JP2010080321A - Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2010080321A
JP2010080321A JP2008248638A JP2008248638A JP2010080321A JP 2010080321 A JP2010080321 A JP 2010080321A JP 2008248638 A JP2008248638 A JP 2008248638A JP 2008248638 A JP2008248638 A JP 2008248638A JP 2010080321 A JP2010080321 A JP 2010080321A
Authority
JP
Japan
Prior art keywords
positive electrode
inorganic oxide
active material
electrolyte secondary
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008248638A
Other languages
Japanese (ja)
Inventor
Nobuhiro Hokotani
伸宏 鉾谷
Naoki Imachi
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008248638A priority Critical patent/JP2010080321A/en
Publication of JP2010080321A publication Critical patent/JP2010080321A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolyte secondary battery and a manufacturing method thereof wherein cost increase and reduction of productivity can be suppressed while improvement of cycle characteristics and storage characteristics (especially both characteristics at high temperatures) can be improved. <P>SOLUTION: In the positive electrode for the nonaqueous electrolyte secondary battery having a positive electrode current collector 2 and a positive electrode active material layer 1 which is formed on a surface of this positive electrode current collector 1 and contains positive electrode active material particles and a binder, TiO<SB>2</SB>particles 3 are contained in the positive electrode active material layer 1. These TiO<SB>2</SB>particles 3 are eccentrically located in the vicinity of a surface of the positive electrode active material layer 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン電池或いはポリマー電池等の非水電解質二次電池用正極及びその製造方法等の改良に関するものである。   The present invention relates to an improvement in a positive electrode for a non-aqueous electrolyte secondary battery such as a lithium ion battery or a polymer battery, and a method for producing the same.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. A non-aqueous electrolyte secondary battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and a high capacity. Widely used as a drive power source.

ここで、上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、その駆動電源である非水電解質二次電池には長時間再生や出力改善等を目的として、更なる高容量化や高性能化が強く望まれるところである。加えて、非水電解質二次電池は上記用途のみならず、電動工具やアシスト自転車、更にはHEV等の用途への展開も期待されおり、このような新用途に対応するためにも更なる高容量化や高性能化が強く望まれるところである。   Here, the mobile information terminal has a tendency to further increase power consumption with enhancement of functions such as a video playback function and a game function, and the non-aqueous electrolyte secondary battery, which is a driving power source thereof, plays back and outputs for a long time. For the purpose of improvement and the like, further increase in capacity and performance are strongly desired. In addition, non-aqueous electrolyte secondary batteries are expected to be used not only for the above applications, but also for power tools, assist bicycles, and HEVs. Capacity and high performance are strongly desired.

このようなことを考慮して、我々はコバルト酸リチウムを正極活物質として用いた電池の充電終止電圧を、現状の4.2Vから4.4V程度に上げることによって高容量化が可
能な電池を開発した。但し、このような電池では、正極の結晶構造の安定性が失われて、電解液が分解したり正極活物質から元素が溶出することがあるため、特に高温での電池性能の劣化が顕著であるということがわかった。
そこで、正極もしくは負極の表面に無機酸化物層を形成する技術が提案されている(下記特許文献1及び特許文献2参照)。このように、一方の電極表面に無機酸化物層を形成すれば、高温時等に電極と電解液との分解物がトラップされ、副反応を抑制することができるので、保存特性やサイクル特性が大きく改善される旨記載されている。
In view of this, we have developed a battery that can be increased in capacity by increasing the end-of-charge voltage of the battery using lithium cobalt oxide as the positive electrode active material from the current 4.2V to about 4.4V. developed. However, in such a battery, the stability of the crystal structure of the positive electrode is lost, and the electrolytic solution may be decomposed or elements may be eluted from the positive electrode active material. I found out there was.
Therefore, a technique for forming an inorganic oxide layer on the surface of the positive electrode or the negative electrode has been proposed (see Patent Document 1 and Patent Document 2 below). Thus, if an inorganic oxide layer is formed on one electrode surface, decomposition products of the electrode and the electrolytic solution are trapped at high temperatures and the like, and side reactions can be suppressed, so that storage characteristics and cycle characteristics are improved. It is stated that it will be greatly improved.

特開2003−142078号公報JP 2003-142078 A 特開2005−327680号公報JP 2005-327680 A

しかし、これらの先行技術では、正極或いは負極の活物質層を形成した後に、これら活物質層の表面に無機酸化物層を形成する工程が別途必要になり、コストの増加や生産性の低下を招くという課題を有していた。   However, these prior arts require an additional step of forming an inorganic oxide layer on the surface of the active material layer after forming the positive or negative electrode active material layer, which increases costs and reduces productivity. Had the problem of inviting.

したがって、本発明は、サイクル特性や保存特性(特に高温での両特性)の向上を図りつつ、コストの増加や生産性の低下を抑制することができる非水電解質二次電池用正極とその製造方法等の提供を目的としている。   Therefore, the present invention provides a positive electrode for a non-aqueous electrolyte secondary battery capable of suppressing an increase in cost and a decrease in productivity while improving cycle characteristics and storage characteristics (especially both characteristics at high temperatures) and its production. The purpose is to provide methods.

上記目的を達成するために本発明は、正極集電体と、この正極集電体の表面に形成され且つ正極活物質粒子及び結着剤を含む正極活物質層と、を有する非水電解質二次電池用正極において、上記正極活物質層には無機酸化物粒子が含まれており、且つ、この無機酸化物粒子は正極活物質層の表面近傍に偏在していることを特徴とする。
上記構成の如く、正極活物質層の表面近傍に無機酸化物粒子が偏在していれば、正極表面に無機酸化物層を形成した場合と同様、正極活物質層の表面部分においてフィルターとしての機能を発揮する。したがって、電極と電解液との反応物をトラップしたり、また副反応そのものを抑制することができるので、高温特性(高温の下でのサイクル特性や保存特性)を向上させることができる。また、この場合、無機酸化物粒子が偏在している正極活物質層の表面近傍と正極活物質粒子が偏在している正極活物質層の正極集電体近傍とが一体的に形成されているので、両部位間の密着強度が向上する。
To achieve the above object, the present invention provides a non-aqueous electrolyte comprising a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector and containing positive electrode active material particles and a binder. In the positive electrode for a secondary battery, the positive electrode active material layer includes inorganic oxide particles, and the inorganic oxide particles are unevenly distributed near the surface of the positive electrode active material layer.
If the inorganic oxide particles are unevenly distributed in the vicinity of the surface of the positive electrode active material layer as in the above configuration, the function as a filter in the surface portion of the positive electrode active material layer is the same as when the inorganic oxide layer is formed on the surface of the positive electrode. Demonstrate. Therefore, a reaction product between the electrode and the electrolytic solution can be trapped and a side reaction itself can be suppressed, so that high temperature characteristics (cycle characteristics and storage characteristics at high temperatures) can be improved. In this case, the vicinity of the surface of the positive electrode active material layer where the inorganic oxide particles are unevenly distributed and the vicinity of the positive electrode current collector of the positive electrode active material layer where the positive electrode active material particles are unevenly distributed are integrally formed. Therefore, the adhesion strength between both parts improves.

