JP2009013935A - Hollow valve for internal combustion engine - Google Patents

Hollow valve for internal combustion engine Download PDF

Info

Publication number
JP2009013935A
JP2009013935A JP2007178867A JP2007178867A JP2009013935A JP 2009013935 A JP2009013935 A JP 2009013935A JP 2007178867 A JP2007178867 A JP 2007178867A JP 2007178867 A JP2007178867 A JP 2007178867A JP 2009013935 A JP2009013935 A JP 2009013935A
Authority
JP
Japan
Prior art keywords
hollow
internal combustion
combustion engine
valve
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007178867A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
孝男 鈴木
Kiyoyuki Kawai
清行 川合
Masao Ishida
政男 石田
Kenichi Aoyanagi
健一 青柳
Toru Desaki
亨 出崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
TPR Co Ltd
Eneos Corp
Original Assignee
Taiho Kogyo Co Ltd
Teikoku Piston Ring Co Ltd
Toyota Motor Corp
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Teikoku Piston Ring Co Ltd, Toyota Motor Corp, Nippon Oil Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP2007178867A priority Critical patent/JP2009013935A/en
Priority to US12/216,304 priority patent/US20090020082A1/en
Publication of JP2009013935A publication Critical patent/JP2009013935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow valve for an internal combustion engine having good cooling properties. <P>SOLUTION: The hollow valve 10A for the internal combustion engine provided with a stem part Vs, a head part Vh provided on one end of the stem part Vs, a sealed hollow part 4 communicating with the inside between the head part Vh and the stem part Vs, and refrigerant 5 filled in the hollow part 4. The head part Vh includes a wall surface section (lower cap 3) having a combustion chamber wall surface 3a forming a part of a wall surface of a combustion chamber CC of the internal combustion engine and a hollow part wall surface 3b forming a part of a wall surface of the hollow part 4. At least one high heat conduction member 6A performing high heat conduction between the wall surface section and at least either of heat conduction objects of refrigerant 5 and the stem part Vs is provided on the hollow part wall surface 3b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関における吸排気の動弁機構に用いられる内燃機関用中空バルブに関する。   The present invention relates to a hollow valve for an internal combustion engine used for an intake / exhaust valve operating mechanism in the internal combustion engine.

内燃機関における吸排気の動弁機構には、吸気ポートと燃焼室又は排気ポートと燃焼室との間を夫々に連通又は遮断させるバルブが配設されている。一般に、このバルブは、傘部と軸部とに大別され、その軸部の軸線方向への往復運動によって吸気ポートと燃焼室又は排気ポートと燃焼室との間における連通又は遮断の状態を作り出す。   In the valve mechanism for intake / exhaust in an internal combustion engine, a valve for communicating or blocking between the intake port and the combustion chamber or between the exhaust port and the combustion chamber is provided. In general, this valve is roughly divided into an umbrella part and a shaft part, and a reciprocating motion of the shaft part in the axial direction creates a communication or blocking state between the intake port and the combustion chamber or between the exhaust port and the combustion chamber. .

ここで、このバルブの傘部、特に燃焼室の壁面の一部を成す部分は、燃焼室の燃焼ガスに曝されるので、燃焼によって発生した熱が伝達され易くなっている。特に、近年においては、内燃機関の高出力化のみならず、燃料消費量や排気ガス中の有害物質(炭化水素等)の低減を図るべく行われる燃焼形態によって燃焼室の発熱量が高くなっていく傾向にあり、その傘部に伝わる熱が多くなっている。   Here, since the umbrella part of this valve, especially the part which comprises a part of wall surface of a combustion chamber, is exposed to the combustion gas of a combustion chamber, the heat | fever generated by combustion becomes easy to be transmitted. In particular, in recent years, the amount of heat generated in the combustion chamber has increased due to not only the high output of the internal combustion engine but also the combustion mode performed to reduce the amount of fuel consumed and harmful substances (hydrocarbons, etc.) in the exhaust gas. There is a tendency to increase the heat transmitted to the umbrella.

そこで、従来、その傘部に伝わる熱を逃がし易くしたバルブが存在している。例えば、下記の特許文献1には、傘部から軸部まで繋がる密閉された中空部をバルブに形成し、その中空部内に熱伝導媒体となる圧粉体が封入された内燃機関用中空バルブが開示されている。この内燃機関用中空バルブにおいては、中空部内が熱伝導媒体で埋め尽くされていないので、その熱伝導媒体がバルブの往復運動に伴い中空部内で揺すられて傘部から軸部までの間を流動する。従って、この内燃機関用中空バルブにおいては、燃焼室から伝達された傘部の熱をその熱伝導媒体が軸部に伝えて逃がすことができ、その傘部の過度の温度上昇を抑えることができる。   Therefore, conventionally, there is a valve that makes it easy to release heat transmitted to the umbrella. For example, in Patent Document 1 below, there is a hollow valve for an internal combustion engine in which a sealed hollow portion connected from an umbrella portion to a shaft portion is formed in a valve, and a green compact serving as a heat conduction medium is sealed in the hollow portion. It is disclosed. In this hollow valve for an internal combustion engine, the hollow portion is not filled with the heat conduction medium, so that the heat conduction medium is swung in the hollow portion as the valve reciprocates and flows between the umbrella portion and the shaft portion. To do. Therefore, in this hollow valve for an internal combustion engine, the heat of the umbrella part transmitted from the combustion chamber can be transferred to the shaft part by the heat conduction medium, and the excessive temperature rise of the umbrella part can be suppressed. .

尚、下記の特許文献2には、内燃機関用中空バルブとは無縁な半導体装置の放熱基材に関するものではあるが、母材に対して垂直方向に当該母材よりも熱伝導率の高いロッド(炭素繊維強化複合材料、炭素基金属複合材料や高熱伝導性金属材料等の内の少なくとも一方からなるもの)を埋め込んで良好な熱伝導特性を得ようとする技術について記載されている。   The following Patent Document 2 relates to a heat radiating base material of a semiconductor device unrelated to a hollow valve for an internal combustion engine. However, the rod has a higher thermal conductivity than the base material in a direction perpendicular to the base material. A technique for embedding (made of at least one of a carbon fiber reinforced composite material, a carbon-based metal composite material, a highly heat conductive metal material, etc.) to obtain good heat conduction characteristics is described.

特開平5−113113号公報Japanese Patent Laid-Open No. 5-113113 特開2003−188324号公報JP 2003-188324 A

しかしながら、内燃機関には多用な型式が存在するが、どの様な型式の内燃機関であっても、その殆どにおいては、内燃機関用中空バルブの軸線方向と重力方向との一致は見受けられないので、中空部内における傘部、軸部の夫々の壁面にて熱伝導媒体(冷媒)が均一に接するとは限らず、その夫々が均等に冷却されない可能性がある。例えば、所謂直列の内燃機関は、一般的に傾斜させて車輌に搭載されるので、内燃機関用中空バルブの軸線方向と重力方向とが一致している可能性が低い。また、所謂V型(水平対向も含む)の内燃機関は、バンク角が設けられているので、同じく内燃機関用中空バルブの軸線方向と重力方向とが一致する可能性が低い。更に、そもそも、内燃機関用中空バルブは、一般的に傾斜させて内燃機関に搭載されるので、その軸線方向と重力方向とが一致していない。   However, there are many types of internal combustion engines, but in almost all types of internal combustion engines, the axial direction of the hollow valve for internal combustion engines does not match the direction of gravity. The heat conduction medium (refrigerant) does not necessarily come into uniform contact with the wall surfaces of the umbrella part and the shaft part in the hollow part, and each of them may not be cooled uniformly. For example, since a so-called serial internal combustion engine is generally mounted on a vehicle with an inclination, it is unlikely that the axial direction of the hollow valve for the internal combustion engine coincides with the direction of gravity. In addition, since the so-called V-shaped (including horizontally opposed) internal combustion engine is provided with a bank angle, it is also unlikely that the axial direction of the hollow valve for internal combustion engine coincides with the direction of gravity. Further, in the first place, since the hollow valve for an internal combustion engine is generally tilted and mounted on the internal combustion engine, the axial direction and the gravity direction do not match.

つまり、従来の内燃機関用中空バルブにおいては、例えば、中空部内における傘部の或る一部分では熱伝導媒体に熱が伝えられてその熱を軸部等の伝熱対象へと逃がすことができたとしても、他の部分では熱伝導媒体が壁面に触れることができずにそこの熱を奪えなくなっている、ということも考えられ、これによって、特に冷却の必要とされる傘部の冷却効果に斑が出てしまう可能性がある。尚、かかる不都合を改善すべく熱伝導媒体(一般に金属ナトリウム)の封入量を増加させてもよいが、その熱伝導媒体の殆どはバルブの運動方向とは逆方向へと移動するものであり、また、その増加に伴ってバルブの慣性力が増大するので、内燃機関用中空バルブの円滑な往復運動を阻害してしまう虞がある。   In other words, in a conventional hollow valve for an internal combustion engine, for example, heat is transmitted to a heat transfer medium in a certain part of the umbrella portion in the hollow portion, and the heat can be released to a heat transfer target such as a shaft portion. However, it is also possible that the heat conduction medium cannot touch the wall surface in other parts, and it is impossible to take the heat there, which makes it particularly effective for cooling the umbrella part that requires cooling. Spots may appear. In order to improve such inconvenience, the amount of the heat conduction medium (generally metallic sodium) may be increased. However, most of the heat conduction medium moves in the direction opposite to the movement direction of the valve. Further, since the inertia force of the valve increases with the increase, the smooth reciprocation of the hollow valve for the internal combustion engine may be hindered.

そこで、本発明は、かかる従来例の有する不都合を改善し、冷却性の良好な内燃機関用中空バルブを提供することを、その目的とする。   Accordingly, an object of the present invention is to provide a hollow valve for an internal combustion engine that improves the disadvantages of the conventional example and has good cooling performance.

上記目的を達成する為、請求項1記載の発明では、軸部と、この軸部の一端に設けた傘部と、この傘部から軸部までの間で内部にて連通する密閉された中空部と、この中空部内に封入された冷媒と、を備えた内燃機関用中空バルブにおいて、その傘部は、内燃機関の燃焼室の壁面の一部を成す燃焼室壁面と中空部の壁面の一部を成す中空部壁面とが形成された壁面部位を有し、この壁面部位と少なくとも冷媒又は軸部の内の何れか一方の伝熱対象との間で高い熱伝導を行う高熱伝導部材を中空部壁面に対して少なくとも1つ配設している。   In order to achieve the above object, according to the first aspect of the present invention, a shaft portion, an umbrella portion provided at one end of the shaft portion, and a sealed hollow that communicates internally between the umbrella portion and the shaft portion. In the hollow valve for an internal combustion engine comprising a portion and a refrigerant sealed in the hollow portion, the umbrella portion is a part of a wall surface of the combustion chamber of the internal combustion engine and a wall surface of the hollow portion. And a hollow portion having a wall portion formed with a hollow portion, and a high heat conduction member that conducts high heat conduction between the wall portion and at least one of the heat transfer target of the refrigerant or the shaft portion. At least one is arranged with respect to the part wall surface.

