JP4674519B2 - Intake valve for internal combustion engine - Google Patents

Intake valve for internal combustion engine Download PDF

Info

Publication number
JP4674519B2
JP4674519B2 JP2005291777A JP2005291777A JP4674519B2 JP 4674519 B2 JP4674519 B2 JP 4674519B2 JP 2005291777 A JP2005291777 A JP 2005291777A JP 2005291777 A JP2005291777 A JP 2005291777A JP 4674519 B2 JP4674519 B2 JP 4674519B2
Authority
JP
Japan
Prior art keywords
intake valve
fuel
umbrella
internal combustion
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005291777A
Other languages
Japanese (ja)
Other versions
JP2007100596A (en
Inventor
隼平 小川
智則 宮澤
孝浩 浜田
秀樹 臼木
豊樹 井口
琢磨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005291777A priority Critical patent/JP4674519B2/en
Publication of JP2007100596A publication Critical patent/JP2007100596A/en
Application granted granted Critical
Publication of JP4674519B2 publication Critical patent/JP4674519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関用の吸気弁に関する。   The present invention relates to an intake valve for an internal combustion engine.

内燃機関用の吸気弁は、燃料が供給されるインテークマニホールドと燃焼室との間の連通と遮断を行なうものであるが、遮断時には吸気弁自体の保有する熱により供給される燃料の気化を促進させ、燃料の円滑な吸入や燃焼可能状態にする機能も有している。   An intake valve for an internal combustion engine communicates and shuts off the intake manifold to which fuel is supplied and the combustion chamber, but promotes vaporization of the fuel supplied by the heat of the intake valve itself when shut off And has a function of enabling smooth intake of fuel and a combustible state.

たとえば、下記特許文献1では、このような燃料の気化を促進させるために、吸気弁自体にコイルを設け、積極的に吸気弁を加熱している。   For example, in Patent Document 1 below, in order to promote such fuel vaporization, a coil is provided in the intake valve itself to actively heat the intake valve.

しかし、吸気弁は、高熱条件下で円滑に高速運動し、確実に燃焼室を開閉し、閉鎖時には漏れなく閉鎖しなければならないものであることから、全体的に軽量で、付帯物がなく、高精度に仕上げられていることを要し、コイルを設けることは好ましいものではなく、本来的には、吸気弁自体の形状や構造から、燃料の気化を促進させることが好ましい。
特開平6−221121号公報(要約、図1など参照)
However, the intake valve moves smoothly and at high speed under high heat conditions, reliably opens and closes the combustion chamber, and must be closed without leakage when closed, so it is lightweight overall and has no accessories. It is required to be finished with high accuracy, and it is not preferable to provide a coil. Essentially, it is preferable to promote fuel vaporization from the shape and structure of the intake valve itself.
Japanese Patent Laid-Open No. 6-221112 (Summary, see FIG. 1 etc.)

ところが、吸気弁を構成する材料は、一般的には耐熱性(高温での耐酸化性)と疲労強度を重視して、SUH1〜SUH11などの耐熱鋼が用いられており、また、近年、慣性重量を低減し、動作中のロスをなくし、エンジン性能を向上させるために、低比重で高温強度に優れたチタン合金(Ti合金)が用いられることもある。なお、チタン合金製の吸気弁は、現在の主流である耐熱鋼製のものより40%程度の軽量化が可能で、高速運動性能が10%程度向上する。   However, heat-resistant steels such as SUH1 to SUH11 are generally used as materials constituting the intake valve, with an emphasis on heat resistance (oxidation resistance at high temperatures) and fatigue strength. In order to reduce weight, eliminate loss during operation, and improve engine performance, a titanium alloy (Ti alloy) having a low specific gravity and excellent high-temperature strength may be used. In addition, the intake valve made of titanium alloy can be reduced in weight by about 40% from the current mainstream made of heat-resistant steel, and the high-speed motion performance is improved by about 10%.

このような耐熱鋼製やチタン合金製の吸気弁は、熱伝導率が低く、燃料の気化乃至霧化を促進する機能を十分発揮できない。例えば、耐熱鋼製の吸気弁の熱伝導率は、25W/m・K程度、チタン製では8W/m・K程度であり、燃焼室での燃焼により吸気弁に伝達された熱が外部に伝達されにくい。   Such an intake valve made of heat-resistant steel or titanium alloy has a low thermal conductivity and cannot sufficiently exhibit the function of promoting fuel vaporization or atomization. For example, the heat conductivity of an intake valve made of heat-resistant steel is about 25 W / m · K, and about 8 W / m · K for titanium, and the heat transferred to the intake valve by combustion in the combustion chamber is transmitted to the outside. It is hard to be done.

このため、燃焼室の温度が上昇し易く、内燃機関のノッキング性の改善、省燃費、出力改善などの効果を得難いという問題がある。また、吸気弁の背面側、つまり、インテークマニホールド側にも伝熱されにくいので、ここに溜まった燃料を霧化する効果も乏しく、この燃料が、そのまま燃焼室に流れ込むと、着火性が悪く、燃焼のバラツキが大きくなり、熱効率が低下するという問題もある。   For this reason, there is a problem that the temperature of the combustion chamber is likely to rise, and it is difficult to obtain effects such as improvement in knocking performance of the internal combustion engine, fuel saving, and output improvement. In addition, since it is difficult to transfer heat to the back side of the intake valve, that is, the intake manifold side, the effect of atomizing the fuel accumulated here is poor, and if this fuel flows into the combustion chamber as it is, the ignitability is poor, There is also a problem that the variation in combustion increases and the thermal efficiency decreases.

さらに、熱伝導性を高め、燃焼室内の温度を低減するために、傘部の肉厚を薄くすれば、吸気弁自体の高温強度が低下し、傘部の変形や疲労亀裂等が生ずるという問題もある。   Furthermore, if the thickness of the umbrella portion is reduced in order to increase the thermal conductivity and reduce the temperature in the combustion chamber, the high temperature strength of the intake valve itself will decrease, causing deformation of the umbrella portion, fatigue cracks, etc. There is also.

