JP2010081713A - Calculator of temperature of bonding portion of semiconductor element in voltage type power conversion apparatus - Google Patents

Calculator of temperature of bonding portion of semiconductor element in voltage type power conversion apparatus Download PDF

Info

Publication number
JP2010081713A
JP2010081713A JP2008246018A JP2008246018A JP2010081713A JP 2010081713 A JP2010081713 A JP 2010081713A JP 2008246018 A JP2008246018 A JP 2008246018A JP 2008246018 A JP2008246018 A JP 2008246018A JP 2010081713 A JP2010081713 A JP 2010081713A
Authority
JP
Japan
Prior art keywords
semiconductor element
loss
voltage
power converter
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246018A
Other languages
Japanese (ja)
Other versions
JP5371353B2 (en
Inventor
Kotaro Azuma
耕太郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008246018A priority Critical patent/JP5371353B2/en
Publication of JP2010081713A publication Critical patent/JP2010081713A/en
Application granted granted Critical
Publication of JP5371353B2 publication Critical patent/JP5371353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calculator of a temperature of a bonding portion of a semiconductor element, capable of efficiently calculating the temperature of a bonding portion of a semiconductor element. <P>SOLUTION: The calculator includes: an input means 10 capable of inputting an output voltage command of a semiconductor element of the power converter in which the temperature of the bonding portion of the semiconductor element should be calculated in the voltage type power conversion apparatus, and an output current of the semiconductor element of the calculation target; a memory table (loss-voltage-current three-dimensional table) 8 for indicating the previously stored relation among the loss of the semiconductor element, output voltage command and output current; and an operation means (CPU) capable of reading and outputting the loss of the semiconductor element at a corresponding certain time stored in the memory table 8 on the basis of the output voltage command and the output current at a certain time inputted by the input means 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、直流電力を交流電力に変換する電圧型自励式電力変換装置や他励式電力変換装置を含む電力変換装置における半導体素子の接合部の温度を計算する半導体素子接合部温度の計算装置に関する。   The present invention relates to a semiconductor element junction temperature calculation device for calculating the temperature of a semiconductor element junction in a power converter including a voltage type self-excited power converter that converts DC power into AC power and a separately excited power converter. .

例えば、電圧型自励式電力変換器に使用される半導体素子接合部温度には使用上限がある。このため、電力変換器の設計に当っては、運転中における半導体素子接合部温度を算出することが設計上非常に重要である。   For example, there is an upper limit on the semiconductor element junction temperature used in the voltage type self-excited power converter. For this reason, in designing the power converter, it is very important in design to calculate the semiconductor element junction temperature during operation.

図6は、電圧型自励式電力変換器の主回路を示すもので、主に直流電源2、電力変換器3、負荷4とから構成されている。電力変換器3は、点弧信号によりオン・オフ制御可能なIGBT、GTOなどからなる半導体素子31a〜31f及び各半導体素子31a〜31fにそれぞれ逆並列に接続されたダイオード32a〜32fからなっている。半導体素子31a〜31fの点弧信号は、制御装置(PWM部)1より与えられる。   FIG. 6 shows a main circuit of the voltage type self-excited power converter, which is mainly composed of a DC power source 2, a power converter 3 and a load 4. The power converter 3 includes semiconductor elements 31a to 31f made of IGBT, GTO or the like that can be turned on / off by an ignition signal, and diodes 32a to 32f connected in antiparallel to the semiconductor elements 31a to 31f, respectively. . The ignition signals of the semiconductor elements 31a to 31f are given from the control device (PWM unit) 1.

制御装置1は、PWM(Pulse Width Modulation:パルス幅変調)の方式には様々なものがあるが、ここでは一般的な三角波比較方式を示している。具体的には、電圧指令生成手段11により生成された電圧指令Vrefu14a、Vrefv14b、Vrefw14cと、三角波変調信号生成手段12からの三角波変調信号を比較器13a〜13cにて比較することにより、半導体素子31a〜31fのオン・オフを行うものである。   The control device 1 has various PWM (Pulse Width Modulation) methods, but here, a general triangular wave comparison method is shown. Specifically, the voltage commands Vrefu14a, Vrefv14b, and Vrefw14c generated by the voltage command generation unit 11 and the triangular wave modulation signal from the triangular wave modulation signal generation unit 12 are compared by the comparators 13a to 13c, so that the semiconductor element 31a. ˜31f is turned on / off.

次に、図7を用いて、図6のU相の半導体素子31aの具体的な点弧方法の一例を示す。   Next, an example of a specific ignition method for the U-phase semiconductor element 31a in FIG. 6 will be described with reference to FIG.