この請求項1記載の内燃機関用中空バルブにおいては、壁面部位の熱が高熱伝導部材によって奪われるので、その壁面部位の冷却を図ることができる。また、その高熱伝導部材が奪った熱は、冷媒等の伝熱対象に伝えられるので、その伝熱対象から最終的にシリンダヘッドへと伝わる。このようなことから、この内燃機関用中空バルブは、最も高温になり易い傘部を効率良く冷却することができる。   In the hollow valve for an internal combustion engine according to the first aspect, the heat of the wall surface portion is taken away by the high heat conductive member, so that the wall surface portion can be cooled. Further, since the heat taken away by the high heat conducting member is transmitted to a heat transfer target such as a refrigerant, it is finally transferred from the heat transfer target to the cylinder head. For this reason, the hollow valve for an internal combustion engine can efficiently cool the umbrella portion that is likely to be the highest temperature.

また、上記目的を達成する為、請求項2記載の発明では、上記請求項1記載の内燃機関用中空バルブにおいて、中空部壁面に接触させた一端と伝熱対象に接触させた他端との間で熱伝導の方向性を有する高熱伝導部材を用意している。例えば、この種の高熱伝導部材としては、請求項3記載の発明の如く炭素繊維強化金属が考えられる。   In order to achieve the above object, according to a second aspect of the present invention, in the hollow valve for an internal combustion engine according to the first aspect, the one end brought into contact with the wall surface of the hollow portion and the other end brought into contact with the heat transfer object. A highly heat-conductive member having a heat conduction direction between them is prepared. For example, as this type of high thermal conductive member, a carbon fiber reinforced metal can be considered as in the third aspect of the invention.

この請求項2又は3に記載の内燃機関用中空バルブにおいては、壁面部位の熱を所望の伝熱対象へと確実に伝えることができるようになる。   In the hollow valve for an internal combustion engine according to claim 2 or 3, the heat of the wall surface portion can be reliably transmitted to a desired heat transfer target.

また、上記目的を達成する為、請求項4記載の発明では、上記請求項1,2又は3に記載の内燃機関用中空バルブにおいて、壁面部位の熱を冷媒に対して伝えることの可能な高熱伝導部材を軸部の軸線方向と略同一方向に突出させて凸部が形成されるよう複数配設している。   In order to achieve the above object, according to a fourth aspect of the present invention, in the hollow valve for an internal combustion engine according to the first, second, or third aspect of the present invention, a high heat capable of transferring the heat of the wall surface portion to the refrigerant. A plurality of conductive members are arranged so as to protrude in substantially the same direction as the axial direction of the shaft portion so that convex portions are formed.

この請求項4記載の内燃機関用中空バルブにおいては、往復運動に伴い凸部にて跳ね上げられた冷媒が軸部の上側にまで届けられるので、その冷媒が高熱伝導部材から奪った熱が軸部の上側に伝えられる。従って、この内燃機関用中空バルブは、特に傘部の高い冷却効果を得ることができるようになる。   In the hollow valve for an internal combustion engine according to claim 4, since the refrigerant splashed up by the convex portion along with the reciprocating motion is delivered to the upper side of the shaft portion, the heat taken by the refrigerant from the high heat conductive member is It is transmitted to the upper part of the section. Therefore, this hollow valve for an internal combustion engine can obtain a particularly high cooling effect of the umbrella portion.

また、上記目的を達成する為、請求項5記載の発明では、上記請求項1,2又は3に記載の内燃機関用中空バルブにおいて、中空部壁面と軸部における傘部とは反対の他端寄りの壁面との間で熱伝導が行われるように高熱伝導部材を配設している。   In order to achieve the above object, according to a fifth aspect of the present invention, in the hollow valve for an internal combustion engine according to the first, second, or third aspect, the other end of the hollow portion wall surface and the shaft portion opposite to the umbrella portion. A high heat conduction member is disposed so that heat conduction is performed between the wall surface and the wall.

この請求項5記載の内燃機関用中空バルブにおいては、自身が傾倒して配置されていようがいまいが、また、バルブリフト量が小さくて冷媒が大きく跳ね上がらないときであっても、必ず壁面部位の熱が直接軸部における他端寄りの壁面に伝達されるので、その壁面部位の冷却を確実に行うことができる。   In the hollow valve for an internal combustion engine according to claim 5, whether or not it is inclined and arranged, but even when the valve lift amount is small and the refrigerant does not significantly jump, Since heat is directly transmitted to the wall surface near the other end of the shaft portion, the wall surface portion can be reliably cooled.

また、上記目的を達成する為、請求項6記載の発明では、上記請求項1から5の内の何れか1つに記載の内燃機関用中空バルブにおいて、中空部壁面の中央部分と伝熱対象との間で熱伝導が行われるように配設し、且つ、中空部壁面の周縁部分と中空部内における傘部のバルブシート近傍との間で熱伝導が行われるように高熱伝導部材を配設している。   In order to achieve the above object, according to a sixth aspect of the present invention, in the hollow valve for an internal combustion engine according to any one of the first to fifth aspects, the central portion of the wall surface of the hollow portion and the heat transfer target High heat conduction member is arranged so that heat conduction is performed between the peripheral part of the wall surface of the hollow part and the vicinity of the valve seat of the umbrella part in the hollow part. is doing.

この請求項6記載の内燃機関用中空バルブにおいては、壁面部位の熱が伝達先を伝熱対象(冷媒や軸部)だけでなく、傘部のバルブシート近傍にも伝わるようにしている。従って、例えば、吸入空気の温度上昇が起きてしまうので軸部の温度を上げたくないときには、バルブシート近傍へと放熱量が多めになるよう高熱伝導部材を配設し、吸入空気の温度上昇が抑えられるようにする。   In the hollow valve for an internal combustion engine according to the sixth aspect, the heat of the wall surface part is transmitted not only to the heat transfer target (refrigerant or shaft part) but also to the vicinity of the valve seat of the umbrella part. Therefore, for example, if the intake air temperature rises and you do not want to increase the temperature of the shaft, a highly heat-conductive member is arranged near the valve seat to increase the heat dissipation, and the intake air temperature rises. Try to be suppressed.

本発明に係る内燃機関用中空バルブは、高熱伝導部材自身の放熱性が高く、また、この高熱伝導部材から伝熱対象に熱が伝えられるので、特に傘部において良好な冷却性を確保することができるようになる。   The hollow valve for an internal combustion engine according to the present invention has a high heat dissipation property of the high heat conduction member itself, and heat is transmitted from the high heat conduction member to the heat transfer target, so that a good cooling performance is ensured particularly in the umbrella portion. Will be able to.

以下に、本発明に係る内燃機関用中空バルブの実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。   Embodiments of a hollow valve for an internal combustion engine according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.

本発明に係る内燃機関用中空バルブの実施例1を図1及び図2に基づいて説明する。   A first embodiment of a hollow valve for an internal combustion engine according to the present invention will be described with reference to FIGS.

図1の符号10Aは、本実施例1の内燃機関用中空バルブを示す。この本実施例1の内燃機関用中空バルブ10Aは、図示しない内燃機関における吸気や排気の動弁機構(バルブリフター101等からなる機構)に用いられるものであり、その内燃機関の燃焼室CCと吸気ポートPの間(又は燃焼室CCと排気ポートPの間)を軸線方向に往復運動することで連通又は遮断させるものである。   1 denotes a hollow valve for an internal combustion engine according to the first embodiment. The hollow valve 10A for an internal combustion engine according to the first embodiment is used for an intake or exhaust valve mechanism (a mechanism including a valve lifter 101 or the like) in an internal combustion engine (not shown), and a combustion chamber CC of the internal combustion engine. The communication is made between the intake ports P (or between the combustion chamber CC and the exhaust port P) by reciprocating in the axial direction.

先ず、本実施例1の内燃機関用中空バルブ10Aは、軸部(所謂バルブステム)Vsとこの軸部Vsの端部に設けた傘部Vhとに大別され、これらが、両端の開口された筒状のバルブ主体1と、このバルブ主体1の一端の開口を閉塞する第1閉塞部材(以下、「上部キャップ」という。)2と、そのバルブ主体1の他端の開口を閉塞する第2閉塞部材(以下、「下部キャップ」という。)3と、によって構成される。   First, the hollow valve 10A for the internal combustion engine of the first embodiment is roughly divided into a shaft portion (so-called valve stem) Vs and an umbrella portion Vh provided at an end portion of the shaft portion Vs, and these are opened at both ends. A cylindrical valve main body 1, a first closing member (hereinafter referred to as “upper cap”) 2 that closes an opening at one end of the valve main body 1, and a first closing member that closes an opening at the other end of the valve main body 1. 2 occlusion member (hereinafter referred to as “lower cap”) 3.

そのバルブ主体1は、両端が開口された円筒状の円筒部1aと、上底の開口と下底の開口とを繋ぐ内方の空間を有する略円錐台状に形成された円錐台部1bと、を有しており、その円筒部1aの一方の開口端と円錐台部1bの上底側の開口端とを合わせた形で一体的に成形されている。その円錐台部1bにおける内方の空間は、外郭形状と略同等の円錐台に近い形状に形成されている。従って、このバルブ主体1においては、その円筒部1aにおける円柱状の空間と円錐台部1bにおける略円錐台状の空間とを繋げた形状の中空部4が形成されている。つまり、このバルブ主体1においては、その中空部4が外郭形状と略同等の形状になっている。   The valve main body 1 includes a cylindrical portion 1a having both ends opened, and a truncated cone portion 1b formed in a substantially truncated cone shape having an inner space connecting the upper bottom opening and the lower bottom opening. , And is integrally formed by combining one open end of the cylindrical portion 1a and the open end on the upper bottom side of the truncated cone portion 1b. The inner space in the truncated cone part 1b is formed in a shape close to a truncated cone substantially the same as the outer shape. Accordingly, in the valve main body 1, a hollow portion 4 having a shape in which a columnar space in the cylindrical portion 1a and a substantially frustoconical space in the truncated cone portion 1b are connected is formed. That is, in the valve main body 1, the hollow portion 4 has a shape substantially equivalent to the outer shape.

ここで、このバルブ主体1においては、その円筒部1aが軸部Vsの主たる部分を成しており、この円筒部1aの残りの開口端(即ち、円錐台部1bとは反対側の開口端)に上部キャップ2が配設されている。つまり、ここで例示する内燃機関用中空バルブ10Aの軸部Vsは、このバルブ主体1の円筒部1aと上部キャップ2とで構成される。例えば、その上部キャップ2は、その円筒部1aに対して溶接等の手法を用いて一体化され、これにより、このバルブ主体1の円筒部1a側の開口端を閉塞させる。   Here, in the valve main body 1, the cylindrical portion 1a forms the main portion of the shaft portion Vs, and the remaining opening end of the cylindrical portion 1a (that is, the opening end on the opposite side to the truncated cone portion 1b). ) Is provided with an upper cap 2. That is, the shaft portion Vs of the internal combustion engine hollow valve 10 </ b> A exemplified here is composed of the cylindrical portion 1 a of the valve main body 1 and the upper cap 2. For example, the upper cap 2 is integrated with the cylindrical portion 1a using a technique such as welding, thereby closing the opening end of the valve main body 1 on the cylindrical portion 1a side.