正極活物質層の総量に対する無機酸化物粒子の割合が0.1〜3.0質量%であることが望ましい。
このように規制するのは、上記割合が0.1質量%未満になると無機酸化物粒子の添加効果を十分に発揮できないことがある一方、上記割合が3.0質量%を超えると、正極活物質層中の正極活物質粒子の割合が相対的に少なくなって、エネルギー密度が低下するからである。
上記無機酸化物粒子がルチル構造のTiO2から成ることが望ましい。
The ratio of the inorganic oxide particles to the total amount of the positive electrode active material layer is desirably 0.1 to 3.0% by mass.
When the ratio is less than 0.1% by mass, the effect of adding the inorganic oxide particles may not be sufficiently exhibited. On the other hand, when the ratio exceeds 3.0% by mass, the positive electrode active This is because the ratio of the positive electrode active material particles in the material layer is relatively reduced, and the energy density is lowered.
It is desirable that the inorganic oxide particles comprise TiO 2 of the rutile structure.

無機酸化物粒子と正極活物質粒子と結着剤とを含む無機酸化物粒子含有正極スラリーを作製する第1ステップと、上記無機酸化物粒子含有正極スラリーを正極集電体の表面に塗布する第2ステップと、上記無機酸化物粒子含有正極スラリーを加熱して、熱対流を生じさせつつ乾燥させる第3ステップと、を有することを特徴とする。   A first step of producing a positive electrode slurry containing inorganic oxide particles, positive electrode active material particles, and a binder, and applying the inorganic oxide particle-containing positive electrode slurry to the surface of the positive electrode current collector; And a third step in which the inorganic oxide particle-containing positive electrode slurry is heated and dried while generating thermal convection.

無機酸化物粒子含有正極スラリーを正極集電体の表面に塗布した後、当該スラリーを加熱した場合には、スラリー中において正極集電体側に存在する無機酸化物粒子が正極表面方向に移動する。このため、当該スラリーが乾燥して正極活物質層が形成された場合には、無機酸化物粒子が正極の表面近傍に偏在することになる。このように、スラリーを1回塗布、乾燥させるだけで、表面近傍に無機酸化物粒子が偏在する正極活物質層を正極集電体の表面に作製することができる。したがって、サイクル特性や保存特性(特に高温での両特性)の向上を図りつつ、コストの増加や生産性の低下を抑制することができる。   When the inorganic oxide particle-containing positive electrode slurry is applied to the surface of the positive electrode current collector and then heated, the inorganic oxide particles present on the positive electrode current collector side move in the positive electrode surface direction. For this reason, when the said slurry dries and the positive electrode active material layer is formed, inorganic oxide particles will be unevenly distributed in the surface vicinity of a positive electrode. Thus, the positive electrode active material layer in which the inorganic oxide particles are unevenly distributed in the vicinity of the surface can be produced on the surface of the positive electrode current collector by simply applying and drying the slurry once. Therefore, an increase in cost and a decrease in productivity can be suppressed while improving cycle characteristics and storage characteristics (especially both characteristics at high temperatures).

上記第1ステップにおいて、無機酸化物粒子と分散安定剤とを溶媒に分散させて無機酸化物粒子分散液を作製すると共に、正極活物質粒子と結着剤とを溶媒に分散させて正極スラリーを作製した後、上記無機酸化物粒子分散液と上記正極スラリーを混合して、上記無機酸化物粒子含有正極スラリーを作製することが望ましい。
正極スラリーを作製する工程とは別に、無機酸化物粒子と分散安定剤とを溶媒に分散させて無機酸化物粒子分散液を作製する工程を有していれば、分散安定剤の存在により、無機酸化物粒子が凝集するのを抑制しつつ分散させることが可能となる。
In the first step, inorganic oxide particles and a dispersion stabilizer are dispersed in a solvent to prepare an inorganic oxide particle dispersion, and positive electrode active material particles and a binder are dispersed in a solvent to obtain a positive electrode slurry. After the production, it is desirable to produce the inorganic oxide particle-containing positive electrode slurry by mixing the inorganic oxide particle dispersion and the positive electrode slurry.
In addition to the step of preparing the positive electrode slurry, if there is a step of preparing an inorganic oxide particle dispersion by dispersing inorganic oxide particles and a dispersion stabilizer in a solvent, It becomes possible to disperse the oxide particles while suppressing aggregation.

上記無機酸化物粒子として、平均粒径が10〜500nmのものを用いることが望ましい。
一般に非水電解質二次電池に使用されている正極活物質粒子の平均粒径は10μm前後であるため、無機酸化物粒子の平均粒径が500nmを超えると、無機酸化物粒子含有正極スラリー乾燥時の熱対流が起こり難くなる。一方、無機酸化物粒子の平均粒径が小さ過ぎると、熱対流は起こり易くなるが、高コストとなり、しかも凝集性が高くなって分散液の調製に難があるという問題がある。
尚、本明細書において、各種粒子の平均粒径は、全て粒度分布法にて測定した値である。
As the inorganic oxide particles, those having an average particle diameter of 10 to 500 nm are desirably used.
Since the average particle diameter of the positive electrode active material particles generally used in non-aqueous electrolyte secondary batteries is around 10 μm, when the average particle diameter of the inorganic oxide particles exceeds 500 nm, the inorganic oxide particle-containing positive electrode slurry is dried. Heat convection is less likely to occur. On the other hand, if the average particle size of the inorganic oxide particles is too small, thermal convection tends to occur, but there is a problem that the cost becomes high and the cohesiveness becomes high and it is difficult to prepare the dispersion.
In the present specification, the average particle size of various particles is a value measured by the particle size distribution method.

上記第2ステップにおける無機酸化物粒子含有正極スラリーの粘度が0.6〜2.0Pa・sであることが望ましい。
当該スラリーの粘度が0.6Pa・s未満になると、当該スラリーの塗布厚みが小さくなる等のハンドリング上の問題を生じることがある一方、当該スラリーの粘度が2.0Pa・sを超えると、マイグレーションが生じ難くなって、無機酸化物粒子を正極活物質層の表面近傍に偏在させ難くなるという問題を生じることがある。
It is desirable that the viscosity of the positive electrode slurry containing inorganic oxide particles in the second step is 0.6 to 2.0 Pa · s.
When the viscosity of the slurry is less than 0.6 Pa · s, there may be a problem in handling such as a reduced coating thickness of the slurry. On the other hand, when the viscosity of the slurry exceeds 2.0 Pa · s, the migration This may cause a problem that the inorganic oxide particles are less likely to be unevenly distributed near the surface of the positive electrode active material layer.

上記第3ステップにおける乾燥温度が100〜150℃であることが望ましい。
乾燥温度が100℃未満になると、マイグレーションが生じ難くなるという問題を生じることがある一方、乾燥温度が150℃を超えるとバインダー等の熱的安定性が低下するという問題を生じることがある。
The drying temperature in the third step is preferably 100 to 150 ° C.
When the drying temperature is less than 100 ° C., there may be a problem that migration hardly occurs. On the other hand, when the drying temperature exceeds 150 ° C., the thermal stability of the binder or the like may be deteriorated.