まず、図7(a)は、電圧指令生成手段11により生成された電圧指令Vrefu14aと三角波変調信号生成手段12を示したものである。そして、図7(b)は、比較器13aによって比較して得られた半導体素子31aの点弧信号を示している。図7(c)は、U相出力電流33aを示す。図7(d)は、半導体素子31aの点弧信号とU相出力電流33aによって決まる半導体素子31aの電流を示す。 First, FIG. 7A shows the voltage command Vrefu 14 a generated by the voltage command generation means 11 and the triangular wave modulation signal generation means 12. FIG. 7B shows an ignition signal of the semiconductor element 31a obtained by comparison by the comparator 13a. FIG. 7C shows the U-phase output current 33a. FIG. 7D shows the current of the semiconductor element 31a determined by the ignition signal of the semiconductor element 31a and the U-phase output current 33a.

半導体素子の損失は、非特許文献1にも記載されているように、半導体素子がオンするときに発生する損失(ターンオン損失)、オン状態で発生する損失(定常オン損失)、オフするときに発生する損失(ターンオフ損失)からなる。定常オン損失は、半導体素子固有の導通抵抗によるものであり主に通電電流により定まる。ターンオン損失・ターンオフ損失は、主に回路構成や回路定数、オンまたはオフする瞬聞の通電電流、直流電圧等によって決まるが、回路構成や回路定数・直流電圧は装置固有のものであるから、その装置におけるターンオン損失・ターンオフ損失はオンまたはオフする瞬間の通電電流により定まる。図7の(e)は、半導体素子G31aで発生する損失の様子を示している。   As described in Non-Patent Document 1, the loss of a semiconductor element is a loss that occurs when the semiconductor element is turned on (turn-on loss), a loss that occurs in an on state (steady-on loss), and a time that is turned off. It consists of the loss that occurs (turn-off loss). The steady on-loss is due to the conduction resistance inherent in the semiconductor element and is mainly determined by the energization current. The turn-on loss and turn-off loss are mainly determined by the circuit configuration and circuit constants, the on-off current that is turned on or off, the DC voltage, etc., but the circuit configuration, circuit constants and DC voltage are device-specific. The turn-on loss and turn-off loss in the device are determined by the energization current at the moment of turning on or off. FIG. 7E shows the state of loss generated in the semiconductor element G31a.

次に、半導体素子の温度計算手法について説明する。一般に、半導体素子の冷却は半導体素子を冷却フィンに密着させ、半導体素子で発生する熱を冷却フィンに伝える。冷却フィンの冷却には風冷あるいは水冷方式が採用されることが多い。   Next, a temperature calculation method of the semiconductor element will be described. In general, for cooling a semiconductor element, the semiconductor element is brought into close contact with the cooling fin, and heat generated in the semiconductor element is transmitted to the cooling fin. Air cooling or water cooling is often used for cooling the cooling fins.

図8は、非特許文献2にも記載されている半導体素子・冷却フィンにおける簡易的な熱モデル5である。この熱モデル5は、半導体素子の熱抵抗RJ52a[K/W]、熱容量CJ52b[J/K]、冷却フィンの熱抵抗RF53a[K/W]、熱容量CF53b[J/K]と損失源51からなる。周囲温度To[℃]54に対してこの熱モデル5を解析することで、半導体素子接合部温度TJ[℃]55を算出する。半導体素子には使用できる上限温度が存在するため、半導体素子接合部温度TJ[℃]55が所定の温度を超えないように設計しなければならない。   FIG. 8 is a simple thermal model 5 in the semiconductor element / cooling fin described in Non-Patent Document 2. The thermal model 5 includes a thermal resistance RJ52a [K / W] of a semiconductor element, a thermal capacity CJ52b [J / K], a thermal resistance RF53a [K / W] of a cooling fin, a thermal capacity CF53b [J / K], and a loss source 51. Become. By analyzing the thermal model 5 with respect to the ambient temperature To [° C.] 54, the semiconductor element junction temperature TJ [° C.] 55 is calculated. Since there is an upper limit temperature that can be used for a semiconductor element, the semiconductor element junction temperature TJ [° C.] 55 must be designed so as not to exceed a predetermined temperature.

このようなことを踏まえると、例えば図6の半導体素子31aに着目すると、半導体素子接合部温度の計算装置は図9に示すようなものになる。即ち、図6に示したように出力電圧指令14aをPWM部1に与えて半導体素子31aの点弧信号を得、これより半導体素子31aの通電電流を算出するとともにその損失を算出する。その損失の様子は、図7(e)に示したようになる。   In consideration of this, for example, when attention is paid to the semiconductor element 31a in FIG. 6, the semiconductor device junction temperature calculation apparatus is as shown in FIG. That is, as shown in FIG. 6, the output voltage command 14a is given to the PWM unit 1 to obtain an ignition signal of the semiconductor element 31a. From this, the energization current of the semiconductor element 31a is calculated and its loss is calculated. The state of the loss is as shown in FIG.

なお、前述の通り半導体素子の損失はその時々の半導体素子を流れる電流に依存するので、損失計算に当っては、例えば図10に示すように予めその特性を把握しておくことが必要である。具体的には、図10(a)に示すように半導体素子がオン状態で発生する損失(定常オン損失)、図10(b)に示すように半導体素子がオンするときに発生する損失(ターンオン損失)、図10(c)に示すように半導体素子がオフするときに発生する損失(ターンオフ損失)である。   Since the loss of the semiconductor element depends on the current flowing through the semiconductor element at that time as described above, it is necessary to grasp the characteristics in advance, for example, as shown in FIG. . More specifically, as shown in FIG. 10A, a loss that occurs when the semiconductor element is on (steady ON loss), as shown in FIG. 10B, a loss that occurs when the semiconductor element turns on (turn-on) Loss), which is a loss (turn-off loss) generated when the semiconductor element is turned off as shown in FIG.

