JP2010082579A - Method and apparatus for applying microparticles - Google Patents

Method and apparatus for applying microparticles Download PDF

Info

Publication number
JP2010082579A
JP2010082579A JP2008256160A JP2008256160A JP2010082579A JP 2010082579 A JP2010082579 A JP 2010082579A JP 2008256160 A JP2008256160 A JP 2008256160A JP 2008256160 A JP2008256160 A JP 2008256160A JP 2010082579 A JP2010082579 A JP 2010082579A
Authority
JP
Japan
Prior art keywords
nozzle
dispersion liquid
driving voltage
fine particles
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256160A
Other languages
Japanese (ja)
Other versions
JP5188351B2 (en
Inventor
Kentaro Kumita
健太郎 汲田
Susumu Sakio
進 崎尾
Hideo Takei
日出夫 竹井
Takumi Namekawa
巧 滑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008256160A priority Critical patent/JP5188351B2/en
Publication of JP2010082579A publication Critical patent/JP2010082579A/en
Application granted granted Critical
Publication of JP5188351B2 publication Critical patent/JP5188351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for applying microparticles capable of keeping the number of spacers contained in individual spacer sections formed by dripping a coating liquid onto a substrate in a liquid crystal display and subsequently drying the dripped liquid, substantially constant and uniform. <P>SOLUTION: The method of applying microparticles includes a process of supplying a dispersion comprising a solvent and microparticles dispersed therein at least one of a plurality of nozzles 7 attached to an applicator head 6 and dripping the dispersion onto an object to be treated from the nozzle(s) 7 in question by applying a prescribed driving voltage to a piezoelectric device 7d that regulates the amount of droplets to be ejected from the nozzles 7, and a process of drying the solvent to agglomerate and array a plurality of microparticles on the object. The driving voltage to be applied to the piezoelectric device 7d is determined from the rate of change in the number of the microparticles on the object and the measured value of the number of the microparticles thereon, with the former obtained beforehand by dripping the dispersion onto the object while changing the driving voltage applied to the piezoelectric device 7d and the latter measured upon dripping the dispersion onto the object by applying a prescribed driving voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微粒子塗布方法及び微粒子塗布装置に関し、特に、液晶表示装置にてセルギャップを維持するスペーサ部を形成するために用いることができるインクジェット式のものに関する。   The present invention relates to a fine particle coating method and a fine particle coating apparatus, and more particularly to an ink jet type that can be used to form a spacer portion that maintains a cell gap in a liquid crystal display device.

近年、パーソナルコンピューターや携帯情報端末などの機器の表示手段として、例えばアクティブマトリックス方式の液晶パネルを用いた液晶表示装置が用いられている。この液晶表示装置では、カラーフィルタと液晶駆動側基板とを対向させて1〜10μm程度の間隙部(セルギャップ)を設け、この間隙部内に液晶を充填してその周囲をシール材で密封している。そして、このような液晶表示装置において表示品質の良いものを得るには、上記セルギャップを一定かつ均一に維持することが必要となる。   In recent years, for example, a liquid crystal display device using an active matrix liquid crystal panel has been used as a display means for devices such as personal computers and portable information terminals. In this liquid crystal display device, a color filter and a liquid crystal driving side substrate are opposed to each other to provide a gap (cell gap) of about 1 to 10 μm, and the gap is filled with liquid crystal and the periphery thereof is sealed with a sealing material. Yes. In order to obtain such a liquid crystal display device with good display quality, it is necessary to maintain the cell gap constant and uniform.

セルギャップを一定かつ均一に維持する方法として、インクジェット式の塗布装置を用い、基板上の所定位置に、溶剤に粒状(球状)または棒粒状のスペーサを分散させた分散液を吐出し、複数個のスペーサの凝集体からなるスペーサ部を形成することが例えば特許文献1で知られている。上記特許文献1では、例えば基板上の画素を囲むように設けられた遮光膜がT字状又は十字状に交差する部分に分散液を滴下することや複数の塗布ヘッドから同時に分散液を吐出させて生産性を向上させることも提案されている。   As a method for maintaining a constant and uniform cell gap, an inkjet coating apparatus is used, and a plurality of dispersion liquids in which granular (spherical) or rod-shaped spacers are dispersed in a solvent are ejected to a predetermined position on a substrate. For example, Patent Document 1 discloses the formation of a spacer portion made of an aggregate of spacers. In Patent Document 1, for example, a dispersion liquid is dropped onto a portion where a light-shielding film provided so as to surround pixels on a substrate intersects in a T shape or a cross shape, or the dispersion liquid is simultaneously ejected from a plurality of coating heads. It has also been proposed to improve productivity.

上記インクジェット式の塗布装置に用いられる塗布ヘッドとしては、液滴吐出量の調節が容易であることから、塗工液通路内に圧電素子(ピエゾ素子)を設けた複数のノズルを備えたものが一般に使用される。また、塗布ヘッドの各ノズルからの液滴の吐出に先立っては、ノズルから吐出(滴下)される液滴の大きさ(液滴吐出量)が塗工液の滴下速度に比例し、また、ノズルからの塗工液の滴下速度が圧電素子に印加する駆動パルス電圧に比例することに着目し、各ノズルからの塗工液の滴下速度が所望の規定速度範囲内となるように、各ノズル毎に圧電素子への駆動パルス電圧及びパルス幅(駆動電圧印加時間)が調節される。   As the coating head used in the above-described ink jet type coating apparatus, one having a plurality of nozzles provided with piezoelectric elements (piezo elements) in the coating liquid passage is easy to adjust the droplet discharge amount. Generally used. Prior to the discharge of droplets from each nozzle of the coating head, the size (droplet discharge amount) of the droplets discharged (dropped) from the nozzles is proportional to the dropping speed of the coating liquid, Focusing on the fact that the dropping speed of the coating liquid from the nozzle is proportional to the drive pulse voltage applied to the piezoelectric element, so that the dropping speed of the coating liquid from each nozzle is within the desired specified speed range. The drive pulse voltage and pulse width (drive voltage application time) to the piezoelectric element are adjusted every time.