また、このバルブ主体1においては、その円錐台部1bが傘部Vhの主たる部分を成しており、この円錐台部1bの残りの開口端(即ち、下底側の開口端)に下部キャップ3が配設されている。つまり、ここで例示する内燃機関用中空バルブ10Aの傘部Vhは、このバルブ主体1の円錐台部1bと下部キャップ3とで構成される。例えば、その下部キャップ3は、ポート(吸気ポート又は排気ポートを指す)Pと燃焼室CCとの間が遮断状態にあるときの燃焼室CCの壁面の一部を成している図1に示す燃焼室壁面3aと、中空部4の壁面の一部を成している図2に示す中空部壁面3bと、が各々対向状態で形成された壁面部位になっている。そして、この下部キャップ3は、その中空部壁面3bを内側にして円錐台部1bに溶接等の手法を用いて一体化され、これにより、このバルブ主体1における円錐台部1b側の開口端を閉塞させる。   Further, in the valve main body 1, the truncated cone part 1b forms the main part of the umbrella part Vh, and a lower cap is attached to the remaining opening end of the truncated cone part 1b (that is, the opening end on the lower bottom side). 3 is disposed. That is, the umbrella portion Vh of the internal combustion engine hollow valve 10 </ b> A exemplified here is constituted by the truncated cone portion 1 b of the valve main body 1 and the lower cap 3. For example, the lower cap 3 is shown in FIG. 1 forming a part of the wall surface of the combustion chamber CC when the port P (referring to an intake port or an exhaust port) P and the combustion chamber CC are in a disconnected state. The combustion chamber wall surface 3a and the hollow portion wall surface 3b shown in FIG. 2 forming a part of the wall surface of the hollow portion 4 are wall surfaces formed in an opposing state. Then, the lower cap 3 is integrated with the truncated cone portion 1b by using a technique such as welding with the hollow portion wall surface 3b on the inside, whereby the opening end of the valve main body 1 on the truncated cone portion 1b side is integrated. Occlude.

このように形成されている内燃機関用中空バルブ10Aは、動弁機構の作用により軸部Vsの軸線方向に往復運動する。例えば、この内燃機関用中空バルブ10Aは、図示しないカムやロッカーアームの動作によりバルブリフター101を介して押下される。そして、これに伴って、この内燃機関用中空バルブ10Aは、傘部Vhの傾斜面がポート(吸気ポート又は排気ポートを指す)Pと燃焼室CCとの間の境界部分(つまり、図1に示す環状のバルブシート102)から離間し、その二者の間を連通させる。   The internal combustion engine hollow valve 10A thus formed reciprocates in the axial direction of the shaft portion Vs by the action of the valve mechanism. For example, the internal combustion engine hollow valve 10A is pressed through the valve lifter 101 by the operation of a cam or a rocker arm (not shown). Accordingly, in the internal combustion engine hollow valve 10A, the inclined surface of the umbrella portion Vh is a boundary portion between the port P (referring to the intake port or the exhaust port) P and the combustion chamber CC (that is, in FIG. 1). The two are separated from the illustrated annular valve seat 102) and communicated between the two.

一方、ここでは、その内燃機関用中空バルブ10Aの押下動作に連動して、上部キャップ2に固定された環状のリテーナ103が弾性部材(弦巻バネ)104を例えばシリンダヘッド105との間で圧縮している。従って、この内燃機関用中空バルブ10Aには、カム等の動作に応じて弾性部材104の弾発力がリテーナ103を介して作用するようになる。これが為、この内燃機関用中空バルブ10Aは、押下動作とは逆方向に移動させられて、傘部Vhの傾斜面がバルブシート102に当設し、その二者の間を遮断させる。   On the other hand, here, in conjunction with the pressing operation of the internal combustion engine hollow valve 10A, the annular retainer 103 fixed to the upper cap 2 compresses the elastic member (winding spring) 104 with, for example, the cylinder head 105. ing. Therefore, the elastic force of the elastic member 104 acts on the internal combustion engine hollow valve 10A via the retainer 103 in accordance with the operation of the cam or the like. For this reason, this internal combustion engine hollow valve 10A is moved in the direction opposite to the pressing operation, and the inclined surface of the umbrella portion Vh abuts against the valve seat 102 to block the two.

この内燃機関用中空バルブ10Aは、その軸部Vsが円筒状のバルブステムガイド106に包まれており、このバルブステムガイド106によって往復運動が円滑に案内される。   The hollow valve 10A for the internal combustion engine has a shaft portion Vs surrounded by a cylindrical valve stem guide 106, and the valve stem guide 106 smoothly guides the reciprocating motion.

更に、この内燃機関用中空バルブ10Aには、燃焼室CCから伝達された熱(特に、下部キャップ3等の燃焼ガスに曝されている部分の熱)を逃がす冷却手段が用意されている。   Furthermore, the internal combustion engine hollow valve 10A is provided with a cooling means for releasing heat transferred from the combustion chamber CC (particularly, heat of a portion exposed to the combustion gas such as the lower cap 3).

本実施例1においては、その冷却手段として、先ず中空部4の中に金属ナトリウム等の冷媒5が封入されている。尚、少なくとも内燃機関が運転されているときには、冷媒5が金属ナトリウムであれば融点を超えて液状になっている。この冷媒5は、内燃機関用中空バルブ10Aの往復運動に伴って揺すられ、その中空部4の中で流動させられる。そして、自身よりも高温の中空部4の壁面に接した冷媒5は、その壁面から熱を奪い、往復運動が繰り返される度に更に流動して自身よりも低温の中空部4の壁面に接した際にその壁面へと熱を渡す。例えば、この内燃機関用中空バルブ10Aにおいては、最も高温になり易い傘部Vhの熱が冷媒5に受熱され、この冷媒5が内燃機関用中空バルブ10Aの往復運動に伴い軸部Vsへと移動することによって、傘部Vhから受け取った熱が冷媒5から軸部Vsに伝えられ、その傘部Vhの冷却が行われる。   In the first embodiment, as the cooling means, first, a coolant 5 such as metallic sodium is enclosed in the hollow portion 4. At least when the internal combustion engine is in operation, if the refrigerant 5 is metallic sodium, it is in a liquid state exceeding the melting point. The refrigerant 5 is shaken with the reciprocating motion of the internal combustion engine hollow valve 10 </ b> A and is caused to flow in the hollow portion 4. And the refrigerant | coolant 5 which contact | connected the wall surface of the hollow part 4 whose temperature is higher than itself takes heat from the wall surface, and flows further each time the reciprocating motion is repeated, and contacts the wall surface of the hollow part 4 whose temperature is lower than itself. When passing heat to the wall. For example, in the internal combustion engine hollow valve 10A, the heat of the umbrella portion Vh that is likely to become the highest temperature is received by the refrigerant 5, and the refrigerant 5 moves to the shaft portion Vs as the internal combustion engine hollow valve 10A reciprocates. By doing so, the heat received from the umbrella part Vh is transmitted from the refrigerant 5 to the shaft part Vs, and the umbrella part Vh is cooled.

また、本実施例1においては、別の冷却手段として、熱伝導率が高く且つ熱伝導の方向性を有する高熱伝導部材6Aを下部キャップ3の中空部壁面3bに少なくとも1つ配設する。例えば、この種の高熱伝導部材6Aとしては、炭素繊維強化金属(CFRM:Corbon Fiber Reinforced Metals)の利用が可能である。つまり、この炭素繊維強化金属とは母材に金属を用いると共に強化材に炭素繊維を用いたものであり、その両端にて母材の金属を露出させることによって、この高熱伝導部材6Aは、その一端の金属の露出面から他端の金属の露出面の間で高温側から低温側へと熱の伝達が可能になる。   In the first embodiment, as another cooling means, at least one high heat conductive member 6A having high thermal conductivity and heat conduction direction is disposed on the hollow portion wall surface 3b of the lower cap 3. For example, carbon fiber reinforced metal (CFRM) can be used as this type of high thermal conductive member 6A. In other words, the carbon fiber reinforced metal is a metal using a metal as a base material and a carbon fiber as a reinforcing material. By exposing the metal of the base material at both ends, the high heat conductive member 6A Heat can be transferred from the high temperature side to the low temperature side between the exposed metal surface at one end and the exposed metal surface at the other end.

本実施例1においては、略同等の長さで小径(例えば、凡そ10μm程度)の直線状に成形した高熱伝導部材6Aを図1や図2に示す如く円形の中空部壁面3bの全体を覆い尽くすように複数本配置する。尚、その図2においては夫々の高熱伝導部材6Aの間に明確な隙間が出来ているが、その隙間は図示の便宜上のものである。これら各高熱伝導部材6Aは、その一端を中空部壁面3bに金属メッキ等の手法を用いて接着し、下部キャップ3との間の伝熱効率が妨げられないようにしておく。   In the first embodiment, a highly heat conductive member 6A formed into a linear shape having a substantially equal length and a small diameter (for example, about 10 μm) covers the entire circular hollow wall surface 3b as shown in FIGS. Arrange multiple lines as you like. In FIG. 2, a clear gap is formed between the high heat conductive members 6A, but the gap is for convenience of illustration. One end of each of these high heat conductive members 6A is bonded to the hollow wall surface 3b using a technique such as metal plating so that the heat transfer efficiency with the lower cap 3 is not hindered.

このように、本実施例1の内燃機関用中空バルブ10Aにおいては、複数本の高熱伝導部材6Aを下部キャップ3の中空部壁面3bの全体に立設しているので、その下部キャップ3の熱が全ての高熱伝導部材6Aに奪われ、その下部キャップ3の冷却を行うことができる。また、この内燃機関用中空バルブ10Aにおいては、その熱が夫々の高熱伝導部材6Aの自由端(即ち、中空部壁面3bとは反対側の他端)に接した冷媒5へと伝達される。   As described above, in the hollow valve 10A for the internal combustion engine of the first embodiment, the plurality of high heat conductive members 6A are erected on the entire hollow wall surface 3b of the lower cap 3. Is taken away by all the high thermal conductivity members 6A, and the lower cap 3 can be cooled. Further, in the hollow valve 10A for the internal combustion engine, the heat is transmitted to the refrigerant 5 in contact with the free end (that is, the other end opposite to the hollow portion wall surface 3b) of each high heat conducting member 6A.