このようにして得られた半導体損失を熱モデル5の損失源51として与えることで半導体素子接合部温度(TJ)55を得る。   A semiconductor element junction temperature (TJ) 55 is obtained by giving the semiconductor loss thus obtained as the loss source 51 of the thermal model 5.

なお、半導体素子接合部温度の最高値を求めることが目的であって、装置の運転周波数により定まる半導体素子発生損失の周期が熱モデル5の熱抵抗52a・53a、熱容量52b・53bにより求まる冷却系の熱時定数よりも十分に短い場合、あるいは装置の運転周波数が直流である場合には、図9を簡易化した図11に示すような簡易モデルで計算して差し支えない。即ち、損失計算装置6の運転周期1周期間の平均損失を求め、その平均損失と熱モデル5の熱抵抗(52aと53aの和)を乗じて半導体素子接合部温度を求めるものである。商用周波数で使用される装置や直流出力の装置では、一般的にこのような簡易的な半導体素子接合部温度計算手法が採用されている。   The purpose is to obtain the maximum value of the semiconductor element junction temperature, and the period of the semiconductor element generation loss determined by the operating frequency of the apparatus is determined by the thermal resistances 52a and 53a and the thermal capacities 52b and 53b of the thermal model 5. If it is sufficiently shorter than the thermal time constant, or if the operating frequency of the apparatus is a direct current, it may be calculated with a simple model as shown in FIG. That is, the average loss during one operation cycle of the loss calculator 6 is obtained, and the semiconductor element junction temperature is obtained by multiplying the average loss by the thermal resistance of the thermal model 5 (the sum of 52a and 53a). In a device used at a commercial frequency or a device with a DC output, such a simple semiconductor element junction temperature calculation method is generally employed.

特許文献1には、1個の測定用端子を用いることで、動作時の接合部の温度を測定することを目的としたものである。これは1個以上のダイオード素子を直列接続してなる2組のダイオート素子を互いに逆向きに並列接続し、一端を電源端子に接続すると共に他端を接合部温度測定用の専用端子に接続して正及び負の順方向電圧降下の差電圧を求める接合部温度測定装置である。   Patent Document 1 aims to measure the temperature of the joint during operation by using one measurement terminal. This is done by connecting two or more diode auto elements in series with one or more diode elements connected in parallel in opposite directions, one end connected to the power supply terminal and the other end connected to a dedicated terminal for measuring the junction temperature. And a junction temperature measuring device for obtaining a difference voltage between positive and negative forward voltage drops.

特許文献2には、半導体素子の不良品を確実に見つけることができるようにしたもので、トランジスタのチップに所定の電流を与える第1の定電流源と、十分に大きな電流をチップに与える第2の定電流源とを有し、第2の定電流源を周期的に動作させ、チップのPNの接合部電圧を周期的にサンプルホールドし、これをオシロスコープで表示させるようにしたものである。
パワーエレグトロニクス入門(オーム社、改訂第4版、第9頁) サイリスタ装置(丸善、第81頁、図3.1) 特開平05−299487 特開平08−111446
In Patent Document 2, a defective semiconductor device can be surely found. A first constant current source that applies a predetermined current to a transistor chip and a sufficiently large current to the chip are disclosed. 2 constant current sources, the second constant current source is operated periodically, the PN junction voltage of the chip is periodically sampled and held, and this is displayed on an oscilloscope. .
Introduction to Power Electronics (Ohm, 4th revised edition, page 9) Thyristor device (Maruzen, page 81, Figure 3.1) JP 05-299487 A JP 08-111446 A

以上述べた従来の半導体素子接合部温度計算手法は、比較的運転周波数が高い装置や、直流出力の装置では図11に示すような簡易的な計算手法で十分精度のよい値を得ることができた。   The conventional semiconductor element junction temperature calculation method described above can obtain a sufficiently accurate value by a simple calculation method as shown in FIG. 11 for a device with a relatively high operating frequency or a device with a DC output. It was.

しかし、電力変換装置の運転周波数が低く半導体素子の発生損失の周期が、熱モデル5の熱抵抗52a・53a、熱容量52b・53bより求まる冷却系の熱時定数に比べて短くない場合は、図9に示すような装置で半導体素子接合部温度を計算する必要がある。三角波変調信号の周波数は数kHzに及ぶことから、PWMを模擬するとなるとその計算刻みは数μs程度で行う必要がある。   However, when the operating frequency of the power conversion device is low and the period of the generated loss of the semiconductor element is not shorter than the thermal time constant of the cooling system obtained from the thermal resistances 52a and 53a and the thermal capacities 52b and 53b of the thermal model 5, It is necessary to calculate the semiconductor element junction temperature with an apparatus as shown in FIG. Since the frequency of the triangular wave modulation signal reaches several kHz, it is necessary to perform the calculation step in about several μs when PWM is simulated.