然し、上記のように液滴吐出量を調節しても、各液滴に含まれるスペーサの個数にばらつきがあるため、形成された各スペーサ部に含まれるスペーサの個数にばらつきが生じ、各スペーサ部の高さを均一に形成することが難しいという問題がある。
特開平11−24083号公報
However, even if the droplet discharge amount is adjusted as described above, since the number of spacers included in each droplet varies, the number of spacers included in each formed spacer portion varies. There is a problem that it is difficult to form the height of the portion uniformly.
JP-A-11-24083

本発明は、以上の点に鑑み、処理対象物に液滴を滴下して乾燥させることで形成された各スペーサ部に含まれるスペーサの個数を実質的に一定かつ均一にすることができる微粒子塗布方法及び微粒子塗布装置を提供することをその課題とする。   In view of the above points, the present invention provides a fine particle coating capable of making the number of spacers included in each spacer portion formed by dropping and drying droplets on a processing object to be substantially constant and uniform. It is an object of the present invention to provide a method and a fine particle coating apparatus.

上記課題を解決するために、本発明は、塗布ヘッドの少なくとも1個のノズルに対して微粒子を溶剤に分散させた分散液を供給し、前記ノズルからの液滴吐出量を調節する圧電素子に所定の駆動電圧を印加してノズルから処理対象物上に分散液を滴下する工程と、前記溶剤を乾燥させて複数個の微粒子を凝集配置する工程とを含む微粒子塗布方法において、前記圧電素子への駆動電圧を変化させて分散液を滴下したときの処理対象物上での微粒子の個数の変化率を予め取得しておき、所定の駆動電圧にて処理対象物上に分散液を滴下したときの微粒子の個数を実測し、前記実測値と前記変化率から前記圧電素子に印加すべき駆動電圧を決定することを特徴とする。   In order to solve the above-described problems, the present invention provides a piezoelectric element that supplies a dispersion liquid in which fine particles are dispersed in a solvent to at least one nozzle of a coating head, and adjusts a droplet discharge amount from the nozzle. In the fine particle coating method, the method comprising: applying a predetermined driving voltage to dripping a dispersion liquid onto a processing object from a nozzle; and drying the solvent to aggregate and arrange a plurality of fine particles. When the rate of change in the number of fine particles on the object to be treated when the dispersion liquid is dropped by changing the driving voltage is acquired in advance, and the dispersion liquid is dripped onto the object to be treated at a predetermined driving voltage. The number of fine particles is measured, and the drive voltage to be applied to the piezoelectric element is determined from the measured value and the rate of change.

本発明によれば、塗布ヘッドのノズルから分散液を処理対象物上の所定位置に滴下して塗布した後、当該位置における微粒子の個数を実測する。そして、この実測値と予め取得した駆動電圧に対する微粒子の個数の変化率とを基に、液滴吐出量を調節する圧電素子への駆動電圧を変えるため、基板上の各所に塗布された微粒子の個数を実質的に一定かつ均一にできる。   According to the present invention, after the dispersion liquid is dropped from a nozzle of the coating head onto a predetermined position on the object to be coated, the number of fine particles at the position is measured. And based on this measured value and the rate of change of the number of fine particles with respect to the drive voltage acquired in advance, the drive voltage to the piezoelectric element for adjusting the droplet discharge amount is changed. The number can be made substantially constant and uniform.

このように本発明においては、前記微粒子は、液晶表示装置にてセルギャップを維持するスペーサ部形成用のスペーサとすれば、各スペーサ部に含まれるスペーサの個数を実質的に一定かつ均一とすることができ、表示品位の高い液晶表示装置を生産性良く製造できる。   As described above, in the present invention, if the fine particles are spacers for forming a spacer portion that maintains a cell gap in a liquid crystal display device, the number of spacers included in each spacer portion is made substantially constant and uniform. Therefore, a liquid crystal display device with high display quality can be manufactured with high productivity.

また、上記課題を解決するために、本発明は、処理対象物を保持した状態で1軸方向に移動自在なステージと、前記ステージの移動方向をX軸方向として、当該X軸方向に直交するY軸方向に設けられた少なくとも1個のノズルを有する塗布ヘッドとを備え、前記塗布ヘッドと処理対象物とを相対移動させながら、圧電素子に所定の駆動電圧を印加してノズルから微粒子を溶剤に分散させた分散液を処理対象物上に滴下して塗布する微粒子塗布装置において、前記ノズルから分散液を処理対象物上に滴下して塗布したときの微粒子の個数を実測する測定手段と、駆動電圧の変化に応じた処理対象物上の微粒子の個数の変化率が記憶され、測定手段での実測値と変化率からノズル毎に印加すべき駆動電圧を制御する制御手段とを更に備えることを特徴とする。   In order to solve the above problems, the present invention is directed to a stage that is movable in a single axis direction while holding a processing target, and a direction perpendicular to the X axis direction, where the moving direction of the stage is an X axis direction. A coating head having at least one nozzle provided in the Y-axis direction, and applying a predetermined driving voltage to the piezoelectric element while relatively moving the coating head and the object to be processed to remove particles from the nozzle. In the fine particle coating apparatus for applying the dispersion liquid dispersed on the object to be treated by dropping, a measuring means for actually measuring the number of fine particles when the dispersion liquid is applied onto the object by being dropped from the nozzle, A rate of change of the number of fine particles on the object to be processed according to a change in the drive voltage is stored, and a control unit for controlling the drive voltage to be applied to each nozzle from the actual measurement value and the rate of change in the measurement unit is further provided. And features.

