JP2010083681A - 炭化ケイ素単結晶の製造方法及び真空チャック - Google Patents

炭化ケイ素単結晶の製造方法及び真空チャック Download PDF

Info

Publication number
JP2010083681A
JP2010083681A JP2008250828A JP2008250828A JP2010083681A JP 2010083681 A JP2010083681 A JP 2010083681A JP 2008250828 A JP2008250828 A JP 2008250828A JP 2008250828 A JP2008250828 A JP 2008250828A JP 2010083681 A JP2010083681 A JP 2010083681A
Authority
JP
Japan
Prior art keywords
seed crystal
silicon carbide
single crystal
crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008250828A
Other languages
English (en)
Inventor
Takuya Kadohara
拓也 門原
Kenichiro Okuno
憲一郎 奥野
Takayuki Maruyama
隆之 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008250828A priority Critical patent/JP2010083681A/ja
Publication of JP2010083681A publication Critical patent/JP2010083681A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】改良レーリー法により炭化ケイ素単結晶を製造するときに、種結晶のマイクロパイプ欠陥及びボイド欠陥を共に抑制し、これにより品質の高い炭化ケイ素単結晶を製造することのできる炭化ケイ素単結晶の製造方法を提供する。
【解決手段】結晶成長させる種結晶100には、成長端面100aを有するものを用いる。この成長端面100aを有する種結晶100を炭化ケイ素単結晶製造装置の容器内に設置するに先立って、種結晶100の成長端面100aを真空チャック1で保持しつつ、種結晶100の裏面100bにスピンコートで保護膜2を形成する。
【選択図】図1

Description

本発明は、炭化ケイ素単結晶の製造方法及びこの製造方法に直接使用する真空チャックに関する。
炭化ケイ素は、ケイ素に比べてバンドギャップが大きく、絶縁破壊特性、耐熱性、耐放射線性等に優れていることから、小型で高出力の半導体等の電子デバイス材料として注目されている。また、光学的特性に優れることから、光学デバイス材料として注目されている。
この炭化ケイ素単結晶を製造する方法には、SiC単結晶ウェハを種結晶として用いて、昇華再結晶を行う改良型のレーリー法が提案されている(非特許文献1)。この改良レーリー法は、単結晶製造装置の反応容器に炭化ケイ素の原料を収容するとともに、炭化ケイ素単結晶の種結晶を配置して、この炭化ケイ素原料の加熱して昇華させ、この昇華させた炭化ケイ素を種結晶の表面上で再結晶させて、結晶成長させる方法である。この方法では、種結晶を用いるために結晶の核生成過程が制御でき、また、不活性ガスで雰囲気圧力を100Paから15kPa程度に制御することにより、結晶の成長速度等を再現性よくコントロールできる。現在、上記の改良レーリー法で作成したSiC単結晶から、口径2インチから3インチのSiC単結晶ウェハが切り出され、エピタキシャル薄膜成長やデバイス作成に供されている。
しかしながら、これらのSiC単結晶ウェハには、成長方向に貫通する直径数μmのピンホール欠陥(マイクロパイプ欠陥)が50〜200個/cm程度含まれることがあった。また、SiC単結晶を製造するに際しては、単結晶製造装置の黒鉛製るつぼの蓋部に種結晶を固定して結晶成長をさせるが、この黒鉛製坩堝の蓋部と種結晶の裏面との間には空隙が形成されていることがあり、この空隙から種結晶のSi原子が昇華する結果、種結晶にはマクロ欠陥と呼ばれるSi原子が抜けた穴(ボイド)状の欠陥が存在することがあった。これらのマイクロパイプ欠陥やマクロ欠陥は、結晶成長させる単結晶の品質に悪影響を及ぼし、結晶品質を劣化させ、また単結晶の歩留まりを低下させてしまう。
このマクロ欠陥を抑制する方法に関して、結晶成長をさせる前の種結晶の裏面に有機薄膜を被覆させることがある(特許文献1)
Yu.M.Taiyov and V.F.Tsvetk of, Journal of Crystal Growth, vol.52(1981) pp.146-150 特開2003−226600号公報
しかしながら、特許文献2に記載された、結晶成長をさせる前の種結晶の裏面に有機薄膜を被覆させる方法では、種結晶の裏面に生ずるマクロ欠陥(ボイド)については抑制することが可能であるが、マイクロパイプ欠陥については十分に抑制することが困難であった。
本発明は、上記の問題を有利に解決するものであり、改良レーリー法により炭化ケイ素単結晶を製造するときに、種結晶のマイクロパイプ欠陥及びボイド欠陥を共に抑制し、これにより品質の高い炭化ケイ素単結晶を製造することのできる炭化ケイ素単結晶の製造方法を、その製造方法に直接使用する真空チャックと共に提供することを目的とする。
本発明の炭化ケイ素単結晶の製造方法は、炭化ケイ素単結晶製造装置の容器内に昇華用原料を収容すると共にこの昇華用原料に略対向して炭化ケイ素単結晶の種結晶を配置し、加熱により昇華させた昇華用原料を種結晶の表面上で再結晶させて炭化ケイ素単結晶を結晶成長させる炭化ケイ素単結晶の製造方法であって、種結晶は、昇華用原料に対向させる側に成長端面を有するものであり、この成長端面を有する種結晶を炭化ケイ素単結晶製造装置の容器内に設置するに先立って、種結晶の成長端面を真空チャックで保持しつつ、種結晶の裏面に保護膜を形成することを特徴とすることを特徴とする。
本発明の炭化ケイ素単結晶の製造方法に直接使用することのできる真空チャックは、種結晶よりも小さい直径を有する円盤部と、この円盤部の下面の直径方向中央部に形成された回転軸部と、円盤部の厚さ方向に貫通する排気孔と、円盤部の上面の外周縁に沿って立設された周壁部と、この周壁部の先端部に突設され種結晶の成長端面と当接する環状弾性支持体とを有するものであることが好ましい。
また、この真空チャックにおいて、環状弾性支持体の直径は、種結晶の直径の70%以上であることが好ましい。
本発明の炭化ケイ素単結晶の製造方法によれば、種結晶のマイクロパイプ欠陥及びマクロ欠陥を共に抑制することができ、これにより、高品質の炭化ケイ素単結晶を製造することが可能となる。
本発明の真空チャックによれば、本発明の炭化ケイ素単結晶の製造方法を実施する際に、成長端面を有する種結晶を確実に保持することができ、これにより当該種結晶にスピンコートによる保護膜を形成することが可能となる。
本発明の炭化ケイ素単結晶の製造方法においては、昇華用原料に対向させる側に成長端面を有するものであることを構成要件の一つとする。炭化ケイ素単結晶の結晶成長に用いられる種結晶は、それ自体が結晶成長により作成されたものであり、塊状の炭化ケイ素単結晶から厚さ方向に層をなすように互いに平行に複数枚の薄板に切り出されたものである。このような塊状の炭化ケイ素単結晶から切り出された複数枚の薄板状の種結晶のうち、最表面側の種結晶は、塊状であったときの炭化ケイ素単結晶の成長端面を有している。このような成長端面を有している炭化ケイ素の種結晶は、それ以外の薄板状の種結晶と比べると、切出し加工時に導入されることのある加工歪の影響が小さい等の理由から、炭化ケイ素単結晶用の種結晶に用いると、マイクロパイプ欠陥が少ない高品質な炭化ケイ素単結晶を製造することができる。
しかしながら、成長端面を有する種結晶を用いただけでは、結晶成長時に種結晶の裏面に生ずることのあるマクロ欠陥を抑制することは困難である。そこで、この成長端面を有する種結晶の裏面に、保護膜を塗布形成することが考えられる。この塗布形成には、保護膜を薄く、かつ均一に塗布することを考慮すると、スピンコートを用いることが望ましい。
しかしながら、成長端面というのは、凸状の曲面の形状を有している。したがって、成長端面とは反対側の面である種結晶の裏面に、スピンコートにより保護膜を塗布形成するためには、成長端面に過剰な応力を加えることなく、スピンコートのために種結晶を1分間当たり数千回転数で回転させつつ、種結晶を保持することが必要である。しかしながら、従来の技術では、このような成長端面を有する種結晶を高速回転させつつ保持させる技術は存在していなかった。
そこで、本発明の炭化ケイ素単結晶の製造方法においては、成長端面を有する種結晶については、炭化ケイ素単結晶の製造装置の容器内に設置するに先立って、種結晶の成長端面を真空チャックで保持しつつ、種結晶の裏面にスピンコートで保護膜を形成する。これを図面を用いてより具体的に説明する。
図1は、本発明の炭化ケイ素単結晶の製造方法を実施するための真空チャックの一例を模式的に示す垂直断面図である。図1は、種結晶100が真空チャック1に保持されているところを示している。真空チャック1に保持される種結晶100は、凸形状の曲面である成長端面100aを有している。真空チャック1は、種結晶100よりも小さい直径を有する円盤部1aと、この円盤部1aの下面の直径方向中央部に形成された回転軸部1bと、この円盤部1aの上面の外周縁に沿って立設された周壁部1cとを有している。周壁部1cの先端部には、周壁部1cの内向きに開口した溝1dが形成されており、この溝1dに環状弾性支持体としてOリング1eが取り付けられている。このOリング1eは、弾性を有する材料、例えばゴムよりなる。
この真空チャック1は、円盤部1aと周壁部1cとにより凹形状をなしている。種結晶100の裏面100bを上向きにし、成長端面100aを下向きにして真空チャック1に保持するとき、周壁部1cの先端のOリング1eのみが種結晶100の成長端面100aと当接するようになっている。また、回転軸部1bには、回転軸部1b及び円盤部1aを貫通する排気孔1fが形成されている。この排気孔1fは、図示しない真空ポンプ等の排気手段に接続される。
この真空チャック1に種結晶100を、図1に示したように成長端面100aを下向きにして載置し、排気孔1fに接続した排気手段を作動させると、真空チャック1のOリング1eが種結晶100の成長端面100aと気密に接触し、また、成長端面100aと、真空チャック1の円盤部1aの上面と、周壁部1cの内面とで囲まれた空間に負圧が生じる。このことにより、種結晶100は真空チャック1に吸着保持される。また、この真空チャック1の回転軸部1bに図示しない駆動装置を接続することにより、真空チャック1は、種結晶100を保持した状態で1分間当たり数千回転というスピンコート時の回転速度で回転させることが可能になる。
したがって、本発明の炭化ケイ素単結晶の製造方法では、図示した真空チャック1を用いて、種結晶100の成長端面100aを当該真空チャック1で保持しつつ、種結晶100の裏面100bにスピンコートで保護膜を形成することができる。
また、真空チャック1は、弾性を有するOリング1eを介して真空チャック1に吸着保持されるので、真空チャックの吸着力によって、種結晶100の成長端面100aに歪や疵が導入されることを回避することができる。
以上述べたような真空チャック1を用いて種結晶100を吸着保持した後、真空チャック1を中心軸の回りに回転させると共に、種結晶100の裏面100bに、保護膜のコート液2を滴化する。そうすると真空チャック1の回転による遠心力fによりコート液2が外周方向に薄く延ばされ、種結晶100の裏面100bに保護膜が薄く均一に形成される。
本発明の炭化ケイ素単結晶の製造方法により、マイクロパイプ欠陥の発生が少ない成長端面を有する種結晶の裏面に、マクロ欠陥を防止するための保護膜をスピンコートで形成させることができる。そのため、このような種結晶を用いて結晶成長させ単結晶を製造することにより、マイクロパイプ欠陥及びマクロ欠陥のいずれもが少ない、高品質の炭化ケイ素単結晶を製造することができる。
真空チャック1のOリング1eの直径D1は、保持する種結晶100の直径D2の70%以上の大きさであることが好ましい。保持する種結晶100の直径の70%以上であることにより、スピンコートの高速回転時においても確実に種結晶100を保持することができる。Oリング1eの直径D1が、種結晶100の直径D2のほぼ100パーセントであってもよく、確実に種結晶100を保持しうる70%以上の適切な比率を適宜選択することが好ましい。Oリング1eの材質は、弾性を有するゴムを用いることができるが、ゴムに限定されるものではない。真空チャック1のOリング1e以外の部分の材質については、特に限定されず、例えばフッ素樹脂などの樹脂製とすることができる。
スピンコート時の真空チャック1の回転速度は、コート液の材料にもよるが、3000〜8000rpm程度とすることができる。また、スピンコートで塗布するコート液2は、有機樹脂が好ましく、例えばアクリル樹脂、フェノール樹脂、尿素樹脂、エポキシ樹脂、又は半導体装置を製造する際に用いられるレジストを用いることができる。スピンコートにより形成された保護膜の厚さは、種結晶100の裏面100bに形成される保護膜として公知の厚さと同程度にすることができ、例えば数μm程度とすることができる。
スピンコート後は、種結晶100の裏面100bに形成された保護膜を乾燥させて固化する。この乾燥処理後に、炭化ケイ素単結晶の製造装置に種結晶100を取り付け、改良レーリー法により結晶成長させて炭化ケイ素単結晶を得る。
この結晶成長により炭化ケイ素単結晶を得る製造装置の一例を図2を用いて説明する。
図2に炭化ケイ素単結晶の製造装置の一例を模式的な断面図で示す。図2に示す製造装置は、改良レーリー法により炭化ケイ素単結晶を製造する装置であって、黒鉛製るつぼ10を備えている。この黒鉛製るつぼ10は、上部の蓋体11と下部の容器本体12とからなる。また、黒鉛製るつぼ10の周側面部13よりも外周方向に、黒鉛製るつぼ10の加熱手段として、第1の誘導加熱コイル20及び第2の誘導加熱コイル21が、干渉防止コイル22を挟んで上下方向に並べて設けられている。これらの第1の誘導加熱コイル20、第2の誘導加熱コイル21及び干渉防止コイル22と、黒鉛製るつぼ10との間には、石英管30が設けられていて、黒鉛製るつぼ10はこの石英管30を介して上記加熱手段により加熱されることになる。また、黒鉛製るつぼ10の容器本体12の下端部には、黒鉛製るつぼ10を支持するための支持棒31が接続されている。
この製造装置を用いた炭化ケイ素単結晶の成長方法の一例を説明する。黒鉛製るつぼ10の容器本体12の内部に昇華用原料40を収容し、この昇華用原料40と略対向するように蓋体11の下面側の中央部に種結晶100を取り付ける。そして、昇華用原料40の近傍に配置された第1の誘導加熱コイル20、種結晶100の近傍に配置された第2の誘導加熱コイル21、及び干渉防止コイル22のそれぞれ電流を流して、黒鉛製るつぼ10内の昇華用原料40及び種結晶100を加熱する。これらのコイルへの投入電流を調整することにより、昇華用原料40の近傍の温度は昇華用原料40が昇華する温度に、種結晶100の近傍の温度は昇華した原料が種結晶の表面上で再結晶する温度に、それぞれ制御する。このような温度制御により、黒鉛製るつぼ10内で昇華用原料40は昇華し、この昇華用原料40に対向する種結晶100の表面上で再結晶する結果、種結晶100の厚さ方向及び径方向に結晶成長して炭化ケイ素単結晶が得られる。そして、本発明の炭化ケイ素単結晶の製造方法においては、上述したように種結晶100について、成長端面100aを有し、かつ、裏面100bに保護膜を有するから、マイクロパイプ欠陥及びマクロ欠陥が共に少ない、高品質な炭化ケイ素単結晶が製造できる。
このような製造装置を用いた炭化ケイ素単結晶の結晶成長においては、昇華用原料は、炭化ケイ素であればよく、原料の結晶の多型、使用量、純度、原料の製造方法等については特に制限されず、製造する炭化ケイ素単結晶の使用目的等に応じて適宜選択することができる。
上記昇華用原料の結晶の多型には、例えば、4H,6H,15R,3Cなどが挙げられ、これらの中でも6Hなどが好適に挙げられる。これらは、1種単独で使用されるのが好ましいが、2種以上併用されてもよい。
昇華用原料の使用量は、製造する炭化ケイ素単結晶の大きさ、坩堝の大きさ等に応じて適宜選択することができる。
昇華用原料の純度は、製造する炭化ケイ素単結晶中への多結晶や多型の混入を可能な限り防止する観点からは、純度の高いことが好ましく、具体的には、不純物元素の各含有量が0.5ppm以下であるのが好ましい。
昇華用原料は、粉体であってもよく、また、その粉体を焼結した固形体であってもよい。また、炭化ケイ素粉末は、大きさが不均一であるため、解粉、分級等を行うことにより所望の粒度にすることができる。炭化ケイ素粉末の平均粒径としては、粉体を昇華用原料に用いる場合、10〜700μmが好ましく、100〜400μmがより好ましい。平均粒径が10μm未満であると、炭化ケイ素単結晶を成長させるための炭化ケイ素の昇華温度、即ち1800℃〜2700℃で速やかに焼結を起こしてしまうため、昇華表面積が小さくなり、炭化ケイ素単結晶の成長が遅くなることがあり、また、炭化ケイ素粉末を坩堝へ収容させる際や、成長速度調整のために再結晶雰囲気の圧力を変化させる際に、炭化ケイ素粉末が飛散し易くなる。一方、平均粒径が500μmを超えると、炭化ケイ素粉末自身の比表面積が小さくなるため、やはり炭化ケイ素単結晶の成長が遅くなることがある。
炭化ケイ素単結晶の製造装置のるつぼ内における昇華用原料の加熱温度、種結晶の加熱温度、るつぼ内の雰囲気及び圧力については特に限定されない。炭化ケイ素単結晶を製造するために通常用いられる製造条件を適用することが可能である。
図1に示した真空チャック1に、Oリング1eを介して炭化ケイ素の成長端面100aを有する種結晶100を真空保持し、回転速度3000rpmにて種結晶100の裏面100bに、スピンコート液としてレジストをコーティングした。このとき、種結晶100の直径D1は75mm、真空チャック1のOリング1eの直径D2は65mmであり、D1/D2の比は0.87であった。コート膜の厚さは2μmであった。次いでスピンコート後の種結晶100をホットプレートにて200〜300℃に加熱してコート液を硬化させた。
かくして保護膜が形成された種結晶100を用いて炭化ケイ素単結晶の結晶成長をさせるために、図2に示した製造装置の黒鉛製るつぼの蓋体11の略中央部に、当該種結晶を、保護膜が形成された裏面が蓋体11に対向するようにして取り付けるとともに、容器本体12に昇華用原料40を収容した。その後、第1の誘導加熱コイル20、第2の誘導加熱コイル21及び干渉防止コイル22に通電し、容器内における温度について、昇華用原料40の近傍は、この昇華用原料40は昇華する温度として2300℃、種結晶が取り付けられた蓋体11は昇華した炭化ケイ素が種結晶上で結晶成長する温度として、この蓋体11の温度が昇華用原料40の温度よりも100℃低くなるように温度調整した。黒鉛製るつぼ内の雰囲気は、Ar雰囲気で5Torrに維持した。このようにして原料側から種結晶の結晶成長を行わせた後、十分に冷却したのちに黒鉛製るつぼ10から単結晶を取り出し、ウェハ状に切り出した後、得られたウェハを鏡面に研磨し、そのマイクロパイプ欠陥について、溶融KOHによるエッチング評価を行った。また、マクロ欠陥についても評価を行った。一方、比較のために成長端面を有していない種結晶を用いて、図2に示した製造装置により上述と同一条件で結晶成長させて得られたウェハについても、マイクロパイプ欠陥について調べた。その結果を表1に示す。
Figure 2010083681
表1から分かるように、成長端面を有する種結晶を用いることにより、マイクロパイプ欠陥は、平方インチ当たりの密度として、成長端面を用いない場合よりも一桁小さい値であった。
次に、成長端面を有する種結晶について、上述した条件により裏面に保護膜を形成した後に結晶成長させて得られた単結晶ウェハと、保護膜を形成せずに結晶成長させて得られた単結晶ウェハのマクロ欠陥(ボイド)について調べた結果を表2に示す。
Figure 2010083681
表2から分かるように、成長端面を有し、裏面に保護膜が形成された種結晶を用いることにより、マクロ欠陥は、比較例と比べて格段に抑制されていた。
以上、本実施形態に係る炭化ケイ素単結晶の製造方法を実施例に従って説明したが、本発明の炭化ケイ素単結晶の製造方法は、実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることはいうまでもない。
本発明の炭化ケイ素単結晶の製造方法を実施するための真空チャックの一例を模式的に示す垂直断面図である。 炭化ケイ素単結晶の製造装置の一例を示す模式的な断面図である。
符号の説明
1 真空チャック
1a 円盤部
1b 回転軸部
1c 周壁部
1d 溝
1e Oリング(環状弾性支持体)
1f 排気孔
10 黒鉛製るつぼ
11 蓋体
12 容器本体
40 昇華用原料
100 種結晶
100a 成長端面
100b 裏面

Claims (4)

  1. 炭化ケイ素単結晶製造装置の容器内に昇華用原料を収容すると共にこの昇華用原料に略対向して炭化ケイ素単結晶の種結晶を配置し、加熱により昇華させた前記昇華用原料を前記種結晶の表面上で再結晶させて炭化ケイ素単結晶を結晶成長させる炭化ケイ素単結晶の製造方法であって、
    前記種結晶は、前記昇華用原料に対向させる側に成長端面を有するものであり、この成長端面を有する種結晶を炭化ケイ素単結晶製造装置の容器内に設置するに先立って、種結晶の成長端面を真空チャックで保持しつつ、種結晶の裏面に保護膜を形成することを特徴とする炭化ケイ素単結晶の製造方法。
  2. 前記真空チャックは、種結晶よりも小さい直径を有する円盤部と、この円盤部の下面の直径方向中央部に形成された回転軸部と、円盤部の厚さ方向に貫通する排気孔と、円盤部の上面の外周縁に沿って立設された周壁部と、この周壁部の先端部に突設され種結晶の成長端面と当接する環状弾性支持体とを有することを特徴とする請求項1に記載の炭化ケイ素単結晶の製造方法。
  3. 種結晶よりも小さい直径を有する円盤部と、この円盤部の下面の直径方向中央部に形成された回転軸部と、円盤部の厚さ方向に貫通する排気孔と、円盤部の上面の外周縁に沿って立設された周壁部と、この周壁部の先端部に突設され種結晶の成長端面と当接する環状弾性支持体とを有することを特徴とする真空チャック。
  4. 前記環状弾性支持体の直径は、種結晶の直径の70%以上であることを特徴とする請求項3に記載の真空チャック。
JP2008250828A 2008-09-29 2008-09-29 炭化ケイ素単結晶の製造方法及び真空チャック Pending JP2010083681A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250828A JP2010083681A (ja) 2008-09-29 2008-09-29 炭化ケイ素単結晶の製造方法及び真空チャック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250828A JP2010083681A (ja) 2008-09-29 2008-09-29 炭化ケイ素単結晶の製造方法及び真空チャック

Publications (1)

Publication Number Publication Date
JP2010083681A true JP2010083681A (ja) 2010-04-15

Family

ID=42248014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250828A Pending JP2010083681A (ja) 2008-09-29 2008-09-29 炭化ケイ素単結晶の製造方法及び真空チャック

Country Status (1)

Country Link
JP (1) JP2010083681A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135913A1 (ja) * 2010-04-26 2011-11-03 住友電気工業株式会社 炭化珪素結晶および炭化珪素結晶の製造方法
CN103088426A (zh) * 2013-01-23 2013-05-08 保定科瑞晶体有限公司 一种减少碳化硅晶体籽晶生长面缺陷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256677A (ja) * 1990-03-02 1991-11-15 Sony Corp 薄片吸着保持装置
JP2000091222A (ja) * 1998-09-08 2000-03-31 Tokin Corp レジスト塗布装置
JP2003226600A (ja) * 2002-02-05 2003-08-12 Nippon Steel Corp 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びこれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256677A (ja) * 1990-03-02 1991-11-15 Sony Corp 薄片吸着保持装置
JP2000091222A (ja) * 1998-09-08 2000-03-31 Tokin Corp レジスト塗布装置
JP2003226600A (ja) * 2002-02-05 2003-08-12 Nippon Steel Corp 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びこれらの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135913A1 (ja) * 2010-04-26 2011-11-03 住友電気工業株式会社 炭化珪素結晶および炭化珪素結晶の製造方法
JP2011230941A (ja) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd 炭化珪素結晶および炭化珪素結晶の製造方法
CN102597339A (zh) * 2010-04-26 2012-07-18 住友电气工业株式会社 碳化硅晶体和制造碳化硅晶体的方法
US8574529B2 (en) 2010-04-26 2013-11-05 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
US9725823B2 (en) 2010-04-26 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
CN103088426A (zh) * 2013-01-23 2013-05-08 保定科瑞晶体有限公司 一种减少碳化硅晶体籽晶生长面缺陷的方法

Similar Documents

Publication Publication Date Title
US11242618B2 (en) Silicon carbide substrate and method of manufacturing the same
TWI750634B (zh) 碳化矽晶圓、碳化矽晶錠、碳化矽晶錠製造方法以及碳化矽晶圓製造方法
JP4480349B2 (ja) 炭化ケイ素単結晶の製造方法及び製造装置
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
JP2007204309A (ja) 単結晶成長装置及び単結晶成長方法
JP6594146B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5482643B2 (ja) 炭化珪素単結晶インゴットの製造装置
JP6338439B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
TWI774929B (zh) 碳化矽單晶的製造方法
TWI772866B (zh) 晶圓以及其製造方法
JP4054197B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶インゴットの製造方法
JP2014201498A (ja) 炭化珪素単結晶の製造方法
JP2017154926A (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP2010083681A (ja) 炭化ケイ素単結晶の製造方法及び真空チャック
JP4374986B2 (ja) 炭化珪素基板の製造方法
JP2010090012A (ja) 炭化珪素単結晶の製造方法
WO2009116581A1 (ja) 炭化ケイ素単結晶の製造方法
JP2016183108A (ja) 炭化珪素基板
JP4661039B2 (ja) 炭化珪素基板の製造方法
JP2010126380A (ja) 炭化珪素単結晶の製造方法
JP5765499B2 (ja) 炭化珪素基板
JP5983824B2 (ja) 炭化珪素基板
JP2010090013A (ja) 炭化珪素単結晶の製造方法
WO2011135669A1 (ja) SiC基板の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Effective date: 20120903

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02