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、吸気弁自体の傘部の肉厚を容易に最適化することができ、熱伝導率の向上と耐熱性に優れ、燃料の気化促進機能を十分発揮することができる内燃機関用吸気弁を提供することを目的とする。   The present invention has been made in order to solve the problems associated with the above-described conventional technology, and can easily optimize the thickness of the umbrella portion of the intake valve itself, and has improved thermal conductivity and excellent heat resistance. Another object of the present invention is to provide an intake valve for an internal combustion engine that can sufficiently exhibit a fuel vaporization promoting function.

請求項1に記載の発明は、傘部とバルブ軸とを備え、前記傘部が、燃焼室側表面と、外周面に形成されたバルブシート面と、当該バルブシート面から前記バルブ軸に至る円弧状の連絡面とを有する内燃機関用吸気弁であって、前記バルブ軸の中心線と前記燃焼室側表面との交点を中心とし前記連絡面に外接する外接円の最小半径rと、傘部の直径D1との比β(=r/D1)が、下記数式を満たすことを特徴とする。 The invention according to claim 1 includes an umbrella portion and a valve shaft, and the umbrella portion reaches the valve shaft from the valve seat surface, the valve seat surface formed on the outer peripheral surface, the valve seat surface. An intake valve for an internal combustion engine having an arc-shaped connecting surface, the minimum radius r of a circumscribed circle that circumscribes the connecting surface around the intersection of the center line of the valve shaft and the surface on the combustion chamber; The ratio β (= r / D1 ) to the diameter D1 of the portion satisfies the following mathematical formula.

ここに、α:傘部の材料の熱伝導率
x:吸気弁の構成材料の試験片を250℃で100時間保持した後の回転曲げ試験により測定した疲労強度
Where α: thermal conductivity of the material of the umbrella part x: fatigue strength measured by a rotary bending test after holding a test piece of the constituent material of the intake valve at 250 ° C. for 100 hours

請求項1に記載の発明によれば、内燃機関用吸気弁の傘部の肉厚を数式(1)に基づいて設定すると、熱伝導率の向上と耐熱性の面から傘部の肉厚を簡単に最適化することができる。得られた吸気弁は、高温疲労強度が高い、破壊強度特性に優れたものとなるのみでなく、燃焼室内の温度低下させ、吸気弁の背面側での燃料の気化促進機能を十分発揮することができ、内燃機関のノッキング性、省燃費及び出力が改善され、しかも弁自体の成形も容易にできる。特に、β≦α/175から吸気弁の傘部の厚さ(β)を定めると、燃料消費量の増大が防止され、燃料消費率が低下するものとなる。
請求項2に記載の発明によれば、β≦α/250から吸気弁の傘部の厚さ(β)を定めるので、得られた吸気弁は、前項の効果に加え、さらに燃料消費量の増大が防止され、燃料消費率が低下する。
請求項3、4に記載の発明によれば、吸気弁の傘部を、熱伝導率や高温疲労強度が高い材料であるアルミニウム合金あるいは急冷凝固アルミニウム合金粉末により形成したので、エンジンの熱効率や耐ノック性に優れた吸気弁となる。
According to the first aspect of the present invention, when the thickness of the umbrella portion of the intake valve for the internal combustion engine is set based on the formula (1), the thickness of the umbrella portion is increased in terms of improvement in heat conductivity and heat resistance. Ru can be optimized easily. The resulting intake valve not only has high fatigue resistance at high temperatures and excellent fracture strength characteristics, but also sufficiently reduces the temperature in the combustion chamber and fully demonstrates the fuel vaporization promotion function on the back side of the intake valve. In addition, the knocking property, fuel efficiency and output of the internal combustion engine are improved, and the valve itself can be easily molded. In particular, when the thickness (β) of the umbrella portion of the intake valve is determined from β ≦ α / 175, an increase in fuel consumption is prevented and the fuel consumption rate is reduced.
According to the second aspect of the present invention, since the thickness (β) of the umbrella portion of the intake valve is determined from β ≦ α / 250, the obtained intake valve has a fuel consumption amount in addition to the effect of the previous item. The increase is prevented and the fuel consumption rate decreases.
According to the third and fourth aspects of the invention, the umbrella portion of the intake valve is formed of aluminum alloy or rapidly solidified aluminum alloy powder, which is a material having high thermal conductivity and high temperature fatigue strength. Intake valve with excellent knocking performance.

以下、本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施形態に係る内燃機関用の吸気弁部分を示す断面図、図2は同吸気弁の説明図、図3は吸気弁の燃料の気化機能を段階的に示す概略断面図で、(A)は燃料の貯溜状態、(B)は燃焼室に燃焼を供給した状態、(C)は燃焼室での燃焼状態をそれぞれ示し、図4(A)(B)(C)は、従来の吸気弁の同様の各状態の対応図である。   1 is a cross-sectional view showing an intake valve portion for an internal combustion engine according to an embodiment of the present invention, FIG. 2 is an explanatory view of the intake valve, and FIG. 3 is a schematic cross-sectional view showing stepwise the fuel vaporization function of the intake valve. 4A shows the fuel storage state, FIG. 4B shows the state in which combustion is supplied to the combustion chamber, FIG. 4C shows the combustion state in the combustion chamber, and FIGS. FIG. 6 is a correspondence diagram of similar states of a conventional intake valve.

図1に示すように、本実施形態の内燃機関用の吸気弁1は、傘部2と、傘部2の裏面側に設けられたバルブ軸3とを有する平頭形の弁である。図中、「4」はスパークプラグ、「5」はシリンダ、「6」はシリンダヘッド、「7」はばね、「8」はバルブコッタである。   As shown in FIG. 1, the intake valve 1 for an internal combustion engine of the present embodiment is a flat head type valve having an umbrella part 2 and a valve shaft 3 provided on the back side of the umbrella part 2. In the figure, “4” is a spark plug, “5” is a cylinder, “6” is a cylinder head, “7” is a spring, and “8” is a valve cotter.