一方、冷却系の熱時定数は数秒から数百秒に及ぶこともある。このようなことから、図9に示すような装置で計算すると膨大な時間を要してしまう。電力変換装置の出力電流や出力電圧、運転力率、運転周波数のうち1つでも条件が変わると、計算条件を変えて繰返しこの計算を実施することが必要になるため、計算ケースが大幅に増大し計算時間を要するという問題があった。   On the other hand, the thermal time constant of the cooling system can range from several seconds to several hundred seconds. For this reason, enormous time will be required if the calculation is performed by the apparatus as shown in FIG. If even one of the output current, output voltage, operating power factor, and operating frequency of the power converter changes, it will be necessary to repeat this calculation under different calculation conditions, greatly increasing the number of calculation cases. However, there was a problem of requiring calculation time.

本発明は、上記のような課題を解決するためになされたものであり、半導体素子接合部温度の計算を効率よく実施できる半導体素子接合部温度の計算装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a semiconductor element junction temperature calculation apparatus capable of efficiently calculating a semiconductor element junction temperature.

前記目的を達成するため、請求項1に対応する発明は、直流電圧源からの直流電圧を交流電圧に変換するものであって、ゲートに与える出力電圧指令によってオンオフ動作する複数の半導体素子により構成された電力変換器と、前記半導体素子のゲートに与える出力電圧指令を出力する制御装置とを備えた電圧型電力変換装置において、
接合部の温度を計算すべき対象の前記電力変換器の出力電圧指令及び出力電流を入力可能な入力手段と、
予め記憶された半導体素子の損失―出力電圧指令―出力電流の関係を示すメモリテーブルと、
前記入力手段によって入力されたある時刻における前記電力変換器の出力電圧指令及び出力電流に基づき前記メモリテーブルに記憶された該当する前記ある時刻における半導体素子の損失を読出し出力可能な演算手段と、
を備えたことを特徴とする電圧型電力変換装置における半導体素子接合部温度の計算装置である。
In order to achieve the above object, the invention corresponding to claim 1 converts a DC voltage from a DC voltage source into an AC voltage, and is constituted by a plurality of semiconductor elements that are turned on and off by an output voltage command given to a gate. In the voltage type power conversion device comprising: the power converter, and a control device that outputs an output voltage command to be applied to the gate of the semiconductor element.
An input means capable of inputting an output voltage command and an output current of the power converter to which the temperature of the junction is to be calculated;
A memory table indicating the relationship between the loss of the semiconductor element stored in advance, the output voltage command, and the output current;
Arithmetic means capable of reading out and outputting the loss of the semiconductor element at the corresponding time stored in the memory table based on the output voltage command and output current of the power converter at the certain time input by the input means;
A device for calculating a junction temperature of a semiconductor element in a voltage type power conversion device.

本発明によれば、半導体素子接合部温度の計算を効率よく実施できる半導体素子接合部温度の計算装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the calculation apparatus of the semiconductor element junction temperature which can implement efficiently calculation of a semiconductor element junction temperature can be provided.

(第1の実施形態)
図1は、本発明の第1の実施形態による半導体素子接合部温度の計算装置を説明するための構成図である。本発明は、例えば図9に示すような電圧型自励式電力変換装置に、次のような構成を備えたものである。
(First embodiment)
FIG. 1 is a block diagram for explaining a semiconductor device junction temperature calculation apparatus according to a first embodiment of the present invention. In the present invention, for example, a voltage type self-excited power converter as shown in FIG. 9 has the following configuration.

すなわち、半導体素子接合部の温度を計算すべき対象の前記電力変換器の出力電圧指令及び出力電流を入力可能な入力手段10と、
予め記憶された半導体素子の損失―出力電圧指令―出力電流の関係を示すメモリテーブル(損失―電圧―電流3次元テーブル)8と、入力手段10によって入力されたある時刻における半導体素子の出力電圧指令及び出力電流に基づきメモリテーブル8に記憶された該当するある時刻における半導体素子の損失を読出し出力可能な図示しない演算手段とを備えたものである。
That is, an input means 10 capable of inputting an output voltage command and an output current of the power converter to which the temperature of the semiconductor element junction is to be calculated;
A memory table (loss-voltage-current three-dimensional table) 8 showing a relationship of loss-output voltage command-output current of the semiconductor element stored in advance, and output voltage command of the semiconductor element at a certain time inputted by the input means And a calculation means (not shown) capable of reading out and outputting the loss of the semiconductor element at a corresponding time stored in the memory table 8 based on the output current.

以上述べた半導体素子接合部温度の計算装置は、コンピュータの入出力手段と、演算手段(CPU)と、メモリを備えたハードウェアで構成したり、或いはコンピュータのメモリに半導体素子接合部温度の計算を行うためのプログラムを格納し、これにより実行することもできる。   The semiconductor element junction temperature calculation apparatus described above is configured by hardware including a computer input / output means, a calculation means (CPU), and a memory, or calculates the semiconductor element junction temperature in the computer memory. It is also possible to store a program for performing and execute the program.