正極集電体、及びこの正極集電体の表面に形成され且つ正極活物質粒子、結着剤を含む正極活物質層を有する正極と、負極と、これら正負両極間に介装されたセパレータから成る電極体と、この電極体に含浸された非水電解質とを備えた非水電解質二次電池において、上記正極活物質層には無機酸化物粒子が含まれており、且つ、この無機酸化物粒子は正極活物質層の表面近傍に偏在していることを特徴とする。   A positive electrode current collector, a positive electrode having a positive electrode active material layer formed on the surface of the positive electrode current collector and containing positive electrode active material particles and a binder, a negative electrode, and a separator interposed between the positive and negative electrodes And a non-aqueous electrolyte secondary battery impregnated in the electrode body. The positive electrode active material layer includes inorganic oxide particles, and the inorganic oxide The particles are characterized by being unevenly distributed near the surface of the positive electrode active material layer.

正極活物質層の総量に対する無機酸化物粒子の割合が0.1〜3.0質量%であることが望ましく、また、上記無機酸化物粒子がルチル構造のTiO2から成ることが望ましい。 The ratio of the inorganic oxide particles to the total amount of the positive electrode active material layer is preferably 0.1 to 3.0% by mass, and the inorganic oxide particles are preferably made of TiO 2 having a rutile structure.

無機酸化物粒子と正極活物質粒子と結着剤とを含む無機酸化物粒子含有正極スラリーを作製する第1ステップと、上記無機酸化物粒子含有正極スラリーを正極集電体の表面に塗布する第2ステップと、上記無機酸化物粒子含有正極スラリーを加熱して、熱対流を生じさせつつ乾燥させることにより正極を作製する第3ステップと、上記正極と負極との間にセパレータを配置して電極体を作製した後、この電極体に非水電解質を含浸させる第4ステップと、を有することを特徴とする。   A first step of producing a positive electrode slurry containing inorganic oxide particles, positive electrode active material particles, and a binder, and applying the inorganic oxide particle-containing positive electrode slurry to the surface of the positive electrode current collector; 2 steps, a third step of heating the inorganic oxide particle-containing positive electrode slurry and drying it while generating thermal convection, and an electrode with a separator disposed between the positive electrode and the negative electrode And a fourth step of impregnating the electrode body with a non-aqueous electrolyte after the body is produced.

上記第1ステップにおいて、無機酸化物粒子と分散安定剤とを溶媒に分散させて無機酸化物粒子分散液を作製すると共に、正極活物質粒子と結着剤とを溶媒に分散させて正極スラリーを作製した後、上記無機酸化物粒子分散液と上記正極スラリーとを混合して、上記無機酸化物粒子含有正極スラリーを作製することが望ましい。   In the first step, inorganic oxide particles and a dispersion stabilizer are dispersed in a solvent to prepare an inorganic oxide particle dispersion, and positive electrode active material particles and a binder are dispersed in a solvent to obtain a positive electrode slurry. After the production, it is desirable to produce the inorganic oxide particle-containing positive electrode slurry by mixing the inorganic oxide particle dispersion and the positive electrode slurry.

上記無機酸化物粒子として、平均粒径が10〜500nmのものを用いることが望ましく、上記第2ステップにおける無機酸化物粒子含有正極スラリーの粘度が0.6〜2.0Pa・sであることが望ましく、また、上記第3ステップにおける乾燥温度が100〜150℃であることが望ましい。   As the inorganic oxide particles, those having an average particle size of 10 to 500 nm are desirably used, and the viscosity of the inorganic oxide particle-containing positive electrode slurry in the second step is 0.6 to 2.0 Pa · s. Desirably, the drying temperature in the third step is preferably 100 to 150 ° C.

本発明によれば、サイクル特性や保存特性(特に高温での両特性)の向上を図りつつ、非水電解質二次電池の生産コストの増加や生産性の低下を抑制することができるという優れた効果を奏する。   According to the present invention, it is possible to suppress an increase in production cost and a decrease in productivity of a nonaqueous electrolyte secondary battery while improving cycle characteristics and storage characteristics (particularly both characteristics at high temperatures). There is an effect.

以下、本発明の一例に係る非水電解質二次電池用正極及びその製造方法等を、以下に説明する。なお、本発明における非水電解質二次電池正極及びその製造方法等は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, a positive electrode for a nonaqueous electrolyte secondary battery according to an example of the present invention, a manufacturing method thereof, and the like will be described below. In addition, the nonaqueous electrolyte secondary battery positive electrode and the manufacturing method thereof in the present invention are not limited to those shown in the following embodiments, and can be appropriately changed and implemented without changing the gist thereof.

〔正極の作製〕
先ず、正極活物質であるコバルト酸リチウム(平均粒径:10μm)と、炭素導電剤としてのアセチレンブラックと、結着剤としてのPVDFとを、95:2.5:2.5の質量比で混合した後、NMPを希釈溶剤として特殊機化製T.K.CONBIMIXを用いてこれらを攪拌し、正極スラリーを調製した。
[Production of positive electrode]
First, lithium cobaltate (average particle size: 10 μm) as a positive electrode active material, acetylene black as a carbon conductive agent, and PVDF as a binder at a mass ratio of 95: 2.5: 2.5 After mixing, these were stirred using TK CONBIMIX made by Tokushu Kika with NMP as a diluent solvent to prepare a positive electrode slurry.

これと並行して、溶媒としてのNMPを用い、ルチル構造のTiO2粒子(平均粒径250nm、石原産業株式会社製CR−EL)をNMPに対して固形分濃度が30質量%となるように調製し、PVDFを上記TiO2粒子に対して3.75質量%になるように調製し、特殊機化製Filmics内に配置し、混合分散処理を行うことによりTiO2粒子分散液を調製した。
次に、上記正極スラリーと上記TiO2粒子分散液とを混合して、TiO2粒子含有正極スラリー(粘度:1.0Pa・s)を作製した。この際、TiO2粒子含有正極スラリー中の上記TiO2粒子の固形分比率が1質量%になるように、両者の混合比率を調整した。
In parallel with this, using NMP as a solvent, TiO 2 particles having an rutile structure (average particle size 250 nm, CR-EL manufactured by Ishihara Sangyo Co., Ltd.) are set to have a solid content concentration of 30% by mass with respect to NMP. prepared, the PVDF was prepared such that the 3.75 wt% with respect to the TiO 2 particles, was placed in Kika made Filmics, the mixed dispersion treatment to prepare a TiO 2 particle dispersion by performing.
Next, the positive electrode slurry and the TiO 2 particle dispersion were mixed to prepare a TiO 2 particle-containing positive electrode slurry (viscosity: 1.0 Pa · s). At this time, the solid content ratio of the TiO 2 particles of TiO 2 particles containing the positive electrode in the slurry to be 1 mass%, to prepare a mixed ratio of both.

次いで、アルミニウム箔から成る正極集電体の両面に、塗工速度1.2m/minで上記TiO2粒子含有正極スラリーを塗布し、更に、第1乾燥室(温度:115℃)と第2乾燥室(温度:120℃)とからなる2つの乾燥室を有する炉長4mの乾燥炉においてTiO2粒子含有正極スラリーを乾燥させた。
最後に、上記のようにして作成した極板を、正極活物質の充填密度が3.60g/ccになるように圧延することにより正極を作製した。
Next, the TiO 2 particle-containing positive electrode slurry is applied to both surfaces of the positive electrode current collector made of aluminum foil at a coating speed of 1.2 m / min. Further, the first drying chamber (temperature: 115 ° C.) and the second drying are applied. The positive electrode slurry containing TiO 2 particles was dried in a drying furnace having a furnace length of 4 m having two drying chambers (temperature: 120 ° C.).
Finally, the positive electrode was prepared by rolling the electrode plate prepared as described above so that the packing density of the positive electrode active material was 3.60 g / cc.