以下に図面を参照して、処理対象物としてカラーフィルタ用のガラス等の基板W上の画素Gを囲むように遮光膜Pが設けられたものを用い、当該遮光膜PがT字状又は十字状に交差する部分に複数個(2〜15個)のスペーサの凝集体からなるスペーサ部SPを形成することに本発明の微粒子塗布方法及び微粒子塗布装置を適用した実施の形態について説明する。   In the following, referring to the drawings, the object to be processed is provided with a light shielding film P so as to surround a pixel G on a substrate W such as glass for color filter, and the light shielding film P is T-shaped or cross-shaped. An embodiment in which the fine particle coating method and the fine particle coating apparatus of the present invention are applied to the formation of a spacer portion SP made of an aggregate of a plurality of (2 to 15) spacers at portions intersecting in a shape will be described.

図1及び図2に示すように、本実施の形態の微粒子塗布装置Mは、インクジェット式のものであり、プラットホーム1を備える。プラットホーム1上には直方体形状のベース板2が配置され、ベース板2上には、基板Wを吸着保持するステージ3がベース板2の上面に固定したガイドレール4に沿って水平の1軸方向(X軸方向)に移動自在に支持されている。そして、図示省略したモータにより送りねじ機構を介してステージ3がX軸方向に往復動されるようにしている。なお、本実施の形態では、スペーサ部SPを形成する際に図1中左側から右側へと基板Wが移動し、後述のフレームの上流側では、基板搬送手段Rによってステージ3上に基板Wを位置決め配置できるようになっている。   As shown in FIGS. 1 and 2, the fine particle coating apparatus M of the present embodiment is of an ink jet type and includes a platform 1. A rectangular parallelepiped base plate 2 is disposed on the platform 1, and a horizontal axis 1 is placed on the base plate 2 along a guide rail 4 on which a stage 3 for attracting and holding the substrate W is fixed to the upper surface of the base plate 2. It is supported so as to be movable in the (X-axis direction). The stage 3 is reciprocated in the X-axis direction via a feed screw mechanism by a motor (not shown). In this embodiment, when forming the spacer portion SP, the substrate W moves from the left side to the right side in FIG. 1, and the substrate W is placed on the stage 3 by the substrate transfer means R on the upstream side of the frame described later. It can be positioned and arranged.

ベース板2上には、X軸方向に直交する水平方向(Y軸方向)に長手の門型のフレーム5がステージ3の移動経路を跨ぐようにして配置されている。フレーム5には、インクジェット式の塗布ヘッド6が、図示省略の駆動手段によりY軸方向に沿って往復動自在に設けられている。塗布ヘッド6は、Y軸方向に所定の間隔を存して列設された複数個のノズル7を有する。この場合、各ノズル7相互の間隔は、上記遮光膜Pの交差する部分の間隔に一致させて設定されるが、その間隔を微調整するために、X軸方向に直行するZ軸方向の軸線周りに塗布ヘッド6を回転させる図示省略の回転機構を設ける構成を採用することが好ましい。   On the base plate 2, a gate-shaped frame 5 that is long in the horizontal direction (Y-axis direction) orthogonal to the X-axis direction is disposed so as to straddle the movement path of the stage 3. An ink jet type coating head 6 is provided on the frame 5 so as to reciprocate along the Y-axis direction by a driving means (not shown). The coating head 6 has a plurality of nozzles 7 arranged in a row at a predetermined interval in the Y-axis direction. In this case, the interval between the nozzles 7 is set to coincide with the interval between the intersecting portions of the light shielding film P. In order to finely adjust the interval, an axis line in the Z-axis direction orthogonal to the X-axis direction is set. It is preferable to employ a configuration in which a rotation mechanism (not shown) that rotates the coating head 6 around is provided.

図3に示すように、各ノズル7は同一の構造を有し、塗工液通路7aと、塗工液通路7aの下端にチャンバ7bを介して連通するノズルヘッド7cとを備える公知のものであり、チャンバ7bに設けた圧電素子7d(例えばピエゾ素子)に図示省略の電圧制御回路によりパルス状に駆動電圧を印加することで適宜駆動させて後述の分散液をノズルヘッド7cから吐出、滴下するように構成されている。   As shown in FIG. 3, each nozzle 7 has the same structure, and is a known one provided with a coating liquid passage 7a and a nozzle head 7c communicating with the lower end of the coating liquid passage 7a via a chamber 7b. Yes, a piezoelectric element 7d (for example, a piezo element) provided in the chamber 7b is appropriately driven by applying a driving voltage in a pulse form by a voltage control circuit (not shown) to discharge and drop a dispersion liquid described later from the nozzle head 7c. It is configured as follows.

ここで、液晶表示装置の製造においてスペーサ部SP形成に用いられる塗工液としては、特に制限はなく、公知のものを用いることができ、例えば所定の粒子径を有するスペーサを溶媒中に分散させてなる分散液が用いられる。スペーサSとしては、ガラス、アルミナ又はプラスチック等からなる球状又は棒状のものであって、その粒子径が1μm〜10μm程度の公知のものが用いられる。また、溶剤としては、常温で液体であり、上記スペーサSを分散させることができるものであれば、特に制限はないが、塗布ヘッド6から安定的に吐出可能なように、水または親水性の有機溶剤を用いることが好ましい。   Here, there is no restriction | limiting in particular as a coating liquid used for spacer part SP formation in manufacture of a liquid crystal display device, A well-known thing can be used, for example, the spacer which has a predetermined particle diameter is disperse | distributed in a solvent. The dispersion liquid is used. As the spacer S, a known one having a spherical or rod shape made of glass, alumina, plastic or the like and having a particle diameter of about 1 μm to 10 μm is used. The solvent is not particularly limited as long as it is a liquid at room temperature and can disperse the spacer S. However, water or a hydrophilic solvent is used so that it can be stably discharged from the coating head 6. It is preferable to use an organic solvent.

また、上記溶剤は、基板W上に分散液を塗布した後、溶媒が低い温度で揮発するように、沸点(1気圧下)が100°以下の親水性有機溶剤を含むことが好ましい。このような親水性有機溶剤としては、エタノール、n−プロパノール、2−プロパノール等の低級モノアルコールやアセトンが例として挙げられ、これらは、単独または2種以上を併用するようにしてもよい。   The solvent preferably contains a hydrophilic organic solvent having a boiling point (under 1 atm) of 100 ° or less so that the solvent volatilizes at a low temperature after the dispersion is applied on the substrate W. Examples of such hydrophilic organic solvents include lower monoalcohols such as ethanol, n-propanol and 2-propanol, and acetone. These may be used alone or in combination of two or more.

このような分散液は、配管7eを介してノズル7の塗工液通路7bに通じる塗工液収納部8に収容されている。塗工液収納部8は、相互に隔絶され、流体ポンプ8aを備えた配管8bを介して両槽間で分散液の移しかえを可能とする攪拌槽8cと超音波処理槽8dとを備えた公知のものである。そして、攪拌槽8cにて溶剤中のスペーサSを攪拌しつつ、また、超音波処理槽8dにて脱気しながら超音波により振動を加えて分散液中でスペーサSが凝集することを防止して、スペーサSが均等に分散した分散液が常時各ノズル7に供給されるようにしている。なお、基板Wの所定位置に分散液を塗布した後、強制的に溶剤を蒸発させて乾燥するために、ステージ3に例えば抵抗加熱式のヒータを組み付け、基板Wを加熱できる構成を採用してもよい。   Such a dispersion liquid is accommodated in the coating liquid storage part 8 which leads to the coating liquid passage 7b of the nozzle 7 via the pipe 7e. The coating liquid storage unit 8 includes an agitation tank 8c and an ultrasonic treatment tank 8d that are isolated from each other and enable transfer of the dispersion liquid between both tanks via a pipe 8b provided with a fluid pump 8a. It is a well-known thing. Then, while stirring the spacer S in the solvent in the stirring tank 8c and degassing in the ultrasonic processing tank 8d, vibration is applied by ultrasonic waves to prevent the spacer S from aggregating in the dispersion. Thus, the dispersion liquid in which the spacers S are uniformly dispersed is always supplied to each nozzle 7. In addition, after applying the dispersion liquid to a predetermined position of the substrate W, for example, a resistance heating type heater is attached to the stage 3 to forcibly evaporate the solvent and dry, thereby adopting a configuration capable of heating the substrate W. Also good.

また、微粒子塗布装置Mは、マイコンやシーケンサ等を備えた公知の制御手段Cを有し、基板Wの吸着保持、ステージ3の移動、圧電素子7dへの駆動電圧の制御による液滴吐出量を統括制御できるようになっている。また、基板Wの移動方向下流側には、CCDカメラ9が設けられている。CCDカメラ9は、Y軸方向に移動自在な支持板(図示せず)に吊持され、分散液が塗布された基板Wの当該塗布位置を撮像し、撮像された画像を図示省略した公知の画像解析装置で解析した後、その画像データを制御手段Cに送信するようになっている。この場合、CCDカメラと画像解析装置とが本実施の形態の測定手段を構成する。   The fine particle coating apparatus M has a known control means C equipped with a microcomputer, a sequencer, etc., and controls the droplet discharge amount by suction holding of the substrate W, movement of the stage 3, and control of the driving voltage to the piezoelectric element 7d. General control is now possible. Further, a CCD camera 9 is provided on the downstream side in the movement direction of the substrate W. The CCD camera 9 is hung on a support plate (not shown) that is movable in the Y-axis direction, captures the application position of the substrate W coated with the dispersion liquid, and does not show the captured image. After being analyzed by the image analysis device, the image data is transmitted to the control means C. In this case, the CCD camera and the image analysis apparatus constitute the measuring means of the present embodiment.

以下に本発明の微粒子塗布方法によるスペーサ部SPの形成について説明する。先ず、各塗布ヘッド6の各ノズル7によるガラス基板Wへの分散液の塗布に先立って、各ノズル7からの塗工液の吐出可能なメニスカスの形成した後この吐出準備は公知の方法で行われる。例えば、塗布装置Mにストロボ発光装置と、ノズルヘッド7cから吐出された液滴の位置を検出するCCDカメラ等の観察装置とを設け、ストロボ発光間隔内における液滴の移動距離から液滴の吐出速度及びノズルヘッド7cからの延長線に対する液滴の飛翔角を検出する。そして、吐出速度及び飛翔角が所定の範囲に含まれるように、制御手段Cにより電圧制御回路を介して印加すべき駆動電圧またはパルス幅(駆動電圧印加時間)が調節される。各ノズル7からの液滴の滴下速度の調節(吐出準備)を行う。   The formation of the spacer portion SP by the fine particle coating method of the present invention will be described below. First, prior to the application of the dispersion liquid to the glass substrate W by the nozzles 7 of the coating heads 6, meniscuses that can discharge the coating liquid from the nozzles 7 are formed, and then the preparation for discharging is performed by a known method. Is called. For example, the coating device M is provided with a stroboscopic light emitting device and an observation device such as a CCD camera for detecting the position of the liquid droplet ejected from the nozzle head 7c. The velocity and the flying angle of the droplet with respect to the extended line from the nozzle head 7c are detected. Then, the drive voltage or the pulse width (drive voltage application time) to be applied is adjusted by the control means C via the voltage control circuit so that the ejection speed and the flight angle are included in the predetermined range. The drop rate of droplets from each nozzle 7 is adjusted (preparation for discharge).

この吐出準備は公知の方法で行われる。例えば、塗布装置Mにストロボ発光装置と、ノズルヘッド7cから吐出された液滴の位置を検出するCCDカメラ等の観察装置とを設け、ストロボ発光間隔内における液滴の移動距離から液滴の吐出速度及びノズルヘッド7cからの延長線に対する液滴の飛翔角を検出する。そして、吐出速度及び飛翔角が所定の範囲に含まれるように、制御手段Cにより電圧制御回路を介して印加すべき駆動電圧またはパルス幅(駆動電圧印加時間)が調節される。   This preparation for discharge is performed by a known method. For example, the coating device M is provided with a stroboscopic light emitting device and an observation device such as a CCD camera for detecting the position of the liquid droplet ejected from the nozzle head 7c. The velocity and the flying angle of the droplet with respect to the extended line from the nozzle head 7c are detected. Then, the drive voltage or the pulse width (drive voltage application time) to be applied is adjusted by the control means C via the voltage control circuit so that the discharge speed and the flying angle are included in the predetermined range.

次に、図示省略のダミー基板を用い、少なくとも1個のノズル7において、パルス幅を一定にし、圧電素子7dに印加する駆動電圧を変化させたときのスペーサ部SPを形成するスペーサSの個数の変化率を取得する。即ち、ダミー基板への滴下位置をずらし、かつ、電圧制御回路によりパルス幅を一定に保持しつつ駆動電圧を段階的に増加させながら、1滴ずつ分散液を滴下していく。このとき、各駆動電圧に対して複数滴(好ましくは100点以上)分散液を塗布することがよい。   Next, a dummy substrate (not shown) is used, and at least one nozzle 7 has a constant pulse width and the number of spacers S forming the spacer portion SP when the drive voltage applied to the piezoelectric element 7d is changed. Get the rate of change. That is, the dispersion liquid is dropped one by one while shifting the dropping position on the dummy substrate and increasing the driving voltage stepwise while keeping the pulse width constant by the voltage control circuit. At this time, it is preferable to apply a plurality of droplets (preferably 100 points or more) dispersion liquid for each driving voltage.

そして、基板Wを自然乾燥または加熱乾燥して凝集させた後に、測定手段により各塗布位置でのスペーサSの個数を実測する。即ち、各塗布位置において、CCDカメラ9により分散液を塗布した位置をそれぞれ撮像し、撮像された画像を図示省略した公知の画像解析装置で解析して、その画像データを制御手段Cに送信する。これにより、駆動電圧に対するスペーサSの個数が測定され、これを基にスペーサの個数の変化率が算出され、その変化率が制御手段Cに記憶させるようになっている。   Then, after the substrate W is naturally dried or heat-dried and aggregated, the number of the spacers S at each application position is measured by a measuring unit. That is, at each application position, the position where the dispersion liquid is applied is picked up by the CCD camera 9, the picked-up image is analyzed by a known image analysis device (not shown), and the image data is transmitted to the control means C. . Thereby, the number of spacers S with respect to the drive voltage is measured, and based on this, the rate of change of the number of spacers is calculated, and the rate of change is stored in the control means C.

なお、図4には、スペーサの個数の変化率を取得したときの一例として、ノズル径が27μm、スペーサとして、積水化学工業社製で平均粒子径が3.6μm、溶剤としてイソプロピルアルコール、エチレングリコール等の混合液を用い、これに上記スペーサを分散させた分散液を用い(濃度1.8重量%)、駆動電圧に対するスペーサSの個数を測定したときの結果が示され、これから変化率が算出される。このような変化率の取得作業は、例えば塗布ヘッド6のメンテナンスを行った後等に適宜実施すればよい。また、スペーサSの個数は、液晶表示装置の種類に応じて適宜設定され、その目標とする個数が制御手段に入力できるようになっている。   In addition, in FIG. 4, as an example when the change rate of the number of spacers is acquired, the nozzle diameter is 27 μm, the spacer is manufactured by Sekisui Chemical Co., Ltd., the average particle diameter is 3.6 μm, the solvent is isopropyl alcohol, ethylene glycol The result of measuring the number of spacers S with respect to the driving voltage is shown using a dispersion liquid in which the above spacer is dispersed (concentration 1.8 wt%), and the rate of change is calculated therefrom. Is done. Such a change rate acquisition operation may be appropriately performed, for example, after maintenance of the coating head 6 is performed. The number of spacers S is appropriately set according to the type of the liquid crystal display device, and the target number can be input to the control means.

次に、各ノズル7の圧電素子7dに印加する駆動電圧を個々に設定する。先ず、基板W上の画素Gを囲むように遮光膜Pが設けられたものを用い、当該遮光膜がT字状又は十字状に交差する部分に、設定された目標個数のスペーサの凝集体からなるスペーサ部SPを形成する。   Next, the drive voltage applied to the piezoelectric element 7d of each nozzle 7 is individually set. First, a light shielding film P provided so as to surround the pixel G on the substrate W is used, and an aggregate of a set target number of spacers is formed at a portion where the light shielding film intersects in a T shape or a cross shape. A spacer portion SP is formed.

即ち、スペーサSの個数を相互に調節するために用いる基板Wをステージに位置決め配置した後、吸着保持させる。この状態でステージ3をX軸方向に沿って移動させると共に、このステージ3の移動に同期して塗布ヘッド6を走査移動させながら、上記交差部分にそれぞれに分散液を1滴ずつ滴下して塗布していく。そして、基板Wを自然乾燥または加熱乾燥して凝集させると、上記位置にスペーサ部SPが形成される。   That is, the substrate W used for mutually adjusting the number of the spacers S is positioned and arranged on the stage and then held by suction. In this state, the stage 3 is moved along the X-axis direction, and the coating head 6 is scanned and moved in synchronism with the movement of the stage 3 while applying a drop of the dispersion liquid to each of the intersections. I will do it. When the substrate W is naturally dried or heat-dried and aggregated, the spacer portion SP is formed at the above position.

このとき、塗布ヘッド6の下流側に位置する測定手段により各塗布位置でのスペーサ部SPを形成するスペーサSの個数を実測する。即ち、各塗布位置において、CCDカメラ9により分散液を塗布した位置をそれぞれ撮像し、撮像された画像を図示省略した公知の画像解析装置で解析して、その画像データを制御手段Cに送信する。制御手段Cに画像データが入力されると、実測値と上記変化率とから各塗布ヘッドに印加するのに最適な駆動電圧が決定され、これにより、量産用のガラス基板へのスペーサ部形成準備が終了する。   At this time, the number of the spacers S that form the spacer portion SP at each application position is measured by the measuring means located on the downstream side of the application head 6. That is, at each application position, the position where the dispersion liquid is applied is picked up by the CCD camera 9, the picked-up image is analyzed by a known image analysis device (not shown), and the image data is transmitted to the control means C. . When image data is input to the control means C, an optimum driving voltage to be applied to each coating head is determined from the actual measurement value and the rate of change, thereby preparing for the formation of the spacer portion on the glass substrate for mass production. Ends.

即ち、実測したスペーサの個数をNc、目標とするスペーサの個数をNr、現在の駆動電圧をVc(V)、補正すべき駆動電圧をVr(V)とすると、ΔN=Nc−Nr(式1)、ΔV=Vc−Vr(式2)から定まり、このΔN/ΔVが予め取得した駆動電圧に対するスペーサの個数の変化率に一致することとなる。   That is, if the actually measured number of spacers is Nc, the target number of spacers is Nr, the current drive voltage is Vc (V), and the drive voltage to be corrected is Vr (V), then ΔN = Nc−Nr (Equation 1 ), ΔV = Vc−Vr (Equation 2), and this ΔN / ΔV coincides with the rate of change of the number of spacers with respect to the drive voltage acquired in advance.

ここで、変化率ΔN/ΔV=1.7(図4参照)である場合を例として説明すれば、Ncが13、Nrが11及びVcが14とすると、式(1)よりΔN=2となり、これを式(3)に代入すると、ΔVが1.2Vとなる。その結果、この値と式(2)よりVcが12.8Vと判る。このようにしてノズル7毎に駆動パルス電圧を決定していく。   Here, if the rate of change ΔN / ΔV = 1.7 (see FIG. 4) is described as an example, if Nc is 13, Nr is 11 and Vc is 14, ΔN = 2 from equation (1). If this is substituted into the equation (3), ΔV becomes 1.2V. As a result, Vc is found to be 12.8 V from this value and equation (2). In this way, the drive pulse voltage is determined for each nozzle 7.

なお、スペーサ部形成準備においてはダミー基板を用いることができ、また、このスペーサSの個数の実測は全てのノズル7に対して行われる。この場合、1個のノズル7に対して複数回(好ましくは100点以上)、分散液を吐出させて測定手段によりスペーサSの個数を実測し、その平均値を実測したスペーサの個数とするのがよい。   A dummy substrate can be used in preparation for forming the spacer portion, and the actual number of spacers S is measured for all the nozzles 7. In this case, the number of the spacers S is measured by the measurement means by discharging the dispersion liquid a plurality of times (preferably 100 points or more) to one nozzle 7, and the average value is used as the actually measured number of spacers. Is good.

そして、上記と同じ手順で、ステージ3に、製品たるガラス基板Wを吸着保持させてX軸方向に移動させると共に、同期して塗布ヘッド6を作動させ、上記交差部分それぞれに分散液を1滴ずつ滴下して塗布し、基板を自然乾燥または加熱乾燥して凝集させると、基板各所において、スペーサSの個数が一定かつ均一なスペーサ部SPが形成される(図5参照)。   Then, in the same procedure as described above, the glass substrate W, which is a product, is sucked and held on the stage 3 and moved in the X-axis direction, and the coating head 6 is operated in synchronism, so that one drop of dispersion liquid is applied to each of the intersections. When the substrate is dropped and applied, and the substrate is naturally dried or heated to be agglomerated, spacer portions SP having a uniform and uniform number of spacers S are formed at various portions of the substrate (see FIG. 5).

このように本実施の形態によれば、塗布ヘッド6の各ノズル7から分散液をガラス基板W上の所定位置に滴下して塗布した後、当該位置におけるスペーサSの個数を実測し、この実測値と変化率を基に各ノズル7毎に駆動電圧を変えるため、スペーサSの個数を実質的に一定かつ均一にでき、液晶表示装置にてセルギャップを維持するスペーサ部SPを形成する際に、各スペーサ部SPに含まれるスペーサSの個数を実質的に均等とすることができ、表示品位の高い液晶表示装置を生産性良く製造できる。   As described above, according to the present embodiment, after the dispersion liquid is dropped and applied from the nozzles 7 of the coating head 6 to a predetermined position on the glass substrate W, the number of the spacers S at the position is actually measured. Since the driving voltage is changed for each nozzle 7 on the basis of the value and the rate of change, the number of spacers S can be made substantially constant and uniform, and when forming the spacer portion SP that maintains the cell gap in the liquid crystal display device. The number of spacers S included in each spacer portion SP can be made substantially uniform, and a liquid crystal display device with high display quality can be manufactured with high productivity.

なお、上記実施の形態では、駆動電圧の変化率を予め取得するものについて説明したが、これに限定されるものではなく、駆動電圧を一定の値に保持しつつ、パルス幅(駆動電圧印加時間)を段階的に変化させてスペーサの個数の変化率を取得するようにし、パルス幅を調節してスペーサの個数の均一化を図るようにしてもよい。また、スペーサ部を形成するスペーサの個数を実測するためにCCDカメラを設けたものを例として測定手段を説明したが、上記スペーサの個数を実測できるものであれば特に制限はない。   In the above embodiment, the drive voltage change rate is acquired in advance. However, the present invention is not limited to this, and the pulse width (drive voltage application time) is maintained while maintaining the drive voltage at a constant value. ) May be changed stepwise to obtain the rate of change of the number of spacers, and the pulse width may be adjusted to make the number of spacers uniform. In addition, the measuring means has been described by taking as an example one provided with a CCD camera in order to actually measure the number of spacers forming the spacer portion, but there is no particular limitation as long as the number of the spacers can be actually measured.

実施例1では、図1に示すインクヘッド式の微粒子塗布装置Mを用い、また、基板として、サイズが370×470mmで64列の画素を囲むように遮光膜Pが設けられたものを用いて、当該遮光膜がT字状又は十字状に交差する部分に、スペーサの凝集体からなるスペーサ部を形成した。この場合、微粒子塗布装置Mの1個の塗布ヘッド6のノズル本数は64本、各ノズルのノズル径が27μmとした。さらに、スペーサとして、積水化学工業社製で平均粒子径が3.6μm、溶剤としてイソプロピルアルコール、エチレングリコール等の混合液を用い、これに上記スペーサを分散させた分散液を用いた(濃度1.8重量%)。   In Example 1, the ink head type fine particle coating apparatus M shown in FIG. 1 is used, and a substrate having a size of 370 × 470 mm and provided with a light shielding film P so as to surround 64 columns of pixels is used. A spacer portion made of an aggregate of spacers was formed at a portion where the light shielding film intersected in a T shape or a cross shape. In this case, the number of nozzles of one coating head 6 of the fine particle coating apparatus M was 64, and the nozzle diameter of each nozzle was 27 μm. Further, as the spacer, an average particle size of 3.6 μm manufactured by Sekisui Chemical Co., Ltd., a mixed liquid of isopropyl alcohol, ethylene glycol or the like as a solvent was used, and a dispersion liquid in which the spacer was dispersed was used (concentration: 1. 8% by weight).

そして、液滴の吐出速度を4m/s、吐出液滴の体積を15plに設定し、塗布ヘッド6の各ノズル7から分散液を基板上に滴下して塗布した後、当該位置におけるスペーサSの個数を実測し、この実測値と変化率を基に各ノズル7毎に駆動電圧を変えて調節した。   Then, the droplet discharge speed is set to 4 m / s, the volume of the discharged droplet is set to 15 pl, and the dispersion liquid is dropped onto the substrate from the nozzles 7 of the coating head 6 and applied. The number was measured and adjusted by changing the drive voltage for each nozzle 7 based on the measured value and the rate of change.

図6は、1列当たりの液滴100個のスペーサの個数の平均値及び標準偏差値を測定したときの結果(本実施例1)を、各ノズルの駆動電圧を調節しない状態で塗布したもの(比較例1)と共に示す表である。これによれば、比較例1と比較して本実施例1の方が、各ノズルの個数のばらつきが小さくなることが確認できた。   FIG. 6 shows the result of measuring the average value and standard deviation value of the number of spacers of 100 droplets per row (this Example 1) applied without adjusting the drive voltage of each nozzle. It is a table | surface shown with (comparative example 1). According to this, it was confirmed that the variation in the number of nozzles in Example 1 was smaller than that in Comparative Example 1.

本発明のインクジェット式の微粒子塗布装置を示す側面図。The side view which shows the inkjet type fine particle coating device of this invention. 図1の微粒子塗布装置を用いたスペーサ分散液の塗布を説明する平面図。The top view explaining application | coating of the spacer dispersion liquid using the fine particle coating device of FIG. ノズルの構成を模式的に説明する図。The figure which illustrates the structure of a nozzle typically. 圧電素子への駆動電圧とスペーサの個数の実測値との関係を示すグラフ。The graph which shows the relationship between the drive voltage to a piezoelectric element, and the measured value of the number of spacers. 基板へのスペーサ部形成を説明する部分拡大図。The elements on larger scale explaining spacer part formation to a board | substrate. 実施例1として本発明の効果を示すための実験結果を示す表。2 is a table showing experimental results for showing the effects of the present invention as Example 1. FIG.

符号の説明Explanation of symbols

M インクジェット式の塗布装置
3 ステージ
6 塗布ヘッド
7 ノズル
7d 圧電素子
9 CCDカメラ(測定手段)
G 画素
P 遮光膜
S スペーサ(微粒子)
SP スペーサ部
W 基板(処理対象物)
M Inkjet coating device
3 stages
6 Application head
7 Nozzles
7d Piezoelectric element
9 CCD camera (measuring means)
G pixel
P light shielding film
S spacer (fine particles)
SP spacer
W substrate (object to be processed)

Claims (3)

塗布ヘッドの少なくとも1個のノズルに対して微粒子を溶剤に分散させた分散液を供給し、前記ノズルからの液滴吐出量を調節する圧電素子に所定の駆動電圧を印加してノズルから処理対象物上に分散液を滴下する工程と、前記溶剤を乾燥させて複数個の微粒子を凝集配置する工程とを含む微粒子塗布方法において、
前記圧電素子への駆動電圧を変化させて分散液を滴下したときの処理対象物上での微粒子の個数の変化率を予め取得しておき、所定の駆動電圧にて処理対象物上に分散液を滴下したときの微粒子の個数を実測し、前記実測値と前記変化率から前記圧電素子に印加すべき駆動電圧を決定することを特徴とする微粒子塗布方法。
A dispersion liquid in which fine particles are dispersed in a solvent is supplied to at least one nozzle of a coating head, and a predetermined driving voltage is applied to a piezoelectric element that adjusts a droplet discharge amount from the nozzle, thereby processing the nozzle. In a fine particle coating method comprising a step of dripping a dispersion liquid on an object and a step of aggregating and arranging a plurality of fine particles by drying the solvent,
The rate of change of the number of fine particles on the object to be processed when the dispersion liquid is dropped by changing the driving voltage to the piezoelectric element is acquired in advance, and the dispersion liquid is applied on the object to be processed at a predetermined driving voltage. A method for applying fine particles, comprising: actually measuring the number of fine particles when droplets are dropped, and determining a drive voltage to be applied to the piezoelectric element from the measured value and the rate of change.
前記微粒子は、液晶表示装置にてセルギャップを維持するスペーサ部形成用のスペーサであることを特徴とする請求項1記載の微粒子塗布方法。   2. The fine particle coating method according to claim 1, wherein the fine particles are spacers for forming a spacer portion for maintaining a cell gap in a liquid crystal display device. 処理対象物を保持した状態で1軸方向に移動自在なステージと、前記ステージの移動方向をX軸方向として、当該X軸方向に直交するY軸方向に設けられた少なくとも1個のノズルを有する塗布ヘッドとを備え、前記塗布ヘッドと処理対象物とを相対移動させながら、圧電素子に所定の駆動電圧を印加してノズルから微粒子を溶剤に分散させた分散液を処理対象物上に滴下して塗布する微粒子塗布装置において、
前記ノズルから分散液を処理対象物上に滴下して塗布したときの微粒子の個数を実測する測定手段と、駆動電圧の変化に応じた処理対象物上の微粒子の個数の変化率が記憶され、測定手段での実測値と変化率からノズル毎に印加すべき駆動電圧を制御する制御手段とを更に備えることを特徴とする微粒子塗布装置。
A stage that is movable in one axial direction while holding the object to be processed, and at least one nozzle provided in the Y-axis direction orthogonal to the X-axis direction, where the moving direction of the stage is the X-axis direction. A dispersion liquid in which fine particles are dispersed in a solvent from a nozzle by applying a predetermined driving voltage to the piezoelectric element while relatively moving the coating head and the processing object. In the fine particle coating device for coating,
Measuring means for actually measuring the number of fine particles when the dispersion liquid is dropped onto the object to be treated and applied from the nozzle, and the rate of change of the number of particles on the object to be treated according to the change in drive voltage is stored, A fine particle coating apparatus further comprising control means for controlling a driving voltage to be applied to each nozzle from an actual measurement value and a change rate of the measuring means.
JP2008256160A 2008-10-01 2008-10-01 Fine particle coating method and fine particle coating apparatus Expired - Fee Related JP5188351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256160A JP5188351B2 (en) 2008-10-01 2008-10-01 Fine particle coating method and fine particle coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256160A JP5188351B2 (en) 2008-10-01 2008-10-01 Fine particle coating method and fine particle coating apparatus

Publications (2)

Publication Number Publication Date
JP2010082579A true JP2010082579A (en) 2010-04-15
JP5188351B2 JP5188351B2 (en) 2013-04-24

Family

ID=42247065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256160A Expired - Fee Related JP5188351B2 (en) 2008-10-01 2008-10-01 Fine particle coating method and fine particle coating apparatus

Country Status (1)

Country Link
JP (1) JP5188351B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218397A (en) * 2005-02-10 2006-08-24 Seiko Epson Corp Method for measuring the amount of liquid drops discharged, jig for measuring the amount of liquid drops discharged, method for adjusting the amount of liquid drops discharged, apparatus for measuring the amount of liquid drops discharged, and a drawing apparatus
JP2006326379A (en) * 2005-05-23 2006-12-07 Seiko Epson Corp Manufacturing method of electro-optical apparatus, droplet ejection apparatus and method of inspecting ejection quantity
JP2007304723A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Decision device, droplet application amount adjustment device, decision method, and droplet application amount adjustment method
JP2008180872A (en) * 2007-01-24 2008-08-07 Hitachi High-Technologies Corp Spacer ink spraying method, program, method of manufacturing liquid crystal panel, spacer ink spraying equipment, and liquid crystal panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218397A (en) * 2005-02-10 2006-08-24 Seiko Epson Corp Method for measuring the amount of liquid drops discharged, jig for measuring the amount of liquid drops discharged, method for adjusting the amount of liquid drops discharged, apparatus for measuring the amount of liquid drops discharged, and a drawing apparatus
JP2006326379A (en) * 2005-05-23 2006-12-07 Seiko Epson Corp Manufacturing method of electro-optical apparatus, droplet ejection apparatus and method of inspecting ejection quantity
JP2007304723A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Decision device, droplet application amount adjustment device, decision method, and droplet application amount adjustment method
JP2008180872A (en) * 2007-01-24 2008-08-07 Hitachi High-Technologies Corp Spacer ink spraying method, program, method of manufacturing liquid crystal panel, spacer ink spraying equipment, and liquid crystal panel

Also Published As

Publication number Publication date
JP5188351B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
EP1924897B1 (en) Waveform shaping interface
KR101395232B1 (en) Chemical coating apparatus
CN101164781B (en) Liquid droplet ejection apparatus, electro-optical apparatus and manufacturing method thereof, and electronic apparatus
JP2005119139A (en) Method and device for measuring discharge amount of functional liquid droplet jet head, method of controlling driving of functional liquid droplet jet head, liquid droplet jet device, method of manufacturing electrooptical device, electrooptical device, and electronic device
JP2008264608A (en) Liquid droplet coating apparatus and liquid droplet coating method
US20080024548A1 (en) Methods and apparatus for purging a substrate during inkjet printing
WO2005012161A1 (en) Method of producing three-dimensional structure and fine three-dimensional structure
CN109693446A (en) Fluid ejection head and liquid ejection apparatus
JP2009291710A (en) Apparatus for spraying liquid, apparatus for producing flat panel display, flat panel display, apparatus for fabricating solar cell panel, solar cell panel, method of spraying liquid, and program
JP3916898B2 (en) Manufacturing method of liquid crystal panel, manufacturing apparatus and manufacturing system thereof
CN114290805A (en) Printing apparatus and printing method
JP5188351B2 (en) Fine particle coating method and fine particle coating apparatus
JP2005296854A (en) Membrane formation apparatus and membrane formation method
CN1310765C (en) Drawing device, electro-optical unit, and electronic apparatus
JP7237616B2 (en) Inkjet device and method for manufacturing functional element using the same
JP2016059863A (en) Coating applicator and method for removing bubble in coating head
KR100528585B1 (en) Film forming apparatus, filling method of liquid-shape body thereof, device manufacturing method and device manufacturing apparatus, and device
JP5188352B2 (en) Fine particle coating method
JP2010082581A (en) Method of applying microparticles
JP2010264426A (en) Droplet coating method and apparatus
JP2010104863A (en) Droplet discharge device
JP7268396B2 (en) Liquid ejection head, droplet forming device, droplet forming method, and dispensing device
JP2005246139A (en) Method and apparatus for applying fluid material, and electronic device
Engström Printing and spectrometric detection of active pharmaceutical ingredients on different surfaces
US20230211612A1 (en) Processing liquid providing apparatus and substrate treating system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees