularly limited, and conventionally known materials can be used. However, when a natural oxide film is formed on the surface of the valve body (base material) made of these materials, Heat transfer is impeded. Therefore, it is preferable to remove the oxide film on the substrate surface before forming the heat transfer film 5. Further, the heat transfer film 5 may be formed on the entire shaft portion 2, but is formed at least in a range in which the heat transfer film 5 can come into sliding contact with the valve guide 12 (see FIG. 2). From the viewpoint of material cost, it is preferable to form it only in a range where it can be slidably contacted with the valve guide 12.

断熱被膜4及び伝熱被膜5は、ガス炎、アーク溶射法、プラズマ溶射法、爆発溶射法、スパッタリング、イオンプレーティングなどの手段を用いて形成することができる。   The heat insulating coating 4 and the heat transfer coating 5 can be formed using means such as gas flame, arc spraying, plasma spraying, explosion spraying, sputtering, ion plating, and the like.

次に、作用について説明する前に、排気バルブ1の動弁機構について概説する。なお、ここでの動弁機構はほんの一例であって、その他の全ての動弁機構について使用できる。図2に示すように、排気バルブ1の軸部2は、エンジン10のシリンダヘッド11に固定されたバルブガイド12内に軸方向(図2において上下方向)に摺動可能に挿通されている。排気バルブ1の軸端部2aには、コッタ溝13に係合されたコッタ14を介してスプリングリテーナ15が取付けられている。シリンダヘッド11の上面側において、バルブガイド12を取り囲むように形成されたスプリングシート部11aとスプリングリテーナ15との間には、コイルスプリング16が圧縮状態で介装されている。排気ポート18の燃焼室側の開口部には、バルブシート19が固定されている。排気バルブ1は、コイルスプリング16により常時上方へ付勢されており、傘部3のフェース部3aがバルブシート19に当接することにより排気ポート18が閉鎖されている。クランクシャフト(図示せず)により回転駆動されるカムシャフト20には、カム21が設けられている。カムシャフト20と並設されたロッカシャフト22には、ロッカアーム23が揺動自在に設けられている。   Next, before explaining the operation, the valve operating mechanism of the exhaust valve 1 will be outlined. In addition, the valve mechanism here is only an example, and can be used for all other valve mechanisms. As shown in FIG. 2, the shaft portion 2 of the exhaust valve 1 is inserted into a valve guide 12 fixed to the cylinder head 11 of the engine 10 so as to be slidable in the axial direction (vertical direction in FIG. 2). A spring retainer 15 is attached to the shaft end 2 a of the exhaust valve 1 via a cotter 14 engaged with the cotter groove 13. On the upper surface side of the cylinder head 11, a coil spring 16 is interposed between a spring seat portion 11 a formed so as to surround the valve guide 12 and the spring retainer 15 in a compressed state. A valve seat 19 is fixed to the opening of the exhaust port 18 on the combustion chamber side. The exhaust valve 1 is always urged upward by a coil spring 16, and the exhaust port 18 is closed by the face portion 3 a of the umbrella portion 3 coming into contact with the valve seat 19. A cam 21 is provided on the camshaft 20 that is rotationally driven by a crankshaft (not shown). A rocker arm 23 is swingably provided on a rocker shaft 22 arranged in parallel with the camshaft 20.

燃焼室においてガソリンが空気と共に燃焼されると、これの排気ガスを排気ポート18から排出するために、カムシャフト20が回転する。すると、カム21の回転に伴ってロッカアーム23が揺動され、排気バルブ1がコイルスプリング16の付勢力に抗して押し下げられる。これにより、図3に示すように排気バルブ1の傘部3がバルブシート19から離れ、排気ポート18が開口される。ロッカアーム23が元の姿勢に戻ると、排気バルブ1がコイルスプリング16の付勢力により上昇される。これにより、傘部3のフェース部3aがバルブシート19に当接することで、再び排気ポート18が閉鎖される。   When gasoline is combusted together with air in the combustion chamber, the camshaft 20 rotates in order to discharge the exhaust gas from the exhaust port 18. Then, the rocker arm 23 is swung with the rotation of the cam 21, and the exhaust valve 1 is pushed down against the urging force of the coil spring 16. Thereby, as shown in FIG. 3, the umbrella part 3 of the exhaust valve 1 is separated from the valve seat 19, and the exhaust port 18 is opened. When the rocker arm 23 returns to the original posture, the exhaust valve 1 is raised by the urging force of the coil spring 16. As a result, the exhaust port 18 is closed again by the face portion 3 a of the umbrella portion 3 coming into contact with the valve seat 19.

これを前提として、本発明の作用について説明する。まず、燃焼室において燃料が燃焼されると、その燃焼熱が傘表3bから排気バルブ1に入熱され得る。しかし、傘表3bの表面には断熱被膜4が形成されているので、当該傘表3bからの入熱量が抑えられる。次いで、排気ガスを排気ポート18へ排出するために排気バルブ1がバルブシート19から離接されると、図3に示すように、高温の排気ガスは傘裏3cに沿うように流れながら排気ポート18へ排出されていく。これにより、傘部3には、傘裏3cからも入熱され得る。しかし、傘裏3cの表面にも断熱被膜4が形成されているので、当該傘裏3cからの入熱量も抑えられる。このように、傘部3への入熱量が傘表3b及び傘裏3cの双方において的確に抑えられるので、熱容量の小さい傘裏(首部)3cを含めて傘部3の熱負荷が低減される。   Based on this premise, the operation of the present invention will be described. First, when fuel is combusted in the combustion chamber, the combustion heat can be input to the exhaust valve 1 from the umbrella table 3b. However, since the heat insulating coating 4 is formed on the surface of the umbrella surface 3b, the amount of heat input from the umbrella surface 3b is suppressed. Next, when the exhaust valve 1 is separated from the valve seat 19 in order to exhaust the exhaust gas to the exhaust port 18, as shown in FIG. 3, the high-temperature exhaust gas flows along the umbrella back 3c as shown in FIG. It is discharged to 18. Thereby, the umbrella part 3 can also receive heat from the umbrella back 3c. However, since the heat insulating coating 4 is also formed on the surface of the umbrella back 3c, the amount of heat input from the umbrella back 3c can also be suppressed. In this way, the amount of heat input to the umbrella part 3 is accurately suppressed in both the umbrella table 3b and the umbrella back 3c, so that the thermal load on the umbrella part 3 including the umbrella back (neck part) 3c having a small heat capacity is reduced. .

しかし、傘部3への入熱が完全に遮断されるわけではなく、傘部3はある程度昇温する。すると、傘部3の熱は軸部2へ伝熱され、当該軸部2と摺接するバルブガイド12へ放熱される。このとき、軸部2の表面に伝熱被膜5が形成されていることで、軸部2からバルブガイド12への伝熱が良好に行われ、放熱性が高くなっている。これにより、傘部3の熱負荷がより低減される。また、排気バルブ1が閉弁されてフェース部3aがバルブシート19に当接すると、当該フェース部3aからバルブシート19へも放熱される。このとき、フェース部3aの表面には断熱被膜4が形成されていないので、放熱性が阻害されることはない。   However, the heat input to the umbrella part 3 is not completely cut off, and the umbrella part 3 is heated to some extent. Then, the heat of the umbrella part 3 is transferred to the shaft part 2 and is radiated to the valve guide 12 that is in sliding contact with the shaft part 2. At this time, since the heat transfer film 5 is formed on the surface of the shaft portion 2, heat transfer from the shaft portion 2 to the valve guide 12 is favorably performed and heat dissipation is improved. Thereby, the thermal load of the umbrella part 3 is reduced more. When the exhaust valve 1 is closed and the face portion 3 a comes into contact with the valve seat 19, heat is also radiated from the face portion 3 a to the valve seat 19. At this time, since the heat insulating coating 4 is not formed on the surface of the face portion 3a, the heat dissipation is not hindered.

なお、軸部2からの放熱性をより高めるため、バルブガイド12は伝熱性の高い銅合金とすることが好ましい。また、一般的なバルブシート19は、シリンダヘッド11とは別部材として構成されている。この場合、シリンダヘッド11とバルブシート19との接合面は必ずしも平滑ではなく、ミクロ単位では凹凸を有することが殆どである。そうすると、当該凹凸による隙間等によって伝熱性が低下し、排気バルブ1からの放熱性が阻害される要因となり得る。そこで、バルブシート19は、シリンダヘッド11を一体的に肉盛りしたクラッドシートとすることが好ましい。   In order to further improve the heat dissipation from the shaft portion 2, the valve guide 12 is preferably made of a copper alloy having high heat conductivity. Further, the general valve seat 19 is configured as a separate member from the cylinder head 11. In this case, the joint surface between the cylinder head 11 and the valve seat 19 is not necessarily smooth, and in most cases, it has irregularities in micro units. If it does so, heat conductivity may fall by the clearance gap by the said unevenness | corrugation, etc., and it may become a factor by which the heat dissipation from the exhaust valve 1 is inhibited. Therefore, the valve seat 19 is preferably a clad sheet in which the cylinder head 11 is integrally built.

エンジンバルブの断面図である。It is sectional drawing of an engine valve. 動弁機構の概略構成図である。It is a schematic block diagram of a valve operating mechanism. 開弁状態にある排気ポートの要部拡大図である。It is a principal part enlarged view of the exhaust port in a valve opening state.

符号の説明Explanation of symbols

1 エンジンバルブ
2 軸部
3 傘部
3a フェース部
3b 傘表
3c 傘裏
4 断熱被膜
5 伝熱被膜
10 エンジン
12 バルブガイド
18 排気ポート
19 バルブシート
DESCRIPTION OF SYMBOLS 1 Engine valve 2 Shaft part 3 Umbrella part 3a Face part 3b Umbrella table 3c Umbrella back 4 Thermal insulation film 5 Heat transfer film 10 Engine 12 Valve guide 18 Exhaust port 19 Valve seat

Claims (6)

軸部の一端に傘部を備えるエンジンバルブにおいて、
前記傘部の表面に断熱材料からなる断熱被膜を有し、
前記軸部の表面には伝熱性の良好な伝熱被膜を有することを特徴とするエンジンバルブ。
In an engine valve having an umbrella at one end of the shaft,
It has a heat insulating coating made of a heat insulating material on the surface of the umbrella part,
An engine valve having a heat transfer coating with good heat transfer on the surface of the shaft portion.
前記伝熱被膜が窒化アルミ又は窒化クロムからなる、請求項1に記載のエンジンバルブ。   The engine valve according to claim 1, wherein the heat transfer coating is made of aluminum nitride or chromium nitride. 内部が中実な排気バルブである、請求項1または請求項2に記載のエンジンバルブ。   The engine valve according to claim 1 or 2, wherein the engine valve is a solid exhaust valve. 前記断熱被膜が少なくとも傘裏に形成されている、請求項3に記載のエンジンバルブ。   The engine valve according to claim 3, wherein the heat insulating coating is formed on at least the back of the umbrella. 前記断熱被膜が少なくとも傘表に形成されている、請求項1ないし請求項4のいずれかに記載のエンジンバルブ。   The engine valve according to any one of claims 1 to 4, wherein the heat insulating coating is formed on at least an umbrella surface. 前記断熱被膜がセラミックス系材料からなる、請求項1ないし請求項5のいずれかに記載のエンジンバルブ。
The engine valve according to any one of claims 1 to 5, wherein the heat insulating coating is made of a ceramic material.
JP2008256275A 2008-10-01 2008-10-01 Engine valve Pending JP2010084693A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008256275A JP2010084693A (en) 2008-10-01 2008-10-01 Engine valve
DE102009042545A DE102009042545B4 (en) 2008-10-01 2009-09-22 engine valves
US12/568,726 US20100077983A1 (en) 2008-10-01 2009-09-29 Engine valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256275A JP2010084693A (en) 2008-10-01 2008-10-01 Engine valve

Publications (1)

Publication Number Publication Date
JP2010084693A true JP2010084693A (en) 2010-04-15

Family

ID=41795280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256275A Pending JP2010084693A (en) 2008-10-01 2008-10-01 Engine valve

Country Status (3)

Country Link
US (1) US20100077983A1 (en)
JP (1) JP2010084693A (en)
DE (1) DE102009042545B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150095210A (en) * 2014-02-12 2015-08-20 가부시키가이샤 테지케 Control valve and lock preventing method for valve operating

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727939B2 (en) * 2010-04-27 2015-06-03 フジオーゼックス株式会社 Spring retainer for internal combustion engine and method for manufacturing the same
DE102013213268A1 (en) * 2013-07-05 2015-01-08 Mahle International Gmbh Built hollow valve
DE102016111755B4 (en) * 2016-06-27 2018-05-24 Federal-Mogul Valvetrain Gmbh Method for coating a valve head of an inlet or outlet valve and such an inlet or outlet valve
GB2568975A (en) * 2017-10-30 2019-06-05 Eaton Srl Poppet valve
DE102018118791A1 (en) * 2018-08-02 2020-02-06 Federal-Mogul Valvetrain Gmbh Poppet valve with a high temperature coating
US11933204B2 (en) * 2022-06-23 2024-03-19 Caterpillar Inc. Systems and methods for thermal barrier coatings to modify engine component thermal characteristics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241908A (en) * 1985-08-19 1987-02-23 Yamaha Motor Co Ltd Exhaust valve of engine
JPH04269312A (en) * 1991-02-22 1992-09-25 Fuji Oozx Kk Hollow valve for internal combustion engine
JPH10238320A (en) * 1997-02-28 1998-09-08 Mitsubishi Motors Corp Valve for internal combustion engine
JPH11193706A (en) * 1997-12-26 1999-07-21 Isuzu Ceramics Res Inst Co Ltd Control valve cooling device in engine
JP2003307105A (en) * 2002-04-12 2003-10-31 Fuji Oozx Inc Engine valve

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2065049A (en) * 1935-02-05 1936-12-22 Bullock Frank Ernest Valve for internal combustion engines
US3073294A (en) * 1959-07-02 1963-01-15 Eaton Mfg Co Aluminum valve
FR1587911A (en) * 1968-09-16 1970-04-03
US4300492A (en) * 1978-05-22 1981-11-17 Eaton Corporation Thermal barrier valve
US4351292A (en) * 1980-10-03 1982-09-28 Eaton Corporation Poppet valve shield
DE3719077A1 (en) * 1987-06-06 1988-12-22 Daimler Benz Ag COATED VALVE FOR COMBUSTION ENGINES
US4867116A (en) * 1988-05-23 1989-09-19 Inco Alloys International, Inc. Aircraft exhaust valves
JPH04311611A (en) 1991-04-09 1992-11-04 Aisan Ind Co Ltd Ceramic coated engine valve
US5190002A (en) * 1992-08-31 1993-03-02 Val-Kro, Inc. Engine valve
US5441024A (en) * 1994-05-09 1995-08-15 Val-Kro, Inc. Engine valve
US5655493A (en) * 1996-01-16 1997-08-12 Dresser Industries, Inc. Exhaust valve for internal combustion engine
DK173337B1 (en) * 1996-06-07 2000-07-31 Man B & W Diesel As Exhaust valve for an internal combustion engine
US5738818A (en) * 1996-08-28 1998-04-14 Northrop Grumman Corporation Compression/injection molding of polymer-derived fiber reinforced ceramic matrix composite materials
EP0940564A3 (en) * 1998-03-03 2000-03-01 Fuji Oozx Inc. Al alloy poppet valve
US6085714A (en) * 1998-12-11 2000-07-11 Hitco Carbon Composites, Inc. Carbon--carbon composite valve for high performance internal combustion engines
US6131603A (en) * 1999-08-10 2000-10-17 Fuji Oozx Inc. Ti alloy poppet valve and surface treatment thereof
JP2002285895A (en) * 2001-03-26 2002-10-03 Nissan Motor Co Ltd Internal combustion engine
DE10117513A1 (en) * 2001-04-07 2002-10-17 Volkswagen Ag Internal combustion engine with direct injection
US7011067B2 (en) * 2002-08-19 2006-03-14 Trw Chrome plated engine valve
US7794846B2 (en) * 2005-06-22 2010-09-14 Yamaha Hatsudoki Kabushiki Kaisha Titanium part for internal combustion engine
JP2007032465A (en) 2005-07-28 2007-02-08 Nippon Steel Corp Lightweight engine valve superior in heat radiation
JP2007284784A (en) * 2006-03-20 2007-11-01 Nissan Motor Co Ltd Aluminum alloy-made part
US7562647B2 (en) * 2006-03-29 2009-07-21 High Performance Coatings, Inc. Inlet valve having high temperature coating and internal combustion engines incorporating same
EP2147737A4 (en) * 2007-03-12 2013-02-27 Mitsubishi Heavy Ind Ltd Valve gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241908A (en) * 1985-08-19 1987-02-23 Yamaha Motor Co Ltd Exhaust valve of engine
JPH04269312A (en) * 1991-02-22 1992-09-25 Fuji Oozx Kk Hollow valve for internal combustion engine
JPH10238320A (en) * 1997-02-28 1998-09-08 Mitsubishi Motors Corp Valve for internal combustion engine
JPH11193706A (en) * 1997-12-26 1999-07-21 Isuzu Ceramics Res Inst Co Ltd Control valve cooling device in engine
JP2003307105A (en) * 2002-04-12 2003-10-31 Fuji Oozx Inc Engine valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150095210A (en) * 2014-02-12 2015-08-20 가부시키가이샤 테지케 Control valve and lock preventing method for valve operating
KR101710258B1 (en) 2014-02-12 2017-02-24 가부시키가이샤 테지케 Control valve and lock preventing method for valve operating

Also Published As

Publication number Publication date
DE102009042545A1 (en) 2010-04-08
US20100077983A1 (en) 2010-04-01
DE102009042545B4 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP2010084693A (en) Engine valve
EP1353045A2 (en) Poppet valve
JP2009013935A (en) Hollow valve for internal combustion engine
TW201540938A (en) Poppet valve
JP2011169232A (en) Internal combustion engine
JP6147699B2 (en) Intake valve and intake / exhaust device having the same
JP2016223303A (en) Internal combustion engine
KR20170115966A (en) Internal combustion engine
JP5512256B2 (en) Engine valve
CN106715880B (en) Piston, piston machine with piston and automobile with piston machine
JP2008274779A (en) Intake-exhaust valve and valve mechanism
JP4154511B2 (en) Gas turbine combustor wall structure
JP4129518B2 (en) Gas turbine combustor wall structure
JP4344647B2 (en) Cooling structure of open deck cylinder block
JP2007162647A (en) Valve guide structure of engine
JP2010031828A (en) Exhaust valve for engine
JP2013170555A (en) Heat insulation structure and method of manufacturing the same
JP5528647B1 (en) Piston type internal combustion engine
RU2236608C2 (en) Cylinder liner heat-resistent coating composition
JP4674519B2 (en) Intake valve for internal combustion engine
JP2010222984A (en) Internal combustion engine
JP6761750B2 (en) Internal combustion engine
JP2008274873A (en) Intake-exhaust valve
JP2005036697A (en) Internal combustion engine
JP2018112087A (en) valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130430