〔負極の作製〕
負極活物質である炭素材料(人造黒鉛)と、CMC1380(ダイセル化学工業株式会社製)を純水に1質量%溶解させたものと、SBR(スチレンブタジエンゴム)とを、固形分質量比率が98:1:1となるように、特殊機化製T.K.CONBIMIXを用いて混合して負極スラリーを作製した後、銅箔から成る負極集電体の両面に上記負極スラリーを塗着し、更に、乾燥、圧延することにより、負極集電体の両面に負極活物質層が形成された負極を作製した。尚、負極活物質層の充填密度は1.60g/ccである。
(Production of negative electrode)
Carbon material (artificial graphite) which is a negative electrode active material, CMC1380 (manufactured by Daicel Chemical Industries, Ltd.) dissolved in 1% by mass of pure water, and SBR (styrene butadiene rubber) have a solid content mass ratio of 98. 1: After preparing a negative electrode slurry by mixing using TK CONBMIX made by Special Machine, the negative electrode slurry was applied to both sides of the negative electrode current collector made of copper foil, Furthermore, the negative electrode by which the negative electrode active material layer was formed on both surfaces of the negative electrode collector was produced by drying and rolling. The filling density of the negative electrode active material layer is 1.60 g / cc.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが容積比で3:7の割合で混合された混合溶媒に、LiPF6を1.0モル/リットルの割合で溶解させて調製した。
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved at a ratio of 1.0 mol / liter in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7.

〔セパレータの種類〕
セパレータとしては、ポリエチレン(以下、PEと略すことがある)製微多孔膜(膜厚:16μm、空孔率47%)を用いた。
[Separator type]
As the separator, a microporous membrane (thickness: 16 μm, porosity of 47%) made of polyethylene (hereinafter sometimes abbreviated as PE) was used.

〔電池の組立〕
正、負極それぞれにリード端子を取り付け、セパレータを介して渦巻状に巻き取ったものをプレスして、扁平状に押し潰した電極体を作製した後、電池外装体としてのアルミニウムラミネートフィルムの収納空間内に電極体を配置し、更に、当該空間内に非水電解液を注液した後に、アルミニウムラミネートフィルム同士を溶着して封止することにより電池を作製した。尚、この電池では、充電終止電圧が4.40Vとなるように規定されており、且つ、この電位での設計容量は750mAhとなっている。
[Battery assembly]
A lead terminal is attached to each of the positive and negative electrodes, and a spiral wound electrode is pressed through a separator to produce a flattened electrode body, and then a storage space for an aluminum laminate film as a battery exterior body An electrode body was disposed therein, and a nonaqueous electrolyte solution was poured into the space, and then an aluminum laminate film was welded and sealed to prepare a battery. In this battery, the end-of-charge voltage is specified to be 4.40 V, and the design capacity at this potential is 750 mAh.

(実施例)
実施例としては、上記最良の形態で示した電池を用いた。
このようにして作製した電池を、以下、本発明電池Aと称する。
(Example)
As an example, the battery shown in the best mode was used.
The battery thus produced is hereinafter referred to as the present invention battery A.

(比較例1)
正極スラリーにTiO2粒子分散液を混合しない(正極活物質層中にTiO2粒子が存在しない)他は、上記実施例と同様にして正極と電池とを作製した。
このようにして作製した電池を、以下、比較電池Z1と称する。
(Comparative Example 1)
A positive electrode and a battery were produced in the same manner as in the above example except that the TiO 2 particle dispersion was not mixed with the positive electrode slurry (no TiO 2 particles were present in the positive electrode active material layer).
The battery thus manufactured is hereinafter referred to as a comparative battery Z1.

(比較例2)
上記比較電池Z1の正極活物質層の表面に無機酸化物層を別途形成した他は、上記比較例1と同様にして正極と電池とを作製した。
ここで、上記無機酸化物層を、以下のようにして作製した。
(Comparative Example 2)
A positive electrode and a battery were produced in the same manner as in Comparative Example 1 except that an inorganic oxide layer was separately formed on the surface of the positive electrode active material layer of the comparative battery Z1.
Here, the inorganic oxide layer was produced as follows.

先ず、溶媒として純水を用い、ルチル構造のTiO2粒子(平均粒径250nm、石原産業株式会社製CR−EL)を純水に対して固形分濃度が40質量%となるように調製し、SBRを上記TiO2粒子に対して3.75質量%なるように調製し、特殊機化製Filmics内に配置し、混合分散処理を行うことによりTiO2粒子分散液を調製した。次に、このTiO2粒子分散液を用いて、上記比較電池Z1の正極活物質層の両面に、グラビアコート方式で上記TiO2粒子分散液を塗布した後、溶剤を乾燥・除去して、正極活物質層の両面に無機酸化物層(片面の厚みは2μm)を形成した。尚、TiO2粒子分散液の塗工時には、正極活物質層の全面を被覆するように、片面ずつ塗工処理を行った。
このようにして作製した電池を、以下、比較電池Z2と称する。
First, pure water is used as a solvent, and rutile TiO 2 particles (average particle size 250 nm, CR-EL manufactured by Ishihara Sangyo Co., Ltd.) are prepared so that the solid content concentration is 40% by mass with respect to pure water. SBR was prepared to be 3.75% by mass with respect to the TiO 2 particles, placed in Special Mechanics Films, and mixed and dispersed to prepare a TiO 2 particle dispersion. Then, by using the TiO 2 particle dispersion, on both sides of the positive electrode active material layer of the comparative battery Z1, after applying the TiO 2 particle dispersion by a gravure coating method, a drying and removing the solvent, the positive electrode An inorganic oxide layer (the thickness of one surface is 2 μm) was formed on both surfaces of the active material layer. In addition, at the time of the coating of the TiO 2 particle dispersion liquid, the coating treatment was performed on each side so as to cover the entire surface of the positive electrode active material layer.
The battery thus produced is hereinafter referred to as a comparative battery Z2.

(実験1)
本発明電池A及び比較電池Z1、Z2の充電保存特性(充電保存後の残存容量)について調べたので、その結果を表1に示す。尚、充放電条件及び残存容量比の算出方法は、下記の通りである。
(Experiment 1)
The charge storage characteristics (remaining capacity after charge storage) of the present invention battery A and comparative batteries Z1 and Z2 were examined, and the results are shown in Table 1. In addition, the calculation method of charging / discharging conditions and remaining capacity ratio is as follows.

[充放電条件]
・充電条件
1.0It(750mA)の電流で、電池電圧が4.40Vとなるまで定電流充電を行なった後、4.40Vの電圧で電流値が1/20It(37.5mA)になるまで充電を行うという条件。
・放電条件
1.0It(750mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分である。
[Charging / discharging conditions]
-Charging conditions After constant current charging with a current of 1.0 It (750 mA) until the battery voltage reaches 4.40 V, the current value becomes 1/20 It (37.5 mA) at a voltage of 4.40 V. Condition to charge.
-Discharge condition The condition that constant current discharge is performed up to a battery voltage of 2.75 V at a current of 1.0 It (750 mA).
The charging / discharging interval is 10 minutes.

