JP2010084217A - Bearing member for internal combustion engine - Google Patents

Bearing member for internal combustion engine Download PDF

Info

Publication number
JP2010084217A
JP2010084217A JP2008257324A JP2008257324A JP2010084217A JP 2010084217 A JP2010084217 A JP 2010084217A JP 2008257324 A JP2008257324 A JP 2008257324A JP 2008257324 A JP2008257324 A JP 2008257324A JP 2010084217 A JP2010084217 A JP 2010084217A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
internal combustion
combustion engine
bearing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008257324A
Other languages
Japanese (ja)
Inventor
Yuji Soda
裕司 惣田
Koichi Akiyama
耕一 秋山
Yoshio Okada
義夫 岡田
Masahiko Shioda
正彦 塩田
Kazuhiro Oda
和宏 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008257324A priority Critical patent/JP2010084217A/en
Publication of JP2010084217A publication Critical patent/JP2010084217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing member for an internal combustion engine composed of an aluminum alloy having high rigidity, a low thermal expansion coefficient and satisfactory castability. <P>SOLUTION: The bearing material for an internal combustion engine is composed of an aluminum alloy having a composition comprising 15 to 18% Si, 4 to 6% Cu, 1.0 to 3% Fe, 0.5 to 2% Mn, 1.0 to 6% Ni and 0.001 to 0.02% P, and in which the total content of Fe, Mn and Ni is 3.0 to 11 mass%, and the balance Al with inevitable impurities, and in which Si and intermetallic compounds are crystallized out by ≥30 vol.%. The aluminum alloy, if required, includes either or both of 0.1 to 1.0% Cr and 0.01 to 1.0% Ti, and, if required, includes at least one selected from the group consisting of 0.0001 to 1.0% B, 0.1 to 1.0% V, 0.1 to 1.0% Zr, and 0.01 to 1.0% Mo as well. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用エンジンなどの内燃機関に用いられるラダーフレームやベアリングキャップ等の軸受部材に係り、更に詳細には、特に高剛性、低線膨張係数、良好な鋳造性を有するアルミニウム合金製の内燃機関用軸受部材に関する。   The present invention relates to a bearing member such as a ladder frame or a bearing cap used in an internal combustion engine such as an automobile engine. More specifically, the present invention is made of an aluminum alloy having particularly high rigidity, a low linear expansion coefficient, and good castability. The present invention relates to a bearing member for an internal combustion engine.

従来、自動車用エンジン等の内燃機関のクランクシャフト軸受などには鋳鉄が使用されていたが、軽量化の要請に伴いアルミ材などが使用されつつある。しかし、クランクシャフト軸受のように重荷重を受ける部品では、高い剛性が必要であり、またエンジン稼動時の温度上昇におけるクランクシャフトとのクリアランスの拡大を防止するためには、鉄系材料であるクランクシャフトと熱膨張係数の差が小さいことも必要である。
これらのことから、例えば特許文献1においては、軸受部分に鋳鉄を鋳包んだアルミニウム合金製のラダー型フレームが提案されている。
Conventionally, cast iron has been used for crankshaft bearings and the like of internal combustion engines such as automobile engines, but aluminum materials are being used in response to demands for weight reduction. However, parts that receive heavy loads, such as crankshaft bearings, require high rigidity, and in order to prevent an increase in clearance with the crankshaft due to temperature rise during engine operation, It is also necessary that the difference between the shaft and the thermal expansion coefficient is small.
For these reasons, for example, Patent Document 1 proposes a ladder frame made of an aluminum alloy in which cast iron is cast in a bearing portion.

また、特許文献2には、高い剛性を有するアルミニウム合金として、アルミニウム合金中に強化材としてアルミナ(Al)やシリコンカーバイド(SiC)等を複合させたアルミニウム合金複合材が開示されている。
特開昭60−219436号公報 特許第3815658号明細書
Patent Document 2 discloses an aluminum alloy composite material in which alumina (Al 2 O 3 ), silicon carbide (SiC), or the like is combined as a reinforcing material in an aluminum alloy as an aluminum alloy having high rigidity. .
JP 60-219436 A Japanese Patent No. 3815658

しかしながら、近年の省エネルギー化の観点より、燃費向上のための自動車軽量化が更に求められているため、特許文献1に記載の鋳鉄鋳包みのアルミニウム製クランク軸受構成部品では、部品総重量がまだ重く、その要求を満たすものではない。
また、特許文献2に記載のアルミニウム合金複合材は、製造工程が複雑でコスト高であり、またアルミナやシリコンカーバイド等を含んでいるためにリサイクル時に制約が多い等の問題点を有している。
However, from the viewpoint of energy saving in recent years, there is a further demand for weight reduction of automobiles for improving fuel efficiency. Therefore, in the cast iron cast aluminum crank bearing components described in Patent Document 1, the total weight of the parts is still heavy. Does not meet that requirement.
In addition, the aluminum alloy composite material described in Patent Document 2 has problems such as a complicated manufacturing process and high cost, and a lot of restrictions during recycling because it contains alumina, silicon carbide, or the like. .

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、内燃機関用軸受部材の製造に適したアルミニウム合金、即ち、高剛性(高ヤング率)、低線膨張係数を有し、且つ、肉厚部品であっても鋳造できる良好な鋳造性を有するアルミニウム合金から成る内燃機関用軸受部材を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object thereof is an aluminum alloy suitable for manufacturing a bearing member for an internal combustion engine, that is, high rigidity (high Young's modulus). Another object of the present invention is to provide a bearing member for an internal combustion engine made of an aluminum alloy having a low linear expansion coefficient and having good castability that can be cast even for a thick part.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、Si、Cu、Fe、Mn、Ni、Pなどを特定の範囲で含有し、且つ、Si及び金属間化合物が一定量以上晶出したアルミニウム合金が所望の剛性、線膨張係数、鋳造性を有することを見出し、このアルミニウム合金を内燃機関用軸受部材に用いることで本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the inventors of the present invention contain Si, Cu, Fe, Mn, Ni, P, etc. in a specific range, and Si and an intermetallic compound are in a certain amount or more. It has been found that the crystallized aluminum alloy has the desired rigidity, linear expansion coefficient, and castability, and the present invention has been completed by using this aluminum alloy for a bearing member for an internal combustion engine.

即ち、本発明の内燃機関用軸受部材は、15〜18質量%のSi、4〜6質量%のCu、1.0〜3質量%のFe、0.5〜2質量%のMn、1.0〜6質量%のNi、0.001〜0.02質量%のPを含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする。   That is, the bearing member for an internal combustion engine of the present invention has 15 to 18% by mass of Si, 4 to 6% by mass of Cu, 1.0 to 3% by mass of Fe, 0.5 to 2% by mass of Mn, 1. 0 to 6% by mass of Ni, 0.001 to 0.02% by mass of P, the total amount of Fe, Mn and Ni is 3.0 to 11% by mass with the balance being Al and inevitable impurities And an aluminum alloy in which Si and an intermetallic compound are crystallized at 30 volume% or more.

また、本発明の内燃機関用軸受部材は、上記各成分の他に、必要に応じて、Cr:0.1〜1.0質量%、Ti:0.01〜1.0質量%のいずれか一方又は双方を含有し、更に必要に応じて、B:0.0001〜1.0質量%、V:0.1〜1.0質量%、Zr:0.1〜1.0質量%及びMo:0.01〜1.0質量%から成る群より選ばれた少なくとも1種を含有することを特徴とする。   Further, the bearing member for an internal combustion engine of the present invention, in addition to the above components, is any of Cr: 0.1 to 1.0% by mass and Ti: 0.01 to 1.0% by mass, as necessary. One or both of them are contained, and if necessary, B: 0.0001 to 1.0 mass%, V: 0.1 to 1.0 mass%, Zr: 0.1 to 1.0 mass%, and Mo : It contains at least 1 sort (s) chosen from the group which consists of 0.01-1.0 mass%.

本発明によれば、アルミニウム合金を構成する元素成分と、該アルミニウム合金の剛性、線膨張係数や鋳造性との相互関係を検討することで、Si、Cu、Fe、Mn、Ni、Pなどを特定の範囲で含有し、且つ、Si及び金属間化合物が一定量以上晶出したアルミニウム合金を用いることなどとしたため、高剛性(高ヤング率)、低線膨張係数を有し、且つ、肉厚部品であっても鋳造できる良好な鋳造性を有するアルミニウム合金から成る内燃機関用軸受部材を提供することができる。   According to the present invention, Si, Cu, Fe, Mn, Ni, P, etc. can be obtained by examining the interrelationship between the elemental components constituting the aluminum alloy and the rigidity, linear expansion coefficient, and castability of the aluminum alloy. The aluminum alloy contains a specific range and Si and intermetallic compounds crystallize more than a certain amount. Therefore, it has high rigidity (high Young's modulus), low linear expansion coefficient, and thickness. It is possible to provide a bearing member for an internal combustion engine made of an aluminum alloy having good castability that can be cast even for parts.

以下、本発明の内燃機関用軸受部材について、各合金成分の作用及びその数値限定理由と共に、更に詳細に説明する。なお、本明細書において「%」は、特記しない限り、質量百分率を意味するものとする。   Hereinafter, the bearing member for an internal combustion engine of the present invention will be described in more detail together with the action of each alloy component and the reason for limiting the numerical value thereof. In the present specification, “%” means mass percentage unless otherwise specified.

本発明は、アルミニウム合金におけるSi、Cu、Fe、Mn、Ni、Pなどの元素成分の含有量やSi及び金属間化合物の晶出量と、得られる剛性、線膨張係数、鋳造性との相互関係を見出したことに基づくものである。   The present invention relates to the mutual relationship between the content of elemental components such as Si, Cu, Fe, Mn, Ni, and P in an aluminum alloy and the crystallization amount of Si and intermetallic compounds, and the obtained rigidity, linear expansion coefficient, and castability. This is based on finding the relationship.

すなわち、本発明の内燃機関用軸受部材は、上記したように、15〜18%のSi、4〜6%のCu、1.0〜3%のFe、0.5〜2%のMn、1.0〜6%のNi、0.001〜0.02%のPを含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成る。   That is, as described above, the bearing member for an internal combustion engine of the present invention has 15-18% Si, 4-6% Cu, 1.0-3% Fe, 0.5-2% Mn, 0.0 to 6% Ni, 0.001 to 0.02% P, the total amount of Fe, Mn and Ni is 3.0 to 11% by mass, the balance being Al and inevitable impurities It is made of an aluminum alloy in which Si and an intermetallic compound are crystallized at 30% by volume or more.

また、上記各成分の他に、必要に応じて、Cr:0.1〜1.0%、Ti:0.01〜1.0%のいずれか一方又は双方を含有し、更に必要に応じて、B:0.0001〜1.0%、V:0.1〜1.0%、Zr:0.1〜1.0%及びMo:0.01〜1.0%から成る群より選ばれた少なくとも1種を含有する。   In addition to the above components, if necessary, it contains either one or both of Cr: 0.1 to 1.0%, Ti: 0.01 to 1.0%, and further if necessary. B: 0.0001-1.0%, V: 0.1-1.0%, Zr: 0.1-1.0% and Mo: 0.01-1.0% And at least one of them.

本発明の内燃機関用軸受部材に用いるアルミニウム合金は、元素成分を上述の適正範囲で含み、且つ、Si及び金属間化合物が30体積%以上晶出していることにより、剛性、線膨張係数や鋳造性を良好にするものである。
なお、Siは初晶Siや共晶Siとして晶出する。また、晶出する金属間化合物としては、例えばAl−Fe−Si系、Al−Si−Fe−Mn系、Al−Cu系、Al−Ni−Cu系、Al−Fe−Mn系、Al−Ni系、Al−Ni−Fe−Mn系、Al−Si−Fe−Mn系、Al−Si−Fe−Mn−Cr系化合物等を挙げることができる。これらの晶出量はアルミニウム合金の剛性と線膨張係数に影響を及ぼす。
The aluminum alloy used for the internal combustion engine bearing member of the present invention contains elemental components in the above-described appropriate range, and Si and intermetallic compounds are crystallized at 30% by volume or more. It improves the property.
Si is crystallized as primary crystal Si or eutectic Si. Examples of the intermetallic compound to be crystallized include Al-Fe-Si, Al-Si-Fe-Mn, Al-Cu, Al-Ni-Cu, Al-Fe-Mn, and Al-Ni. And Al—Ni—Fe—Mn, Al—Si—Fe—Mn, and Al—Si—Fe—Mn—Cr compounds. These crystallization amounts affect the rigidity and linear expansion coefficient of the aluminum alloy.

上記アルミニウム合金の剛性は、ヤング率が88GPa以上であることが好ましく、90GPa以上であることがより好ましい。また、低線膨張係数は18×10−6/℃以下であることが好ましい。 The aluminum alloy has a Young's modulus of preferably 88 GPa or more, and more preferably 90 GPa or more. The low linear expansion coefficient is preferably 18 × 10 −6 / ° C. or less.

ヤング率を88GPa以上とすることで、内燃機関用軸受部材において、例えばクランク回転による軸のばたつきやブロックの変形を抑制できる。また線膨張係数を18×10−6/℃以下とすることで、例えばクランク稼動による温度上昇時に、クランク(鉄系)と軸受部材の材料が異なることに起因する熱膨張係数差によって、両者間のクリアランスが拡大することを抑制できる。すなわち、ヤング率が88GPa未満ではブロック振動や本体音が大きくなる傾向にあり、線膨張係数が18×10−6/℃を超えるとクリアランス拡大によりクランクの回転軸が振れクランクが軸受をたたく打音が発生することがある。 By setting the Young's modulus to 88 GPa or more, in a bearing member for an internal combustion engine, for example, fluttering of a shaft or deformation of a block due to crank rotation can be suppressed. In addition, by setting the linear expansion coefficient to 18 × 10 −6 / ° C. or less, for example, when the temperature rises due to crank operation, the difference between the coefficients of thermal expansion due to the difference in the material of the crank (iron system) and the bearing member It is possible to suppress an increase in the clearance. That is, when the Young's modulus is less than 88 GPa, the block vibration and the main body sound tend to increase, and when the linear expansion coefficient exceeds 18 × 10 −6 / ° C., the clearance increases and the crank rotation shaft swings and the crank strikes the bearing. May occur.

更に、従来の鋳鉄を鋳包むアルミニウム合金製のクランク軸受構成部品と同等の音響・振動性を確保する場合には、ヤング率を90GPa以上、低線膨張係数を18×10−6/℃以下にするとよい。
また、ここでいう「鋳造性が良好」とは、ダイカスト法(冷却速度30℃/秒以上)によって、肉厚部品を鋳造することが可能であることをいう。
Furthermore, in order to ensure the same acoustic and vibration performance as that of a conventional aluminum alloy crank bearing component that casts cast iron, the Young's modulus is 90 GPa or more and the low linear expansion coefficient is 18 × 10 −6 / ° C. or less. Good.
The term “good castability” as used herein means that a thick part can be cast by a die casting method (cooling rate of 30 ° C./second or more).

以下に、本発明に用いるアルミニウム合金の各成分元素の作用と共に、その数値限定理由について説明する。   The reasons for limiting the numerical values will be described below together with the action of each component element of the aluminum alloy used in the present invention.

Si:15〜18%
Siは、共晶Si、初晶Si、Al−Fe−Si系、Al−Si−Fe−Mn系化合物として晶出し、剛性を向上させる作用がある。また、Siには、低線膨張係数を低下させる作用、耐摩耗性を向上させる作用もある。
これらの効果は15% 以上で顕著となるが、25%を超えると初晶Siが粗大化して、逆に剛性が低下する。更に、粗大Siによって切削加工性が著しく悪化する。
一方、クランク軸受構成部品のような肉厚部品の鋳造性を確保するためには18%以下にする必要がある。
したがって、高剛性(高ヤング率)及び低線膨張係数を得るためのSi量は15%以上となり、鋳造性を確保するためのSi量は18%以下となる。なお、Si量が増加するにつれ鋳造温度を上昇させることが好ましい。
Si: 15-18%
Si is crystallized as eutectic Si, primary crystal Si, Al—Fe—Si based, Al—Si—Fe—Mn based compound, and has the effect of improving rigidity. Si also has the effect of reducing the low linear expansion coefficient and the effect of improving wear resistance.
These effects become prominent at 15% or more. However, if it exceeds 25%, the primary crystal Si becomes coarse and the rigidity is lowered. Further, the machinability is remarkably deteriorated by coarse Si.
On the other hand, in order to ensure the castability of thick parts such as crank bearing components, it is necessary to make it 18% or less.
Therefore, the Si amount for obtaining high rigidity (high Young's modulus) and a low linear expansion coefficient is 15% or more, and the Si amount for securing castability is 18% or less. In addition, it is preferable to raise casting temperature as the amount of Si increases.

Cu:4〜6%
Cuは、Al−Cu系、Al−Ni−Cu系化合物として晶出し、剛性の向上に寄与する。この作用は4%以上の添加で顕著となるが、6%を超えると化合物が粗大化して逆に伸びが
低下し、さらに耐食性も低下する。また、クランク軸受構成部品のような肉厚部品の鋳造性を確保するためには6%以下にする必要がある。
Cu: 4 to 6%
Cu crystallizes out as an Al-Cu-based or Al-Ni-Cu-based compound and contributes to improvement in rigidity. This effect becomes prominent when 4% or more is added. However, if it exceeds 6%, the compound becomes coarse, and the elongation decreases, and the corrosion resistance also decreases. Further, in order to ensure the castability of thick parts such as crank bearing components, it is necessary to make it 6% or less.

Fe:1.0〜3%
Mn:0.5〜2%
Ni:1.0〜6%
Fe+Mn+Ni:3.0〜11%
Fe、Mn、Niは、Al−Fe−Mn系、Al−Fe−Si系、Al−Ni系、Al−Ni−Cu系、Al−Ni−Fe−Mn系、Al−Si−Fe−Mn系化合物として晶出し、剛性を向上させ、線膨張係数を低下させる作用を有する。また耐熱性を向上させる作用もある。
これらの作用は、Fe+Mn+Niが3.0%以上で顕著となるが、11%を超えると晶出物が粗大化し、逆に剛性向上効果が小さくなり、鋳造性も悪化する。
Fe: 1.0 to 3%
Mn: 0.5-2%
Ni: 1.0-6%
Fe + Mn + Ni: 3.0 to 11%
Fe, Mn, Ni are Al-Fe-Mn, Al-Fe-Si, Al-Ni, Al-Ni-Cu, Al-Ni-Fe-Mn, Al-Si-Fe-Mn Crystallized as a compound, has the effect of improving rigidity and reducing the coefficient of linear expansion. It also has the effect of improving heat resistance.
These effects become significant when Fe + Mn + Ni is 3.0% or more. However, when it exceeds 11%, the crystallized material becomes coarse, and the effect of improving the rigidity is reduced, and the castability is also deteriorated.

P:0.001〜0.02%
Pは、初晶Siを微細化して均一に分散させる作用を有する。この作用は、0.001%以上で顕著であるが、0.02%を超えると溶湯の粘性が増加して鋳造性が悪くなる。
P: 0.001 to 0.02%
P has the effect of making primary crystal Si fine and uniformly dispersing. This effect is significant at 0.001% or more, but if it exceeds 0.02%, the viscosity of the molten metal increases and the castability deteriorates.

Cr:0.1〜1.0%
Crは、Al−Si−Fe−Mn−Cr系化合物として晶出し、剛性の向上に寄与する。また、初晶Siを微細化して均一に分散させる作用を有する。この作用は、0.1%以上で顕著であるが、1.0%を超えると粗大な化合物が形成され、逆に伸びが低下する。
Cr: 0.1 to 1.0%
Cr crystallizes out as an Al—Si—Fe—Mn—Cr compound and contributes to the improvement of rigidity. Moreover, it has the effect | action which refines | miniaturizes primary crystal Si and disperse | distributes it uniformly. This effect is remarkable at 0.1% or more, but when it exceeds 1.0%, a coarse compound is formed, and on the contrary, the elongation decreases.

Ti:0.01〜1.0%
Tiは、α相を微細化し、鋳造性の向上に寄与すると共に、Al−Ni系化合物の粗大化を防止する作用がある。その作用は、Tiが0.01%以上で顕著となるが、1.0%を超えると粗大な化合物が形成され、逆に伸びが低下する。
Ti: 0.01 to 1.0%
Ti refines the α phase, contributes to improvement of castability, and has an action of preventing the Al—Ni compound from becoming coarse. The effect becomes significant when Ti is 0.01% or more, but when it exceeds 1.0%, a coarse compound is formed, and the elongation is reduced.

B:0.0001〜1.0%
V:0.1〜1.0%
Zr:0.1〜1.0%
Mo:0.01〜1.0%
B、V、Zr、Moは、高剛性晶出物を形成し、剛性の向上に寄与する。何れの元素も上限を超えて添加すると粗大な晶出物を形成して伸びを低下させる。
B: 0.0001 to 1.0%
V: 0.1 to 1.0%
Zr: 0.1 to 1.0%
Mo: 0.01 to 1.0%
B, V, Zr, and Mo form a highly rigid crystallized product and contribute to the improvement of rigidity. If any element is added in excess of the upper limit, a coarse crystallized product is formed and elongation is lowered.

〔製造方法〕
本発明において、アルミニウム合金は、冷却速度3 0 ℃ / 秒以上で鋳造することが好ましい。例えば、高出力エンジン用軸受部材として使用する為には、高剛性、低線膨張係数に加え、高強度であることが望ましいが、上述の鋳造方法によればガスポロシティーの発生(鋳造欠陥)を低減させることができるので、部品の高強度化が可能になるからである。また鋳造欠陥が低減することでヤング率も向上する。
このような速い冷却速度で鋳造するためには、例えば高真空ダイカスト法、PF法(無孔性ダイカスト法)、半溶融・半凝固ダイカスト法等のダイカスト法(高速高圧鋳造法)を用いることが好ましい。
〔Production method〕
In the present invention, the aluminum alloy is preferably cast at a cooling rate of 30 ° C./second or more. For example, in order to be used as a bearing member for a high-power engine, it is desirable to have high strength in addition to high rigidity and low linear expansion coefficient. However, according to the above-described casting method, generation of gas porosity (casting defect) This is because the strength of the component can be increased. In addition, Young's modulus is improved by reducing casting defects.
In order to cast at such a high cooling rate, for example, a die casting method (high-speed and high-pressure casting method) such as a high vacuum die casting method, a PF method (non-porous die casting method), a semi-melting / semi-solid die casting method, or the like is used. preferable.

得られたアルミニウム合金の鋳物については、例えば時効処理によって、高出力エンジンのクランクの重荷重に耐える強度を得るための時効析出強化や、エンジン稼動時の変形を防ぐ為の寸法安定化処理を行うことができる。時効析出(過時効)によれば、アルミニウム合金の永久生長を抑制することができるので、線膨張係数をさらに低くする効果もある。
時効処理は、200〜280℃で0.3〜5.0時間行うことが好ましい。これよりも低温短時間だと十分な寸法安定性が得られない場合があり、これよりも高温長時間だと過時効軟化により強度が低下する場合がある。
The resulting aluminum alloy casting is subjected to, for example, aging precipitation strengthening to obtain the strength to withstand the heavy load of the crank of a high-power engine, and dimensional stabilization processing to prevent deformation during engine operation, for example, by aging treatment be able to. According to aging precipitation (overaging), the permanent growth of the aluminum alloy can be suppressed, so that the linear expansion coefficient can be further reduced.
The aging treatment is preferably performed at 200 to 280 ° C. for 0.3 to 5.0 hours. If the temperature is shorter than this, sufficient dimensional stability may not be obtained. If the temperature is longer than this, the strength may be reduced due to overaging softening.

また上述のように、ダイカスト法により鋳造することでガスポロシティーの発生(鋳造欠陥)を著しく低減させることができるため、高温の熱処理においてもブリスターの発生が抑制され得る。したがって、得られたアルミニウム合金の鋳物について、例えば450〜550℃で1〜8時間の溶体化処理後、200〜280℃で0.3〜5.0時間の時効処理を行うこともできる。これらの処理により、ヤング率と線膨張係数をさらに向上することができる。   Further, as described above, since casting by the die casting method can significantly reduce the occurrence of gas porosity (casting defects), the occurrence of blisters can be suppressed even in high-temperature heat treatment. Therefore, the obtained aluminum alloy casting can be subjected to an aging treatment at 200 to 280 ° C. for 0.3 to 5.0 hours after, for example, a solution treatment at 450 to 550 ° C. for 1 to 8 hours. By these treatments, the Young's modulus and the linear expansion coefficient can be further improved.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

〔クランク軸受の製造〕
表1に示す化学組成及び晶出物体積率を有する26種類のアルミニウム合金(実施例17種、比較例9種)を、それぞれ高圧ダイカスト法により、鋳造温度730℃にて図1に示す一般的な軸受部材(ラダーフレーム)形状に鋳造した。次いで、200℃で4時間保持して時効させ、各例のクランク軸受を得た。
[Manufacture of crank bearings]
The 26 types of aluminum alloys (17 types of Examples and 9 types of Comparative Examples) having the chemical composition and crystallized material volume ratio shown in Table 1 are each shown in FIG. 1 by a high pressure die casting method at a casting temperature of 730 ° C. Cast into a shape of a simple bearing member (ladder frame). Subsequently, it was aged by holding at 200 ° C. for 4 hours to obtain a crank bearing of each example.

〔評価〕
上述のようにして得られた各例のクランク軸受について、剛性(ヤング率:E)、線膨張係数(熱膨張係数:α)を測定し、ヤング率は88GPa以上、線膨張係数は18×10−6/℃以下を基準値として評価した。これらの基準値は、従来の鋳鉄製又は鋳鉄鋳包みアルミニウム合金製の軸受と同等の音響・振動特性が得られうる値を設定した。
[Evaluation]
The crank bearing of each example obtained as described above was measured for rigidity (Young's modulus: E) and linear expansion coefficient (thermal expansion coefficient: α), Young's modulus was 88 GPa or more, and linear expansion coefficient was 18 × 10. Evaluation was made with −6 / ° C. or less as a reference value. These reference values were set to values at which acoustic and vibration characteristics equivalent to those of conventional cast iron or cast iron encased aluminum alloy bearings could be obtained.

また、鋳造性は、ダイカスト成型の可否により判断した。ダイカスト成形の可否は、○:連続鋳造可能、△:連続鋳造可能であるが製品割れが出ることもある、×:製品の割れ率が50%を超える、として評価した。
これらの測定結果及び評価結果を表1に示す。なお、表1の比較例において、条件を満足していない数値には下線を付した。
Further, the castability was judged based on the possibility of die casting. Whether or not die casting can be performed was evaluated as follows: ○: continuous casting is possible, Δ: continuous casting is possible but product cracking may occur, and x: product cracking rate exceeds 50%.
These measurement results and evaluation results are shown in Table 1. In the comparative examples of Table 1, numerical values that do not satisfy the conditions are underlined.

Figure 2010084217
Figure 2010084217

〔考察〕
(1)実施例1〜17では、ヤング率及び線膨張係数の値が基準値を満足し、また鋳造性も○又は△であった。
(2)比較例1では、ヤング率、線膨張係数ともに基準値を満足していない。これは、Siの含有量が不十分であるために、Si系の化合物が低減したことが原因と考えられる。
(3)比較例2では、ヤング率、線膨張係数ともに基準値を満足したが、製品に割れが発生した。これはSi量が多すぎて、液相線が上昇したことで鋳造性が著しく悪化した為である。
(4)比較例3では、ヤング率、線膨張係数ともに基準値を満足していない。これは、Cuの含有量が不十分であるために、Al−Cu系、Al−Ni−Cu系化合物が低減したことが原因であると考えられる。
(5)比較例4では、ヤング率、線膨張係数ともに基準値を満足したが、製品に割れが発生した。これはCu量が多すぎて、液相線が上昇したことで鋳造性が著しく悪化した為である。
(6)比較例5〜7では、ヤング率又はヤング率と線膨張係数が基準値を満足していない。これは、Ni+Fe+Mnの含有量の合計が3.0質量%以下であり、Al−Fe−Mn系、Al−Fe−Si系、Al−Ni系、Al−Ni−Cu系、Al−Ni−Fe−Mn系、Al−Si−Fe−Mn系化合物の晶出量が低減したことが原因であると考えられる。
(7)比較例8〜9では、ヤング率、線膨張係数は基準値を満たしているものの製品に割れが発生した。これは、Fe、Mn量が多く液相線が上昇したことで鋳造性が著しく悪化した為である。
[Discussion]
(1) In Examples 1 to 17, the values of Young's modulus and linear expansion coefficient satisfied the standard values, and the castability was also ◯ or Δ.
(2) In Comparative Example 1, neither the Young's modulus nor the linear expansion coefficient satisfies the standard value. This is presumably because the Si content was reduced because the Si content was insufficient.
(3) In Comparative Example 2, both the Young's modulus and the linear expansion coefficient satisfied the standard values, but the product was cracked. This is because the castability is remarkably deteriorated due to an excessive amount of Si and an increase in the liquidus.
(4) In Comparative Example 3, neither the Young's modulus nor the linear expansion coefficient satisfies the reference value. This is considered to be caused by a decrease in Al-Cu-based and Al-Ni-Cu-based compounds due to insufficient Cu content.
(5) In Comparative Example 4, the Young's modulus and the linear expansion coefficient both satisfied the standard values, but cracks occurred in the product. This is because the castability is remarkably deteriorated due to an excessive amount of Cu and an increase in the liquidus.
(6) In Comparative Examples 5 to 7, the Young's modulus or Young's modulus and the linear expansion coefficient do not satisfy the reference value. This is because the total content of Ni + Fe + Mn is 3.0% by mass or less, Al—Fe—Mn, Al—Fe—Si, Al—Ni, Al—Ni—Cu, Al—Ni—Fe. This is considered to be caused by a decrease in the amount of crystallization of the -Mn-based and Al-Si-Fe-Mn-based compounds.
(7) In Comparative Examples 8 to 9, cracks occurred in the products although Young's modulus and linear expansion coefficient satisfied the standard values. This is because the castability deteriorated remarkably due to a large amount of Fe and Mn and an increase in the liquidus.

以上、本発明を若干の実施形態及び実施例により詳細に説明したが、本発明はこれら実施形態や実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。   Although the present invention has been described in detail with some embodiments and examples, the present invention is not limited to these embodiments and examples, and various modifications are possible within the scope of the gist of the present invention. is there.

本発明の内燃機関用軸受部材の一実施形態であるラダーフレームを示す正面図及び断面図である。It is the front view and sectional drawing which show the ladder frame which is one Embodiment of the bearing member for internal combustion engines of this invention.

Claims (9)

Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, the total amount of Fe, Mn and Ni is 3.0-11 mass%, the balance is Al and inevitable impurities, and Si and intermetallic compounds are 30 A bearing member for an internal combustion engine comprising an aluminum alloy crystallized by volume% or more. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Cr:0.1〜1.0質量%を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02% by mass, Cr: 0.1-1.0% by mass, the total amount of Fe, Mn and Ni is 3.0-11% by mass, the balance being Al and inevitable impurities And a bearing member for an internal combustion engine, comprising an aluminum alloy in which Si and an intermetallic compound are crystallized by 30% by volume or more. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Ti:0.01〜1.0質量%を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02% by mass, Ti: 0.01-1.0% by mass, the total amount of Fe, Mn and Ni is 3.0-11% by mass, the balance being Al and inevitable impurities And a bearing member for an internal combustion engine, comprising an aluminum alloy in which Si and an intermetallic compound are crystallized by 30% by volume or more. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%と、B:0.0001〜1.0質量%、V:0.1〜1.0質量%、Zr:0.1〜1.0質量%及びMo:0.01〜1.0質量%から成る群より選ばれた少なくとも1種を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, B: 0.0001-1.0 mass%, V: 0.1-1.0 mass%, Zr: 0.1-1.0 mass%, and Mo: 0.01 Containing at least one selected from the group consisting of -1.0 mass%, the total amount of Fe, Mn and Ni is 3.0-11 mass%, the balance being Al and inevitable impurities, A bearing member for an internal combustion engine, comprising an aluminum alloy crystallized by 30% by volume or more of Si and an intermetallic compound. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Cr:0.1〜1.0質量%と、B:0.0001〜1.0質量%、V:0.1〜1.0質量%、Zr:0.1〜1.0質量%及びMo:0.01〜1.0質量%から成る群より選ばれた少なくとも1種を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, Cr: 0.1-1.0 mass%, B: 0.0001-1.0 mass%, V: 0.1-1.0 mass%, Zr: 0.1 And at least one selected from the group consisting of 0.01 to 1.0% by mass and Mo: 0.01 to 1.0% by mass, and the total amount of Fe, Mn and Ni was 3.0 to 11% by mass. A bearing member for an internal combustion engine, characterized in that the balance is Al and inevitable impurities, and Si and an intermetallic compound are crystallized at 30 volume% or more. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Ti:0.01〜1.0質量%と、B:0.0001〜1.0質量%、V:0.1〜1.0質量%、Zr:0.1〜1.0質量%及びMo:0.01〜1.0質量%から成る群より選ばれた少なくとも1種を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, Ti: 0.01-1.0 mass%, B: 0.0001-1.0 mass%, V: 0.1-1.0 mass%, Zr: 0.1 And at least one selected from the group consisting of 0.01 to 1.0% by mass and Mo: 0.01 to 1.0% by mass, and the total amount of Fe, Mn and Ni was 3.0 to 11% by mass. A bearing member for an internal combustion engine, characterized in that the balance is Al and inevitable impurities, and Si and an intermetallic compound are crystallized at 30 volume% or more. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Cr:0.1〜1.0質量%、Ti:0.01〜1.0質量%を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, Cr: 0.1-1.0 mass%, Ti: 0.01-1.0 mass% is contained, and the total amount of Fe, Mn, and Ni is 3.0-11 mass %, The balance being Al and inevitable impurities, and comprising an aluminum alloy crystallized by 30 volume% or more of Si and intermetallic compounds. Si:15〜18質量% 、Cu:4〜6質量% 、Fe:1.0〜3質量% 、Mn:0.5〜2質量% 、Ni:1.0〜6質量% 、P:0.001〜0.02質量%、Cr:0.1〜1.0質量%、Ti:0.01〜1.0質量%と、B:0.0001〜1.0質量%、V:0.1〜1.0質量%、Zr:0.1〜1.0質量%及びMo:0.01〜1.0質量%から成る群より選ばれた少なくとも1種を含有し、Fe、Mn及びNiの合計量が3.0〜11質量%であって、残部がAl及び不可避的不純物であり、且つ、Si及び金属間化合物が30体積%以上晶出したアルミニウム合金から成ることを特徴とする内燃機関用軸受部材。   Si: 15-18% by mass, Cu: 4-6% by mass, Fe: 1.0-3% by mass, Mn: 0.5-2% by mass, Ni: 1.0-6% by mass, P: 0. 001-0.02 mass%, Cr: 0.1-1.0 mass%, Ti: 0.01-1.0 mass%, B: 0.0001-1.0 mass%, V: 0.1 Containing at least one selected from the group consisting of -1.0% by mass, Zr: 0.1-1.0% by mass and Mo: 0.01-1.0% by mass; Fe, Mn and Ni An internal combustion engine having a total amount of 3.0 to 11% by mass, the balance being Al and inevitable impurities, and an aluminum alloy in which Si and an intermetallic compound are crystallized at 30% by volume or more. Bearing member. 上記アルミニウム合金のヤング率が88GPa以上、低線膨張係数が18×10−6/℃以下であることを特徴とする請求項1〜8のいずれか1つの項に記載の内燃機関用軸受部材。 9. The bearing member for an internal combustion engine according to claim 1, wherein the aluminum alloy has a Young's modulus of 88 GPa or more and a low linear expansion coefficient of 18 × 10 −6 / ° C. or less.
JP2008257324A 2008-10-02 2008-10-02 Bearing member for internal combustion engine Pending JP2010084217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257324A JP2010084217A (en) 2008-10-02 2008-10-02 Bearing member for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257324A JP2010084217A (en) 2008-10-02 2008-10-02 Bearing member for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010084217A true JP2010084217A (en) 2010-04-15

Family

ID=42248462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257324A Pending JP2010084217A (en) 2008-10-02 2008-10-02 Bearing member for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010084217A (en)

Similar Documents

Publication Publication Date Title
JP5300118B2 (en) Aluminum alloy casting manufacturing method
EP1524324B1 (en) Aluminum alloys for casting, aluminum alloy castings and manufacturing method thereof
US20130206287A1 (en) Co-based alloy
JP4187018B2 (en) Cast aluminum alloy with excellent relaxation resistance and heat treatment method
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JP5482787B2 (en) Al-Mg-Si aluminum alloy for casting having excellent proof stress and cast member comprising the same
JP4665413B2 (en) Cast aluminum alloy with high rigidity and low coefficient of linear expansion
JP2004307999A (en) Ni-BASED SUPER HEAT RESISTANT CAST ALLOY AND TURBINE WHEEL MADE THEREOF
JP2021001598A (en) Manufacturing process of engine component, and use of engine component and aluminum alloy
JP6743155B2 (en) High-strength aluminum alloy, internal combustion engine piston made of the alloy, and method for manufacturing internal combustion engine piston
KR101277456B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP2005320618A (en) High-strength alpha+beta-type titanium alloy
JP2007169731A (en) Aluminum casting alloy and compressor impeller using the same
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP4796563B2 (en) Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity
JP2010084217A (en) Bearing member for internal combustion engine
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP3303661B2 (en) Heat resistant high strength aluminum alloy
JPH1017975A (en) Aluminum alloy for casting
US20170298480A1 (en) High thermal conductivity aluminum alloy
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP2004225134A (en) Aluminum alloy material for diesel engine cylinder head, production method therefor, and diesel engine