そして、この内燃機関用中空バルブ10Aにおいては、その夫々の高熱伝導部材6Aが伝熱対象たる冷媒5を底上げした状態となり、高熱伝導部材6Aが配備されていないものと同じ冷媒5の封入量であれば、内燃機関用中空バルブ10Aが傾倒して配設されていたとしても、その往復運動によって冷媒5がより確実に軸部Vsの上部側(バルブリフター101側)へと届くようになる。これが為、その冷媒5が高熱伝導部材6Aから受け取った熱(つまり、下部キャップ3の熱)の殆どは、軸部Vs{バルブ主体1の円筒部1aや上部キャップ2の下面(即ち、中空部4の壁面を成す面)}へと伝わり、この軸部Vsからバルブステムガイド106、バルブリフター101やカム等を介してシリンダヘッド105に放熱される。従って、本実施例1の内燃機関用中空バルブ10Aは、効率良く下部キャップ3の冷却を行うことができるので、これによりバルブシート102やこれに当接する傘部Vhのバルブフェイス面の温度上昇を効果的に抑えることができ、更にそのバルブシート102やバルブフェイス面の摩耗を抑えて耐久性や燃焼室CCの気密性の向上を図ることができる。   And in this hollow valve 10A for internal combustion engines, each high heat conduction member 6A will be in the state which raised the refrigerant | coolant 5 which is heat transfer object, and it is the same amount of refrigerant | coolants 5 as what is not provided with the high heat conduction member 6A. If there is, even if the internal combustion engine hollow valve 10A is tilted, the reciprocating movement of the refrigerant 5 more reliably reaches the upper side of the shaft portion Vs (the valve lifter 101 side). For this reason, most of the heat (that is, the heat of the lower cap 3) received by the refrigerant 5 from the high heat conducting member 6A is almost the shaft portion Vs {the cylindrical portion 1a of the valve main body 1 and the lower surface of the upper cap 2 (that is, the hollow portion). 4), and is radiated from the shaft portion Vs to the cylinder head 105 through the valve stem guide 106, the valve lifter 101, the cam, and the like. Accordingly, the hollow valve 10A for the internal combustion engine according to the first embodiment can efficiently cool the lower cap 3, thereby increasing the temperature of the valve seat 102 and the valve face surface of the umbrella portion Vh that contacts the valve seat 102. Further, it is possible to effectively suppress the wear of the valve seat 102 and the valve face, and it is possible to improve the durability and the air tightness of the combustion chamber CC.

他方、高熱伝導部材6Aが配備されていない内燃機関用中空バルブにて十分に冷却効果を得ることができていた場合には、高熱伝導部材6Aを配備して本実施例1の内燃機関用中空バルブ10Aとすることによって冷媒5の封入量を減らすことができ、往復運動する際の慣性マスを低減することができる。従って、この場合の本実施例1の内燃機関用中空バルブ10Aは、応答性良く軽快に往復運動することができ、開弁時期や閉弁時期の精度を高めることができる。   On the other hand, when the cooling effect can be sufficiently obtained by the hollow valve for the internal combustion engine in which the high heat conduction member 6A is not provided, the high heat conduction member 6A is provided and the hollow for internal combustion engine of the first embodiment is provided. By using the valve 10A, the amount of the refrigerant 5 enclosed can be reduced, and the inertia mass when reciprocating can be reduced. Therefore, the hollow valve 10A for the internal combustion engine of the first embodiment in this case can reciprocate easily and responsively, and the accuracy of the valve opening timing and the valve closing timing can be improved.

以上示した如く、本実施例1の内燃機関用中空バルブ10Aは、最も高温になり易い傘部Vhの効果的な冷却が可能になり、これにより、自身の耐久性やバルブシート102の耐久性、燃焼室CCの気密性、開弁時期や閉弁時期の精度の向上を図ることができる。これが為、この内燃機関用中空バルブ10Aは、燃焼室CCの空気過剰率(即ち、空燃比であり、特に理論空燃比)の指令値に対する精度向上、筒内圧の高圧化を図ることができ、高出力化や低燃費化が可能になる。また、この内燃機関用中空バルブ10Aは、耐熱性や耐久性が従来よりも低い低コストの材料で自身やバルブシート102を形成しても十分に耐熱性や耐久性を確保することができるので、自身やその周辺部品の低コスト化が可能になる。更に、この内燃機関用中空バルブ10Aは、傘部Vh(特に、下部キャップ3の燃焼室壁面3a等の如く燃焼室CCの壁面を成している部分)を従来と比して大幅に冷却することができるので、ノッキングを従来よりも抑えることができるようになる。従って、この内燃機関用中空バルブ10Aは、そのノッキングの抑制効果に伴う点火時期の進角化が可能になり、出力性能の向上を図ることができる。   As described above, the hollow valve 10A for the internal combustion engine according to the first embodiment can effectively cool the umbrella portion Vh that is likely to be the highest temperature. Further, it is possible to improve the airtightness of the combustion chamber CC and the accuracy of the valve opening timing and the valve closing timing. For this reason, the hollow valve 10A for an internal combustion engine can improve the accuracy with respect to the command value of the excess air ratio (that is, the air-fuel ratio, particularly the theoretical air-fuel ratio) of the combustion chamber CC, and can increase the in-cylinder pressure. High output and low fuel consumption are possible. Further, the hollow valve 10A for an internal combustion engine can sufficiently secure heat resistance and durability even if the valve seat 102 is formed by itself and a low-cost material having lower heat resistance and durability than conventional ones. The cost of itself and its peripheral parts can be reduced. Furthermore, this internal combustion engine hollow valve 10A significantly cools the umbrella portion Vh (particularly, the portion forming the wall surface of the combustion chamber CC such as the combustion chamber wall surface 3a of the lower cap 3). Therefore, knocking can be suppressed more than before. Therefore, the internal combustion engine hollow valve 10A can advance the ignition timing associated with the knocking suppression effect, and can improve the output performance.

ここで、本実施例1の内燃機関用中空バルブ10Aにおいては、配設する高熱伝導部材6Aの本数を増減させることによって傘部Vhの冷却度合いを調節することができる。従って、この内燃機関用中空バルブ10Aを高熱に曝され易い排気側に適用する場合には、吸気側に適用する場合よりも多く高熱伝導部材6Aを配置して、十分な冷却効果を確保することができるようにすればよい。そして、本実施例1の内燃機関用中空バルブ10Aは、このように高熱伝導部材6Aの本数を調節するのみで冷却度合いを変えることができるので、排気側と吸気側とで全ての部品の共通化が可能になり、低コストで排気バルブと吸気バルブを製造することができるようになる。   Here, in the hollow valve 10A for the internal combustion engine of the first embodiment, the degree of cooling of the umbrella portion Vh can be adjusted by increasing or decreasing the number of high heat conducting members 6A to be arranged. Therefore, when this internal combustion engine hollow valve 10A is applied to the exhaust side, which is easily exposed to high heat, more heat conductive members 6A are disposed than when applied to the intake side to ensure a sufficient cooling effect. You can make it possible. And since the hollow valve 10A for internal combustion engines of the present Example 1 can change a cooling degree only by adjusting the number of the high heat conductive members 6A in this way, it is common to all components at the exhaust side and the intake side. The exhaust valve and the intake valve can be manufactured at low cost.

次に、本発明に係る内燃機関用中空バルブの実施例2を図3に基づいて説明する。この図3は、バルブ主体1の中心軸に沿って切った断面図であり、その中心軸を中心に360度あらゆる角度で切っても同じ形状を表している。   Next, a second embodiment of the hollow valve for an internal combustion engine according to the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view taken along the central axis of the valve main body 1 and shows the same shape even if it is cut at any angle of 360 degrees around the central axis.

図3の符号10Bは、本実施例2の内燃機関用中空バルブを示す。この本実施例2の内燃機関用中空バルブ10Bは、前述した実施例1の内燃機関用中空バルブ10Aにおいて複数本の高熱伝導部材6Aを図3に示す複数本の高熱伝導部材6Bへと置き換えたものである。   3 indicates a hollow valve for an internal combustion engine according to the second embodiment. In the hollow valve 10B for the internal combustion engine of the second embodiment, a plurality of high heat conduction members 6A in the hollow valve 10A for the internal combustion engine of the first embodiment described above are replaced with a plurality of high heat conduction members 6B shown in FIG. Is.

具体的に、本実施例2の夫々の高熱伝導部材6Bは、実施例1の各高熱伝導部材6Aにおいて中央部分を中空部4の内方に向けて突出させた形に配置する。つまり、本実施例2においては、例えば、下部キャップ3の中空部壁面3bにおける周縁部分には実施例1と略同じ長さ及び直径の直線状の高熱伝導部材6Bを複数本環状に配置し、その周縁部分よりも内側には凸部7が成されるよう周縁部分よりも長い高熱伝導部材6Bを複数本配置している。   Specifically, each of the high heat conductive members 6 </ b> B of the second embodiment is arranged in a shape in which the central portion of each high heat conductive member 6 </ b> A of the first embodiment protrudes inward of the hollow portion 4. That is, in the second embodiment, for example, a plurality of linear high heat conductive members 6B having substantially the same length and diameter as those of the first embodiment are arranged in an annular shape on the peripheral portion of the hollow wall surface 3b of the lower cap 3. A plurality of high heat conductive members 6B that are longer than the peripheral portion are arranged so that the convex portion 7 is formed inside the peripheral portion.

ここで、本実施例2の凸部7は、内燃機関用中空バルブ10Bの中心軸に向かうにつれて徐々に高さが増していくよう外側から段々と長さを長く成形した高熱伝導部材6Bが配置されている。   Here, the convex portion 7 of the second embodiment is provided with a high heat conductive member 6B which is formed to have a length gradually increased from the outside so as to gradually increase in height toward the central axis of the hollow valve 10B for the internal combustion engine. Has been.

このように、本実施例2の内燃機関用中空バルブ10Bにおいては、中央部分を盛り上げた形に高熱伝導部材6Bが配設されているので、言い換えるならば、円錐台状に近い空間に合わせて中央部分の高熱伝導部材6Bの長さを周囲よりも長くしているので、凸部7にて実施例1よりも下部キャップ3からの熱が奪われ易くなる。また、この内燃機関用中空バルブ10Bにおいては、往復運動の最中にその凸部7に接した伝熱対象たる冷媒5を実施例1のときよりも高く跳ね上げることができ、更に確実に冷媒5が軸部Vsの上部側(バルブリフター101側)へと届くようになる。従って、この内燃機関用中空バルブ10Bは、実施例1の内燃機関用中空バルブ10Aよりも高い冷却効果を発揮することができる。   Thus, in the hollow valve 10B for the internal combustion engine of the second embodiment, the high heat conductive member 6B is arranged in a shape where the central portion is raised. In other words, according to the space close to the truncated cone shape. Since the length of the high heat conductive member 6B in the center portion is longer than that of the surrounding area, heat from the lower cap 3 is more easily taken away by the convex portion 7 than in the first embodiment. Further, in the hollow valve 10B for an internal combustion engine, the refrigerant 5 that is a heat transfer target in contact with the convex portion 7 during the reciprocating motion can be splashed higher than in the first embodiment, and the refrigerant can be more reliably supplied. 5 reaches the upper side of the shaft portion Vs (the valve lifter 101 side). Accordingly, the internal combustion engine hollow valve 10B can exhibit a higher cooling effect than the internal combustion engine hollow valve 10A of the first embodiment.

更に、実施例1の内燃機関用中空バルブ10Aにて十分に冷却効果を得ることができていた場合には、本実施例2の如く凸部7を設けることによって冷媒5の封入量を減らすことができ、往復運動する際の慣性マスを実施例1よりも低減することができる。   Further, when the cooling effect can be sufficiently obtained by the internal combustion engine hollow valve 10A of the first embodiment, the amount of the refrigerant 5 enclosed can be reduced by providing the convex portion 7 as in the second embodiment. Thus, the inertial mass when reciprocating can be reduced as compared with the first embodiment.