[残存容量比の算出方法]
上記充放電条件で充放電を1回行い、このときの放電容量を保存試験前の放電容量とした。次に、上記充電条件で充電した電池を60℃で5日間放置した後、上記放電条件と同一の条件で放電を行い、このときの放電容量を保存試験後1回目の放電容量とした。そして、この保存試験後1回目の放電容量と上記保存試験前の放電容量とを用いて、下記(1)式より、残存容量比を算出した。
残存容量比(%)=
(保存試験後1回目の放電容量/保存試験前の放電容量)×100・・・(1)
[Calculation method of remaining capacity ratio]
Charging / discharging was performed once under the above charging / discharging conditions, and the discharge capacity at this time was defined as the discharge capacity before the storage test. Next, after the battery charged under the above charging conditions was left at 60 ° C. for 5 days, discharging was performed under the same conditions as the above discharging conditions, and the discharging capacity at this time was defined as the first discharging capacity after the storage test. And the remaining capacity ratio was computed from the following (1) Formula using the discharge capacity of the 1st time after this storage test, and the discharge capacity before the said storage test.
Residual capacity ratio (%) =
(First discharge capacity after storage test / Discharge capacity before storage test) × 100 (1)

〔実験結果〕
表1から明らかなように、正極の表面にTiO2粒子が存在していない比較電池Z1では、残存容量比が18.2%であって非常に低いのに対して、正極の表面にTiO2粒子が存在する本発明電池Aと比較電池Z2とでは、残存容量比が各々57.4%、75.9%であって高くなっていることが認められる。以上より、正極活物質層の表面(電極の表面)近傍に無機酸化物粒子(TiO2粒子)を偏在させると、正極活物質層の表面に別途無機酸化物層を形成した場合と類似の効果が得られることが分かった。
〔Experimental result〕
As is clear from Table 1, in the comparative battery Z1 in which no TiO 2 particles are present on the surface of the positive electrode, the remaining capacity ratio is 18.2%, which is very low, whereas the TiO 2 on the surface of the positive electrode is very low. In the present invention battery A and the comparative battery Z2 in which particles are present, it can be seen that the remaining capacity ratios are 57.4% and 75.9%, respectively, which are high. From the above, when the inorganic oxide particles (TiO 2 particles) are unevenly distributed in the vicinity of the surface of the positive electrode active material layer (surface of the electrode), an effect similar to the case where a separate inorganic oxide layer is formed on the surface of the positive electrode active material layer Was found to be obtained.

一方、表1から明らかなように、比較電池Z2の如く正極活物質層の表面に無機酸化物層を形成する場合は、正極活物質層作製工程の他に別途無機酸化物層作製工程が必要になるのに対して、マイグレーションを生じさせることにより無機酸化物粒子(TiO2粒子)を正極活物質層の表面に偏在させる場合には、正極活物質層作製工程のみで足る。したがって、本発明では、正極や電池の生産工数を削減でき、電池を効率よく低コストで提供することができる。 On the other hand, as is clear from Table 1, when an inorganic oxide layer is formed on the surface of the positive electrode active material layer as in the comparative battery Z2, an additional inorganic oxide layer preparation step is required in addition to the positive electrode active material layer preparation step. On the other hand, when the inorganic oxide particles (TiO 2 particles) are unevenly distributed on the surface of the positive electrode active material layer by causing migration, only the positive electrode active material layer preparation step is sufficient. Therefore, in the present invention, the number of production steps of the positive electrode and the battery can be reduced, and the battery can be provided efficiently and at low cost.

尚、本発明電池Aは比較電池Z2に比べると、残存容量比が小さくなっている。これは、比較電池Z2では正極活物質層をTiO2粒子で完全に被覆しているが、本発明電池Aは正極活物質表面をTiO2粒子で完全に被覆していないことに起因すると考えられる。 The battery A of the present invention has a smaller remaining capacity ratio than the comparative battery Z2. It is believed that this is a positive electrode active material layer in Comparative Battery Z2 are completely coated with TiO 2 particles, the present invention cell A is due to the fact that not completely cover the surface of the positive electrode active material in TiO 2 particles .

但し、本質的に、正極の表面に無機酸化物粒子を偏在させることによる効果は、本作製プロセスにて十分に確保されるものであり、しかも、上述した不都合は、無機酸化物粒子が偏在する部分の厚みを若干大きくすることにより解消できるものと考えられる。   However, essentially, the effect of unevenly distributing the inorganic oxide particles on the surface of the positive electrode is sufficiently ensured by the present manufacturing process, and the above-described disadvantage is that the inorganic oxide particles are unevenly distributed. It can be solved by slightly increasing the thickness of the portion.

(実験2)
圧延後の正極をJEOL製クロスセクションポリッシャー(SM−09010)を用いて電極断面を作製し、JEOL製EDX(JSM−6500F)で電極断面の無機酸化物粒子(TiO2粒子)の分布状態を測定した。その際のSEM画像とEDSマッピング(TiO2粒子の分布状態を示す図であって、白くなっている部位がTiO2粒子である)とを、それぞれ図1及び図2に示す。
(Experiment 2)
The positive electrode after rolling to produce an electrode section using a JEOL Ltd. cross section polisher (SM-09010), measuring the distribution of JEOL Ltd. EDX (JSM-6500F) in the electrode section inorganic oxide particles (TiO 2 particles) did. An SEM image and EDS mapping (a diagram showing the distribution state of TiO 2 particles, where the whitened portions are TiO 2 particles) are shown in FIGS. 1 and 2, respectively.

図1及び図2から明らかなように、TiO2粒子は正極活物質層の表面近傍(図2の上部)に偏在しており、正極活物質層の正極集電体近傍(図2の下部)には余り存在しないことが認められる。 As is apparent from FIGS. 1 and 2, TiO 2 particles were localized near the surface of the positive electrode active material layer (upper part of FIG. 2), the positive electrode current collector vicinity of the positive electrode active material layer (lower part of FIG. 2) It is recognized that there is not much.

このようになる理由を図3及び図4を用いて説明する。図3及び図4において、1は正極活物質層、2は正極集電体、3はTiO2粒子、4は熱風、5はTiO2粒子含有正極活物質スラリーである。先ず、図3に示すように、熱風で温度上昇すると、TiO2粒子含有正極スラリー5中のTiO2粒子3が矢符A方向(正極集電体2側から正極の表面側)に移動する(マイグレーションを生じる)。この際、矢符A方向にマイグレーションが生じるのは、正極活物質粒子の平均粒径に比べて、TiO2粒子3の平均粒径が格段に小さいということによるものである。このようなマイグレーションが生じつつTiO2粒子含有正極スラリー5を乾燥させると、図4に示すように、TiO2粒子3が表面近傍に偏在するような正極活物質層1が形成されることになる。 The reason for this will be described with reference to FIGS. 3 and 4, 1 is a positive electrode active material layer, 2 is a cathode current collector, 3 TiO 2 particles, 4 hot air, 5 is a TiO 2 particle-containing positive electrode active material slurry. First, as shown in FIG. 3, the temperature rise with hot air, TiO 2 particles 3 of the TiO 2 particles containing positive electrode slurry 5 is moved in the arrow A direction (front side of the positive electrode from the positive electrode current collector 2 side) ( Resulting in migration). At this time, the migration in the arrow A direction is due to the fact that the average particle size of the TiO 2 particles 3 is much smaller than the average particle size of the positive electrode active material particles. When the positive electrode slurry 5 containing TiO 2 particles is dried while such migration occurs, the positive electrode active material layer 1 in which the TiO 2 particles 3 are unevenly distributed near the surface is formed as shown in FIG. .

〔その他の事項〕
(1)本発明に用いる無機酸化物粒子としてはチタニアに限定するものではなく、電池内での安定性に優れるもの(リチウムとの反応性が低いもの)であれば、その種類は問わない。例えば、アルミナ、ジルコニア、マグネシア等を用いることができる。これらの中でも、チタニア、アルミナは塗料分野でよく使用されており、安価で小粒径のものが多数ラインナップされているということから、好適に用いることができる。尚、チタニアとしては、ルチル構造のチタニアを用いるのが好ましい。なぜなら、アナターゼ構造のチタニアはリチウムイオンの挿入離脱が可能であり、環境雰囲気、電位によっては、リチウムを吸蔵して電子伝導性を発現するため、容量低下や、短絡の危険性があるからである。
[Other matters]
(1) The inorganic oxide particles used in the present invention are not limited to titania, and the type thereof is not limited as long as it has excellent stability in the battery (low reactivity with lithium). For example, alumina, zirconia, magnesia, or the like can be used. Among these, titania and alumina are often used in the paint field, and can be suitably used because they are inexpensive and have a large number of small particle sizes. As titania, titania having a rutile structure is preferably used. This is because titania with anatase structure can insert and release lithium ions, and depending on the environmental atmosphere and potential, it absorbs lithium and expresses electronic conductivity. .

(2)上記実施例では、無機酸化物粒子として平均粒径が250nmのものを用いたが、このようなものに限定されるものではない。但し、一般に非水電解質二次電池に使用されている正極活物質粒子の平均粒径は10μm前後であるため、無機酸化物粒子の平均粒径が大き過ぎると、スラリー乾燥時の熱対流が起こり難くなる。一方、無機酸化物粒子の平均粒径が小さ過ぎると、熱対流は起こり易くなるが、高コストとなり、しかも凝集性が高くなって無機酸化物粒子分散液の調製に難があるという問題がある。したがって、無機酸化物粒子の平均粒径は10〜500nmであることが望ましい。 (2) In the above examples, inorganic oxide particles having an average particle diameter of 250 nm are used, but the present invention is not limited to such particles. However, since the average particle size of the positive electrode active material particles generally used in non-aqueous electrolyte secondary batteries is around 10 μm, if the average particle size of the inorganic oxide particles is too large, thermal convection occurs during slurry drying. It becomes difficult. On the other hand, if the average particle size of the inorganic oxide particles is too small, thermal convection is likely to occur, but there is a problem that the cost becomes high and the cohesiveness becomes high and it is difficult to prepare the inorganic oxide particle dispersion. . Accordingly, the average particle size of the inorganic oxide particles is desirably 10 to 500 nm.

(3)固形分の総量に対する無機酸化物粒子の割合(正極活物質層の総量に対する無機酸化物粒子の割合)は1質量%に限定するものではないが、0.1〜3.0質量%に規制するのが好ましい。なぜなら、上記割合が0.1質量%未満になると無機酸化物粒子の添加効果を十分に発揮できないことがある一方、上記割合が3.0質量%を超えると、正極活物質層中の正極活物質の割合が少なくなって、エネルギー密度が低下するからである。 (3) The ratio of the inorganic oxide particles to the total amount of the solid content (the ratio of the inorganic oxide particles to the total amount of the positive electrode active material layer) is not limited to 1% by mass, but is 0.1 to 3.0% by mass. It is preferable to regulate to. This is because when the ratio is less than 0.1% by mass, the effect of adding the inorganic oxide particles may not be sufficiently exerted, whereas when the ratio exceeds 3.0% by mass, the positive electrode active material layer in the positive electrode active material layer may not be fully effective. This is because the density of the material decreases and the energy density decreases.

(4)上記無機酸化物粒子含有正極スラリーの粘度は1.0Pa・sに限定するものではないが、0.6〜2.0Pa・sであることが望ましい。これは、当該スラリーの粘度が0.6Pa・s未満になると、当該スラリーの塗布厚みが小さくなる等のハンドリング上の問題を生じることがある一方、当該スラリーの粘度が2.0Pa・sを超えると、マイグレーションが生じ難くなって、無機酸化物粒子を正極活物質層の表面近傍に偏在させ難くなるという問題を生じることがあるからである。 (4) The viscosity of the positive electrode slurry containing inorganic oxide particles is not limited to 1.0 Pa · s, but is preferably 0.6 to 2.0 Pa · s. When the viscosity of the slurry is less than 0.6 Pa · s, this may cause a handling problem such as a decrease in the coating thickness of the slurry, while the viscosity of the slurry exceeds 2.0 Pa · s. This is because migration is difficult to occur, and it may be difficult to make the inorganic oxide particles unevenly distributed near the surface of the positive electrode active material layer.

(5)上記無機酸化物粒子含有正極スラリーの乾燥温度は115℃、120℃に限定するものではないが、100〜150℃であることが望ましい。これは、乾燥温度が100℃未満になると、マイグレーションが生じ難くなるという問題を生じることがある一方、乾燥温度が150℃を超えるとバインダー等の熱的安定性が低下するという問題を生じることがあるからである。 (5) Although the drying temperature of the said inorganic oxide particle containing positive electrode slurry is not limited to 115 degreeC and 120 degreeC, it is desirable that it is 100-150 degreeC. This may cause a problem that migration is less likely to occur when the drying temperature is less than 100 ° C., and may cause a problem that the thermal stability of the binder and the like decreases when the drying temperature exceeds 150 ° C. Because there is.

(6)正極活物質としては、上記コバルト酸リチウムに限定するものではなく、ニッケル−コバルト−マンガンのリチウム複合酸化物、ニッケル−マンガン−アルミニウムのリチウム複合酸化物、ニッケル−コバルト−アルミニウムの複合酸化物等のニッケルを含むリチウム複合酸化物や、スピネル型マンガン酸リチウム、オリビン型燐酸リチウム等でも良い。 (6) The positive electrode active material is not limited to the above lithium cobaltate, but is a nickel-cobalt-manganese lithium composite oxide, a nickel-manganese-aluminum lithium composite oxide, or a nickel-cobalt-aluminum composite oxide. Lithium composite oxide containing nickel such as spinel type lithium manganate, olivine type lithium phosphate and the like may be used.

(7)負極活物質としては、上記人工黒鉛に限定されるものではなく、グラファイト、コークス、酸化スズ、金属リチウム、珪素、及びそれらの混合物等、リチウムイオンを挿入脱離できうるものであればその種類は問わない。 (7) The negative electrode active material is not limited to the above artificial graphite, and may be any material that can insert and desorb lithium ions, such as graphite, coke, tin oxide, metallic lithium, silicon, and mixtures thereof. The kind is not ask | required.