なお、電圧型電力変換装置は、前述した通りで、図6に示すように直流電圧源2からの直流電圧を交流電圧に変換するものであって、ゲートに与える出力電圧指令によってオンオフ動作する複数の半導体素子により構成された電力変換器3と、半導体素子のゲートに与える出力電圧指令を出力する制御装置1とを備えたものである。   As described above, the voltage type power conversion device converts a DC voltage from the DC voltage source 2 into an AC voltage as shown in FIG. 6, and has a plurality of on / off operations according to an output voltage command given to the gate. And a control device 1 that outputs an output voltage command to be applied to the gate of the semiconductor element.

図1は、図6における半導体素子31aに着目して示している。   FIG. 1 shows the semiconductor element 31a in FIG.

出力電圧指令14aと出力電流33aを、損失一電圧一電流3次元テーブル8に与えて半導体素子31aにおいて発生する半導体素子損失を求めている。それ以外については、図9に示す従来例と同様である。 The output voltage command 14a and the output current 33a are given to the loss-one-voltage-one-current three-dimensional table 8 to obtain the semiconductor element loss generated in the semiconductor element 31a. The rest is the same as the conventional example shown in FIG.

ここで、メモリテーブル8について説明する。このメモリテーブル8は、例えば図2のようなメモリテーブルである。図2において黒点はメモリテーブルを構成するデータを示している。この1つ1つのデータは、黒点に対応する出力電圧・出力電流における直流運転を行ったときの平均損失データに相当する。損失一電圧一電流3次元テーブル8を構成するには多数の直流運転時の損失計算を行う必要がある。テーブルデータの密度は、半導体素子接合部温度計算に求められる精度の必要性により決めればよい。テーブルデータの1つ1つの損失値は、当該データに該当する電流によりターンオン損失・ターンオフ損失を求めて1秒間のスイッチング回数を乗じればスイッチング損失は容易に求まるし、当該データに該当する電流により定常オン損失を求め、当該データに該当する電圧によりオン期間を乗じれば定常損失も容易に求まる。よって、メモリテーブル8のデータを構築する作業は比較的容易に行うことができる。テーブルデータの間の損失値については、テーブルデータより補間して求めればよい。   Here, the memory table 8 will be described. This memory table 8 is, for example, a memory table as shown in FIG. In FIG. 2, black dots indicate data constituting the memory table. Each piece of data corresponds to average loss data when a DC operation is performed at an output voltage / output current corresponding to a black spot. In order to construct the loss-voltage-current-three-dimensional table 8, it is necessary to calculate a number of losses during DC operation. The density of the table data may be determined according to the necessity of accuracy required for the semiconductor element junction temperature calculation. Each loss value in the table data can be easily determined by calculating the turn-on loss / turn-off loss with the current corresponding to the data and multiplying the number of switching times per second, and the current corresponding to the data. If the steady on loss is obtained and the on period is multiplied by the voltage corresponding to the data, the steady loss can be easily obtained. Therefore, the operation of constructing the data of the memory table 8 can be performed relatively easily. What is necessary is just to interpolate from table data about the loss value between table data.

次に、出力電圧指令14aと出力電流33aを損失一電圧一電流3次元テーブル8に与えた場合の電圧・電流の軌跡について例を挙げて説明する。図3は、装置が力率1,0で運転する場合の電圧と電流の軌跡である。この軌跡上の損失値が損失一電圧一電流3次元テーブル8の出力となる。運転周波数が高ければこの軌跡上を早く動くことになるし、運転周波数が低ければこの軌跡上をゆっくり動くことになる。   Next, an example of the locus of voltage / current when the output voltage command 14a and the output current 33a are given to the loss-one-voltage-one-current three-dimensional table 8 will be described. FIG. 3 is a locus of voltage and current when the apparatus is operated at a power factor of 1,0. The loss value on this locus becomes the output of the loss-voltage-current-three-dimensional table 8. If the operating frequency is high, the trajectory moves quickly, and if the operating frequency is low, the trajectory moves slowly.

図4は、装置が力率0(電流位相が電圧に対して90°遅れ)で運転する場合の電圧と電流の軌跡である。この軌跡上の損失値が損失一電圧一電流3次元テーブル8の出力となる。運転周波数が高ければこの軌跡上を早く動くことになるし、運転周波数が低ければこの軌跡上をゆっくり動くことになる。   FIG. 4 is a locus of voltage and current when the apparatus is operated at a power factor of 0 (the current phase is 90 ° behind the voltage). The loss value on this locus becomes the output of the loss-voltage-current-three-dimensional table 8. If the operating frequency is high, the trajectory moves quickly, and if the operating frequency is low, the trajectory moves slowly.

本発明の第1の実施形態では、以上のように入力手段10において、出力電圧指令14aと出力電流33aを入力することで、予め用意したメモリテーブル8から容易に半導体素子の発生損失を求めることができる。これにより、例えば、運転周波数が5Hz(周期200ms)とすれば、損失一電圧一電流3次元テーブル8を経て損失を得る過程は数msの演算刻みで十分となり、従来に比べて半導体素子接合部温度の計算を効率よく実施することができる。   In the first embodiment of the present invention, as described above, by inputting the output voltage command 14a and the output current 33a in the input means 10, the loss generated in the semiconductor element can be easily obtained from the memory table 8 prepared in advance. Can do. Thereby, for example, if the operating frequency is 5 Hz (cycle 200 ms), the process of obtaining the loss through the loss-one-voltage-one-current three-dimensional table 8 is sufficient in the calculation step of several ms, and the semiconductor element junction portion is compared with the conventional case. The temperature can be calculated efficiently.

(第2の実施形態)
図5は、本発明の第2の実施形態による半導体素子接合部温度の計算装置を説明するための構成図である。保護手段例えば保護回路9に比較器92を備え、前述の実施形態の半導体素子接合部温度が保護整定値91を超えた場合に保護動作を行う。半導体素子接合部温度を計算する装置の構成は、第1の実施形態と同様である。
(Second Embodiment)
FIG. 5 is a block diagram for explaining a semiconductor device junction temperature calculation apparatus according to the second embodiment of the present invention. The protection means, for example, the protection circuit 9 is provided with a comparator 92, and performs the protection operation when the semiconductor element junction temperature of the above-described embodiment exceeds the protection set value 91. The configuration of the apparatus for calculating the semiconductor element junction temperature is the same as in the first embodiment.

次に動作について説明する。第1の実施形態に示す半導体素子温度の計算方法が電力変換器の保護回路に実装されている。従って、この電力変換器の運転中は常時半導体素子接合部温度を計算する。そして、このようにして得られた半導体素子接合部温度が保護整定値91を超えると保護停止信号を出力し、動作保護動作を行う。半導体素子接合部温度を常時推定し、これによって保護を行うため、不要な保護や、保護が不十分になることを回避できるという効果がある。   Next, the operation will be described. The semiconductor element temperature calculation method shown in the first embodiment is mounted on a protection circuit of a power converter. Therefore, the semiconductor element junction temperature is always calculated during operation of the power converter. Then, when the semiconductor element junction temperature obtained in this way exceeds the protection set value 91, a protection stop signal is output and an operation protection operation is performed. Since the semiconductor element junction temperature is always estimated and protected by this, there is an effect that unnecessary protection and avoidance of insufficient protection can be avoided.

本発明の半導体素子接合部温度の計算装置の第1の実施形態を説明するための概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic block diagram for demonstrating 1st Embodiment of the calculation apparatus of the semiconductor element junction temperature of this invention. 図1のメモリテーブルを説明するための図。The figure for demonstrating the memory table of FIG. 図1の電圧型自励式電力変換装置において力率1.0で運転する場合の電圧・電流の軌跡を説明するための図。The figure for demonstrating the locus | trajectory of the voltage and electric current in the case of drive | operating by the power factor 1.0 in the voltage type self-excitation power converter of FIG. 図1の電圧型自励式電力変換装置において力率0で運転する場合の電圧・電流の軌跡を説明するための図。The figure for demonstrating the locus | trajectory of a voltage and an electric current at the time of driving | operating by the power factor 0 in the voltage type self-excitation power converter of FIG. 本発明の半導体素子接合部温度の計算装置の第2の実施形態を説明するための構成図。The block diagram for demonstrating 2nd Embodiment of the calculation apparatus of the semiconductor element junction temperature of this invention. 従来及び本発明の実施形態を説明する電圧型自励式電力変換器の主回路構成図。The main circuit block diagram of the voltage type self-excited power converter explaining the conventional and embodiment of this invention. 図6のU相の半導体素子31aの点弧方法を説明するための図。The figure for demonstrating the ignition method of the U-phase semiconductor element 31a of FIG. 非特許文献2に示されている半導体素子・冷却フィンにおける簡易的な熱モデルを説明するための図。The figure for demonstrating the simple thermal model in the semiconductor element and cooling fin shown by the nonpatent literature 2. FIG. 図6のU相の半導体素子31aにおける接合部温度の計算手法を説明するための図。FIG. 7 is a diagram for explaining a method for calculating a junction temperature in the U-phase semiconductor element 31 a of FIG. 6. 図6の従来の半導体素子における損失計算手法を説明するための図。The figure for demonstrating the loss calculation method in the conventional semiconductor element of FIG. 従来の半導体素子における損失計算手法の課題を説明するための構成図。The block diagram for demonstrating the subject of the loss calculation method in the conventional semiconductor element.

符号の説明Explanation of symbols

1…制御装置、2…直流電源、3…電力変換器、4…負荷、5…熱モデル、6…損失計算装置、8…メモリテーブル、9…保護回路、10…入力手段、11…電圧指令生成手段
、12…三角波変調信号生成手段、13a〜13c…比較器、14a…出力電圧指令、31a〜31f…半導体素子、31a…半導体素子。
DESCRIPTION OF SYMBOLS 1 ... Control apparatus, 2 ... DC power supply, 3 ... Power converter, 4 ... Load, 5 ... Thermal model, 6 ... Loss calculation apparatus, 8 ... Memory table, 9 ... Protection circuit, 10 ... Input means, 11 ... Voltage command Generation means, 12 ... Triangular wave modulation signal generation means, 13a to 13c ... Comparator, 14a ... Output voltage command, 31a-31f ... Semiconductor element, 31a ... Semiconductor element.

Claims (2)

直流電圧源からの直流電圧を交流電圧に変換するものであって、ゲートに与える出力電圧指令によってオンオフ動作する複数の半導体素子により構成された電力変換器と、前記半導体素子のゲートに与える出力電圧指令を出力する制御装置とを備えた電圧型電力変換装置において、
接合部の温度を計算すべき対象の前記電力変換器の出力電圧指令及び出力電流を入力可能な入力手段と、
予め記憶された半導体素子の損失―出力電圧指令―出力電流の関係を示すメモリテーブルと、
前記入力手段によって入力されたある時刻における前記電力変換器の出力電圧指令及び出力電流に基づき前記メモリテーブルに記憶された該当する前記ある時刻における半導体素子の損失を読出し出力可能な演算手段と、
を備えたことを特徴とする電圧型電力変換装置における半導体素子接合部温度の計算装置。
A power converter for converting a DC voltage from a DC voltage source into an AC voltage, which is configured by a plurality of semiconductor elements that are turned on and off by an output voltage command applied to the gate, and an output voltage applied to the gate of the semiconductor element In a voltage type power converter provided with a control device that outputs a command,
An input means capable of inputting an output voltage command and an output current of the power converter to which the temperature of the junction is to be calculated;
A memory table indicating the relationship between the loss of the semiconductor element stored in advance, the output voltage command, and the output current;
Arithmetic means capable of reading out and outputting the loss of the semiconductor element at the corresponding time stored in the memory table based on the output voltage command and output current of the power converter at the certain time input by the input means;
A device for calculating a junction temperature of a semiconductor element in a voltage type power conversion device.
直流電圧源からの直流電圧を交流電圧に変換するものであって、ゲートに与える出力電圧指令によってオンオフ動作する複数の半導体素子により構成された電力変換器と、前記半導体素子のゲートに与える出力電圧指令を出力する制御装置とを備えた電圧型電力変換装置において、
接合部の温度を計算すべき対象の前記電力変換器の出力電圧指令及び出力電流を入力可能な入力手段と、
予め記憶された半導体素子の損失―出力電圧指令―出力電流の関係を示すメモリテーブルと、
前記入力手段によって入力されたある時刻における前記電力変換器の出力電圧指令及び出力電流に基づき前記メモリテーブルに記憶された該当する前記ある時刻における半導体素子の損失を読出し出力可能な演算手段と、
前記演算手段から得られた半導体素子接合部温度により前記電力変換器の保護動作を行う保護手段と、
を備えたことを特徴とする電圧型電力変換装置における電圧型電力変換装置における半導体素子接合部温度の計算装置。
A power converter for converting a DC voltage from a DC voltage source into an AC voltage, which is configured by a plurality of semiconductor elements that are turned on and off by an output voltage command applied to the gate, and an output voltage applied to the gate of the semiconductor element In a voltage type power converter provided with a control device that outputs a command,
An input means capable of inputting an output voltage command and an output current of the power converter to which the temperature of the junction is to be calculated;
A memory table indicating the relationship between the loss of the semiconductor element stored in advance, the output voltage command, and the output current;
Arithmetic means capable of reading out and outputting the loss of the semiconductor element at the corresponding time stored in the memory table based on the output voltage command and output current of the power converter at the certain time input by the input means;
Protection means for performing a protection operation of the power converter by a semiconductor element junction temperature obtained from the calculation means;
A device for calculating a junction temperature of a semiconductor element in a voltage type power conversion device in the voltage type power conversion device.
JP2008246018A 2008-09-25 2008-09-25 Device for calculating junction temperature of semiconductor element in voltage type power converter Active JP5371353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246018A JP5371353B2 (en) 2008-09-25 2008-09-25 Device for calculating junction temperature of semiconductor element in voltage type power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246018A JP5371353B2 (en) 2008-09-25 2008-09-25 Device for calculating junction temperature of semiconductor element in voltage type power converter

Publications (2)

Publication Number Publication Date
JP2010081713A true JP2010081713A (en) 2010-04-08
JP5371353B2 JP5371353B2 (en) 2013-12-18

Family

ID=42211508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246018A Active JP5371353B2 (en) 2008-09-25 2008-09-25 Device for calculating junction temperature of semiconductor element in voltage type power converter

Country Status (1)

Country Link
JP (1) JP5371353B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005190A (en) * 2010-06-15 2012-01-05 Nissan Motor Co Ltd Control device of power converter
JP2012016259A (en) * 2010-06-03 2012-01-19 Nissan Motor Co Ltd Power converter control system
JP2015177696A (en) * 2014-03-17 2015-10-05 三菱電機株式会社 Inverter device for motor drive
CN106405365A (en) * 2016-09-13 2017-02-15 同济大学 Method of measuring loss of IGBT module of inverter on site
CN106483441A (en) * 2016-09-22 2017-03-08 全球能源互联网研究院 A kind of crimp type power semiconductor interior temperature distribution measuring method and system
JP2017135818A (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Electric power conversion system
CN110865250A (en) * 2019-10-15 2020-03-06 国网江苏省电力有限公司电力科学研究院 Power distribution equipment state monitoring device integrating current monitoring and heating detection method
JP7415880B2 (en) 2020-09-02 2024-01-17 株式会社明電舎 Temperature estimation device and temperature estimation method for semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018861A (en) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd Cooling controller of inverter
JP2004208450A (en) * 2002-12-26 2004-07-22 Sanden Corp Motor controller
JP2006049411A (en) * 2004-08-02 2006-02-16 Toshiba Mach Co Ltd Method and device for monitoring joining section of power element by estimating temperature rise of the section
JP2008148535A (en) * 2006-12-13 2008-06-26 Yaskawa Electric Corp Motor controller and on-delay time setting method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018861A (en) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd Cooling controller of inverter
JP2004208450A (en) * 2002-12-26 2004-07-22 Sanden Corp Motor controller
JP2006049411A (en) * 2004-08-02 2006-02-16 Toshiba Mach Co Ltd Method and device for monitoring joining section of power element by estimating temperature rise of the section
JP2008148535A (en) * 2006-12-13 2008-06-26 Yaskawa Electric Corp Motor controller and on-delay time setting method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016259A (en) * 2010-06-03 2012-01-19 Nissan Motor Co Ltd Power converter control system
JP2012005190A (en) * 2010-06-15 2012-01-05 Nissan Motor Co Ltd Control device of power converter
JP2015177696A (en) * 2014-03-17 2015-10-05 三菱電機株式会社 Inverter device for motor drive
JP2017135818A (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Electric power conversion system
CN106405365A (en) * 2016-09-13 2017-02-15 同济大学 Method of measuring loss of IGBT module of inverter on site
CN106405365B (en) * 2016-09-13 2018-10-26 同济大学 A kind of method of in-site measurement current transformer IGBT module loss
CN106483441A (en) * 2016-09-22 2017-03-08 全球能源互联网研究院 A kind of crimp type power semiconductor interior temperature distribution measuring method and system
CN106483441B (en) * 2016-09-22 2020-11-03 全球能源互联网研究院 Method and system for measuring internal temperature distribution of crimping type power semiconductor device
CN110865250A (en) * 2019-10-15 2020-03-06 国网江苏省电力有限公司电力科学研究院 Power distribution equipment state monitoring device integrating current monitoring and heating detection method
JP7415880B2 (en) 2020-09-02 2024-01-17 株式会社明電舎 Temperature estimation device and temperature estimation method for semiconductor devices

Also Published As

Publication number Publication date
JP5371353B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5371353B2 (en) Device for calculating junction temperature of semiconductor element in voltage type power converter
JP5443946B2 (en) Inverter device
US11215657B2 (en) Real-time online prediction method for dynamic junction temperature of semiconductor power device
CN110108999B (en) IGBT module working junction temperature online detection system and method
JP2017017822A (en) Semiconductor device and failure detection method
JP5514010B2 (en) Power converter and temperature rise calculation method thereof
JP5829986B2 (en) Power cycle test equipment
JP4642081B2 (en) Overheat detection method of motor control device
CN110765601A (en) IGBT junction temperature estimation method based on IGBT thermoelectric coupling model
Baodong et al. Inverter IGBT loss analysis and calculation
JP2017003342A (en) Semiconductor integrated circuit device and electronic device
JP6398949B2 (en) Semiconductor device driving apparatus
KR101958485B1 (en) System and Method for measuring the temperature of power semiconductor, and Storage medium thereof
JP2009503469A (en) Power loss measurement
Ma et al. Method of junction temperature estimation and over temperature protection used for electric vehicle's IGBT power modules
JP6339022B2 (en) Semiconductor devices, automobiles
JP2013258857A (en) Semiconductor module and method for controlling the same
Li et al. Real-time estimation of junction temperature in IGBT inverter with a simple parameterized power loss model
KR101531018B1 (en) Failure prediction method of power semiconductor device
Batunlu et al. Real-time system for monitoring the electro-thermal behaviour of power electronic devices used in boost converters
WO2017130573A1 (en) Power conversion device and thermal resistance measurement method for power module
JP2005354812A (en) Inverter apparatus
JP2021192575A (en) Electric power conversion device
JP5464090B2 (en) Semiconductor device simulation method and apparatus
Cheng et al. Dynamic modeling framework for evaluating electromagnetic-electro-thermal behavior of power conversion system during load operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5371353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250