傘部2は、内燃機関の吸気通路9と燃焼室10との間の連通と遮断を行なうが、図2に示すように、燃焼室10に面する平坦な燃焼室側表面2aと、吸気通路9の先端開口部である弁座部分に密に接するように成形されたバルブシート面2bと、バルブシート面2bからバルブ軸3に至る円弧状の連絡面2cとを有している。   The umbrella portion 2 communicates and shuts off the intake passage 9 and the combustion chamber 10 of the internal combustion engine. As shown in FIG. 2, the umbrella portion 2 has a flat combustion chamber side surface 2a facing the combustion chamber 10 and an intake passage. 9 has a valve seat surface 2b formed so as to be in close contact with the valve seat portion, which is the tip opening portion, and an arc-shaped connecting surface 2c extending from the valve seat surface 2b to the valve shaft 3.

吸気弁1は、ロッカーアームの一端をプッシュロッド(いずれも不図示)の突き上げ力により押し上げ、他端に当接されたバルブ軸3をばね7の弾発力に抗して押し下げて吸気通路9と燃焼室10とを連通し、前記突き上げ力の解除によりばね7の弾発力で戻し、連通を遮断する。したがって、吸気弁1は、燃料が燃焼する燃焼室10に面し、高熱条件下で往復直線的に高速運動するので、全体的に軽量で、確実なシール性と円滑な往復動が可能となるように精度よく仕上げられている。   The intake valve 1 pushes up one end of a rocker arm by a push-up force of a push rod (both not shown), and pushes down a valve shaft 3 abutted against the other end against the elastic force of a spring 7 to suck an intake passage 9. And the combustion chamber 10 are communicated, and the elastic force of the spring 7 is returned by releasing the push-up force, thereby interrupting the communication. Therefore, the intake valve 1 faces the combustion chamber 10 where the fuel burns and reciprocates linearly at a high speed under high heat conditions. Therefore, the intake valve 1 is light in weight and can reliably seal and smoothly reciprocate. It is finished with high accuracy.

また、吸気弁1は、前述した燃焼室10の開閉機能のみでなく、遮断時には、燃料の気化促進機能という副次的機能も有している。燃料の気化促進機能は、吸気弁1による吸気通路9の遮断により給送される燃料Fが吸気弁1の背面側に溜まったとき、この溜まった燃料Fを吸気弁1自体が保有する熱により気化乃至霧化する機能であるが、吸気弁1の気化潜熱の増大により燃焼室10の低温化にも寄与する。   In addition, the intake valve 1 has not only the opening / closing function of the combustion chamber 10 described above, but also a secondary function of fuel vaporization promoting function when shut off. The fuel vaporization promoting function is based on the heat stored in the intake valve 1 itself when the fuel F fed by the intake valve 9 being blocked by the intake valve 1 is accumulated on the back side of the intake valve 1. The function of vaporization or atomization contributes to lowering the temperature of the combustion chamber 10 by increasing the latent heat of vaporization of the intake valve 1.

このような機能のメカニズムについて詳述する。図3は本発明のような熱伝導性のよい吸気弁の場合を示し、図4は熱伝導性の悪い吸気弁の場合を示す。例えば、熱伝導性の悪い吸気弁の場合、図4(A)に示すように、吸気弁1の背面側には、燃料Fが溜まるが、この吸気弁1では吸気弁自体に燃焼室10での燃焼による熱が十分伝達されないので、燃料Fにも熱伝達されず、図4(B)に示すように、多くの燃料Fが、そのまま液状態で燃焼室10に流れ込んだり、気化しても気化燃料の分布に偏りを生じ、着火しても図4(C)に示すように、混合気分布のバラツキにより燃焼期間のバラツキが大きくなる。この結果、着火性が悪く、燃焼のバラツキが大きくなり、ノッキングを起こしたり、出力の低下を生じ、燃料消費量も増大することになる。   The mechanism of such a function will be described in detail. FIG. 3 shows the case of an intake valve with good thermal conductivity as in the present invention, and FIG. 4 shows the case of an intake valve with poor thermal conductivity. For example, in the case of an intake valve with poor thermal conductivity, as shown in FIG. 4A, fuel F accumulates on the back side of the intake valve 1, but in the intake valve 1, the intake valve itself is connected to the combustion chamber 10. The heat generated by the combustion of the fuel is not sufficiently transferred to the fuel F, and as shown in FIG. 4 (B), even if a large amount of the fuel F flows into the combustion chamber 10 in a liquid state or vaporizes as it is. Even if the vaporized fuel distribution is biased and ignited, as shown in FIG. 4C, the variation in the combustion period increases due to the variation in the air-fuel mixture distribution. As a result, the ignitability is poor, the variation in combustion increases, knocking occurs, the output decreases, and the fuel consumption also increases.