以上示した如く、本実施例2の内燃機関用中空バルブ10Bは、最も高温になり易い傘部Vhをより効果的に冷却させることが可能になり、これにより、自身の耐久性やバルブシート102の耐久性、燃焼室CCの気密性、開弁時期や閉弁時期の精度の更なる向上を図ることができる。これが為、この内燃機関用中空バルブ10Bは、燃焼室CCの空気過剰率(即ち、空燃比であり、特に理論空燃比)の指令値に対する更なる精度向上、筒内圧の更なる高圧化を図ることができ、より効果的な高出力化や低燃費化を可能にする。また、この内燃機関用中空バルブ10Bは、実施例1と同じく、耐熱性や耐久性が従来よりも低い低コストの材料で自身やバルブシート102を形成しても十分に耐熱性や耐久性を確保することができるので、自身やその周辺部品の低コスト化が可能になる。更に、この内燃機関用中空バルブ10Bは、実施例1と同様に、傘部Vh(特に、下部キャップ3の燃焼室壁面3a等の如く燃焼室CCの壁面を成している部分)を従来と比して大幅に冷却することができ、ノッキングを従来よりも抑えることができるので、点火時期の進角化が可能になり、出力性能の向上を図ることができる。   As described above, the hollow valve 10B for the internal combustion engine of the second embodiment can more effectively cool the umbrella portion Vh that is likely to reach the highest temperature, thereby improving its durability and the valve seat 102. It is possible to further improve the durability, the air tightness of the combustion chamber CC, and the accuracy of the valve opening timing and the valve closing timing. For this reason, the internal combustion engine hollow valve 10B further improves the accuracy with respect to the command value of the excess air ratio of the combustion chamber CC (that is, the air-fuel ratio, particularly the stoichiometric air-fuel ratio), and further increases the in-cylinder pressure. This enables more effective high output and low fuel consumption. Further, the hollow valve 10B for an internal combustion engine has sufficient heat resistance and durability even when the valve seat 102 is formed by itself and a low-cost material having lower heat resistance and durability as in the first embodiment. Therefore, the cost of itself and its peripheral parts can be reduced. Furthermore, this internal combustion engine hollow valve 10B has an umbrella portion Vh (particularly, the portion forming the wall surface of the combustion chamber CC such as the combustion chamber wall surface 3a of the lower cap 3) as in the first embodiment. Compared with the prior art, knocking can be suppressed more than before, so that the ignition timing can be advanced and the output performance can be improved.

ここで、本実施例2の内燃機関用中空バルブ10Bにおいても、実施例1のときと同様に、配設する高熱伝導部材6Bの本数を増減させることによって傘部Vhの冷却度合いを調節することができる。従って、この内燃機関用中空バルブ10Bを高熱に曝され易い排気側に適用する場合には、吸気側に適用する場合よりも多く高熱伝導部材6Bを配置して、十分な冷却効果を確保することができるようにすればよい。そして、本実施例2の内燃機関用中空バルブ10Bは、このように高熱伝導部材6Bの本数を調節するのみで冷却度合いを変えることができるので、排気側と吸気側とで殆どの部品の共通化が可能になり、低コストで排気バルブと吸気バルブを製造することができるようになる。   Here, also in the hollow valve 10B for the internal combustion engine of the second embodiment, as in the first embodiment, the degree of cooling of the umbrella portion Vh is adjusted by increasing / decreasing the number of high heat conductive members 6B to be arranged. Can do. Therefore, when this internal combustion engine hollow valve 10B is applied to the exhaust side, which is easily exposed to high heat, more heat conductive members 6B are arranged than when applied to the intake side to ensure a sufficient cooling effect. You can make it possible. The hollow valve 10B for the internal combustion engine of the second embodiment can change the degree of cooling only by adjusting the number of the high heat conducting members 6B in this way, so that most parts are common on the exhaust side and the intake side. The exhaust valve and the intake valve can be manufactured at low cost.

また、上述した本実施例2の内燃機関用中空バルブ10Bにて十分に冷却効果を得ることができる場合には、周縁部分の高熱伝導部材6Bを取り外し、中央部分(つまり、凸部7)の高熱伝導部材6Bのみで構成してもよく、このようにしても同様の効果を奏することができる。かかる場合、傘部Vhの冷却効果が高い中空部壁面3bの全体に高熱伝導部材6Bを配置したものを排気バルブとして製造し、これよりも傘部Vhの冷却効果が低い中央部分の高熱伝導部材6Bのみのものを吸気バルブとして製造してもよい。   Further, when a sufficient cooling effect can be obtained with the hollow valve 10B for the internal combustion engine of the second embodiment described above, the high heat conduction member 6B at the peripheral portion is removed, and the central portion (that is, the convex portion 7) is removed. You may comprise only the high heat conductive member 6B, and even if it does in this way, there can exist the same effect. In such a case, a high heat conductive member 6B disposed on the entire hollow portion wall surface 3b having a high cooling effect for the umbrella portion Vh is manufactured as an exhaust valve, and the high heat conductive member at the center portion where the cooling effect for the umbrella portion Vh is lower than this. Only 6B may be manufactured as an intake valve.

次に、本発明に係る内燃機関用中空バルブの実施例3を図4に基づいて説明する。この図4は、バルブ主体1の中心軸に沿って切った断面図であり、その中心軸を中心に360度あらゆる角度で切っても同じ形状を表している。   Next, a third embodiment of the hollow valve for an internal combustion engine according to the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view taken along the central axis of the valve main body 1 and shows the same shape even if it is cut at any angle of 360 degrees around the central axis.

図4の符号10Cは、本実施例3の内燃機関用中空バルブを示す。この本実施例3の内燃機関用中空バルブ10Cは、前述した実施例1の内燃機関用中空バルブ10Aにおいて複数本の高熱伝導部材6Aを図4に示す複数本の高熱伝導部材6Cへと置き換えたものである。   4 indicates a hollow valve for an internal combustion engine according to the third embodiment. The hollow valve 10C for the internal combustion engine of the third embodiment is obtained by replacing the plurality of high heat conduction members 6A with the plurality of high heat conduction members 6C shown in FIG. 4 in the hollow valve 10A for the internal combustion engine of the first embodiment described above. Is.

具体的に、本実施例3の夫々の高熱伝導部材6Cは、実施例1の各高熱伝導部材6Aにおいて中央部分を上部キャップ2まで延設したものであり、換言すれば、実施例2の凸部7の中心部分を上部キャップ2まで延ばしたものとも言える。つまり、本実施例3においては、例えば、下部キャップ3の中空部壁面3bにおける周縁部分には実施例1と略同じ長さ及び直径の直線状の高熱伝導部材6Cを複数本環状に配置し、その周縁部分よりも内側には一端を上部キャップ2の下面(即ち、中空部4の壁面を成す面)に当接させた高熱伝導部材6Cを複数本配置している。その高熱伝導部材6Cと上部キャップ2との間は、下部キャップ3との間と同様に金属メッキ等の手法を用いて接着する。   Specifically, each of the high heat conductive members 6C of the third embodiment has a central portion extending to the upper cap 2 in each of the high heat conductive members 6A of the first embodiment, in other words, the convex portion of the second embodiment. It can be said that the central portion of the portion 7 extends to the upper cap 2. That is, in the third embodiment, for example, a plurality of linear high heat conductive members 6C having substantially the same length and diameter as those of the first embodiment are arranged in an annular shape on the peripheral portion of the hollow wall surface 3b of the lower cap 3. A plurality of high heat conductive members 6C having one end abutting against the lower surface of the upper cap 2 (that is, the surface forming the wall surface of the hollow portion 4) are disposed inside the peripheral edge portion. The high heat conductive member 6C and the upper cap 2 are bonded using a technique such as metal plating in the same manner as the lower cap 3.

このように、本実施例3の内燃機関用中空バルブ10Cにおいては、下部キャップ3の中空部壁面3bと上部キャップ2の下面との間が高熱伝導部材6Cの両端で繋がれているので、その下部キャップ3から奪った熱を直接伝熱対象たる上部キャップ2の下面まで確実に伝達させることができ、その伝えられてきた熱をバルブリフター101やバルブステムガイド106等を介してシリンダヘッド105に放熱させることができる。また、この内燃機関用中空バルブ10Cにおいては、中央部分の高熱伝導部材6Cの長さを伸ばしているので放熱効果が高くなる。尚、ここで例示している内燃機関用中空バルブ10Cにおいては、その中空部壁面3bにおける周縁部分の高熱伝導部材6Cから熱を伝達された伝熱対象たる冷媒5が往復運動に伴い軸部Vsへと届けられる。従って、この本実施例3の内燃機関用中空バルブ10Cは、自身が傾倒して配置されていようがいまいが、また、バルブリフト量が小さくて冷媒5が大きく跳ね上がらないときであっても、必ず下部キャップ3の熱が軸部Vsの上部側(上部キャップ2の下面)へと伝達されるようになっているので、その下部キャップ3の冷却を確実に行うことができる。   Thus, in the hollow valve 10C for the internal combustion engine of the third embodiment, the hollow portion wall surface 3b of the lower cap 3 and the lower surface of the upper cap 2 are connected at both ends of the high heat conductive member 6C. The heat taken from the lower cap 3 can be reliably transmitted to the lower surface of the upper cap 2 that is a direct heat transfer target, and the transmitted heat is transmitted to the cylinder head 105 via the valve lifter 101, the valve stem guide 106, and the like. Heat can be dissipated. Moreover, in this internal combustion engine hollow valve 10C, since the length of the high thermal conductive member 6C at the center is extended, the heat dissipation effect is enhanced. In the hollow valve 10C for an internal combustion engine illustrated here, the refrigerant 5 as a heat transfer target to which heat is transferred from the high heat conduction member 6C at the peripheral portion of the wall surface 3b of the hollow portion accompanies the reciprocating motion of the shaft portion Vs. Delivered to. Therefore, the hollow valve 10C for the internal combustion engine according to the third embodiment, whether or not it is tilted, is sure to be used even when the valve lift amount is small and the refrigerant 5 does not jump significantly. Since the heat of the lower cap 3 is transmitted to the upper side of the shaft portion Vs (the lower surface of the upper cap 2), the lower cap 3 can be reliably cooled.

以上示した如く、本実施例3の内燃機関用中空バルブ10Cは、最も高温になり易い傘部Vhをより効果的に冷却させることが可能になり、これにより、自身の耐久性やバルブシート102の耐久性、燃焼室CCの気密性、開弁時期や閉弁時期の精度の更なる向上を図ることができる。これが為、この内燃機関用中空バルブ10Cは、燃焼室CCの空気過剰率(即ち、空燃比であり、特に理論空燃比)の指令値に対する更なる精度向上、筒内圧の更なる高圧化を図ることができ、より効果的な高出力化や低燃費化を可能にする。また、この内燃機関用中空バルブ10Cは、実施例1と同じく、耐熱性や耐久性が従来よりも低い低コストの材料で自身やバルブシート102を形成しても十分に耐熱性や耐久性を確保することができるので、自身やその周辺部品の低コスト化が可能になる。更に、この内燃機関用中空バルブ10Cは、実施例1と同様に、傘部Vh(特に、下部キャップ3の燃焼室壁面3a等の如く燃焼室CCの壁面を成している部分)を従来と比して大幅に冷却することができ、ノッキングを従来よりも抑えることができるので、点火時期の進角化が可能になり、出力性能の向上を図ることができる。   As described above, the hollow valve 10C for the internal combustion engine of the third embodiment can more effectively cool the umbrella portion Vh that is likely to be the highest temperature, thereby improving its durability and the valve seat 102. It is possible to further improve the durability, the air tightness of the combustion chamber CC, and the accuracy of the valve opening timing and the valve closing timing. For this reason, the internal combustion engine hollow valve 10C further improves the accuracy with respect to the command value of the excess air ratio (that is, the air-fuel ratio, particularly the stoichiometric air-fuel ratio) of the combustion chamber CC, and further increases the in-cylinder pressure. This enables more effective high output and low fuel consumption. Further, the hollow valve 10C for an internal combustion engine has sufficient heat resistance and durability even when the valve seat 102 is formed by itself and a low-cost material having lower heat resistance and durability than the conventional one, as in the first embodiment. Therefore, the cost of itself and its peripheral parts can be reduced. Furthermore, this internal combustion engine hollow valve 10C has an umbrella portion Vh (particularly, a portion forming the wall surface of the combustion chamber CC such as the combustion chamber wall surface 3a of the lower cap 3) as in the first embodiment. Compared with the prior art, knocking can be suppressed more than before, so that the ignition timing can be advanced and the output performance can be improved.

ここで、本実施例3の内燃機関用中空バルブ10Cにおいても、実施例1のときと同様に、配設する高熱伝導部材6Cの本数を増減させることによって傘部Vhの冷却度合いを調節することができる。従って、この内燃機関用中空バルブ10Cを高熱に曝され易い排気側に適用する場合には、吸気側に適用する場合よりも多く高熱伝導部材6Cを配置して、十分な冷却効果を確保することができるようにすればよい。そして、本実施例3の内燃機関用中空バルブ10Cは、このように高熱伝導部材6Cの本数を調節するのみで冷却度合いを変えることができるので、排気側と吸気側とで殆どの部品の共通化が可能になり、低コストで排気バルブと吸気バルブを製造することができるようになる。   Here, also in the hollow valve 10C for the internal combustion engine of the third embodiment, the degree of cooling of the umbrella portion Vh is adjusted by increasing / decreasing the number of the high heat conducting members 6C to be arranged as in the first embodiment. Can do. Therefore, when the internal combustion engine hollow valve 10C is applied to the exhaust side, which is easily exposed to high heat, more heat conductive members 6C are arranged than in the case of application to the intake side to ensure a sufficient cooling effect. You can make it possible. Since the hollow valve 10C for the internal combustion engine of the third embodiment can change the degree of cooling only by adjusting the number of the high heat conducting members 6C as described above, it is common to most parts on the exhaust side and the intake side. The exhaust valve and the intake valve can be manufactured at low cost.

また、上述した本実施例2の内燃機関用中空バルブ10Bにて十分に冷却効果を得ることができる場合には、周縁部分の高熱伝導部材6Bを取り外し、中央部分(つまり、凸部7)の高熱伝導部材6Bのみで構成してもよく、このようにしても同様の効果を奏することができる。かかる場合、傘部Vhの冷却効果が高い中空部壁面3bの全体に高熱伝導部材6Bを配置したものを排気バルブとして製造し、これよりも傘部Vhの冷却効果が低い中央部分の高熱伝導部材6Bのみのものを吸気バルブとして製造してもよい。   Further, when a sufficient cooling effect can be obtained with the hollow valve 10B for the internal combustion engine of the second embodiment described above, the high heat conduction member 6B at the peripheral portion is removed, and the central portion (that is, the convex portion 7) is removed. You may comprise only the high heat conductive member 6B, and even if it does in this way, there can exist the same effect. In such a case, a high heat conductive member 6B disposed on the entire hollow portion wall surface 3b having a high cooling effect for the umbrella portion Vh is manufactured as an exhaust valve, and the high heat conductive member at the center portion where the cooling effect for the umbrella portion Vh is lower than this. Only 6B may be manufactured as an intake valve.

また、上述した本実施例3の内燃機関用中空バルブ10Cにて十分に冷却効果を得ることができる場合には、周縁部分の高熱伝導部材6Cを取り外し、中央部分の高熱伝導部材6C(つまり、下部キャップ3の中空部壁面3bと上部キャップ2の下面とを繋ぐもの)のみで構成してもよく、このようにしても同様の効果を奏することができる。そして、この場合には、所望の冷却効果を得ることができるのであれば、必ずしも中空部4の中に冷媒5を封入しなくてもよく、これにより更なる慣性マスの低減が可能になるので、より応答性良く軽快に内燃機関用中空バルブ10Cを往復運動させることができるようになる。例えば、かかる場合、傘部Vhの冷却効果が高い中空部壁面3bの全体に高熱伝導部材6Cを配置したものを排気バルブとして製造し、これよりも傘部Vhの冷却効果が低い中央部分の高熱伝導部材6Cのみのものを吸気バルブとして製造してもよい。また、冷媒5を封入したものを排気バルブとして製造し、冷媒5の無いものを吸気バルブとして製造してもよい。   Further, when a sufficient cooling effect can be obtained with the hollow valve 10C for the internal combustion engine of the third embodiment described above, the high thermal conductivity member 6C at the peripheral portion is removed and the high thermal conductivity member 6C at the center portion (that is, It may be configured only by connecting the hollow wall surface 3b of the lower cap 3 and the lower surface of the upper cap 2). Even in this case, the same effect can be obtained. In this case, if the desired cooling effect can be obtained, it is not always necessary to enclose the refrigerant 5 in the hollow portion 4, thereby further reducing the inertial mass. Thus, the hollow valve 10C for an internal combustion engine can be reciprocated more easily and responsively. For example, in such a case, a high heat conductive member 6C arranged on the entire hollow portion wall surface 3b having a high cooling effect for the umbrella portion Vh is manufactured as an exhaust valve, and the high heat in the central portion where the cooling effect for the umbrella portion Vh is lower than this. Only the conductive member 6C may be manufactured as an intake valve. Moreover, what enclosed the refrigerant | coolant 5 may be manufactured as an exhaust valve, and what does not have the refrigerant | coolant 5 may be manufactured as an intake valve.

次に、本発明に係る内燃機関用中空バルブの実施例4を図5及び図6に基づいて説明する。   Next, a fourth embodiment of the hollow valve for an internal combustion engine according to the present invention will be described with reference to FIGS.

図5の符号10Dは、本実施例4の内燃機関用中空バルブを示す。この本実施例4の内燃機関用中空バルブ10Dは、前述した実施例1の内燃機関用中空バルブ10Aにおいて複数本の高熱伝導部材6Aを図5及び図6に示す複数本の高熱伝導部材6D1,6D2へと置き換えたものである。 5 indicates a hollow valve for an internal combustion engine according to the fourth embodiment. The internal combustion engine hollow valve 10D of the fourth embodiment, a plurality of high thermal conductivity member 6D 1 showing a plurality of high thermal conductivity member 6A in Figures 5 and 6 in the hollow valve 10A for an internal combustion engine of the first embodiment described above , 6D 2 .

具体的に、本実施例4においては、実施例1の各高熱伝導部材6Aにおける周縁部分の夫々の自由端を中空部4における傘部Vhのバルブフェイス面近傍の壁面に接触させたものである。つまり、本実施例4においては、例えば、図6に示す如く、下部キャップ3の中空部壁面3bにおける中央部分には実施例1と略同じ長さ及び直径の直線状の高熱伝導部材6D1を複数本円形状に配置し、その周縁部分には中空部壁面3bとバルブフェイス面近傍の壁面とを両端で繋ぐ高熱伝導部材6D2を複数本放射状に配置している。尚、その図6においては夫々の高熱伝導部材6D1,6D2の間に明確な隙間が出来ているが、その隙間は図示の便宜上のものである。その高熱伝導部材6D2とバルブフェイス面近傍の壁面との間は、下部キャップ3との間と同様に金属メッキ等の手法を用いて接着する。 Specifically, in the fourth embodiment, the respective free ends of the peripheral portions of the respective high thermal conductive members 6A of the first embodiment are brought into contact with the wall surface of the hollow portion 4 in the vicinity of the valve face of the umbrella portion Vh. . That is, in the fourth embodiment, for example, as shown in FIG. 6, a linear high thermal conductive member 6D 1 having the same length and diameter as the first embodiment is provided at the central portion of the hollow wall surface 3b of the lower cap 3. A plurality of circularly arranged, and a plurality of high heat conductive members 6D 2 that radially connect the hollow portion wall surface 3b and the wall surface near the valve face at both ends are arranged radially. In FIG. 6, there is a clear gap between the high heat conductive members 6D 1 and 6D 2 , but this gap is for convenience of illustration. As between the high thermal conductivity member 6D 2 and the valve face surface wall in the vicinity is bonded using techniques metal plating as well as between the lower cap 3.

このように、本実施例4の内燃機関用中空バルブ10Dにおいては、下部キャップ3の中空部壁面3bの周縁部分とバルブフェイス面近傍の壁面との間が高熱伝導部材6D2の両端で繋がれているので、その下部キャップ3から奪った熱を伝熱対象たるバルブフェイス面近傍の壁面からバルブシート102を介してシリンダヘッド105に放熱させることができる。尚、ここで例示している内燃機関用中空バルブ10Dにおいては、その中空部壁面3bにおける中央部分の高熱伝導部材6D1から熱を伝達された伝熱対象たる冷媒5が往復運動に伴い軸部Vsの上部側へと届けられる。つまり、この本実施例4の内燃機関用中空バルブ10Dは、下部キャップ3の熱を軸部Vs側とバルブシート102とに分けて放熱することができる。そして、このように構成したとしても、本実施例4の内燃機関用中空バルブ10Dは、実施例1と同様に下部キャップ3の冷却を確実に行うことができる。 Thus, in the internal combustion engine for a hollow valve 10D of the fourth embodiment, between the peripheral portion and the valve face surface wall in the vicinity of the hollow portion wall 3b of the lower cap 3 is connected by both ends of the high thermal conductivity member 6D 2 Therefore, the heat taken from the lower cap 3 can be radiated to the cylinder head 105 via the valve seat 102 from the wall surface in the vicinity of the valve face which is the heat transfer target. Here, in the hollow valve 10D for an internal combustion engine is illustrated, the shaft portion with high thermal conductivity member 6D 1 heat transfer target serving coolant 5 which is transferring heat from the central portion to the reciprocating motion in the hollow portion wall 3b Delivered to the upper side of Vs. That is, the internal combustion engine hollow valve 10D according to the fourth embodiment can radiate the heat of the lower cap 3 by dividing it into the shaft portion Vs side and the valve seat 102. And even if comprised in this way, the hollow valve 10D for internal combustion engines of the present Example 4 can cool the lower cap 3 reliably like Example 1. FIG.

ところで、この内燃機関用中空バルブ10Dが排気側に適用される場合には、排気行程の如くその全体が高温の排気ガスに曝されることがあるので、吸気側へ適用する場合よりも大きな冷却効果が必要とされる。一方、この内燃機関用中空バルブ10Dが吸気側に適用される場合には、常に吸入空気の接している軸部Vsへと多量に放熱すると、その吸入空気の温度が上昇して燃焼室CCでの体積効率が悪化してしまうので、熱効率の低下が生じる可能性がある。   By the way, when the internal combustion engine hollow valve 10D is applied to the exhaust side, the entire body may be exposed to high-temperature exhaust gas as in the exhaust stroke, so that the cooling is larger than that applied to the intake side. An effect is needed. On the other hand, when the internal combustion engine hollow valve 10D is applied to the intake side, if a large amount of heat is radiated to the shaft portion Vs that is always in contact with the intake air, the temperature of the intake air rises and is increased in the combustion chamber CC. Since the volumetric efficiency of the battery deteriorates, the thermal efficiency may decrease.

従って、この内燃機関用中空バルブ10Dを高い冷却性が求められる排気側に適用する場合には、軸部Vsよりもバルブフェイス面近傍の壁面への放熱量が多くなるように周縁部分の高熱伝導部材6D2と中央部分の高熱伝導部材6D1の各々の本数を定めて配置させる。つまり、バルブフェイス面はシリンダヘッド105に嵌め込まれているバルブシート102に直接触れて伝熱するので、軸部Vsよりもバルブフェイス面近傍の壁面に放熱させる方がシリンダヘッド105の伝熱効率に優れており、この内燃機関用中空バルブ10Dは、その壁面への放熱量を多くすることによって冷却性を高めることができる。 Therefore, when this internal combustion engine hollow valve 10D is applied to the exhaust side, where high cooling performance is required, high heat conduction at the peripheral portion is ensured so that the heat radiation to the wall surface near the valve face surface is larger than the shaft portion Vs. It is arranged defining a respective number of the high thermal conductivity member 6D 1 member 6D 2 and the central portion. In other words, since the valve face surface directly contacts the valve seat 102 fitted in the cylinder head 105 to transfer heat, the heat transfer efficiency of the cylinder head 105 is better when the heat is radiated to the wall surface near the valve face than the shaft portion Vs. The hollow valve 10D for an internal combustion engine can enhance the cooling performance by increasing the amount of heat radiation to the wall surface.

一方、この内燃機関用中空バルブ10Dを体積効率が悪化しない程度の適度な冷却性が求められる吸気側に適用する場合には、軸部Vsへの放熱量が少なくなるように周縁部分の高熱伝導部材6D2と中央部分の高熱伝導部材6D1の各々の本数を定めて配置させる。そして、これにより軸部Vsの熱で吸入空気が暖められて体積効率を悪化させてしまうという状況を回避することができるので、この内燃機関用中空バルブ10Dは、無駄な過冷却を抑えつつ内燃機関の熱効率の低下を防ぐことができる。 On the other hand, when this internal combustion engine hollow valve 10D is applied to the intake side where appropriate cooling performance is required so that volume efficiency does not deteriorate, high heat conduction at the peripheral portion is reduced so that the amount of heat released to the shaft portion Vs is reduced. The number of each of the member 6D 2 and the high thermal conductive member 6D 1 at the center is determined and arranged. Then, the situation where the intake air is warmed by the heat of the shaft portion Vs and the volumetric efficiency is deteriorated can be avoided. Therefore, the internal combustion engine hollow valve 10D is configured to prevent internal combustion while suppressing unnecessary supercooling. A decrease in the thermal efficiency of the engine can be prevented.

このように、本実施例4の内燃機関用中空バルブ10Dは、配置する高熱伝導部材6D1,6D2の本数を調節するのみで冷却度合いを変えることができるので、排気側と吸気側とで全ての部品の共通化が可能になり、低コストで排気バルブと吸気バルブを製造することができるようになる。 As described above, the hollow valve 10D for the internal combustion engine according to the fourth embodiment can change the degree of cooling only by adjusting the number of high heat conducting members 6D 1 and 6D 2 to be arranged. All parts can be shared, and exhaust valves and intake valves can be manufactured at low cost.

また、本実施例4の高熱伝導部材6D2は、バルブ主体1と下部キャップ3の図5に示す溶接部分8の近くの熱を略均等にすることができるので、その溶接部分8の補強材として機能する。更に、この高熱伝導部材6D2は、その溶接部分8を覆った形に配設しているので、これによっても、その溶接部分8の補強材として機能する。つまり、高熱伝導部材6D2たる炭素繊維強化金属は剛性が高いので、その溶接部分8の捻れや歪みを抑えることができる。従って、本実施例4の内燃機関用中空バルブ10Dは、その溶接部分8やその周囲での亀裂等の発生を防ぐことができる。 Further, the high heat conducting member 6D 2 of the fourth embodiment can make the heat of the valve main body 1 and the lower cap 3 near the welded portion 8 shown in FIG. Function as. Further, since the high heat conductive member 6D 2 is disposed so as to cover the welded portion 8, it also functions as a reinforcing material for the welded portion 8. That is, since the carbon fiber reinforced metal which is the high heat conductive member 6D 2 has high rigidity, the twist and distortion of the welded portion 8 can be suppressed. Therefore, the hollow valve 10D for the internal combustion engine of the fourth embodiment can prevent the occurrence of cracks and the like at the welded portion 8 and the surroundings thereof.

ここで、中央部分の高熱伝導部材6D1としては、前述した実施例2の凸部7を成す高熱伝導部材6Bに置き換えてもよく、また、前述した実施例3における下部キャップ3の中空部壁面3bと上部キャップ2の下面との間を繋ぐ高熱伝導部材6Cに置き換えてもよい。 Here, the high heat conductive member 6D 1 at the center may be replaced with the high heat conductive member 6B forming the convex portion 7 of the above-described second embodiment, and the hollow portion wall surface of the lower cap 3 in the above-described third embodiment. You may replace with 6 C of high heat conductive members which connect between 3b and the lower surface of the top cap 2. FIG.

次に、本発明に係る内燃機関用中空バルブの実施例5を図7及び図8に基づいて説明する。   Next, a fifth embodiment of the hollow valve for an internal combustion engine according to the present invention will be described with reference to FIGS.

図7の符号10Eは、本実施例5の内燃機関用中空バルブを示す。この本実施例5の内燃機関用中空バルブ10Eは、前述した実施例1の内燃機関用中空バルブ10Aにおいて複数本の高熱伝導部材6Aを図7及び図8に示す複数本の高熱伝導部材6Eへと置き換えたものである。   7 denotes a hollow valve for an internal combustion engine according to the fifth embodiment. The hollow valve 10E for the internal combustion engine of the fifth embodiment is changed from the plurality of high heat conduction members 6A to the plurality of high heat conduction members 6E shown in FIGS. 7 and 8 in the hollow valve 10A for the internal combustion engine of the first embodiment. Is replaced.

具体的に、本実施例5の夫々の高熱伝導部材6Eは、下部キャップ3の中空部壁面3bにおける周縁部分と中空部4におけるバルブステムガイド106近傍の壁面とを夫々の両端で繋いだものであり、内燃機関用中空バルブ10Eの中心軸を中心にして図8に示す如く放射状に配置する。尚、その図8においては夫々の高熱伝導部材6Eの間に明確な隙間が出来ているが、その隙間は図示の便宜上のものである。その高熱伝導部材6Eとバルブステムガイド106近傍の壁面との間は、下部キャップ3との間と同様に金属メッキ等の手法を用いて接着する。   Specifically, each of the high thermal conductive members 6E of the fifth embodiment is obtained by connecting the peripheral portion of the hollow portion wall surface 3b of the lower cap 3 and the wall surface of the hollow portion 4 near the valve stem guide 106 at both ends. Yes, and arranged radially as shown in FIG. 8 around the central axis of the hollow valve 10E for the internal combustion engine. In FIG. 8, there is a clear gap between the high heat conductive members 6E, but this gap is for convenience of illustration. The high heat conducting member 6E and the wall surface in the vicinity of the valve stem guide 106 are bonded using a technique such as metal plating in the same manner as with the lower cap 3.

このように、本実施例5の内燃機関用中空バルブ10Eにおいては、下部キャップ3における中空部壁面3bの周縁部分とバルブステムガイド106近傍の壁面との間が高熱伝導部材6Eの両端で繋がれているので、その下部キャップ3から奪った熱を直接伝熱対象たるバルブステムガイド106近傍の壁面まで確実に伝達させることができ、その伝えられてきた熱をバルブステムガイド106を介してシリンダヘッド105に放熱させることができる。また、この内燃機関用中空バルブ10Eにおいては、その高熱伝導部材6Eの長さが長いので放熱効果が高くなる。尚、ここで例示している内燃機関用中空バルブ10Eにおいては、その中空部壁面3bにおける中央部分から熱を奪った冷媒5が往復運動に伴い軸部Vsへと届けられる。従って、この本実施例5の内燃機関用中空バルブ10Eは、自身が傾倒して配置されていようがいまいが、また、バルブリフト量が小さくて冷媒5が大きく跳ね上がらないときであっても、必ず下部キャップ3の熱がバルブステムガイド106近傍の壁面へと伝達されるようになっているので、その下部キャップ3の冷却を確実に行うことができる。   Thus, in the internal combustion engine hollow valve 10E of the fifth embodiment, the peripheral portion of the hollow wall surface 3b of the lower cap 3 and the wall surface in the vicinity of the valve stem guide 106 are connected at both ends of the high heat conductive member 6E. Therefore, the heat taken from the lower cap 3 can be reliably transmitted to the wall surface in the vicinity of the valve stem guide 106 that is the target of direct heat transfer, and the transmitted heat can be transferred to the cylinder head via the valve stem guide 106. 105 can dissipate heat. Moreover, in this hollow valve 10E for internal combustion engines, since the high heat conductive member 6E is long, the heat dissipation effect is enhanced. In the hollow valve 10E for an internal combustion engine illustrated here, the refrigerant 5 that has taken heat from the central part of the wall surface 3b of the hollow part is delivered to the shaft part Vs along with the reciprocating motion. Accordingly, the hollow valve 10E for the internal combustion engine of the fifth embodiment, whether or not it is tilted, is sure to be used even when the amount of valve lift is small and the refrigerant 5 does not jump significantly. Since the heat of the lower cap 3 is transmitted to the wall surface in the vicinity of the valve stem guide 106, the lower cap 3 can be reliably cooled.

また、本実施例5においては、前述した実施例1〜4のように多数の高熱伝導部材がひしめき合っていないので、高熱伝導部材6Eの断面積(つまり、母材たる金属の断面積)を大きく成形することができるので、放熱量の増加が可能になる。   In the fifth embodiment, since a large number of high heat conduction members are not in contact with each other as in the first to fourth embodiments described above, the cross sectional area of the high heat conduction member 6E (that is, the cross sectional area of the metal that is the base material) is increased. Since it can be molded, the amount of heat radiation can be increased.

以上のように、本発明に係る内燃機関用中空バルブは、冷却性、特に傘部の冷却性を向上させる技術に有用である。   As described above, the hollow valve for an internal combustion engine according to the present invention is useful for a technique for improving the cooling performance, particularly the cooling performance of the umbrella portion.

本発明に係る内燃機関用中空バルブの実施例1の構成を示す断面図である。It is sectional drawing which shows the structure of Example 1 of the hollow valve for internal combustion engines which concerns on this invention. 実施例1の高熱伝導部材の形状及び配置について示す斜視図である。It is a perspective view shown about the shape and arrangement | positioning of the high heat conductive member of Example 1. FIG. 本発明に係る内燃機関用中空バルブの実施例2の構成を示す断面図である。It is sectional drawing which shows the structure of Example 2 of the hollow valve for internal combustion engines which concerns on this invention. 本発明に係る内燃機関用中空バルブの実施例3の構成を示す断面図である。It is sectional drawing which shows the structure of Example 3 of the hollow valve for internal combustion engines which concerns on this invention. 本発明に係る内燃機関用中空バルブの実施例4の構成を示す断面図である。It is sectional drawing which shows the structure of Example 4 of the hollow valve for internal combustion engines which concerns on this invention. 実施例4の高熱伝導部材の配置について示す中空部の中から見た上面図である。It is the top view seen from the hollow part shown about arrangement | positioning of the high heat conductive member of Example 4. FIG. 本発明に係る内燃機関用中空バルブの実施例5の構成を示す断面図である。It is sectional drawing which shows the structure of Example 5 of the hollow valve for internal combustion engines which concerns on this invention. 実施例5の高熱伝導部材の配置について示す図7のX−X線で切った断面図である。It is sectional drawing cut | disconnected by the XX line of FIG. 7 shown about arrangement | positioning of the high heat conductive member of Example 5. FIG.

符号の説明Explanation of symbols

1 バルブ主体
1a 円筒部
1b 円錐台部
2 上部キャップ
3 下部キャップ
3a 燃焼室壁面
3b 中空部壁面
4 中空部
5 冷媒
6A,6B,6C,6D1,6D2,6E 高熱伝導部材
7 凸部
10A,10B,10C,10D,10E 内燃機関用中空バルブ
101 バルブリフター
102 バルブシート
103 リテーナ
104 弾性部材
105 シリンダヘッド
106 バルブステムガイド
CC 燃焼室
P ポート(吸気ポート、排気ポート)
Vh 傘部
Vs 軸部
1 valve main 1a cylindrical portion 1b frustoconical portion 2 upper cap 3 lower cap 3a combustion chamber wall surface 3b hollow section wall 4 hollow portion 5 refrigerant 6A, 6B, 6C, 6D 1 , 6D 2, 6E high thermal conductivity member 7 projecting portion 10A, 10B, 10C, 10D, 10E Internal combustion engine hollow valve 101 Valve lifter 102 Valve seat 103 Retainer 104 Elastic member 105 Cylinder head 106 Valve stem guide CC Combustion chamber P port (intake port, exhaust port)
Vh Umbrella Vs Shaft

Claims (6)

軸部と、該軸部の一端に設けた傘部と、該傘部から前記軸部までの間で内部にて連通する密閉された中空部と、該中空部内に封入された冷媒と、を備えた内燃機関用中空バルブにおいて、
前記傘部は、内燃機関の燃焼室の壁面の一部を成す燃焼室壁面と前記中空部の壁面の一部を成す中空部壁面とが形成された壁面部位を有し、
この壁面部位と少なくとも前記冷媒又は前記軸部の内の何れか一方の伝熱対象との間で高い熱伝導を行う高熱伝導部材を前記中空部壁面に対して少なくとも1つ配設したことを特徴とする内燃機関用中空バルブ。
A shaft portion, an umbrella portion provided at one end of the shaft portion, a sealed hollow portion that communicates internally between the umbrella portion and the shaft portion, and a refrigerant sealed in the hollow portion. In the internal combustion engine hollow valve provided,
The umbrella portion has a wall surface portion in which a combustion chamber wall surface forming a part of a wall surface of a combustion chamber of an internal combustion engine and a hollow wall surface forming a part of a wall surface of the hollow portion are formed,
At least one high heat conductive member that conducts high heat between the wall surface portion and at least one of the refrigerant and the heat transfer target of the shaft portion is disposed on the wall surface of the hollow portion. A hollow valve for an internal combustion engine.
前記高熱伝導部材は、前記中空部壁面に接触させた一端と前記伝熱対象に接触させた他端との間で熱伝導の方向性を有するものであることを特徴とした請求項1記載の内燃機関用中空バルブ。   The said high heat conductive member has the directionality of heat conduction between the one end made to contact with the said hollow part wall surface, and the other end made to contact with the said heat transfer object, The Claim 1 characterized by the above-mentioned. Hollow valve for internal combustion engine. 前記高熱伝導部材は、炭素繊維強化金属であることを特徴とした請求項1又は2に記載の内燃機関用中空バルブ。   The hollow valve for an internal combustion engine according to claim 1, wherein the high heat conductive member is a carbon fiber reinforced metal. 前記壁面部位の熱を前記冷媒に対して伝えることの可能な前記高熱伝導部材を前記軸部の軸線方向と略同一方向に突出させて凸部が形成されるよう複数配設したことを特徴とする請求項1,2又は3に記載の内燃機関用中空バルブ。   A plurality of the high heat conductive members capable of transmitting heat of the wall surface portion to the refrigerant are arranged so as to protrude in substantially the same direction as the axial direction of the shaft portion so that a convex portion is formed. A hollow valve for an internal combustion engine according to claim 1, 2 or 3. 前記高熱伝導部材は、前記中空部壁面と前記軸部における前記傘部とは反対の他端寄りの壁面との間で熱伝導が行われるように配設したことを特徴とする請求項1,2又は3に記載の内燃機関用中空バルブ。   The high heat conductive member is disposed so that heat conduction is performed between the wall surface of the hollow portion and the wall surface of the shaft portion near the other end opposite to the umbrella portion. 2. A hollow valve for an internal combustion engine according to 2 or 3. 前記高熱伝導部材は、前記中空部壁面の中央部分と前記伝熱対象との間で熱伝導が行われるように配設し、且つ、前記中空部壁面の周縁部分と前記中空部内における前記傘部のバルブシート近傍との間で熱伝導が行われるように配設したことを特徴とする請求項1から5の内の何れか1つに記載の内燃機関用中空バルブ。   The high heat conductive member is disposed so that heat conduction is performed between a central portion of the wall surface of the hollow portion and the heat transfer target, and a peripheral portion of the wall surface of the hollow portion and the umbrella portion in the hollow portion The hollow valve for an internal combustion engine according to any one of claims 1 to 5, wherein heat conduction is performed between the valve seat and the vicinity of the valve seat.
JP2007178867A 2007-07-06 2007-07-06 Hollow valve for internal combustion engine Pending JP2009013935A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007178867A JP2009013935A (en) 2007-07-06 2007-07-06 Hollow valve for internal combustion engine
US12/216,304 US20090020082A1 (en) 2007-07-06 2008-07-02 Hollow valve for internal combustion engine, and internal combustion engine having the hollow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178867A JP2009013935A (en) 2007-07-06 2007-07-06 Hollow valve for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009013935A true JP2009013935A (en) 2009-01-22

Family

ID=40263827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178867A Pending JP2009013935A (en) 2007-07-06 2007-07-06 Hollow valve for internal combustion engine

Country Status (2)

Country Link
US (1) US20090020082A1 (en)
JP (1) JP2009013935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048634A (en) * 2016-09-20 2018-03-29 マン・ディーゼル・アンド・ターボ・エスイー Valve body for gas exchange valve, gas exchange valve and internal combustion engine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246885A (en) * 2011-05-31 2012-12-13 Toyota Motor Corp Port of internal combustion engine
DE102013203443A1 (en) * 2013-02-28 2014-08-28 Mahle International Gmbh Metallic hollow valve
DE102013203441A1 (en) 2013-02-28 2014-08-28 Bayerische Motoren Werke Aktiengesellschaft Operating method for a single-axle roll stabilization system of a two-axle, two-lane vehicle
CN104981589B (en) * 2013-03-14 2017-12-26 日锻汽门株式会社 Hollow lifting valve
JP6088641B2 (en) 2013-04-11 2017-03-01 日鍛バルブ株式会社 Hollow poppet valve
DE102015116009C5 (en) * 2015-09-22 2020-07-30 Federal-Mogul Valvetrain Gmbh Valve for internal combustion engines with a guide vane for coolant
KR102169984B1 (en) * 2016-09-02 2020-10-26 니탄 밸브 가부시키가이샤 Cylinder head and engine
CN110914520B (en) 2018-03-20 2021-11-16 日锻汽门株式会社 Hollow lift valve for exhaust
DE102018122441A1 (en) * 2018-09-13 2020-03-19 Federal-Mogul Valvetrain Gmbh WELDED HALL VALVE WITH A SMALL HEAT INFLUENCE ZONE AND METHOD FOR THE PRODUCTION THEREOF
EP3882438A4 (en) 2018-11-12 2021-11-24 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
DE102019106214A1 (en) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Process for the production of a hollow valve for internal combustion engines
DE102019106222A1 (en) 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Process for the production of a hollow valve for internal combustion engines
EP4129525A4 (en) 2020-03-30 2023-06-14 Nittan Corporation Method for manufacturing engine poppet valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439240A (en) * 1945-01-18 1948-04-06 Thompson Prod Inc Braced head dome valve
US4450798A (en) * 1980-12-30 1984-05-29 Chevron Research Company Engine intake valve with heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048634A (en) * 2016-09-20 2018-03-29 マン・ディーゼル・アンド・ターボ・エスイー Valve body for gas exchange valve, gas exchange valve and internal combustion engine

Also Published As

Publication number Publication date
US20090020082A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP2009013935A (en) Hollow valve for internal combustion engine
JP6165179B2 (en) Piston with auxiliary cooling cavity and internal combustion engine with it
US20050199195A1 (en) Cooling structure of cylinder block
JP2012518744A (en) Sleeve valve assembly with cooling flow path
US8689744B2 (en) Cooling device and insert for water jacket of internal combustion engine
JP2007162473A (en) Water jacket spacer
JP4719139B2 (en) Hollow valve
US20170268455A1 (en) Water jacket for cylinder head
US20130276728A1 (en) Valve system
JP2008274779A (en) Intake-exhaust valve and valve mechanism
JP2012047115A (en) Auxiliary chamber type gas engine
JP2007093396A (en) Visualization engine
JP2009114981A (en) Piston for internal combustion engine
JP2007182834A (en) Cooling structure for cylinder block
US8297532B2 (en) Apparatus for cooling a fuel injector
JP6490440B2 (en) Monoblock engine cylinder structure
JP2012021486A (en) Fuel pump
JP2006249996A (en) Valve mechanism for internal combustion engine
JP2008267296A (en) Valve cooling system
JP7342998B1 (en) internal combustion engine
JP2008274873A (en) Intake-exhaust valve
CN218266121U (en) Crankcase body with good heat dissipation effect
JP2009041483A (en) Hollow valve for internal combustion engine
JP4209980B2 (en) Thermal expansion absorption device for piston of internal combustion engine
JP2009024680A (en) Hollow valve for internal combustion engine