JP2010080364A - Lighting system - Google Patents

Lighting system Download PDF

Info

Publication number
JP2010080364A
JP2010080364A JP2008249684A JP2008249684A JP2010080364A JP 2010080364 A JP2010080364 A JP 2010080364A JP 2008249684 A JP2008249684 A JP 2008249684A JP 2008249684 A JP2008249684 A JP 2008249684A JP 2010080364 A JP2010080364 A JP 2010080364A
Authority
JP
Japan
Prior art keywords
housing
heat
radiation
heat source
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008249684A
Other languages
Japanese (ja)
Inventor
Takao Saito
貴夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008249684A priority Critical patent/JP2010080364A/en
Publication of JP2010080364A publication Critical patent/JP2010080364A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system having improved radiation effects by shutting off heat from the outside and emitting only internal heat to the outside, even when subjected to heat radiation from an external heat source to a radiation plane. <P>SOLUTION: The lighting system includes a light source as a heating source, and a casing 1 storing the light source. To the surface of the casing 1, an emission rate improving means (at least one of machining work, chemical conversion treatment and coating) is applied for improving an emission rate in an infrared region. Then, a material (a multilayered dielectric optical thin film 2) is provided thereon all over for controlling spectral reflectance to reflect electromagnetic components on the short wavelength side rather than the wavelength side where a radiation spectrum issued from the casing 1 is maximum. Thus, the radiation from an external heating element (the external heat source) 5 is shut off and heat from an internal heat source is selectively emitted to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光源からの熱を効率良く逃がして放熱効果を高めるようにした照明装置に関するものである。   The present invention relates to an illuminating device that efficiently releases heat from a light source to enhance a heat dissipation effect.

電球を光源とする照明装置においては、投入電力の大部分が赤外線、即ち、輻射熱として放出されるため、筐体の温度上昇が不可避的に発生し、この問題を解決することが技術的課題の1つであった。   In a lighting device using a light bulb as a light source, most of the input power is emitted as infrared rays, that is, radiant heat, so that the temperature rise of the housing inevitably occurs, and solving this problem is a technical problem. It was one.

そこで、特許文献1には筐体に多数の通気孔を設ける構成が提案され、特許文献2には筐体に放熱性の高い皮膜を付着させる構成が提案されている。又、特許文献3には口金部分にリング状のヒートシンクを設ける構成が提案され、特許文献4には筐体の周囲にヒートパイプを巻き付ける構成が提案されている。   Thus, Patent Document 1 proposes a structure in which a large number of air holes are provided in the housing, and Patent Document 2 proposes a structure in which a film having a high heat dissipation property is attached to the housing. Further, Patent Document 3 proposes a structure in which a ring-shaped heat sink is provided at the base portion, and Patent Document 4 proposes a structure in which a heat pipe is wound around the casing.

ところで、近年、LEDの高出力化に伴って照明用途としての応用製品も開発されているが、LEDにおいては投入電力の半分以上が半導体自体の熱となるために放熱の問題は一層重要な技術的課題となる。   By the way, in recent years, application products for lighting use have been developed along with higher output of LEDs. However, in LEDs, more than half of the input power becomes the heat of the semiconductor itself, so the problem of heat dissipation is a more important technology. It becomes a subject.

照明用途のLEDの放熱技術に関して、特許文献5にはヒートシンクを備えた構成が提案され、特許文献6には樹脂ケースも放熱手段として用いる技術が提案され、特許文献7にはヒートシンクに空冷ファンを付加した構成が提案されている。   Regarding the heat dissipation technology for LEDs for lighting applications, Patent Document 5 proposes a structure including a heat sink, Patent Document 6 proposes a technique using a resin case as a heat dissipation means, and Patent Document 7 discloses an air cooling fan for the heat sink. Additional configurations have been proposed.

一方、効率良く放熱するための技術開発も盛んに行われてきた。特に100℃以上の温度領域においては伝熱の3形態のうちの放射が大半を占めるようになるため、放射率を高めることが放熱手段として有効である。従来からアルミヒートシンクの黒アルマイト処理や塗るだけで放熱効果が得られるつや消し黒塗料等が開発されてきた。   On the other hand, technological development for efficiently radiating heat has been actively conducted. In particular, in the temperature region of 100 ° C. or higher, the radiation of the three forms of heat transfer occupies most of the heat transfer. Therefore, increasing the emissivity is effective as a heat dissipation means. Conventionally, matte black paint, etc., has been developed that can achieve a heat dissipation effect simply by applying a black anodized aluminum heat sink.

又、住宅の屋根においては日中の太陽光線が屋根材を介して室内の気温を上げる要因となり、特に夏場は冷房効率に影響を及ぼす。このため、特許文献8には優れた遮熱効果を有する遮熱塗料が提案されている。   On the roof of a house, sunlight during the daytime causes the indoor temperature to rise through the roofing material, and particularly in summer, it affects the cooling efficiency. For this reason, Patent Document 8 proposes a thermal barrier paint having an excellent thermal barrier effect.

更に、光源の発熱による問題を機能性薄膜で解決する技術も開発され、特許文献9にはコールドミラーが提案されている。このコールドミラーは、光源からの赤外線を選択的に透過して外部へ逃がし、必要な可視光線だけを反射するものであって、専ら投影用途に用いられる。   Furthermore, a technique for solving the problem due to heat generation of the light source with a functional thin film has been developed, and Patent Document 9 proposes a cold mirror. This cold mirror selectively transmits infrared rays from a light source to escape to the outside and reflects only necessary visible light, and is used exclusively for projection applications.

ところで、光の反射に関する技術は道路標識の夜間の視認性向上に応用されており、特許文献10には微小なガラスビーズを用いた構造が提案され、特許文献11にはテクスチャ構造によって得られる再帰反射に関する技術が開示されており、それらにおいては可視光線に対して粒径及び屈折率が最適化されている。
特開平9−139111号公報 特開平11−111037号公報 特開2002−175721号公報 特開2003−288806号公報 特開2000−031546号公報 特開2002−299700号公報 特開2008−103195号公報 特開2003−261828号公報 特開2007−322891号公報 特開平5−263015号公報 特開2006−322313号公報
By the way, the technology relating to the reflection of light is applied to improve the visibility of road signs at night. Patent Document 10 proposes a structure using minute glass beads, and Patent Document 11 discloses a recursion obtained by a texture structure. Techniques relating to reflection are disclosed, in which the particle size and refractive index are optimized for visible light.
JP-A-9-139111 Japanese Patent Laid-Open No. 11-111037 JP 2002-175721 A JP 2003-288806 A JP 2000-031546 A JP 2002-299700 A JP 2008-103195 A JP 2003-261828 A JP 2007-328991 A JP-A-5-263015 JP 2006-322313 A

光源としてLEDを用いる場合、LEDは電球に比べて長寿命であることから、メンテナンス頻度の低い環境に好適に用いられるが、特に屋外用途においては日中に太陽光線を浴びることになり、熱的にも過酷な環境に晒されることが容易に想像される。   When an LED is used as a light source, the LED has a longer life than a light bulb, and is therefore preferably used in an environment with a low maintenance frequency. It is easy to imagine being exposed to harsh environments.

ところで、従来の照明装置の構造では、放熱経路の最終段階である筐体から外部空気への放熱経路において、筐体の表面温度よりも外部空気の温度の方が高い場合、或いは筐体表面が他の外部熱源から輻射熱を受けている場合には、熱力学の第2法則に従って低温側である筐体から高温側である外部空気に放熱することはできない。従って、単に筐体表面の放射率を向上させることは、外部熱源からの輻射熱に対する吸収率をも同時に高めてしまうことになり、根本的な解決にはならない。   By the way, in the structure of the conventional lighting device, when the temperature of the external air is higher than the surface temperature of the casing in the heat dissipation path from the casing to the external air, which is the final stage of the heat dissipation path, or the surface of the casing is When receiving radiant heat from another external heat source, heat cannot be radiated from the casing on the low temperature side to the external air on the high temperature side in accordance with the second law of thermodynamics. Therefore, simply improving the emissivity of the housing surface also increases the absorption rate of radiant heat from the external heat source at the same time, and is not a fundamental solution.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、放熱面に外部熱源から熱輻射を受けている場合においても、外部からの熱を遮断して内部の熱のみを外部に向かって放射することによって高い放熱効果を得ることができる照明装置を提供することにある。   The present invention has been made in view of the above problems, and the intended process is to cut off the heat from the outside and only the internal heat to the outside even when the heat radiation surface receives heat radiation from an external heat source. It is providing the illuminating device which can acquire a high heat dissipation effect by radiating | emitting toward.

上記目的を達成するため、請求項1記載の発明は、発熱源である光源と、該光源を収容する筐体を備えた照明装置において、前記筐体の表面に赤外線領域の放射率を高める放射率向上手段を施し、その上に、分光反射率が筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御する材料を一面に亘って設けることによって、外部熱源からの輻射を遮り、内部発熱源からの熱を選択的に外部に放射することを特徴とする。   In order to achieve the above object, an invention according to claim 1 is a lighting device including a light source that is a heat source and a housing that houses the light source, and radiation that increases the emissivity of the infrared region on the surface of the housing. By providing a rate improving means, and by providing a material over which the spectral reflectance is controlled so as to reflect an electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing is maximized, It is characterized by blocking radiation from an external heat source and selectively radiating heat from an internal heat source to the outside.

請求項2記載の発明は、請求項1記載の発明において、前記放射率向上手段として、筐体表面に機械加工、化成処理又は塗装の少なくとも1つを施すことによって筐体表面の放射率を0.8以上とすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the emissivity of the housing surface is reduced to 0 by applying at least one of machining, chemical conversion or coating to the housing surface as the emissivity improving means. .8 or more.

請求項3記載の発明は、請求項1又は2記載の発明において、筐体表面に多層誘電体光学薄膜を接着し、該多層誘電体光学薄膜の分光透過率においてカットオフ波長を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側に合わせることによって、筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射することを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein a multilayer dielectric optical thin film is adhered to the surface of the casing, and a cutoff wavelength is emitted from the casing in the spectral transmittance of the multilayer dielectric optical thin film. It is characterized by reflecting an electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the casing is maximized by adjusting to the shorter wavelength side than the wavelength at which the emitted radiation spectrum is maximized.

請求項4記載の発明は、請求項1又は2記載の発明において、筐体表面を再帰反射性を有する材料で覆い、且つ、再帰反射の過程における粒径及び屈折率を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御することを特徴とする。   According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the casing surface is covered with a retroreflective material, and the particle size and refractive index in the retroreflective process are emitted from the casing. Control is performed so as to reflect an electromagnetic wave component on a shorter wavelength side than the wavelength having the maximum spectrum.

請求項5記載の発明は、請求項1〜4の何れかに記載の発明において、前記光源をLEDで構成したことを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the light source is constituted by an LED.

本発明によれば、筐体表面に機械加工によって凹凸を形成して表面積を拡大する技術、黒アルマイト処理に代表される化成処理やつや消し黒塗料に代表される高放射率化技術を用いることによって、筐体表面からの熱輻射が高められる。   According to the present invention, by using a technology for forming irregularities on the surface of the casing by enlarging the surface area to increase the surface area, a chemical conversion treatment represented by black alumite treatment and a high emissivity technology represented by matte black paint. The heat radiation from the surface of the casing is increased.

本発明は、筐体表面が外部熱源から輻射熱を受け、筐体表面と外部熱源との間に温度差がある場合、その温度差に起因する各々の輻射スペクトルのピーク波長が異なることに着目した。   In the present invention, when the housing surface receives radiant heat from an external heat source and there is a temperature difference between the housing surface and the external heat source, the peak wavelength of each radiation spectrum due to the temperature difference is different. .

そこで、本発明は、高放射率化手段が施された筐体表面に、分光反射率が筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御する材料、例えば光源から発せられる赤外線から他の部材を保護する多層誘電体光学薄膜や可視光線を反射することによって視認性を高める再帰反射材料等を一面に亘って塗布又は接着することによって、外部熱源からの輻射を遮り、内部発熱源からの熱を選択的に外部に放射するようにした。尚、筐体表面に多層誘電体薄膜を接着する場合、シリコンやエポキシ等の接着剤を用いると接着剤自体の光学特性が波長選択性に影響を及ぼす可能性があるため、接着剤による接着よりも蒸着の方が望ましい。   Therefore, the present invention controls the reflection of the electromagnetic wave component on the short wavelength side from the wavelength at which the radiation spectrum emitted from the casing has the maximum spectral reflectance on the surface of the casing on which the high emissivity means is applied. By applying or adhering a material, for example, a multilayer dielectric optical thin film that protects other members from infrared rays emitted from a light source or a retroreflective material that improves visibility by reflecting visible light, etc., to an external heat source The heat from the internal heat source is selectively radiated to the outside. When bonding a multilayer dielectric thin film to the housing surface, using an adhesive such as silicon or epoxy may affect the wavelength selectivity of the optical properties of the adhesive itself. Vapor deposition is also desirable.

外部熱源からの熱輻射が多層誘電体薄膜のカットオフ波長よりも短波長側に位置し、筐体からの熱輻射がカットオフ波長よりも長波長側に位置するように、当該多層誘電体薄膜の膜厚を調節することによって、筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射することができる。   The multilayer dielectric thin film so that the heat radiation from the external heat source is located on the shorter wavelength side than the cutoff wavelength of the multilayer dielectric thin film, and the heat radiation from the housing is located on the longer wavelength side than the cutoff wavelength. By adjusting the film thickness, the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing becomes maximum can be reflected.

又、本発明によれば、筐体表面を再起反射性を有する材料で覆い、再帰反射材料の粒径を筐体の輻射スペクトルの最大値となる波長よりも短く、且つ、外部発熱源の輻射スペクトルの最大値となる波長よりも長くするとともに、外部熱源の輻射スペクトルが最大値となる波長帯において広角度に亘って再起反射が得られるような屈折率を有する材料を選択することによって、筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射することができる。   In addition, according to the present invention, the surface of the casing is covered with a material having recursive reflectivity, the particle size of the retroreflective material is shorter than the wavelength at which the maximum value of the radiation spectrum of the casing, and the radiation of the external heat source By selecting a material having a refractive index that is longer than the maximum wavelength of the spectrum and has a reflex reflection over a wide angle in the wavelength band where the radiation spectrum of the external heat source is maximum. The electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the body is maximum can be reflected.

以上の結果、本発明によれば、照明装置の放熱面に外部熱源から熱輻射を受けている場合においても、外部からの熱を遮断して内部の熱のみを外部に向かって放射することによって高い放熱効果を得ることができる。   As a result of the above, according to the present invention, even when heat radiation from the external heat source is received on the heat radiating surface of the lighting device, by blocking the heat from the outside and radiating only the internal heat toward the outside, A high heat dissipation effect can be obtained.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、従来の照明装置の筐体表面の放熱構造を図1に基づいて説明する。   First, a heat dissipation structure on the surface of a housing of a conventional lighting device will be described with reference to FIG.

図1に示す従来の照明装置の筐体表面の放熱構造において、単に筐体101の表面放射率を向上させることは、内部熱源からの伝熱102を効率良く外部への熱輻射103とすることができるが、同時に外部熱源104からの熱輻射105に対する吸収率をも同時に高めてしまうことになり、筐体101内部への入熱106を招く。その結果として、筐体101表面からの熱輻射103と外部熱源104からの熱輻射105との差し引きはマイナスとなり、根本的な解決には至らない。   In the heat dissipation structure on the housing surface of the conventional lighting device shown in FIG. 1, simply improving the surface emissivity of the housing 101 is to efficiently convert the heat transfer 102 from the internal heat source into the heat radiation 103 to the outside. However, at the same time, the absorptance of the heat radiation 105 from the external heat source 104 is also increased at the same time, leading to heat input 106 into the housing 101. As a result, the subtraction between the heat radiation 103 from the surface of the housing 101 and the heat radiation 105 from the external heat source 104 is negative, and does not lead to a fundamental solution.

そこで、本発明は、筐体表面が外部熱源から輻射熱を受け、筐体表面と外部熱源との間に温度差がある場合、その温度差に起因する各々の輻射スペクトルのピーク波長が異なることに着目し、以下のような放熱構造を採用した。   Therefore, in the present invention, when the housing surface receives radiant heat from an external heat source and there is a temperature difference between the housing surface and the external heat source, the peak wavelength of each radiation spectrum due to the temperature difference is different. Paying attention, the following heat dissipation structure was adopted.

即ち、発熱源である光源と、該光源を収容する筐体を備えた照明装置において、前記筐体の表面に赤外線領域の放射率を高める放射率向上手段を施し、その上に、分光反射率が筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御する材料を一面に亘って設けることによって、外部熱源からの輻射を遮り、内部発熱源からの熱を選択的に外部に放射するようにした。   That is, in an illuminating device including a light source that is a heat source and a housing that houses the light source, emissivity improving means for increasing the emissivity in the infrared region is applied to the surface of the housing, and the spectral reflectance is further provided thereon. By covering the entire surface with a material that controls to reflect the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing is maximum, the radiation from the external heat source is blocked and the Heat was selectively radiated to the outside.

ここで、上記放射率向上手段は、筐体表面に機械加工、化成処理又は塗装の少なくとも1つであって、これを施すことによって筐体表面の放射率を0.8以上とする。   Here, the emissivity improving means is at least one of machining, chemical conversion or coating on the surface of the casing, and by applying this, the emissivity of the casing surface is set to 0.8 or more.

又、高放射率化手段が施された筐体表面に、多層誘電体光学薄膜を接着し、該多層誘電体光学薄膜の分光透過率においてカットオフ波長を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側に合わせることによって、筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するようにした。   In addition, a multilayer dielectric optical thin film is adhered to the surface of the casing that has been subjected to high emissivity means, and the radiation spectrum emitted from the casing at the cutoff wavelength in the spectral transmittance of the multilayer dielectric optical thin film is maximized. By adjusting to the shorter wavelength side than the wavelength, the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the casing becomes maximum is reflected.

或いは、筐体表面を再帰反射性を有する材料で覆い、且つ、再帰反射の過程における粒径及び屈折率を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御するようにした。   Alternatively, the case surface is covered with a retroreflective material, and the particle size and refractive index in the process of retroreflection are reflected to reflect the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the case is maximum. It was controlled to do.

そして、本発明では、光源をLEDで構成した。   And in this invention, the light source was comprised by LED.

次に、高放射率化手段が施された筐体表面に多層誘電体光学薄膜を接着する場合と、再帰反射性を有する材料で覆う場合についてそれぞれ説明する。
(1)多層誘電体光学薄膜を用いる場合:
この場合の筐体表面の放熱構造を図2に模式的に示す。
Next, a case where a multilayer dielectric optical thin film is bonded to the surface of the casing on which high emissivity means has been applied and a case where the multilayer dielectric optical thin film is covered with a retroreflective material will be described.
(1) When using a multilayer dielectric optical thin film:
The heat dissipation structure on the housing surface in this case is schematically shown in FIG.

図2に示すように、筐体1と多層誘電体光学薄膜2の2層構造において、当該多層誘電体光学薄膜2を制御することによって、内部熱源からの伝熱3による筐体1の表面からの輻射熱4は当該多層誘電体光学薄膜2のカットオフ波長よりも長波長側に位置するために透過する。一方で、外部熱源5からの輻射熱6は多層誘電体光学薄膜2のカットオフ波長よりも短波長側に位置するため、多層誘電体光学薄膜2による熱反射7が起こる。その結果、筐体1から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分のみが選択的に反射される。
(2)再帰反射性材料を用いる場合:
この場合の筐体表面の放熱構造を図3に模式的に示す。
As shown in FIG. 2, in the two-layer structure of the casing 1 and the multilayer dielectric optical thin film 2, by controlling the multilayer dielectric optical thin film 2, the heat transfer 3 from the internal heat source 3 The radiant heat 4 passes through the multilayer dielectric optical thin film 2 because it is located on the longer wavelength side than the cutoff wavelength. On the other hand, since the radiant heat 6 from the external heat source 5 is located on the shorter wavelength side than the cutoff wavelength of the multilayer dielectric optical thin film 2, the heat reflection 7 by the multilayer dielectric optical thin film 2 occurs. As a result, only the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing 1 is maximized is selectively reflected.
(2) When using a retroreflective material:
The heat dissipation structure on the housing surface in this case is schematically shown in FIG.

図3に示すように、筐体1と再帰反射性部材8の2層構造において、再帰反射性部材8の粒径を制御することによって、内部熱源からの伝熱3による筐体1の表面からの輻射熱4の波長は再帰反射性部材8の粒径よりも長いために透過する。一方で、外部熱源5からの輻射熱6の波長は再帰反射性部材8の粒径よりも短いため、再帰反射9が起こる。その結果、筐体1から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分のみが選択的に反射される。   As shown in FIG. 3, in the two-layer structure of the housing 1 and the retroreflective member 8, by controlling the particle size of the retroreflective member 8, the heat transfer 3 from the internal heat source causes the surface of the housing 1 to Since the wavelength of the radiant heat 4 is longer than the particle size of the retroreflective member 8, it is transmitted therethrough. On the other hand, since the wavelength of the radiant heat 6 from the external heat source 5 is shorter than the particle size of the retroreflective member 8, retroreflection 9 occurs. As a result, only the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing 1 is maximized is selectively reflected.

上記(1)と(2)の場合において、図4に選択反射のスペクトルイメージを示す。適用する条件下において、筐体表面と外部熱源の輻射スペクトルが丁度クロスオーバーする波長に選択反射の閾値を設定することが望ましい。尚、両者の温度差が大きい程(例えば、外部熱源が6000Kの太陽の場合)、本発明の効果も大きくなる。   In the cases (1) and (2) above, FIG. 4 shows a spectrum image of selective reflection. Under the conditions to be applied, it is desirable to set a selective reflection threshold at a wavelength at which the radiation spectrum of the housing surface and the external heat source just cross over. In addition, the effect of this invention becomes large, so that both temperature difference is large (for example, when an external heat source is the sun of 6000K).

以下にテストピースによる基本的な実施例について説明する。   A basic embodiment using test pieces will be described below.

テストピースは筐体壁面を模して以下の要領で作製した。   The test piece was made in the following manner, imitating the case wall surface.

即ち、大きさ50mm×50mmで1mm厚のアルミニウム(Al1050)基板にそれぞれ放射率向上・選択反射手段を施したものである。尚、裏面は何も処理しないアルミ素地のままである。   That is, an aluminum (Al1050) substrate having a size of 50 mm × 50 mm and a thickness of 1 mm is provided with emissivity improvement / selective reflection means, respectively. In addition, the back side is the aluminum base which does not process anything.

テストピースの表面に、放射率向上手段として放射率0.98のつや消し黒塗料を塗布した。塗料の特性により表面は微小な凹凸があり、機械研磨によって粗面化したと同等の状態となった。更にその上から、選択反射手段として平均粒径7〜8μm・屈折率1.5程度のガラスビーズをアクリル塗料を結合材として塗布した。選択反射領域における反射率は0.75であった。   A matte black paint with an emissivity of 0.98 was applied to the surface of the test piece as an emissivity improving means. Due to the characteristics of the paint, the surface had minute irregularities, and it was in the same state as roughened by mechanical polishing. Further, glass beads having an average particle diameter of 7 to 8 μm and a refractive index of about 1.5 were applied as selective reflection means using an acrylic paint as a binder. The reflectance in the selective reflection region was 0.75.

実施例1において、選択反射手段のガラスビーズに代えて平均粒径7〜8μmの微小なアクリル片を含有するパール塗料をスプレーによって塗布した。選択反射領域における反射率は0.7であった。   In Example 1, a pearl paint containing fine acrylic pieces having an average particle diameter of 7 to 8 μm was applied by spraying instead of the glass beads of the selective reflection means. The reflectivity in the selective reflection region was 0.7.

実施例1において、選択反射手段のガラスビーズに代えてカットオフ波長7〜8μmに制御した多層誘電体光学薄膜を蒸着した。選択反射領域における反射率は0.8であった。   In Example 1, a multilayer dielectric optical thin film controlled to have a cutoff wavelength of 7 to 8 μm was deposited instead of the glass beads of the selective reflection means. The reflectance in the selective reflection region was 0.8.

実施例1において、放射率向上手段のつや消し黒塗料に代えて放射率0.95の黒アルマイト処理を施した。選択反射手段はガラスビーズで実施例1と同じである。   In Example 1, black alumite treatment with an emissivity of 0.95 was performed instead of the matte black paint of the emissivity improving means. The selective reflection means is the same as that of the first embodiment with glass beads.

実施例4において、選択反射手段のガラスビーズに代えて平均粒径7〜8μmの微小なアクリル片を含有するパール塗料をスプレーにより塗布した。   In Example 4, pearl paint containing fine acrylic pieces having an average particle diameter of 7 to 8 μm was applied by spraying instead of the glass beads of the selective reflection means.

実施例4において、選択反射手段のガラスビーズに代えてカットオフ波長7〜8μmに制御した多層誘電体光学薄膜を蒸着した。   In Example 4, a multilayer dielectric optical thin film controlled to have a cutoff wavelength of 7 to 8 μm was deposited instead of the glass beads of the selective reflection means.

実施例1において、放射率向上手段のつや消し黒塗料に代えて放射率0.9のつや有り黒塗料を塗布した。選択反射手段はガラスビーズで実施例1と同じである。   In Example 1, a glossy black paint having an emissivity of 0.9 was applied instead of the matte black paint of the emissivity improving means. The selective reflection means is the same as that of the first embodiment with glass beads.

実施例7において、選択反射手段のガラスビーズに代えて平均粒径7〜8μmの微小なアクリル片を含有するパール塗料をスプレーにより塗布した。   In Example 7, instead of the glass beads of the selective reflection means, a pearl paint containing fine acrylic pieces having an average particle diameter of 7 to 8 μm was applied by spraying.

実施例7において、選択反射手段のガラスビーズに代えてカットオフ波長7〜8μmに制御した多層誘電体光学薄膜を蒸着した。   In Example 7, a multilayer dielectric optical thin film controlled to have a cutoff wavelength of 7 to 8 μm was deposited instead of the glass beads of the selective reflection means.

<比較例1>
実施例1において、選択反射手段を施さず、つや消し黒塗料のみを塗布した。
<Comparative Example 1>
In Example 1, the selective reflection means was not applied, and only a matte black paint was applied.

<比較例2>
実施例1において、つや消し黒塗料を塗布せず、アルミ基板の上に選択反射手段としてガラスビーズのみを直接塗布した。尚、ガラスビーズの結合材であるアクリル塗料の影響により放射率は0.5となった。
<Comparative example 2>
In Example 1, only the glass beads were directly applied as selective reflection means on the aluminum substrate without applying the matte black paint. The emissivity was 0.5 due to the influence of the acrylic paint which is a binder for glass beads.

<比較例3>
何も塗布・蒸着せず、表面・裏面共にアルミ素地のままとした。放射率は0.1であった。
<Comparative Example 3>
No coating or vapor deposition was performed, and both the front and back surfaces were left as an aluminum substrate. The emissivity was 0.1.

以上のテストピースの放熱性能を次に述べる方法で検証した。   The heat dissipation performance of the above test pieces was verified by the following method.

図5に示すように、各テストピース10はアルミ板11の表面に高放射率化+選択反射手段12が施されており、その裏面中央にK型熱電対13をアルミテープ14で貼り付け、更に熱伝導性の高いシリコーンシート(以下、TIMと称する)15を挟んでセラミックヒータ16を取り付けた。このセラミックヒータ16を筐体内部の熱源に見立てた。   As shown in FIG. 5, each test piece 10 has a high emissivity + selective reflection means 12 on the surface of an aluminum plate 11, and a K-type thermocouple 13 is attached to the center of the back surface with an aluminum tape 14. Further, a ceramic heater 16 was attached with a silicone sheet (hereinafter referred to as TIM) 15 having high thermal conductivity interposed therebetween. The ceramic heater 16 was regarded as a heat source inside the casing.

又、図6に示すように、図5に示すテストピース10と同じアルミ板21の表面に放射率0.98のつや消し黒塗料22を塗布したものの裏面に、同様に熱電対23をアルミテープ24で貼り付け、熱伝導性の高いシリコーンシート(TIM)25を挟んでセラミックヒータ26を取り付け、これを外部熱源20とした。   Further, as shown in FIG. 6, a thermocouple 23 is similarly attached to the aluminum tape 24 on the back surface of the same aluminum plate 21 as the test piece 10 shown in FIG. The ceramic heater 26 was attached with the silicone sheet (TIM) 25 having high thermal conductivity interposed therebetween, and this was used as the external heat source 20.

図7に測定装置の構成を示す。   FIG. 7 shows the configuration of the measuring apparatus.

テストピース10と外部熱源20以外の部材は全て断熱材であるコルクシートを用い、熱輻射以外の伝熱経路は極力排除する構成とした。ベースコルクシート31を敷いた上にテストピース10を置き、セラミックヒータ16,26に通電して加熱した。投入電力は2Wとした。この状態でしばらく置き、セラミックヒータ16の発熱量をテストピース10からの熱輻射が熱平衡状態となったところで、テストピース10の温度を測定した。これが「外部熱源なし」の結果である。   All members other than the test piece 10 and the external heat source 20 are made of a cork sheet, which is a heat insulating material, and a heat transfer path other than heat radiation is excluded as much as possible. The test piece 10 was placed on the base cork sheet 31 and the ceramic heaters 16 and 26 were energized and heated. The input power was 2W. In this state, the temperature of the test piece 10 was measured when the amount of heat generated by the ceramic heater 16 was in a thermal equilibrium state with the heat radiation from the test piece 10. This is the result of “no external heat source”.

次に、コルクシートを積層して支持部材32とした上に外部熱源20を、つや消し黒塗料の面を下にして、2cmの距離を隔ててテストピース10と正対するように設置した。外部熱源20の上にもコルクシート33を積層し、熱輻射以外の伝熱経路は極力排除する構成とした。外部熱源20のセラミックヒータ26に4Wの電力を投入し、同様に熱平衡状態となったところでテストピース10の温度を測定した。これが「外部熱源あり」の結果である。尚、このとき外部熱源20の温度は100〜110℃程度であった。   Next, the external heat source 20 was placed on the support member 32 by laminating the cork sheets, with the matte black paint face down, and facing the test piece 10 at a distance of 2 cm. A cork sheet 33 is also laminated on the external heat source 20, and a heat transfer path other than heat radiation is eliminated as much as possible. A power of 4 W was applied to the ceramic heater 26 of the external heat source 20, and the temperature of the test piece 10 was measured when the thermal equilibrium state was similarly reached. This is the result of “with external heat source”. At this time, the temperature of the external heat source 20 was about 100 to 110 ° C.

以上の測定条件一覧を表1に、結果の一覧を表2にそれぞれまとめた。   The above list of measurement conditions is summarized in Table 1, and the list of results is summarized in Table 2.

Figure 2010080364
Figure 2010080364

Figure 2010080364
表1及び表2の結果に示されるように、実施例1〜9においては、程度の差はあるものの、外部熱源なしの状態で63〜64℃程度、外部熱源ありの状態で70〜71℃程度と、外部熱源によるテストピースの温度への影響は全て7℃程度となった。これに対して、比較例1では実施例1〜9よりも正味の放射率が高いため、外部熱源なしの状態では放射伝熱量が多く、実施例1〜9よりも低い温度を示したが、一方で外部熱源ありの状態では、反射する手段がないために外部熱源からの熱輻射による影響を大きく受けてしまい、20℃以上も温度が上昇してしまった。
Figure 2010080364
As shown in the results of Tables 1 and 2, in Examples 1 to 9, although there is a difference in degree, it is about 63 to 64 ° C. without an external heat source, and 70 to 71 ° C. with an external heat source. The influence of the external heat source on the temperature of the test piece was about 7 ° C. On the other hand, in Comparative Example 1, since the net emissivity is higher than in Examples 1 to 9, the amount of radiant heat transfer is large in the state without an external heat source, and the temperature is lower than in Examples 1 to 9. On the other hand, in the state with an external heat source, since there is no means to reflect, it was greatly affected by the heat radiation from the external heat source, and the temperature rose by 20 ° C. or more.

続いて比較例2では、反射の手段を備えているために外部熱源による影響は実施例1〜9とほぼ同等となったが、表面の高放射率化手段がないために内部熱源からの伝熱を効率良く放射することができず、実施例1〜9に比べて10℃程度温度が上昇してしまった。   Subsequently, in Comparative Example 2, since the reflection means was provided, the influence of the external heat source was almost the same as in Examples 1 to 9, but since there was no means for increasing the emissivity of the surface, the transfer from the internal heat source was performed. The heat could not be radiated efficiently, and the temperature rose about 10 ° C. compared to Examples 1-9.

最後に比較例3では、アルミ素地の放射率は0.1(反射率は0.9)であるため、外部熱源からの影響は殆ど受けなかったが、比較例2よりも放射率が低いため、内部熱源からの伝熱を効率良く外部に放射することができず、全テストピース中最も高い温度となってしまった。   Finally, in Comparative Example 3, since the emissivity of the aluminum substrate is 0.1 (reflectance is 0.9), it was hardly affected by the external heat source, but the emissivity is lower than that of Comparative Example 2. The heat transfer from the internal heat source could not be efficiently radiated to the outside, resulting in the highest temperature of all the test pieces.

以上より、高放射率化の手段と選択反射の手段はどちらが欠けても十分な放熱性能が得られず、両方を兼ね備えた実施例1〜9が内部熱源に対する放熱性能と外部熱源からの輻射熱による影響の受け難さの双方において有効であるということが検証された。   From the above, sufficient heat dissipation performance can not be obtained regardless of which one of the means for increasing emissivity and the means for selective reflection is lacking, and Examples 1 to 9 having both are based on the heat dissipation performance for the internal heat source and the radiant heat from the external heat source. It was verified that it was effective in both ways of being affected.

ここで、本検証でのテストピースと外部熱源の輻射スペクトル及び再帰反射部材・多層誘電体光学薄膜による選択反射のイメージを図8に示す。図8は筐体表面温度が70℃、外部熱源温度が110℃として黒体近似スペクトルが作図されている。図8より、両者の輻射スペクトルにおいて、選択反射の閾値がピーク波長の中間付近に位置しており、外部熱源からの輻射を積極的に反射しているのを確認することができる。   Here, the radiation spectrum of the test piece and the external heat source in this verification and the image of selective reflection by the retroreflective member / multilayer dielectric optical thin film are shown in FIG. In FIG. 8, the black body approximated spectrum is plotted assuming that the housing surface temperature is 70 ° C. and the external heat source temperature is 110 ° C. From FIG. 8, it can be confirmed that the threshold of selective reflection is located in the vicinity of the middle of the peak wavelength in both of the radiation spectra, and the radiation from the external heat source is positively reflected.

尚,本検証では、高放射率化の手段としてつや消し黒塗料と黒アルマイト処理及びつやあり黒塗料の3種を選択し、選択反射の手段としてガラスビーズとパール塗料及び多層誘電体光学薄膜の3種を選択したが、これらに限定されるものではないことは勿論である。高放射率化の手段としては、放射率0.8以上を有する白色系塗料、他のアルマイト処理等の表面処理を選択することができ、選択反射の手段としては、他の微粒子系塗料や光学フィルター等を選択することができる。又、筐体材料に樹脂を用いる場合には、素材自体が0.8〜0.9他高い放射率を有しているため、更に表面を機械加工等によって粗面化すると一層効果的である。   In this verification, three kinds of matte black paint and black anodized treatment and glossy black paint are selected as means for increasing the emissivity, and glass beads, pearl paint and multilayer dielectric optical thin film are selected as means for selective reflection. Of course, the seeds are selected but not limited to these. As a means for increasing the emissivity, a white paint having an emissivity of 0.8 or more, and other surface treatments such as anodizing can be selected. A filter or the like can be selected. In addition, when resin is used for the housing material, since the material itself has a high emissivity of 0.8 to 0.9, it is more effective to further roughen the surface by machining or the like. .

次に、本発明に係る照明装置を車両用前照灯として使用した実施例について説明する。 図9は車両用前照灯の模式的断面図であり、本実施例では筐体53の前面に多層誘電体光学薄膜44を接着している。   Next, the Example which used the illuminating device based on this invention as a vehicle headlamp is described. FIG. 9 is a schematic cross-sectional view of a vehicle headlamp. In this embodiment, a multilayer dielectric optical thin film 44 is bonded to the front surface of a housing 53.

筐体43の前面はポリカーボネートで構成され、見栄えや意匠性の観点から筐体43の前面から放熱することはできない。しかし、筐体43の背面には100℃を超える熱輻射が照射されており、従来構造では効率良く放熱することはできない。   The front surface of the housing 43 is made of polycarbonate, and heat cannot be radiated from the front surface of the housing 43 from the viewpoint of appearance and design. However, the back surface of the housing 43 is irradiated with heat radiation exceeding 100 ° C., and the conventional structure cannot efficiently dissipate heat.

そこで、本実施例では、本発明に係る照明装置を車両用前照灯として使用した。この車両用前照灯においては、LEDユニット41で発生した熱は、アルミ熱伝導材42を伝わってポリプロピレン製の筐体43へ移動し、多層誘電体光学薄膜44を透過して外部空気へと放熱される。尚、筐体43の材料には、熱伝導性向上のために金属フィラーを添加し、放射率向上のために筐体43の表面を研磨剤で粗面化して表面の放射率を0.92としている。   Therefore, in this example, the lighting device according to the present invention was used as a vehicle headlamp. In this vehicle headlamp, the heat generated in the LED unit 41 is transferred to the polypropylene housing 43 through the aluminum heat conducting material 42, and passes through the multilayer dielectric optical thin film 44 to the outside air. Heat is dissipated. In addition, a metal filler is added to the material of the housing 43 to improve the thermal conductivity, and the surface of the housing 43 is roughened with an abrasive to improve the emissivity, so that the surface emissivity is 0.92. It is said.

図10に筐体と外部発熱体からの輻射スペクトルを示し、図11に筐体表面の反射スペクトルを示す。尚、筐体と外部発熱源の温度はそれぞれ50℃、200℃とした。   FIG. 10 shows a radiation spectrum from the casing and the external heating element, and FIG. 11 shows a reflection spectrum of the casing surface. The temperatures of the casing and the external heat source were 50 ° C. and 200 ° C., respectively.

図10及び図11より明らかなように、筐体からの輻射スペクトルは光学薄膜のカットオフ波長よりも長波長側に位置し、外部発熱体からの輻射スペクトルは短波長側に位置するため、図9において外部発熱体45からの熱輻射46は反射され、筐体43からの熱輻射47のみが選択的に外部へ放射される。図12に筐体内側と外側での輻射スペクトルをそれぞれ示す。   As apparent from FIGS. 10 and 11, the radiation spectrum from the housing is located on the longer wavelength side than the cutoff wavelength of the optical thin film, and the radiation spectrum from the external heating element is located on the short wavelength side. 9, the heat radiation 46 from the external heating element 45 is reflected, and only the heat radiation 47 from the housing 43 is selectively emitted to the outside. FIG. 12 shows the radiation spectra inside and outside the housing, respectively.

又、筐体の概形サイズを幅50cm×高さ20cm×奥行き20cm、筐体の放熱面の面積を1000cm2程度とした場合、本実施例の条件下では高放射率化+選択反射構造のあり/なしで20℃程度の温度低減効果を期待することができる。 Further, when the approximate size of the case is 50 cm wide × 20 cm high × 20 cm deep, and the area of the heat radiating surface of the case is about 1000 cm 2 , high emissivity + selective reflection structure With or without, a temperature reduction effect of about 20 ° C. can be expected.

次に、本発明に係る照明装置を屋外街路灯として使用した実施例について説明する。   Next, the Example which used the illuminating device which concerns on this invention as an outdoor street lamp is described.

図13は屋外街路灯の模式的断面図であり、本実施例は筐体53の表面を再帰反射材料54で覆った例を示す。   FIG. 13 is a schematic cross-sectional view of an outdoor street lamp, and this embodiment shows an example in which the surface of the casing 53 is covered with a retroreflective material 54.

図示の屋外街路灯においては、実施例10と同様に、LEDユニット51で発生した熱は、アルミ熱伝導材52を伝わってアルミ筐体53へ移動し、再帰反射材料54を透過して外部空気へと放熱される。尚、アルミ筐体53には、放射率向上のために表面に黒アルマイト処理が施され、表面の放射率は0.95とされている。   In the illustrated outdoor street light, as in the tenth embodiment, the heat generated by the LED unit 51 is transferred to the aluminum casing 53 through the aluminum heat conducting material 52, passes through the retroreflective material 54, and passes through the external air. The heat is dissipated. The aluminum casing 53 is black anodized to improve the emissivity, and the emissivity of the surface is 0.95.

太陽の表面温度は6000Kであり、筐体53の温度は50℃とした場合の各輻射スペクトルを図14にそれぞれ示す。再帰反射材料54は、太陽光線を良く反射するように粒径を3μm、屈折率を2程度に制御した。   Each radiation spectrum when the surface temperature of the sun is 6000 K and the temperature of the housing 53 is 50 ° C. is shown in FIG. The retroreflective material 54 was controlled to have a particle size of 3 μm and a refractive index of about 2 so as to reflect sunlight rays well.

太陽からの輻射スペクトルのピークは再帰反射材料の粒径よりも短波長側に位置するため、太陽からの熱は再帰反射され、筐体からの輻射スペクトルのピークは再帰反射材料の粒径よりも長波長側に位置するため、筐体からの熱は反射されないで透過する。従って、図13に示す屋外街路灯において、太陽55からの熱輻射56は再帰反射され、筐体53からの熱輻射57のみが選択的に外部へ放射される。   Since the peak of the radiation spectrum from the sun is located on the shorter wavelength side than the particle size of the retroreflective material, the heat from the sun is retroreflected, and the peak of the radiation spectrum from the housing is larger than the particle size of the retroreflective material. Since it is located on the long wavelength side, heat from the housing is transmitted without being reflected. Therefore, in the outdoor street lamp shown in FIG. 13, the heat radiation 56 from the sun 55 is retroreflected, and only the heat radiation 57 from the housing 53 is selectively emitted to the outside.

図15に筐体内側と外側での輻射スペクトルをそれぞれ示す。外部熱源が6000Kと非常に高温であるため、輻射スペクトルの分離度も大きく、太陽からの放射エネルギー(1366W/m2)の実に95%以上を反射することができ、非常に効率が良い。 FIG. 15 shows the radiation spectra inside and outside the housing, respectively. Since the external heat source is as high as 6000 K, the separation of the radiation spectrum is large, and 95% or more of the radiant energy (1366 W / m 2 ) from the sun can be reflected, which is very efficient.

又、筐体ユニットを複数個並べ、全体の概形サイズを幅30cm×長さ1m×奥行き10cm、放熱面の面積を0.3m2の屋外街路灯とした場合、本実施例の条件下では高放射率化+選択反射構造のあり/なしで50℃以上の温度低減効果を期待することができる。 In addition, when a plurality of housing units are arranged and the overall rough size is an outdoor street light having a width of 30 cm × length of 1 m × depth of 10 cm and an area of the heat radiation surface of 0.3 m 2 , A temperature reduction effect of 50 ° C. or more can be expected with / without high emissivity + selective reflection structure.

従来の照明装置における筐体表面の放熱構造を示す図である。It is a figure which shows the thermal radiation structure of the housing | casing surface in the conventional illuminating device. 本発明に係る照明装置において多層誘電体光学薄膜を用いた場合の放熱構造を示す図である。It is a figure which shows the thermal radiation structure at the time of using a multilayer dielectric optical thin film in the illuminating device which concerns on this invention. 本発明に係る照明装置において再帰反射材料を用いた場合の放熱構造を示す図である。It is a figure which shows the thermal radiation structure at the time of using a retroreflection material in the illuminating device which concerns on this invention. 図2に示す放熱構造における選択反射のスペクトルイメージ図である。It is a spectrum image figure of the selective reflection in the thermal radiation structure shown in FIG. 実施例1〜9及び比較例1〜3に用いたテストピースの構成図である。It is a block diagram of the test piece used for Examples 1-9 and Comparative Examples 1-3. テストピースの検証に用いた外部熱源の構成図である。It is a block diagram of the external heat source used for verification of a test piece. テストピースの検証を行った装置の全体構成図である。It is a whole block diagram of the apparatus which verified the test piece. 実施例1〜9における選択反射のスペクトルイメージ図である。It is a spectrum image figure of selective reflection in Examples 1-9. 車両用前照灯の模式的断面図である。It is a typical sectional view of a vehicular headlamp. 実施例10における筐体と外部発熱源の輻射スペクトルを示す図である。It is a figure which shows the radiation spectrum of the housing | casing and external heat generation source in Example 10. FIG. 実施例10における筐体表面の反射スペクトルを示す図である。It is a figure which shows the reflection spectrum of the housing | casing surface in Example 10. FIG. 実施例10における筐体内側と外側での輻射スペクトルを示す図である。It is a figure which shows the radiation spectrum in the housing | casing in Example 10, and an outer side. 屋外街路灯の模式的断面図である。It is a typical sectional view of an outdoor street lamp. 実施例11における筐体と太陽の輻射スペクトルを示す図である。It is a figure which shows the housing | casing and solar radiation spectrum in Example 11. FIG. 実施例11における筐体内側と外側での輻射スペクトルを示す図である。It is a figure which shows the radiation spectrum in the housing | casing inner side in Example 11, and an outer side.

符号の説明Explanation of symbols

1 筐体
2 多層誘電体光学薄膜
3 内部熱源からの伝熱
4 筐体表面からの熱輻射
5 外部熱源
6 外部熱源からの熱輻射
7 多層誘電体光学薄膜による熱反射
8 再帰反射性部材
9 再帰反射
10 テストピース
11 アルミ板
12 高放射率化+選択反射手段
13 熱電対
14 アルミテープ
15 シリコーンシート(TIM)
16 セラミックヒータ
20 外部熱源
21 アルミ板
22 つや消し黒塗料
23 熱電対
24 アルミテープ
25 シリコーンシート(TIM)
26 セラミックヒータ
31 ベースコルクシート
32 支持部材
33 コルクシート
41 LEDユニット
42 アルミ熱伝導材
43 筐体
44 多層誘電体光学薄膜
45 外部発熱体
46 外部発熱体からの熱輻射
47 筐体からの熱輻射
51 LEDユニット
52 アルミ熱伝導材
53 筐体
54 再帰反射材料
55 太陽
56 太陽からの熱輻射
57 筐体からの熱輻射
DESCRIPTION OF SYMBOLS 1 Case 2 Multilayer dielectric optical thin film 3 Heat transfer from internal heat source 4 Thermal radiation from housing surface 5 External heat source 6 Thermal radiation from external heat source 7 Heat reflection by multilayer dielectric optical thin film 8 Retroreflective member 9 Recursion Reflection 10 Test piece 11 Aluminum plate 12 High emissivity + selective reflection means 13 Thermocouple 14 Aluminum tape 15 Silicone sheet (TIM)
16 Ceramic heater 20 External heat source 21 Aluminum plate 22 Matte black paint 23 Thermocouple 24 Aluminum tape 25 Silicone sheet (TIM)
26 Ceramic Heater 31 Base Cork Sheet 32 Support Member 33 Cork Sheet 41 LED Unit 42 Aluminum Thermal Conductive Material 43 Housing 44 Multilayer Dielectric Optical Thin Film 45 External Heating Element 46 Thermal Radiation from External Heating Element 47 Thermal Radiation from Housing 51 LED unit 52 Aluminum thermal conductive material 53 Housing 54 Retroreflective material 55 Sun 56 Thermal radiation from the sun 57 Thermal radiation from the housing

Claims (5)

発熱源である光源と、該光源を収容する筐体を備えた照明装置において、
前記筐体の表面に赤外線領域の放射率を高める放射率向上手段を施し、その上に、分光反射率が筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御する材料を一面に亘って設けることによって、外部熱源からの輻射を遮り、内部発熱源からの熱を選択的に外部に放射することを特徴とする照明装置。
In a lighting device including a light source that is a heat source and a housing that houses the light source,
The surface of the casing is provided with an emissivity improving means for increasing the emissivity in the infrared region, and the electromagnetic wave component on the shorter wavelength side than the wavelength at which the spectral spectrum is emitted from the casing is maximized. An illuminating device characterized in that by providing a material to be controlled over the entire surface, radiation from an external heat source is blocked and heat from an internal heat source is selectively radiated to the outside.
前記放射率向上手段として、筐体表面に機械加工、化成処理又は塗装の少なくとも1つを施すことによって筐体表面の放射率を0.8以上とすることを特徴とする請求項1記載の照明装置。   2. The illumination according to claim 1, wherein the emissivity of the housing surface is set to 0.8 or more by applying at least one of machining, chemical conversion, or coating to the housing surface as the emissivity improving means. apparatus. 筐体表面に多層誘電体光学薄膜を接着し、該多層誘電体光学薄膜の分光透過率においてカットオフ波長を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側に合わせることによって、筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射することを特徴とする請求項1又は2記載の照明装置。   By adhering the multilayer dielectric optical thin film to the surface of the housing, and adjusting the cutoff wavelength in the spectral transmittance of the multilayer dielectric optical thin film to the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing is maximum, The illumination device according to claim 1, wherein an electromagnetic wave component on a shorter wavelength side than a wavelength at which a radiation spectrum emitted from the housing is maximum is reflected. 筐体表面を再帰反射性を有する材料で覆い、且つ、再帰反射の過程における粒径及び屈折率を筐体から発せられる輻射スペクトルが最大となる波長よりも短波長側の電磁波成分を反射するよう制御することを特徴とする請求項1又は2記載の照明装置。   Cover the housing surface with a retroreflective material, and reflect the electromagnetic wave component on the shorter wavelength side than the wavelength at which the radiation spectrum emitted from the housing has the maximum particle size and refractive index in the process of retroreflection. The lighting device according to claim 1, wherein the lighting device is controlled. 前記光源をLEDで構成したことを特徴とする請求項1〜4の何れかに記載の照明装置。   The lighting device according to claim 1, wherein the light source is configured by an LED.
JP2008249684A 2008-09-29 2008-09-29 Lighting system Pending JP2010080364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249684A JP2010080364A (en) 2008-09-29 2008-09-29 Lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249684A JP2010080364A (en) 2008-09-29 2008-09-29 Lighting system

Publications (1)

Publication Number Publication Date
JP2010080364A true JP2010080364A (en) 2010-04-08

Family

ID=42210543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249684A Pending JP2010080364A (en) 2008-09-29 2008-09-29 Lighting system

Country Status (1)

Country Link
JP (1) JP2010080364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241655B1 (en) * 2011-03-30 2013-03-11 현대자동차주식회사 lens structure of vehicle head lamp
WO2018003409A1 (en) * 2016-06-30 2018-01-04 ウシオ電機株式会社 Light projecting device
JP2018006133A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Light projector
JP2020076141A (en) * 2018-11-07 2020-05-21 株式会社アート1 Aluminum metal wrought material excellent in heat radiation, manufacturing method thereof, and application method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241655B1 (en) * 2011-03-30 2013-03-11 현대자동차주식회사 lens structure of vehicle head lamp
WO2018003409A1 (en) * 2016-06-30 2018-01-04 ウシオ電機株式会社 Light projecting device
JP2018006133A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Light projector
US10760766B2 (en) 2016-06-30 2020-09-01 Ushio Denki Kabushiki Kaisha Floodlight device with two optical systems that condense and collimate laser light
JP2020076141A (en) * 2018-11-07 2020-05-21 株式会社アート1 Aluminum metal wrought material excellent in heat radiation, manufacturing method thereof, and application method thereof
JP7249621B2 (en) 2018-11-07 2023-03-31 株式会社アート1 Aluminum metal material excellent in thermal radiation, method for producing the same, and method for using the same

Similar Documents

Publication Publication Date Title
JP6761673B2 (en) Passive radiative cooling panel improved by metamaterial
EP2622267B1 (en) Lightweight heat sinks and led lamps employing same
KR102071338B1 (en) Electric lamp having reflector for transferring heat from light source
EA025686B1 (en) Spectrally selective panel
EA029308B1 (en) Glazed roof comprising illuminating means and means for controlling light transmission
JP2010506071A (en) Window assembly for irradiating infrared light
JP2014075584A5 (en)
KR102258797B1 (en) Method and device for heating a surface
JP2014179318A (en) Led light bulb with structural support
US20150267908A1 (en) Integration of light emitting diode (led) optical reflectors with multilayer dielectric thin film coating into heat dissipation paths
TW201043853A (en) LED-based lamps and thermal management systems therefor
JP6821063B2 (en) Radiative cooling device
JP2010080364A (en) Lighting system
KR102352115B1 (en) Radiative cooling device including thermally conductive radiative cooling coating layer
JP6323253B2 (en) Fluorescent light source device
JP2004170877A (en) Reflector and manufacturing method thereof
JP7320982B2 (en) agricultural house
WO2017043121A1 (en) Light-emitting device and illumination device
JP2009116288A (en) Selective radiation-inhibiting optical element
TW201441562A (en) Electrothermal element
JP2020184046A (en) Optical control body
TWI688111B (en) Solar window
KR20220130378A (en) Luminous radiative cooling device with self luminous materials
JP6841492B2 (en) Seat member
Zohra et al. A Review of Super-Cool Passive Heat Radiating Materials