しかし、熱伝導性のよい吸気弁の場合、図3(A)に示すように、吸気弁1が閉鎖時に吸気弁1の背面側に燃料Fが溜まっている場合、吸気弁1の傘部2の背面側の温度が上昇し易く、その熱により燃料の気化が促進され、吸気通路9において気化燃料が拡散し均質な混合気が生成される。一方、この吸気弁1では、燃料の気化に伴って気化潜熱が増大し、これにより燃焼室10内の温度も低下することになる。そして、吸気弁1が開放されると、図3(B)に示すように、混合気状態の燃料Fが燃焼室10に流れ込み、燃焼室10内全体に均質な混合気が行き渡り、液状態の燃料が燃焼室10の内面に付着する量が低減する。この燃料に着火すると、図3(C)に示すように、混合気のため着火性は向上することになり、しかも、燃焼室10内の温度が低下しているので、正常な火炎の伝播が終了するまで、未燃焼混合気(エンドガス)の予燃焼反応が抑制され、燃焼期間のバラツキも少なく、火炎伝播の前方のエンドガスが急激に燃焼することにより発生するノッキングが防止される。また、燃焼室10内の温度が低下すれば、燃料の充填効率も高まり、出力の低下や燃料消費量の増大が防止され、燃焼の早期化により熱効率も向上する。   However, in the case of an intake valve having good thermal conductivity, as shown in FIG. 3A, when fuel F is accumulated on the back side of the intake valve 1 when the intake valve 1 is closed, the umbrella portion 2 of the intake valve 1 is used. The temperature of the rear side of the fuel is likely to rise, and the heat promotes the vaporization of the fuel, and the vaporized fuel diffuses in the intake passage 9 to generate a homogeneous air-fuel mixture. On the other hand, in the intake valve 1, the latent heat of vaporization increases as the fuel vaporizes, and the temperature in the combustion chamber 10 also decreases. When the intake valve 1 is opened, as shown in FIG. 3 (B), the fuel F in the air-fuel mixture flows into the combustion chamber 10, and the homogeneous air-fuel mixture spreads throughout the combustion chamber 10 and is in the liquid state. The amount of fuel adhering to the inner surface of the combustion chamber 10 is reduced. When this fuel is ignited, as shown in FIG. 3C, the ignitability is improved due to the air-fuel mixture, and the temperature in the combustion chamber 10 is lowered, so that normal flame propagation is prevented. Until completion, the pre-combustion reaction of the unburned mixture (end gas) is suppressed, there is little variation in the combustion period, and knocking that occurs due to abrupt combustion of the end gas in front of the flame propagation is prevented. Further, if the temperature in the combustion chamber 10 is lowered, the fuel charging efficiency is also increased, the reduction in output and the increase in fuel consumption are prevented, and the thermal efficiency is improved by the early combustion.

このように吸気弁1は、燃料の気化促進機能を十分発揮するように、熱伝導率が大きいことが好ましいことから、本発明者らは、鋭意研究した結果、吸気弁1の構成材料の熱伝導率と疲労強度に着目して、吸気弁1(傘部)の厚さに関し所定の関係式を導き出すことに成功したのである。   Thus, since it is preferable that the intake valve 1 has a high thermal conductivity so that the fuel vaporization promoting function can be sufficiently exerted, the present inventors have intensively studied, and as a result, have conducted heat of the constituent material of the intake valve 1. Focusing on the conductivity and fatigue strength, the inventors succeeded in deriving a predetermined relational expression regarding the thickness of the intake valve 1 (umbrella).

この関係式に基づいて傘部の厚みを決定すれば、傘部を容易に最適化でき、吸気弁1の本来的機能である高温の燃焼室10を円滑に開閉する機能と燃料気化促進機能とを発揮する吸気弁1を簡単に作成することができる。   If the thickness of the umbrella part is determined based on this relational expression, the umbrella part can be easily optimized, the function of smoothly opening and closing the high-temperature combustion chamber 10 which is the original function of the intake valve 1, and the function of promoting fuel vaporization The intake valve 1 that exhibits the above can be easily created.

傘部の厚みの最適化する関係式は、各種吸気弁を内燃機関に取り付けて運転した時の、傘部の破損状態、燃料消費量、シリンダヘッドの内表面温度など測定対象の結果から決定したものであるので、以下、これら個々の測定対象との関係について説明する。   The relational expression for optimizing the thickness of the umbrella part was determined from the measurement results such as the damage state of the umbrella part, the fuel consumption, the inner surface temperature of the cylinder head when operating with various intake valves attached to the internal combustion engine. Therefore, the relationship between these individual measurement objects will be described below.

<各種吸気弁>
吸気弁1の材料として5種類の材料を用いた。各材料の熱伝導率および高温強度の特性は、下記の表1に示す通りである。ここにおいて、高温強度は、250℃という高温での疲労強度であるため、以下、高温疲労強度と称すが、この高温疲労強度は、各材料から作製した試験片を250℃に100時間保持した後、小野式回転曲げ試験を用いて測定した値である。
<Various intake valves>
Five types of materials were used as materials for the intake valve 1. The characteristics of thermal conductivity and high temperature strength of each material are as shown in Table 1 below. Here, since the high temperature strength is fatigue strength at a high temperature of 250 ° C., it is hereinafter referred to as high temperature fatigue strength. This high temperature fatigue strength is obtained after holding a test piece made from each material at 250 ° C. for 100 hours. It is the value measured using the Ono type rotary bending test.

各材料を用いて吸気弁1を製造するに当たり、図2に示すように、バルブ軸3の中心線と傘部2の燃焼室側表面2aとの交点Oを中心とし、連絡面2cに外接する外接円の最小半径rを変化させて傘部2の厚さが異なる複数種類の吸気弁1を作成した。なお、傘部2の直径D1やバルブ軸3の直径dなど他の条件は、同じとした。   In manufacturing the intake valve 1 using each material, as shown in FIG. 2, the contact surface 2c is circumscribed around the intersection O between the center line of the valve shaft 3 and the combustion chamber side surface 2a of the umbrella portion 2. A plurality of types of intake valves 1 having different thicknesses of the umbrella portions 2 were produced by changing the minimum radius r of the circumscribed circle. The other conditions such as the diameter D1 of the umbrella part 2 and the diameter d of the valve shaft 3 were the same.

具体的には、傘部2の直径D1は31.7mm、連絡面2cの最外周直径D2は28.8mm、バルブ軸3の直径dは5.3mmである。   Specifically, the diameter D1 of the umbrella part 2 is 31.7 mm, the outermost peripheral diameter D2 of the connecting surface 2c is 28.8 mm, and the diameter d of the valve shaft 3 is 5.3 mm.

各吸気弁を実際のエンジンに組み込み、傘部2の破損状態、燃料消費量、シリンダヘッドの内表面温度を測定するに当たり、エンジンの作動時間は、4時間とし、全期間にわたりアクセル全開(WOT、Wide Open Throttle)にし、エンジンの回転数は、試験開始から1時間経過するごとに、1200rpm、2000rpm、4000rpm、6400rpmと変化させ、各区間時間での回転数は一定とした。   Incorporating each intake valve into an actual engine and measuring the damage state of the umbrella 2, the fuel consumption, and the inner surface temperature of the cylinder head, the engine operation time is 4 hours, and the accelerator is fully open (WOT, The engine rotation speed was changed to 1200 rpm, 2000 rpm, 4000 rpm, and 6400 rpm every time 1 hour from the start of the test, and the rotation speed in each section time was constant.

<傘部の破損状態>
傘部2の破損状態は、目視観察により行った。結果は、表2および図5に示す。
<Umbrella damage>
The umbrella part 2 was damaged by visual observation. The results are shown in Table 2 and FIG.

ここにおいて、傘部2の厚さに関し、傘部2の直径D1に対する最小半径rの割合β(=r/D1)を用いて表す。 Here, the thickness of the umbrella part 2 is expressed using a ratio β (= r / D1 ) of the minimum radius r to the diameter D1 of the umbrella part 2.

表2より明らかなように、資料5である高温疲労強度が比較的低い急冷凝固アルミニウム合金では、β≧0.2では傘部2に破損は認められなかったが、β≦0.15で破損が認められた。急冷凝固アルミニウム合金よりも高温疲労強度が高い資料3のS45Cでは、β≧0.15では傘部2に破損は認められなかったが、β≦0.13で破損が認められた。S45Cよりも高温疲労強度が高い資料1のチタン合金では、β≧0.13では傘部2に破損は認められなかったが、β≦0.12で破損が認められた。   As can be seen from Table 2, in the rapidly solidified aluminum alloy with comparatively low high-temperature fatigue strength as document 5, no damage was observed in the umbrella part 2 when β ≧ 0.2, but failure occurred when β ≦ 0.15. Was recognized. In S45C of Document 3, which has higher high-temperature fatigue strength than the rapidly solidified aluminum alloy, no damage was observed in the umbrella part 2 when β ≧ 0.15, but damage was observed when β ≦ 0.13. In the titanium alloy of Document 1 having a higher high-temperature fatigue strength than S45C, no damage was observed in the umbrella part 2 when β ≧ 0.13, but damage was observed when β ≦ 0.12.

つまり、傘部2が厚い(βの値が大きい)ほど、破損し難く、傘部2の厚さが同じ場合は、高温疲労強度が高いほど破損し難いことが判明した。   That is, it was found that the thicker the umbrella part 2 (the larger the value of β), the more difficult it is to break, and when the umbrella part 2 has the same thickness, the higher the high-temperature fatigue strength, the harder it is to break.

これを図5に示すように、横軸に高温疲労強度(x)、縦軸に傘部2の厚さ(β)をとり、破損が無い場合(OKゾーン)と破損が生じた場合(NGゾーン)との境界線をグラフで示すと、曲線Aが得られる。この曲線Aから高温疲労強度(x)と傘部の厚さ(β)との関係を求めれば、下記の数式2が得られる。 As shown in FIG. 5, the horizontal axis represents the high temperature fatigue strength (x) and the vertical axis represents the thickness (β) of the umbrella part 2, when there is no damage (OK zone) and when the damage occurs (NG When the boundary line with the zone) is shown in a graph, a curve A is obtained. If the relationship between the high temperature fatigue strength (x) and the thickness (β) of the umbrella portion is obtained from this curve A, the following formula 2 is obtained.

したがって、数式2を満足するように、高温疲労強度(x)と傘部の厚さ(β)を定めると、傘部2は、破損のない、破壊強度特性に優れたものにすることができることになる。 Therefore, when the high temperature fatigue strength (x) and the thickness of the umbrella part (β) are determined so as to satisfy the mathematical formula 2 , the umbrella part 2 can be made to be excellent in fracture strength characteristics without damage. become.

<燃料消費量>
図6は各資料の燃料消費量を示すグラフである。次に、各資料につき燃料消費量を試験した結果、図6に示す結果が得られた。図6において、縦軸は燃料消費率(%)、横軸はα/βの比である。αは熱伝達率(W/m・K)であり、α/βは傘部2の厚さに対応する熱伝達状態、つまり、燃焼室10内の温度低減能力に相当するものである。
<Fuel consumption>
FIG. 6 is a graph showing the fuel consumption of each material. Next, as a result of testing the fuel consumption for each material, the results shown in FIG. 6 were obtained. In FIG. 6, the vertical axis represents the fuel consumption rate (%), and the horizontal axis represents the ratio of α / β. α is a heat transfer coefficient (W / m · K), and α / β corresponds to a heat transfer state corresponding to the thickness of the umbrella 2, that is, a temperature reduction capability in the combustion chamber 10.

図6から明らかなように、α/βが大きいほど燃料消費率が低く、α/βが250以上になると、燃料消費の低下率が2%以上になり、顕著な燃料消費率の低下が見られることが判明した。この結果、α/βが大きいほど燃焼室内の温度低減効果が高く、燃料消費量が低減されることから、次の数式3を満足するように熱伝導率αおよび傘部の厚さ(β)を定めると、熱伝導性により優れ、2%以上という大幅な省燃料効果が得られる吸気弁にすることができることになる。 As is clear from FIG. 6, the fuel consumption rate is lower as α / β is larger. When α / β is 250 or more, the fuel consumption reduction rate is 2% or more, and the fuel consumption rate is significantly reduced. Turned out to be. As a result, the larger α / β is, the higher the temperature reduction effect in the combustion chamber is, and the fuel consumption is reduced. Therefore, the thermal conductivity α and the thickness of the umbrella portion (β) are satisfied so as to satisfy the following Equation 3. If it is determined, it is possible to obtain an intake valve that is excellent in thermal conductivity and can obtain a significant fuel saving effect of 2% or more.

この数式3数式2と組み合わせると、次の数式4の関係が成立する。 When this Equation 3 is combined with Equation 2 , the relationship of the following Equation 4 is established.