(8)負極に用いられる結着剤としては、SBR(スチレンブタジエンゴム)に限定するものではないが、ラテックス系のものを用いるのが好ましい。具体的には、スチレンーブタジエンラテックス、アクリロニトリルーブタジエンラテックス、アクリル酸エステル系ラテックス、酢酸ビニル系ラテックス、メチルメタクリレートーブタジエンラテックス、及びこれらのカルボキシル変性体等が挙げられる。 (8) The binder used for the negative electrode is not limited to SBR (styrene butadiene rubber), but it is preferable to use a latex-based binder. Specific examples include styrene-butadiene latex, acrylonitrile-butadiene latex, acrylic ester latex, vinyl acetate latex, methyl methacrylate-butadiene latex, and carboxyl-modified products thereof.

(9)電解液のリチウム塩としては、上記LiPF6に限定されるものではなく、LiBF4、LiN(SO2CF32、LiN(SO2252、LiPF6-X(Cn2n+1X[但し、1<x<6、n=1又は2]等でも良く、これら2種以上を混合して使用することもできる。リチウム塩の濃度は特に限定されないが、電解液1リットル当り0.8〜1.8モルに規制するのが望ましい。また、電解液の溶媒としては上記エチレンカーボネート(EC)やジエチルカーボネート(DEC)に限定するものではないが、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等のカーボネート系溶媒が好ましく、更に好ましくは環状カーボネートと鎖状カーボネートの組合せが望ましい。 (9) The lithium salt of the electrolytic solution is not limited to the above LiPF 6 , but LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-X ( C n F 2n + 1 ) X [where 1 <x <6, n = 1 or 2], etc., or a mixture of two or more of these may be used. The concentration of the lithium salt is not particularly limited, but is preferably regulated to 0.8 to 1.8 mol per liter of the electrolyte. The solvent of the electrolytic solution is not limited to ethylene carbonate (EC) or diethyl carbonate (DEC), but propylene carbonate (PC), γ-butyrolactone (GBL), ethyl methyl carbonate (EMC), dimethyl carbonate. A carbonate-based solvent such as (DMC) is preferable, and a combination of a cyclic carbonate and a chain carbonate is more preferable.

(10)本発明は液系の電池に限定するものではなく、ゲル系のポリマー電池にも適用することができる。この場合のポリマー材料としては、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、オキセタン系ポリマー、エポキシ系ポリマー及びこれらの2種以上からなる共重合体もしくは架橋した高分子若しくはPVDFが例示され、このポリマー材料とリチウム塩と電解質を組合せてゲル状にした固体電解質を用いることができる。 (10) The present invention is not limited to a liquid battery, but can be applied to a gel polymer battery. Examples of the polymer material in this case include polyether solid polymer, polycarbonate solid polymer, polyacrylonitrile solid polymer, oxetane polymer, epoxy polymer, a copolymer composed of two or more of these, or a crosslinked polymer. A molecule or PVDF is exemplified, and a solid electrolyte in which this polymer material, a lithium salt, and an electrolyte are combined into a gel can be used.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源の他、HEVや電動工具といった高出力向けの駆動電源にも展開が期待できる。   The present invention can be expected to be developed not only for driving power sources for mobile information terminals such as mobile phones, notebook personal computers, and PDAs, but also for high power driving power sources such as HEVs and electric tools.

本発明の非水電解質二次電池用正極の電極断面のSEM画像である。It is a SEM image of the electrode cross section of the positive electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解質二次電池用正極の電極断面のEDSマッピングである。It is EDS mapping of the electrode cross section of the positive electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解質二次電池用正極を作製する際の加熱状態を示す説明図である。It is explanatory drawing which shows the heating state at the time of producing the positive electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解質二次電池用正極の説明図である。It is explanatory drawing of the positive electrode for nonaqueous electrolyte secondary batteries of this invention.

符号の説明Explanation of symbols

1:正極活物質層
2:正極集電体
3:TiO2粒子
4:熱風
5:TiO2粒子含有正極活物質スラリー
1: Positive electrode active material layer 2: Positive electrode current collector 3: TiO 2 particles 4: Hot air 5: TiO 2 particle-containing positive electrode active material slurry

Claims (16)

正極集電体と、この正極集電体の表面に形成され且つ正極活物質粒子及び結着剤を含む正極活物質層と、を有する非水電解質二次電池用正極において、
上記正極活物質層には無機酸化物粒子が含まれており、且つ、この無機酸化物粒子は正極活物質層の表面近傍に偏在していることを特徴とする非水電解質二次電池用正極。
In a positive electrode for a nonaqueous electrolyte secondary battery, comprising: a positive electrode current collector; and a positive electrode active material layer formed on a surface of the positive electrode current collector and including positive electrode active material particles and a binder.
The positive electrode active material layer includes inorganic oxide particles, and the inorganic oxide particles are unevenly distributed near the surface of the positive electrode active material layer. .
正極活物質層の総量に対する無機酸化物粒子の割合が0.1〜3.0質量%である、請求項1に記載の非水電解質二次電池用正極。   The positive electrode for nonaqueous electrolyte secondary batteries according to claim 1, wherein the ratio of the inorganic oxide particles to the total amount of the positive electrode active material layer is 0.1 to 3.0% by mass. 上記無機酸化物粒子がルチル構造のTiO2から成る、請求項1又は2に記載の非水電解質二次電池用正極。 The inorganic oxide particles are made of TiO 2 of the rutile structure, according to claim 1 or 2 for a non-aqueous electrolyte secondary battery positive electrode according to. 無機酸化物粒子と正極活物質粒子と結着剤とを含む無機酸化物粒子含有正極スラリーを作製する第1ステップと、
上記無機酸化物粒子含有正極スラリーを正極集電体の表面に塗布する第2ステップと、
上記無機酸化物粒子含有正極スラリーを加熱して、熱対流を生じさせつつ乾燥させる第3ステップと、
を有することを特徴とする非水電解質二次電池用正極の製造方法。
A first step of preparing an inorganic oxide particle-containing positive electrode slurry containing inorganic oxide particles, positive electrode active material particles, and a binder;
A second step of applying the inorganic oxide particle-containing positive electrode slurry to the surface of the positive electrode current collector;
A third step in which the inorganic oxide particle-containing positive electrode slurry is heated and dried while causing thermal convection;
The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries characterized by having.
上記第1ステップにおいて、無機酸化物粒子と分散安定剤とを溶媒に分散させて無機酸化物粒子分散液を作製すると共に、正極活物質粒子と結着剤とを溶媒に分散させて正極スラリーを作製した後、上記無機酸化物粒子分散液と上記正極スラリーを混合して、上記無機酸化物粒子含有正極スラリーを作製する、請求項4に記載の非水電解質二次電池用正極の製造方法。   In the first step, inorganic oxide particles and a dispersion stabilizer are dispersed in a solvent to prepare an inorganic oxide particle dispersion, and positive electrode active material particles and a binder are dispersed in a solvent to obtain a positive electrode slurry. The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 4 which mixes the said inorganic oxide particle dispersion liquid and the said positive electrode slurry after preparation, and produces the said inorganic oxide particle containing positive electrode slurry. 上記無機酸化物粒子として、平均粒径が10〜500nmのものを用いる、請求項4又は5に記載の非水電解質二次電池用正極の製造方法。   The method for producing a positive electrode for a nonaqueous electrolyte secondary battery according to claim 4 or 5, wherein particles having an average particle diameter of 10 to 500 nm are used as the inorganic oxide particles. 上記第2ステップにおける無機酸化物粒子含有正極スラリーの粘度が0.6〜2.0Pa・sである、請求項4〜6の何れか1項に記載の非水電解質二次電池用正極の製造方法。   The production of a positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 4 to 6, wherein the viscosity of the positive electrode slurry containing inorganic oxide particles in the second step is 0.6 to 2.0 Pa · s. Method. 上記第3ステップにおける乾燥温度が100〜150℃である、請求項4〜7の何れか1項に記載の非水電解質二次電池用正極の製造方法。   The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of any one of Claims 4-7 whose drying temperature in the said 3rd step is 100-150 degreeC. 正極集電体、及びこの正極集電体の表面に形成され且つ正極活物質粒子、結着剤を含む正極活物質層を有する正極と、負極と、これら正負両極間に介装されたセパレータから成る電極体と、この電極体に含浸された非水電解質とを備えた非水電解質二次電池において、
上記正極活物質層には無機酸化物粒子が含まれており、且つ、この無機酸化物粒子は正極活物質層の表面近傍に偏在していることを特徴とする非水電解質二次電池。
A positive electrode current collector, a positive electrode having a positive electrode active material layer formed on the surface of the positive electrode current collector and containing positive electrode active material particles and a binder, a negative electrode, and a separator interposed between the positive and negative electrodes A non-aqueous electrolyte secondary battery comprising an electrode body and a non-aqueous electrolyte impregnated in the electrode body,
The non-aqueous electrolyte secondary battery, wherein the positive electrode active material layer includes inorganic oxide particles, and the inorganic oxide particles are unevenly distributed near the surface of the positive electrode active material layer.
正極活物質層の総量に対する無機酸化物粒子の割合が0.1〜3.0質量%である、請求項9に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 9, wherein a ratio of the inorganic oxide particles to the total amount of the positive electrode active material layer is 0.1 to 3.0% by mass. 上記無機酸化物粒子がルチル構造のTiO2から成る、請求項9又は10に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 9 or 10, wherein the inorganic oxide particles are made of TiO 2 having a rutile structure. 無機酸化物粒子と正極活物質粒子と結着剤とを含む無機酸化物粒子含有正極スラリーを作製する第1ステップと、
上記無機酸化物粒子含有正極スラリーを正極集電体の表面に塗布する第2ステップと、
上記無機酸化物粒子含有正極スラリーを加熱して、熱対流を生じさせつつ乾燥させることにより正極を作製する第3ステップと、
上記正極と負極との間にセパレータを配置して電極体を作製した後、この電極体に非水電解質を含浸させる第4ステップと、
を有することを特徴とする非水電解質二次電池の製造方法。
A first step of preparing an inorganic oxide particle-containing positive electrode slurry containing inorganic oxide particles, positive electrode active material particles, and a binder;
A second step of applying the inorganic oxide particle-containing positive electrode slurry to the surface of the positive electrode current collector;
A third step of heating the inorganic oxide particle-containing positive electrode slurry to produce a positive electrode by drying while generating thermal convection; and
A fourth step in which a separator is disposed between the positive electrode and the negative electrode to produce an electrode body, and then the electrode body is impregnated with a nonaqueous electrolyte;
A method for producing a nonaqueous electrolyte secondary battery, comprising:
上記第1ステップにおいて、無機酸化物粒子と分散安定剤とを溶媒に分散させて無機酸化物粒子分散液を作製すると共に、正極活物質粒子と結着剤とを溶媒に分散させて正極スラリーを作製した後、上記無機酸化物粒子分散液と上記正極スラリーとを混合して、上記無機酸化物粒子含有正極スラリーを作製する、請求項12に記載の非水電解質二次電池の製造方法。   In the first step, inorganic oxide particles and a dispersion stabilizer are dispersed in a solvent to prepare an inorganic oxide particle dispersion, and positive electrode active material particles and a binder are dispersed in a solvent to obtain a positive electrode slurry. The manufacturing method of the nonaqueous electrolyte secondary battery according to claim 12, wherein the inorganic oxide particle dispersion liquid and the positive electrode slurry are mixed to prepare the inorganic oxide particle-containing positive electrode slurry. 上記無機酸化物粒子として、平均粒径が10〜500nmのものを用いる、請求項12又は13に記載の非水電解質二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 12 or 13, wherein the inorganic oxide particles have an average particle diameter of 10 to 500 nm. 上記第2ステップにおける無機酸化物粒子含有正極スラリーの粘度が0.6〜2.0Pa・sである、請求項12〜14の何れか1項に記載の非水電解質二次電池の製造方法。   The manufacturing method of the nonaqueous electrolyte secondary battery according to any one of claims 12 to 14, wherein the viscosity of the positive electrode slurry containing inorganic oxide particles in the second step is 0.6 to 2.0 Pa · s. 上記第3ステップにおける乾燥温度が100〜150℃である、請求項12〜15の何れか1項に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to any one of claims 12 to 15, wherein the drying temperature in the third step is 100 to 150 ° C.
JP2008248638A 2008-09-26 2008-09-26 Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof Withdrawn JP2010080321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248638A JP2010080321A (en) 2008-09-26 2008-09-26 Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248638A JP2010080321A (en) 2008-09-26 2008-09-26 Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010080321A true JP2010080321A (en) 2010-04-08

Family

ID=42210509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248638A Withdrawn JP2010080321A (en) 2008-09-26 2008-09-26 Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010080321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757517B1 (en) * 2014-10-02 2017-07-12 주식회사 엘지화학 Preparation method of cathode electrode and cathode electrode produced by the same
CN112054163A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode for secondary battery and secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757517B1 (en) * 2014-10-02 2017-07-12 주식회사 엘지화학 Preparation method of cathode electrode and cathode electrode produced by the same
CN112054163A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode for secondary battery and secondary battery using the same
JP2020202023A (en) * 2019-06-06 2020-12-17 トヨタ自動車株式会社 Positive electrode of secondary battery, and secondary battery using the same
JP7152360B2 (en) 2019-06-06 2022-10-12 トヨタ自動車株式会社 Positive electrode of secondary battery, and secondary battery using the same

Similar Documents

Publication Publication Date Title
US10897040B2 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
JP5110817B2 (en) Non-aqueous electrolyte battery
CN102067362B (en) Positive electrode active material for lithium ion battery, positive electrode for secondary battery using positive electrode active material, and lithium ion secondary battery using secondary battery positive electrode
KR101477873B1 (en) Nonaqueous electrolyte solution type lithium ion secondary battery
JP2009043641A (en) Nonaqueous electrolyte battery and negative electrode used for the same
JP2010080297A (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2008226605A (en) Nonaqueous electrolyte secondary battery
JP5110818B2 (en) Non-aqueous electrolyte battery
WO2012114590A1 (en) Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5230278B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2013073906A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018120706A (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5800196B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
US11444328B2 (en) Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP6766742B2 (en) Lithium ion secondary battery
CN108028361B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN115863542A (en) Positive pole piece and electrochemical energy storage device
JP2010080321A (en) Positive electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof, and non aqueous electrolyte secondary battery and manufacturing method thereof
JP2015176744A (en) Method of manufacturing secondary battery
JP2013073867A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2006032280A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130128