この数式4を用いて、傘部2の厚さ(β)を定めると、高温疲労強度に優れ、熱伝導性が向上し、燃焼室の内温度を低下させ、燃料消費率を低くでき、エンジンの熱効率や耐ノッキング性が向上した吸気弁を得ることができる。   When the thickness (β) of the umbrella part 2 is determined by using Equation 4, the high temperature fatigue strength is excellent, the thermal conductivity is improved, the internal temperature of the combustion chamber is lowered, the fuel consumption rate can be reduced, and the engine It is possible to obtain an intake valve with improved thermal efficiency and knocking resistance.

<シリンダヘッドの内表面温度>
また、各資料につき、シリンダヘッドの内表面温度を測定した。シリンダヘッド6の内表面温度として、排気弁が設けられる排気穴とスパークプラグ4の間の中間位置のシリンダヘッド内表面温度を測定した。この結果、表3および図7が得られた。
<Inner surface temperature of cylinder head>
Moreover, the internal surface temperature of the cylinder head was measured for each material. As the inner surface temperature of the cylinder head 6, the inner surface temperature of the cylinder head at an intermediate position between the exhaust hole provided with the exhaust valve and the spark plug 4 was measured. As a result, Table 3 and FIG. 7 were obtained.

表3は、測定したシリンダヘッドの内表面温度を、資料の熱伝導率(α)と傘部2の厚さ(β)で示している。表3に示すように、傘部2の厚さ(β)が同じ場合であれば、熱伝導率αが高いほどシリンダヘッドの内表面温度が低く、傘部2の厚さが薄い(βが小さい)ほどシリンダヘッドの内表面温度が低くなる。   Table 3 shows the measured inner surface temperature of the cylinder head in terms of the thermal conductivity (α) of the material and the thickness (β) of the umbrella 2. As shown in Table 3, if the thickness (β) of the umbrella part 2 is the same, the higher the thermal conductivity α, the lower the inner surface temperature of the cylinder head and the thinner the umbrella part 2 (β is The smaller the temperature, the lower the inner surface temperature of the cylinder head.

図7は、傘部の厚さ(β)に対する熱伝導率(α)の比の値(α/β)と、シリンダヘッドの内表面温度との関係を示すもので、α/βが大きくなるほど内表面温度が低下している。したがって、傘部2の厚さが薄く(βが小さい)、熱伝導率が高いほど(αが大きい)、シリンダヘッドの内表面温度が低下することが分る。   FIG. 7 shows the relationship between the value (α / β) of the ratio of the thermal conductivity (α) to the thickness (β) of the umbrella part and the inner surface temperature of the cylinder head, and as α / β increases. The inner surface temperature has decreased. Therefore, it can be seen that the inner surface temperature of the cylinder head decreases as the thickness of the umbrella portion 2 decreases (β decreases) and the thermal conductivity increases (α increases).

つまり、図3(A)に示すように、吸気弁1が閉鎖時に背面側に溜まった燃料Fは、吸気弁1の傘部2の温度が上がると、吸気通路9で混合気になり、燃料の気化促進機能が向上する。一方、燃料の気化に伴って吸気弁1の気化潜熱が増大し、これにより燃焼室10内の温度が低下する。   That is, as shown in FIG. 3A, the fuel F accumulated on the back side when the intake valve 1 is closed becomes an air-fuel mixture in the intake passage 9 when the temperature of the umbrella portion 2 of the intake valve 1 rises. Vaporization promoting function is improved. On the other hand, with the vaporization of the fuel, the latent heat of vaporization of the intake valve 1 increases, thereby lowering the temperature in the combustion chamber 10.

そして、図3(B)に示すように、吸気弁1が開放され、混合気が燃焼室10に流れ込むと、燃焼室10内全体に均質な混合気が行き渡る。この燃料に着火すると、図3(C)に示すように、燃焼室10内の温度が低下しているので、正常な火炎の伝播が終了するまで、未燃焼混合気(エンドガス)の予燃焼反応が抑制され、燃焼期間のバラツキも少なく、火炎伝播の前方のエンドガスが急激に燃焼することにより発生するノッキングが防止され、また、燃焼室10内の温度が低下すれば、燃料の充填効率も高まり、出力の低下や燃料消費量の増大が防止され、燃焼の早期化により熱効率も向上する。しかも、傘部の厚さ(β)が薄くなると体積効率も向上することになるので、燃料の充填効率がさらに向上することにもなる。   As shown in FIG. 3B, when the intake valve 1 is opened and the air-fuel mixture flows into the combustion chamber 10, a homogeneous air-fuel mixture spreads throughout the combustion chamber 10. When this fuel is ignited, as shown in FIG. 3C, the temperature in the combustion chamber 10 is lowered, and therefore, the pre-combustion reaction of the unburned mixture (end gas) until normal flame propagation ends. Is suppressed, there is little variation in the combustion period, knocking caused by abrupt combustion of the end gas in front of the flame propagation is prevented, and if the temperature in the combustion chamber 10 decreases, the fuel charging efficiency increases. As a result, a decrease in output and an increase in fuel consumption are prevented, and the thermal efficiency is improved by accelerating combustion. In addition, since the volumetric efficiency is improved when the thickness (β) of the umbrella portion is reduced, the fuel charging efficiency is further improved.

<燃料気化率>
図8は、燃料気化率とα/βとの関係を示すグラフである。前述のように、α/βが大きくなると、燃焼室10の内表面温度が低下し、燃料の充填効率も高まり、出力の低下や燃料消費量の増大が防止される点に関し、α/βと燃料気化率との関係についても検証した。その結果、図8に示すように、α/βが大きくなるほど燃料気化率も向上することが実証された。
<Fuel vaporization rate>
FIG. 8 is a graph showing the relationship between the fuel vaporization rate and α / β. As described above, when α / β increases, the inner surface temperature of the combustion chamber 10 decreases, the fuel charging efficiency increases, and the reduction in output and increase in fuel consumption are prevented. The relationship with the fuel vaporization rate was also verified. As a result, as shown in FIG. 8, it was proved that the fuel vaporization rate was improved as α / β increased.

図9は、燃料消費率と燃料気化率の関係を示すグラフである。傘部2の背面側に溜まった燃料Fの気化、燃料消費に大きく影響する点に関し、燃料気化率と燃料消費率との関係についても検証した。図9に示すように、燃料気化率が約38%以上になると、燃料消費の低下率が0.5%以上になり、燃料消費率の低下が顕著であることが実証された。 FIG. 9 is a graph showing the relationship between the fuel consumption rate and the fuel vaporization rate. Vaporization of the fuel F accumulated on the back side of the umbrella portion 2 is directed to the point that greatly affects the fuel consumption was also verified the relationship between the fuel evaporation rate and fuel consumption rate. As shown in FIG. 9, when the fuel vaporization rate is about 38% or more, the reduction rate of the fuel consumption is 0.5% or more, and it has been demonstrated that the reduction of the fuel consumption rate is remarkable.

図10は、燃料消費率とα/βとの関係を示すグラフである。図8では、α/βが大きくなるほど燃料気化率も向上することが実証されたが、燃料消費率とα/βとの関係についても検証した。その結果、図10に示すように、α/βが175以上になると、燃料消費の低下率が0.5%以上になり、燃料消費率が低下する割合が大きいことが実証された。   FIG. 10 is a graph showing the relationship between the fuel consumption rate and α / β. FIG. 8 demonstrates that the fuel vaporization rate increases as α / β increases, but the relationship between the fuel consumption rate and α / β was also verified. As a result, as shown in FIG. 10, when α / β is 175 or more, the fuel consumption reduction rate is 0.5% or more, and it is proved that the rate of reduction of the fuel consumption rate is large.

この結果から、次の数式5を満足するように、熱伝導率(α)および傘部の厚さ(β)を定めると、燃料消費率低下させることができることになる。 From the results, so as to satisfy the following formula 5, when the determined thermal conductivity (alpha) and the thickness of the umbrella portion (beta), will be able to reduce the fuel consumption rate.

したがって、数式2と数式5とを組み合わせて得られる数式を満足するように、熱伝導率(α)および吸気弁の傘部の厚さ(β)を定めると、燃料消費率がより確実に低くなる。 Therefore, if the thermal conductivity (α) and the thickness of the umbrella portion (β) of the intake valve are determined so as to satisfy Formula 1 obtained by combining Formula 2 and Formula 5, the fuel consumption rate is more reliably ensured. Lower.

したがって、吸気弁の傘部の厚さ(β)を定めるに当たり、燃料消費率の低下を目的とする場合には、数式を使用し、高温疲労強度に優れ、熱伝導性の高い、エンジンの熱効率や耐ノック性が優れたものにするには数式4を使用すればよい。 Therefore, in determining the thickness (β) of the umbrella portion of the intake valve, when the purpose is to reduce the fuel consumption rate, Formula 1 is used, and the high temperature fatigue strength and the high thermal conductivity of the engine are used. Formula 4 may be used to achieve excellent thermal efficiency and knock resistance.

特に、エンジンの熱効率や耐ノック性に優れる吸気弁を得るには、熱伝導率(α)が高い材料を用いるほど、そして高温疲労強度(x)が高い材料を用いるほどよいので、吸気弁1の材料としては、表3から明らかなように、たとえば、アルミニウム合金(資料4)や急冷凝固アルミニウム合金粉末(資料5)が好ましいことになる。   In particular, in order to obtain an intake valve excellent in engine thermal efficiency and knock resistance, it is better to use a material having a higher thermal conductivity (α) and a material having a higher high temperature fatigue strength (x). As apparent from Table 3, for example, an aluminum alloy (Document 4) or a rapidly solidified aluminum alloy powder (Document 5) is preferable.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、上述した実施形態では、吸気弁1は、平頭弁であるが、必ずしもこれのみに限定されるものではなく、茸形、チューリップ形など種々の形態の吸気弁であってもよい。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the above-described embodiment, the intake valve 1 is a flat head valve, but is not necessarily limited thereto, and may be various types of intake valves such as a bowl shape and a tulip shape.

本発明の実施形態に係る内燃機関用の吸気弁部分を示す断面図である。It is sectional drawing which shows the intake valve part for internal combustion engines which concerns on embodiment of this invention. 同吸気弁の説明図である。It is explanatory drawing of the same intake valve. 吸気弁の燃料の気化機能を段階的に示す概略断面図で、(A)は燃料の貯溜状態、(B)は燃焼室に燃焼を供給した状態、(C)は燃焼室での燃焼状態をそれぞれ示す。FIG. 4 is a schematic cross-sectional view showing the fuel vaporization function of the intake valve in stages, where (A) is a fuel storage state, (B) is a state in which combustion is supplied to the combustion chamber, and (C) is a combustion state in the combustion chamber. Each is shown. 従来の吸気弁の燃料の気化機能を段階的に示す概略断面図で、(A)は燃料の貯溜状態、(B)は燃焼室に燃焼を供給した状態、(C)は燃焼室での燃焼状態をそれぞれ示す。It is a schematic sectional view showing the fuel vaporization function of a conventional intake valve step by step, (A) is a fuel storage state, (B) is a state in which combustion is supplied to the combustion chamber, (C) is a combustion in the combustion chamber Each state is shown. 傘部の破損状態の測定結果を示すグラフである。It is a graph which shows the measurement result of the damage state of an umbrella part. 各資料の燃料消費量を示すグラフである。It is a graph which shows the fuel consumption of each data. シリンダヘッド内表面温度の測定結果を示すグラフである。It is a graph which shows the measurement result of the cylinder head inner surface temperature. 燃料気化率とα/βとの関係を示すグラフである。It is a graph which shows the relationship between a fuel vaporization rate and (alpha) / (beta). 燃料気化率と燃料消費率との関係を示すグラフである。It is a graph which shows the relationship between a fuel vaporization rate and a fuel consumption rate. 燃料消費率とα/βとの関係を示すグラフである。It is a graph which shows the relationship between a fuel consumption rate and (alpha) / (beta).

符号の説明Explanation of symbols

1…内燃機関用の吸気弁、
2…傘部、
2a…傘部の燃焼室側表面、
2b…傘部のバルブシート面、
2c…連絡面、
3…バルブ軸、
D…傘部直径、
r…傘部の中心点から連絡面までの外接円の最小半径、
x…傘部の材料の250℃での疲労強度、
α…傘部の材料の熱伝導率、
β…最小半径rの傘部直径Dに対する割合(=r/D)。
1 ... intake valve for internal combustion engine,
2 ... Umbrella,
2a ... Combustion chamber side surface of umbrella part,
2b ... The valve seat surface of the umbrella part,
2c: Contact surface,
3 ... Valve shaft,
D ... Umbrella diameter,
r: Minimum radius of the circumscribed circle from the center of the umbrella to the contact surface,
x: Fatigue strength of the material of the umbrella at 250 ° C,
α… The thermal conductivity of the umbrella material,
β: Ratio of the minimum radius r to the umbrella diameter D (= r / D).

Claims (4)

傘部とバルブ軸とを備え、前記傘部が、燃焼室側表面と、外周面に形成されたバルブシート面と、当該バルブシート面から前記バルブ軸に至る円弧状の連絡面とを有する内燃機関用吸気弁であって、
前記バルブ軸の中心線と前記燃焼室側表面との交点を中心とし前記連絡面に外接する外接円の最小半径rと傘部の直径Dとの比β(=r/D)が、下記数式を満たすことを特徴とする内燃機関用吸気弁。
ここに、α:傘部の材料の熱伝導率
x:吸気弁の構成材料の試験片を250℃で100時間保持
した後の回転曲げ試験により測定した疲労強度
An internal combustion engine comprising an umbrella part and a valve shaft, the umbrella part having a combustion chamber side surface, a valve seat surface formed on an outer peripheral surface, and an arc-shaped connecting surface extending from the valve seat surface to the valve shaft An intake valve for an engine,
A ratio β (= r / D 1 ) between a minimum radius r of a circumscribed circle that circumscribes the connecting surface centering on an intersection of the valve shaft center line and the combustion chamber side surface, and a diameter D 1 of the umbrella portion, An intake valve for an internal combustion engine characterized by satisfying the following mathematical formula 1 .
Where α is the thermal conductivity of the umbrella material
x: Holding the test piece of the constituent material of the intake valve at 250 ° C. for 100 hours
Fatigue strength measured by rotating bending test after
前記βが、下記数式2を満たすことを特徴とする請求項1に記載の内燃機関用吸気弁。
2. The intake valve for an internal combustion engine according to claim 1, wherein the β satisfies the following formula 2 .
前記傘部は、アルミニウム合金により形成したことを特徴とする請求項1に記載の内燃機関用吸気弁。   The intake valve for an internal combustion engine according to claim 1, wherein the umbrella portion is formed of an aluminum alloy. 前記傘部は、急冷凝固アルミニウム合金粉末により形成したことを特徴とする請求項2又は3に記載の内燃機関用吸気弁。   The intake valve for an internal combustion engine according to claim 2 or 3, wherein the umbrella portion is formed of rapidly solidified aluminum alloy powder.
JP2005291777A 2005-10-04 2005-10-04 Intake valve for internal combustion engine Expired - Fee Related JP4674519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291777A JP4674519B2 (en) 2005-10-04 2005-10-04 Intake valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291777A JP4674519B2 (en) 2005-10-04 2005-10-04 Intake valve for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007100596A JP2007100596A (en) 2007-04-19
JP4674519B2 true JP4674519B2 (en) 2011-04-20

Family

ID=38027786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291777A Expired - Fee Related JP4674519B2 (en) 2005-10-04 2005-10-04 Intake valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4674519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397253A (en) * 2017-02-08 2018-08-14 丰田自动车株式会社 Engine valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147803U (en) * 1989-05-19 1990-12-14
JPH02305935A (en) * 1989-05-19 1990-12-19 Honda Motor Co Ltd Intake valve made of aluminum for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147803U (en) * 1989-05-19 1990-12-14
JPH02305935A (en) * 1989-05-19 1990-12-19 Honda Motor Co Ltd Intake valve made of aluminum for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397253A (en) * 2017-02-08 2018-08-14 丰田自动车株式会社 Engine valve
CN108397253B (en) * 2017-02-08 2021-04-23 丰田自动车株式会社 Engine valve

Also Published As

Publication number Publication date
JP2007100596A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
WO2011080917A1 (en) Auxiliary chamber-type gas engine
JP5357926B2 (en) Sub-chamber gas engine
US11005236B2 (en) Spark plug
JP2011518980A (en) Combustion engine subchamber unit
KR102669760B1 (en) Absence of heat shield
WO2018087418A1 (en) Prechamber component and method of manufacturing same
JP4674519B2 (en) Intake valve for internal combustion engine
JPH03115722A (en) Auxiliary chamber type alcohol engine
JP2010084693A (en) Engine valve
JPH11193721A (en) Direct injection type spark-ignition engine
WO2007080746A1 (en) Premixing compression self-ignition combustion engine
JP4438726B2 (en) Combustion chamber structure of spark ignition engine
JP2019120185A (en) Structure of cylinder peripheral wall surface
JP5978678B2 (en) Compression self-ignition engine
JP2008075497A (en) Spark ignition engine
JP2022177464A (en) Spark plug for internal combustion engine
JP2017040216A (en) Engine combustion chamber structure
EP4368821A1 (en) Hydrogen engine
JPS6123642Y2 (en)
JP4848474B1 (en) Spark ignition type 4-cycle engine
JP2006283707A (en) Internal combustion engine
US20150075476A1 (en) Four-cycle engine and engine generator
JP4207812B2 (en) cylinder head
JP6048179B2 (en) Piston and internal combustion engine
FR3034137A1 (en) INTERNAL COMBUSTION ENGINE WITH DIRECT FUEL INJECTION OF LOW THERMAL TRANSFER, IN PARTICULAR FOR MOTOR VEHICLE.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees