JP2010079425A - Vehicle driving support device - Google Patents

Vehicle driving support device Download PDF

Info

Publication number
JP2010079425A
JP2010079425A JP2008244533A JP2008244533A JP2010079425A JP 2010079425 A JP2010079425 A JP 2010079425A JP 2008244533 A JP2008244533 A JP 2008244533A JP 2008244533 A JP2008244533 A JP 2008244533A JP 2010079425 A JP2010079425 A JP 2010079425A
Authority
JP
Japan
Prior art keywords
risk
crossing
vehicle
dimensional object
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008244533A
Other languages
Japanese (ja)
Other versions
JP5452004B2 (en
Inventor
Shinji Sawada
慎司 澤田
Masaru Kogure
勝 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008244533A priority Critical patent/JP5452004B2/en
Publication of JP2010079425A publication Critical patent/JP2010079425A/en
Application granted granted Critical
Publication of JP5452004B2 publication Critical patent/JP5452004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an avoidance operation by setting a risk based on an area where a three-dimensional object crosses a road, and stop a vehicle safely before the crossing area, in driving support. <P>SOLUTION: When a three-dimensional object such as a pedestrian exists in a pedestrian crossing area, a risk function Dline and a cross risk function Dcross with respect to a road are synthesized, and a total risk function D is set so that distribution having a relatively high risk value at a road edge side appears within a predetermined distance from the vehicle and that ridge-like risk distribution having a high risk value in a road width direction appears in the pedestrian crossing region. Then, when the risk value in the ridge-like risk distribution reaches a threshold value as the vehicle travels, a warning for stop is output to a driver, and an automatic brake operates as necessary. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自車両の周辺環境にリスクを設定し、該リスクに基づいて自車両の走行支援を行う車両の運転支援装置に関する。   The present invention relates to a driving support apparatus for a vehicle that sets a risk in the surrounding environment of the host vehicle and performs driving support of the host vehicle based on the risk.

近年、自動車等の車両においては、車載のカメラやレーザレーダ装置等により車外の周辺環境を検出して障害物や先行車等の立体物を認識し、警報・自動ブレーキ・自動操舵といった各種制御を実行することで衝突を回避し、安全性を向上させる技術が開発・実用化されている。   In recent years, in vehicles such as automobiles, the surrounding environment outside the vehicle is detected by an in-vehicle camera, a laser radar device, etc., and obstacles and three-dimensional objects such as preceding vehicles are recognized, and various controls such as warning, automatic braking, and automatic steering are performed. Technologies that avoid collisions and improve safety by executing them have been developed and put to practical use.

例えば、特許文献1(特開2002−74594号公報)には、自車両や障害物の座標値を中心とする所定の半径の球を想定し、球同士の距離計算結果に応じた衝突確率を計算することで、障害物と自車両との衝突可能性を判定する技術が開示されている。
特開2002−74594号公報
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-74594), assuming a sphere having a predetermined radius centered on the coordinate values of the host vehicle or an obstacle, the collision probability corresponding to the distance calculation result between the spheres is set. A technique for determining the possibility of collision between an obstacle and the host vehicle by calculating is disclosed.
Japanese Patent Laid-Open No. 2002-74594

しかしながら、特許文献1に開示の技術では、横断歩道がある場合に歩行者のリスクを高めて歩行者との衝突危険性を高く設定することができるものの、横断歩道上の歩行者を回避して危険性が低い方に操舵制御を実行してしまう虞があり、横断歩道を基準とした警報や横断歩道手前で自車両を停止させると言った制御は困難である。   However, in the technique disclosed in Patent Document 1, although there is a pedestrian crossing, the risk of collision with a pedestrian can be set high by increasing the risk of pedestrians, but avoiding pedestrians on the pedestrian crossing. There is a possibility that the steering control is executed to a person having a low risk, and it is difficult to perform control such as warning based on the pedestrian crossing or stopping the vehicle in front of the pedestrian crossing.

このように、従来の技術では、障害物自体にリスクを設定することから、歩行者が交差点や横断歩道を歩行しているような状況では、自車両との衝突の可能性が低い方に回避制御を行って横断歩道内に侵入する可能性があり、歩行者に対して危険感を与える懸念がある。   In this way, in the conventional technology, since the risk is set for the obstacle itself, in a situation where a pedestrian is walking at an intersection or a pedestrian crossing, avoid the situation where the possibility of a collision with the own vehicle is low There is a possibility of intruding into a pedestrian crossing by controlling, and there is a concern of giving danger to pedestrians.

本発明は上記事情に鑑みてなされたもので、道路を横断する立体物の横断領域を基準とするリスクを設定して回避動作を抑制し、横断領域手前で自車両を安全に停止させる運転支援を可能とする車両の運転支援装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and sets a risk based on a crossing region of a three-dimensional object that crosses a road, suppresses avoidance operations, and safely supports the vehicle in front of the crossing region. It is an object of the present invention to provide a vehicle driving support device that enables the vehicle.

上記目的を達成するため、本発明による車両の運転支援装置は、自車両の周辺環境にリスクを設定し、該リスクに基づいて自車両の走行支援を行う車両の運転支援装置において、自車両が進行する道路を横断中或いは横断すると推測される立体物を認識する横断立体物認識部と、上記立体物の存在に基づくリスクを、上記道路の幅方向に少なくとも自車両の走行車線を横断して分布する横断リスクとして設定する横断リスク設定部とを備えたことを特徴とする。   In order to achieve the above object, a driving support apparatus for a vehicle according to the present invention sets a risk in the surrounding environment of the own vehicle, and the driving support apparatus for a vehicle that performs driving support of the own vehicle based on the risk includes: A crossing three-dimensional object recognition unit for recognizing a three-dimensional object presumed to be crossing or crossing a traveling road, and a risk based on the presence of the three-dimensional object, crossing at least the traveling lane of the own vehicle in the width direction of the road And a crossing risk setting unit for setting as a distributed crossing risk.

本発明によれば、道路を横断する立体物の横断領域を基準としてリスクを設定することで、回避動作を抑制して横断領域手前で自車両を安全に停止させる運転支援が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the driving assistance which suppresses avoidance operation | movement and stops the own vehicle safely before a crossing area | region is attained by setting a risk on the basis of the crossing area | region of the solid thing which crosses a road.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図5は本発明の実施の第1形態に係り、図1は車両に搭載した運転支援装置の概略構成図、図2は自車両及び横断歩道エリアを示す説明図、図3は横断歩道エリアに立体物が存在しない場合のリスク分布を示す説明図、図4は横断歩道エリアに立体物が存在する場合のリスク分布を示す説明図、図5は進行方向と直交する方向から見た横断リスクの分布を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 relate to a first embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving support device mounted on a vehicle, FIG. 2 is an explanatory diagram showing the own vehicle and a pedestrian crossing area, and FIG. 3 is a crossing FIG. 4 is an explanatory diagram showing the risk distribution when there is no three-dimensional object in the sidewalk area, FIG. 4 is an explanatory diagram showing the risk distribution when there is a three-dimensional object in the pedestrian crossing area, and FIG. 5 is viewed from a direction orthogonal to the traveling direction. It is explanatory drawing which shows distribution of a crossing risk.

図1において、符号1は自動車等の車両(自車両)であり、この自車両1に、外部の走行環境を認識して障害物との衝突回避のための運転支援を行う運転支援装置2が搭載されている。本実施の形態においては、運転支援装置2は、ステレオカメラ3とステレオ画像認識装置4と走行環境情報取得装置5とによる外部環境の認識のための装置群と、各装置からの情報に基づいて運転支援のための各種処理を行うマイクロコンピュータ等からなる制御ユニット6を主要部として備えている。制御ユニット6には、警報装置を兼用するディスプレイ21、自動ブレーキ制御装置22、自動操舵制御装置23等の運転支援に係る各装置が接続されている。   In FIG. 1, reference numeral 1 denotes a vehicle (host vehicle) such as an automobile, and a driving support device 2 that recognizes an external driving environment and performs driving support for avoiding a collision with an obstacle is provided on the host vehicle 1. It is installed. In the present embodiment, the driving support device 2 is based on a device group for recognition of the external environment by the stereo camera 3, the stereo image recognition device 4, and the traveling environment information acquisition device 5, and information from each device. A control unit 6 including a microcomputer or the like that performs various processes for driving support is provided as a main part. The control unit 6 is connected to various devices related to driving support such as a display 21 that also serves as an alarm device, an automatic brake control device 22, and an automatic steering control device 23.

尚、ステレオ画像認識装置4、走行環境情報取得装置5、制御ユニット6、自動ブレーキ制御装置22、自動操舵制御装置23等は、それぞれ、単一或いは複数のコンピュータシステムからなる制御ユニットとして構成され、互いに通信バスを介してデータを相互に交換する。   The stereo image recognition device 4, the driving environment information acquisition device 5, the control unit 6, the automatic brake control device 22, the automatic steering control device 23, and the like are each configured as a control unit including a single or a plurality of computer systems. Data is exchanged with each other via a communication bus.

また、自車両1には、自車速Vを検出する車速センサ11、ヨーレートを検出するヨーレートセンサ12、運転支援制御のON−OFF信号が入力されるメインスイッチ13等が設けられている。自車速Vはステレオ画像認識装置4と制御ユニット6に入力され、ヨーレートは制御ユニット6に入力され、運転支援制御のON−OFF信号等は制御ユニット6に入力される。   Further, the host vehicle 1 is provided with a vehicle speed sensor 11 that detects the host vehicle speed V, a yaw rate sensor 12 that detects a yaw rate, a main switch 13 to which an ON-OFF signal for driving support control is input, and the like. The own vehicle speed V is input to the stereo image recognition device 4 and the control unit 6, the yaw rate is input to the control unit 6, and the ON / OFF signal for driving support control is input to the control unit 6.

ステレオカメラ3は、外界環境を認識するための認識センサの一つとして用いられ、例えばCCDやCMOS等の固体撮像素子を用いた1組の(左右の)カメラで構成されている。各カメラは、それぞれ車室内の天井前方に一定の基線長をもって取り付けられており、車外の対象を異なる視点からステレオ撮像し、画像データをステレオ画像認識装置4に出力する。   The stereo camera 3 is used as one of recognition sensors for recognizing the external environment, and includes a pair of (left and right) cameras using a solid-state image sensor such as a CCD or a CMOS. Each camera is attached to the front of the ceiling in the vehicle interior with a certain baseline length, and takes a stereo image of an object outside the vehicle from different viewpoints, and outputs image data to the stereo image recognition device 4.

ステレオ画像認識装置4は、ステレオカメラ3で撮像した画像を高速処理する画像処理エンジンを備え、この画像処理エンジンの出力結果に基づいて認識処理を行う処理ユニットとして構成されている。このステレオ画像認識装置4におけるステレオカメラ3の画像処理は、例えば、次のように行われる。   The stereo image recognition device 4 includes an image processing engine that processes an image captured by the stereo camera 3 at a high speed, and is configured as a processing unit that performs a recognition process based on an output result of the image processing engine. Image processing of the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example.

すなわち、ステレオ画像認識装置4は、先ず、ステレオカメラ3で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から距離情報を求め、距離画像を生成する。そして、このデータを基に、周知のグルーピング処理を行い、予め記憶しておいた3次元的な道路形状データ、側壁データ、立体物データ等の枠(ウインドウ)と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データを抽出すると共に、立体物を、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出する。これらのデータは、自車両1を原点として、自車両1の前後方向をX軸、幅方向をY軸とする座標系でのデータとして演算され、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物の種別、自車両1からの距離、中心位置、速度等が障害物情報として制御ユニット6へ送信される。   That is, first, the stereo image recognition device 4 obtains distance information from a corresponding position shift amount with respect to a pair of stereo images in the traveling direction of the host vehicle 1 captured by the stereo camera 3, and generates a distance image. . Then, based on this data, a well-known grouping process is performed and compared with frames (windows) such as three-dimensional road shape data, side wall data, and three-dimensional object data stored in advance. Side wall data such as guardrails and curbs that exist along the road are extracted, and three-dimensional objects are classified and extracted into other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and utility poles. These data are calculated as data in a coordinate system in which the own vehicle 1 is the origin, the front-rear direction of the own vehicle 1 is the X axis, and the width direction is the Y axis. White line data, guardrails existing along the road, curbstones And the like, the type of the three-dimensional object, the distance from the host vehicle 1, the center position, the speed, and the like are transmitted to the control unit 6 as obstacle information.

尚、本実施の形態では、認識センサの一つとしてステレオカメラ3を用いる例について説明するが、他に、単眼カメラ、ミリ波レーダ等の他の認識センサを用いて周辺環境を認識するようにしても良い。   In this embodiment, an example in which the stereo camera 3 is used as one of the recognition sensors will be described. However, other surrounding sensors may be used to recognize the surrounding environment using other recognition sensors such as a monocular camera and a millimeter wave radar. May be.

走行環境情報取得装置5は、ステレオカメラ3の検出範囲よりも広範囲での物体の検出、道路形状や交差点・横断歩道の有無や位置の情報、渋滞情報等の各種情報の取得を行うものである。具体的には、走行環境情報取得装置5は、道路付帯設備からの光や電波ビーコンを受信して交通渋滞情報、気象情報、特定区域の交通規制情報等の各種情報を取得する路車間通信装置、自車両周辺に存在する他の車両との通信(車車間通信)を行い、車両種別、車両位置、車速、加減速状態、ブレーキ作動状態、ウィンカ状態等の車両情報を相互に交換する車車間通信装置、GPS等の測位装置、ナビゲーション装置等からの各情報を収集して広範囲の走行環境情報を取得可能な装置として構成されている。   The travel environment information acquisition device 5 detects objects in a wider range than the detection range of the stereo camera 3 and acquires various information such as road shape, information on the presence / absence of intersections / crosswalks, position information, and traffic jam information. . Specifically, the traveling environment information acquisition device 5 receives light and radio wave beacons from road incidental facilities and acquires various information such as traffic congestion information, weather information, and traffic regulation information for a specific area. Communicate with other vehicles around the vehicle (vehicle-to-vehicle communication), and exchange vehicle information such as vehicle type, vehicle position, vehicle speed, acceleration / deceleration state, brake operation state, blinker state, etc. It is configured as a device capable of acquiring a wide range of travel environment information by collecting information from a communication device, a positioning device such as a GPS, and a navigation device.

制御ユニット6は、車速センサ11からの自車速V、ヨーレートセンサ12からのヨーレート、ステレオ画像認識装置4からの障害物情報、走行環境情報取得装置5からの障害物情報に基づいて、自車両1の周辺環境に危険度(リスク)を設定し、このリスクに基づいてドライバに対する警報や制動制御、操舵支援等の運転支援制御を実行する。   Based on the vehicle speed V from the vehicle speed sensor 11, the yaw rate from the yaw rate sensor 12, the obstacle information from the stereo image recognition device 4, and the obstacle information from the traveling environment information acquisition device 5, the control unit 6 A risk level (risk) is set in the surrounding environment of the vehicle, and driving support control such as warning, braking control, steering support and the like for the driver is executed based on this risk.

この場合、制御ユニット6には、特に、道路を横断する歩行者、自転車、福祉用車両等に対して、これらの手前で不安感を与えることなく自車両1を一停止させ、安全を確保するための支援機能が備えられている。この制御ユニット6の支援機能は、自車両1が進行する道路を横断中或いは横断すると推測される立体物の存在に基づくリスクを、自車両1が進行する道路の幅方向に分布する横断リスクとして設定する横断リスク設定部としての機能により実現される。   In this case, the control unit 6 stops the host vehicle 1 without giving anxiety in front of these, particularly for pedestrians, bicycles, welfare vehicles, etc. crossing the road, and to ensure safety. A support function is provided. The support function of the control unit 6 is that the risk based on the presence of a three-dimensional object that is estimated to cross or cross the road on which the host vehicle 1 travels is defined as a crossing risk distributed in the width direction of the road on which the host vehicle 1 travels. This is realized by the function as a crossing risk setting section to be set.

自車両1が進行する道路を横断中或いは横断すると推測される立体物は、外部環境認識のための装置群、本実施の形態においては、ステレオカメラ3、ステレオ画像認識装置4、走行環境情報取得装置5による横断立体物認識部としての機能により認識される。例えば、ステレオカメラ3によって横断歩道と及び歩行者(立体物)を認識したとき、歩行者が横断中は勿論のこと、横断開始前であっても、横断すると推測して横断リスクを設定する。また、歩行者が停止状態であっても歩行者の位置が横断歩道或いは交差点に近い場合には、歩行者が横断歩道或いは交差点を横断するものと推測して横断歩道或いは交差点に横断リスクを設定する。   The three-dimensional object estimated to cross the road on which the host vehicle 1 travels is a device group for external environment recognition, in this embodiment, a stereo camera 3, a stereo image recognition device 4, and travel environment information acquisition. Recognized by the function of the crossing three-dimensional object recognition unit by the device 5. For example, when a pedestrian crossing and a pedestrian (a three-dimensional object) are recognized by the stereo camera 3, the pedestrian is not only during the crossing but also before the start of the crossing, and the crossing risk is set. In addition, even if the pedestrian is stopped, if the position of the pedestrian is close to a pedestrian crossing or intersection, it is assumed that the pedestrian will cross the pedestrian crossing or intersection and a crossing risk is set at the pedestrian crossing or intersection. To do.

このため、制御ユニット6は、自車両1が進行する道路に対するリスク、自車両1の進行方向の道路を横断する立体物(障害物)に対するリスク(横断リスク)を、それぞれリスク関数Dline,Dcrossとして関数化し、自車両1の進行方向をX軸、幅方向をY軸とするXY座標系におけるリスク分布を求める。そして、これらのリスク関数Dline,Dcrossを、以下の(1)式に示すように加算・統合してトータルリスク関数Dを設定し、このトータルリスク関数Dに基づいて、警報出力や自動ブレーキ制御装置22を介した自動ブレーキを実施することにより、歩行者等の手前で自車両1が安全に停止することを可能とする。
D=Dline+Dcross …(1)
For this reason, the control unit 6 uses a risk for the road on which the host vehicle 1 travels and a risk (crossing risk) for a three-dimensional object (obstacle) that crosses the road in the traveling direction of the host vehicle 1 as risk functions Dline and Dcross, respectively. It is converted into a function, and a risk distribution in an XY coordinate system with the traveling direction of the host vehicle 1 as the X axis and the width direction as the Y axis is obtained. These risk functions Dline and Dcross are added and integrated as shown in the following equation (1) to set a total risk function D. Based on the total risk function D, an alarm output and an automatic brake control device are set. By carrying out automatic braking via 22, the host vehicle 1 can be safely stopped before a pedestrian or the like.
D = Dline + Dcross (1)

道路に対して設定されるリスク関数Dlineは、例えば、道路中心から端部位置に近くなる程、より大きなリスク値を導く関数、例えば、以下の(2)式に示すような関数で設定される。
Dline=exp(aR・y4)−1 …(2)
但し、aR=(2/WR)4・log(Ds+1)
WR:道路幅
Ds:道路端(y=±WR/2)でのリスク
The risk function Dline set for the road is set by a function that leads to a larger risk value, for example, a function as shown in the following equation (2), as it is closer to the end position from the road center. .
Dline = exp (aR · y 4 ) −1 (2)
However, aR = (2 / WR) 4 · log (Ds + 1)
WR: Road width
Ds: Risk at the road edge (y = ± WR / 2)

尚、このリスク関数Dlineは、2次以上の高次関数で導出するようにしても良く、例えば、2次関数を用いる場合には、以下の(2’)式に示すように、所定のゲインKlineを有するリスク関数とすることができる。
Dline=Kline・y2 …(2’)
The risk function Dline may be derived by a higher order function of quadratic or higher. For example, when a quadratic function is used, a predetermined gain is obtained as shown in the following equation (2 ′). It can be a risk function with Kline.
Dline = Kline · y 2 (2 ′)

また、横断リスク関数Dcrossは、障害物の有無及び自車両1との距離に応じて所定の分布となる関数であり、例えば、図2に示すように、歩行者50が横断歩道Pを横断しようとしている場合、歩行者50及び横断歩道Pを含む所定のエリアを横断歩道エリアとして道路幅全体に設定し、この横断歩道エリアに立体物が存在する場合、そのリスク値が周囲よりも高くなるような関数を設定する。   Further, the crossing risk function Dcross is a function having a predetermined distribution according to the presence or absence of an obstacle and the distance from the host vehicle 1, and for example, as shown in FIG. If a predetermined area including the pedestrian 50 and the pedestrian crossing P is set as the pedestrian crossing area over the entire road width, and there is a three-dimensional object in the pedestrian crossing area, the risk value is higher than the surrounding area. Set the correct function.

図2においては、自車両1の中心位置から横断歩道Pの中心位置までの距離をxgとして、以下の(3)式により横断リスク関数Dcrossが演算される。
Dcross=across・exp(−ax・(x−xg)2 …(3)
但し、across:立体物に応じた補正パラメータ
x:横断歩道の幅に応じた補正パラメータ
In FIG. 2, the crossing risk function Dcross is calculated by the following equation (3), where xg is the distance from the center position of the host vehicle 1 to the center position of the pedestrian crossing P.
Dcross = a cross · exp (−a x · (x−xg) 2 (3)
Where a cross is a correction parameter corresponding to a three-dimensional object
a x : Correction parameter according to the width of the pedestrian crossing

尚、横断リスク関数Dcrossは、(3)式に限定されるものではなく、X軸方向の適用範囲を限定する等して、2次関数やその他の関数で代用することも可能である。   Note that the crossing risk function Dcross is not limited to the expression (3), and a quadratic function or other functions can be substituted by limiting the application range in the X-axis direction.

(3)式における補正パラメータacrossは、立体物が存在しないときには基本的に零或いは零に近い値に設定されるパラメータであり、このとき、横断リスク関数Dcrossが零或いは零に近い値となってトータルリスク関数Dが道路に対するリスク関数Dlineで代表される。その結果、図3に示すように、X,Y,D軸の3次元座標系で示されるリスク分布が道路中央部(Y=0)に対して道路端側のリスク値が若干高くなるような分布となる。 The correction parameter a cross in the equation (3) is a parameter that is basically set to zero or a value close to zero when a three-dimensional object does not exist. At this time, the crossing risk function Dcross becomes a value close to zero or zero. The total risk function D is represented by the risk function Dline for the road. As a result, as shown in FIG. 3, the risk distribution shown in the three-dimensional coordinate system of the X, Y, and D axes is such that the risk value on the road edge side is slightly higher than the center of the road (Y = 0). Distribution.

一方、横断歩道エリアに歩行者等の立体物が存在する場合には、トータルリスク関数Dは道路に対するリスク関数Dlineと横断リスク関数Dcrossとを合成した分布となり、図4に示すように、自車両1から所定の距離までは道路端側のリスク値が若干高い分布で、その先の横断歩道エリアに、道路幅方向に尾根状となる高いリスク値を有する分布が出現する。そして、図5に示すように、自車両1の進行によって尾根状のリスク分布におけるリスク値が閾値Rkに達した場合、ドライバに対して停止を促す警報を出力し、場合によっては自動ブレーキを作動させる。   On the other hand, when a three-dimensional object such as a pedestrian exists in the pedestrian crossing area, the total risk function D is a distribution obtained by combining the risk function Dline and the crossing risk function Dcross for the road, and as shown in FIG. From 1 to a predetermined distance, the risk value on the road edge side is a slightly high distribution, and a distribution having a high risk value that forms a ridge in the road width direction appears in the pedestrian crossing area ahead. Then, as shown in FIG. 5, when the risk value in the ridge-like risk distribution reaches the threshold value Rk due to the progress of the host vehicle 1, a warning to stop the driver is output, and in some cases, the automatic brake is activated. Let

このような場合、従来の技術では、単に立体物の存在位置を中心としてリスク関数を設定するのみであり、例えば、横断歩道を歩いている歩行者を取り巻く所定範囲だけにリスクを設定することになる。このため、歩行者を回避しながら横断歩道を通過してしまう可能性があり、歩行者に対して危険感を与える虞がある。   In such a case, in the conventional technique, the risk function is simply set around the position where the three-dimensional object is present. For example, the risk is set only in a predetermined range surrounding a pedestrian walking on a pedestrian crossing. Become. For this reason, there is a possibility of passing a pedestrian crossing while avoiding pedestrians, which may give a sense of danger to pedestrians.

これに対して、本運転支援装置2では、自車両1の走行車線及び対向車線を含めた道路の幅方向全体に渡って尾根状の高いリスク分布となる横断リスクを設定するようにしている。これにより、横断歩道に進入することなく手前で自車両1が確実に停車するようにドライバに警報を発したり自動ブレーキを作動させることができ、歩行者に危険感を与えることなく安全を確保することができる。   On the other hand, in the present driving support device 2, the crossing risk having a high ridge-like risk distribution is set over the entire width direction of the road including the traveling lane and the oncoming lane of the host vehicle 1. As a result, the driver can be alerted and the automatic brake can be actuated so that the vehicle 1 is surely stopped before entering the pedestrian crossing, ensuring safety without giving the pedestrian a sense of danger. be able to.

警報や自動ブレーキによって自車両1を停止させる位置は、リスク分布の中心位置や補正パラメータacross,axの値を調整することにより、適宜設定することができる。例えば、図2の例では、横断リスク関数Dcrossを演算する(3)式における距離xgとして、横断歩道Pの中心位置と自車両1の中心位置との間の距離を採用しているが、横断歩道Pの自車両側の端部位置と自車両1との距離xg’を用いてリスク分布の中心を移動させ、図5に破線で示すように、閾値Rkに達する位置を自車両側に移動させるようにしても良い。また、補正パラメータacrossは、一定値としても良いが、横断歩道や立体物の位置、横断速度等に応じて可変設定しても良く、補正パラメータacrossによってリスク分布全体の大きさを可変したり、補正パラメータaxによってリスク分布の幅を可変することにより、閾値Rkの位置を自車両側に移動させることができる。 The position at which the host vehicle 1 is stopped by an alarm or automatic brake can be appropriately set by adjusting the center position of the risk distribution and the values of the correction parameters a cross and a x . For example, in the example of FIG. 2, the distance between the center position of the pedestrian crossing P and the center position of the host vehicle 1 is adopted as the distance xg in the expression (3) for calculating the crossing risk function Dcross. The center of the risk distribution is moved using the distance xg ′ between the end position on the own vehicle side of the sidewalk P and the own vehicle 1, and the position that reaches the threshold value Rk is moved to the own vehicle side as shown by the broken line in FIG. You may make it let it. The correction parameter a cross may be a constant value, but may be variably set according to the position of the pedestrian crossing or the three-dimensional object, the crossing speed, etc., and the size of the entire risk distribution is changed by the correction parameter a cross . or, by varying the width of the risk distribution by the correction parameter a x, a position of the threshold value Rk can be moved toward the vehicle.

このように本実施の形態では、歩行者、自転車、福祉車両等の立体物が道路を横断中或いは横断すると推測される場合、その横断領域に、道路幅方向に尾根状となる横断リスクを設定することにより、立体物を回避することなく安全に自車両1を一時停止させることができ、歩行者等に危険を与えることのない運転支援制御を実現することが可能となる。   As described above, in the present embodiment, when a three-dimensional object such as a pedestrian, a bicycle, or a welfare vehicle is assumed to be crossing or crossing the road, a crossing risk that forms a ridge in the road width direction is set in the crossing region. By doing so, it is possible to safely stop the host vehicle 1 safely without avoiding a three-dimensional object, and it is possible to realize driving support control that does not give danger to pedestrians and the like.

尚、本実施の形態においては、道路に対するリスク関数Dlineと横断リスク関数Dcrossを合成したトータルリスク関数Dを用いる例について説明しているが、道路に対するリスク関数Dlineを省略し、横断リスク関数Dcrossのみを用いることも可能である。   In this embodiment, an example using the total risk function D obtained by synthesizing the risk function Dline for roads and the crossing risk function Dcross has been described. However, the risk function Dline for roads is omitted and only the crossing risk function Dcross is used. It is also possible to use.

また、本実施の形態では、横断リスクを自車両1の走行車線及び対向車線を含む道路幅全体に渡って設定する例について説明しているが、条件によっては、必ずしも道路幅全体に横断リスクを設定しなくとも良く、自車両1の走行車線のみに横断リスクを設定することも可能である。   In this embodiment, an example in which the crossing risk is set over the entire road width including the traveling lane and the opposite lane of the host vehicle 1 is described. However, depending on the conditions, the crossing risk is not necessarily applied to the entire road width. It is not necessary to set, and it is also possible to set the crossing risk only for the traveling lane of the host vehicle 1.

例えば、歩行者を中心とするリスクと自車両1の走行車線側の横断リスクとを設定することにより、対向車線側から歩行者が横断歩道を横断中、或いは横断しようとしている場合にも、横断歩道の歩行者がいない部分を通過することなく自車両1を横断歩道手前で停止させることができる。   For example, by setting the risk centered on pedestrians and the crossing risk on the driving lane side of the host vehicle 1, even if the pedestrian is crossing or trying to cross the crosswalk from the opposite lane side, The host vehicle 1 can be stopped in front of the pedestrian crossing without passing through a portion where there are no pedestrians on the sidewalk.

また、道路に対するリスク分布を自車両1の走行車線に対するリスク分布として、(2)式のリスク関数Dlineを対向車線側に高リスクとなるように設定した上で、自車両1の走行車線に横断リスクを設定することにより、歩行者が自車両側から横断歩道を横断中或いは横断しようとしている場合、対向車線側への回避動作を抑制して自車両1を横断歩道手前で停止させることができる。   Further, the risk distribution on the road is set as the risk distribution on the traveling lane of the own vehicle 1, and the risk function Dline of the equation (2) is set to be a high risk on the opposite lane side, and then crossed to the traveling lane of the own vehicle 1 By setting the risk, when the pedestrian is crossing or trying to cross the pedestrian crossing from the own vehicle side, the avoidance operation to the opposite lane side can be suppressed and the own vehicle 1 can be stopped in front of the pedestrian crossing. .

次に、本発明の実施の第2形態について説明する。図6及び図7は本発明の実施の第2形態に係り、図6は立体物の移動ベクトルを示す説明図、図7は仮の横断歩道を示す説明図である。   Next, a second embodiment of the present invention will be described. 6 and 7 relate to the second embodiment of the present invention, FIG. 6 is an explanatory diagram showing a movement vector of a three-dimensional object, and FIG. 7 is an explanatory diagram showing a temporary crosswalk.

第2形態は、横断歩道や交差点の正確な位置を取得できない場合や、横断歩道がない道路での歩行者や自転車等の横断に対処するものである。   The second form deals with a case where the exact position of a pedestrian crossing or an intersection cannot be acquired, or a case where a pedestrian or bicycle crosses on a road without a pedestrian crossing.

このため、第2形態では、先ず、ステレオカメラ3及びステレオ画像認識装置4により歩行者や自転車等の情報を取得し、また、走行環境情報取得装置5により、ナビゲーション装置やGPS等を介して交差点や横断歩道の情報を取得する。その結果、自車両1の進行方向に歩行者や自転車等の立体物の存在を認識しているものの、交差点や横断歩道の位置を認識できないときには、立体物の位置・速度から立体物の移動ベクトルを計算することで、立体物が道路を横断するか否かを推測・判断する。   For this reason, in the second embodiment, information such as a pedestrian and a bicycle is first acquired by the stereo camera 3 and the stereo image recognition device 4, and an intersection is obtained by the travel environment information acquisition device 5 via a navigation device, GPS, or the like. And get information on pedestrian crossings. As a result, when the presence of a three-dimensional object such as a pedestrian or a bicycle is recognized in the traveling direction of the host vehicle 1, but the position of an intersection or a pedestrian crossing cannot be recognized, the movement vector of the three-dimensional object is determined from the position and speed of the three-dimensional object. Is used to estimate / determine whether the three-dimensional object crosses the road.

例えば、図6に示すように、自車両側に立体物51,52を検出し、対向車線側に立体物53を検出したとき、ステレオカメラ3で撮像した画像中のオプティカルフローを求める等して各立体物の移動ベクトルを計算する。そして、立体物50,53の移動ベクトルが自車両1の進行路と交差し、立体物51の移動ベクトルが自車両1の進行路と交差しない場合、立体物51は道路を横断せず、立体物50,53が道路を横断すると判断し、図7に示すような仮想的な横断歩道(仮の横断歩道)Pimgを設定する。   For example, as shown in FIG. 6, when the three-dimensional object 51, 52 is detected on the own vehicle side and the three-dimensional object 53 is detected on the opposite lane side, the optical flow in the image captured by the stereo camera 3 is obtained. The movement vector of each solid object is calculated. When the movement vector of the three-dimensional object 50, 53 intersects with the traveling path of the host vehicle 1 and the movement vector of the three-dimensional object 51 does not intersect with the traveling path of the own vehicle 1, the three-dimensional object 51 does not cross the road. It is determined that the objects 50 and 53 cross the road, and a virtual crosswalk (temporary crosswalk) Pimg as shown in FIG. 7 is set.

この仮の横断歩道Pimgは、道路を横断すると判断された立体物が複数の場合、自車両1に最も近い立体物の位置を基準として設定する。例えば、図7に示すように、立体物50,53が道路を横断すると判断され、立体物50よりも立体物53の方が自車両1に近い場合、立体物53のX軸座標位置を中心として仮の横断歩道PimgをY軸方向に設定し、この仮の横断歩道Pimgに横断リスクを設定する。このときの横断リスク関数Dcrossは、第1形態で説明した(2)式の距離xgを、自車両1と仮の横断歩道Pimgの中心位置(立体物53の位置)との間の距離xgimgとして演算される。   This temporary pedestrian crossing Pimg is set based on the position of the three-dimensional object closest to the host vehicle 1 when there are a plurality of three-dimensional objects determined to cross the road. For example, as illustrated in FIG. 7, when it is determined that the three-dimensional objects 50 and 53 cross the road and the three-dimensional object 53 is closer to the host vehicle 1 than the three-dimensional object 50, the X-axis coordinate position of the three-dimensional object 53 is centered. Is set in the Y-axis direction, and a crossing risk is set in the temporary crosswalk Pimg. The crossing risk function Dcross at this time uses the distance xg of the equation (2) described in the first embodiment as the distance xgimg between the host vehicle 1 and the center position of the temporary crosswalk Pimg (the position of the three-dimensional object 53). Calculated.

第2形態では、交差点や横断歩道が存在することがわかっていながら、その正確な位置情報を取得できない場合や、横断歩道がないにも拘わらず歩行者や自転車等が無理に道路を横断しようとする場合にも、横断するか否かを適切に判断して仮の横断歩道を設定することにより、第1形態と同様、歩行者や自転車の手前で自車両1を安全に一時停止させることが可能となり、横断中の歩行者や自転車に対する回避動作を排除して危険感を与えることがない。   In the second form, it is known that there are intersections and pedestrian crossings, but when accurate position information cannot be obtained, or pedestrians and bicycles try to cross the road forcibly even though there are no pedestrian crossings. Even in this case, by appropriately determining whether or not to cross and setting a temporary pedestrian crossing, the host vehicle 1 can be safely paused in front of a pedestrian or bicycle as in the first embodiment. This eliminates the avoidance action for pedestrians and bicycles while crossing, and does not give a sense of danger.

本発明の実施の第1形態に係り、車両に搭載した運転支援装置の概略構成図The schematic block diagram of the driving assistance device mounted in the vehicle according to the first embodiment of the present invention. 同上、自車両及び横断歩道エリアを示す説明図Same as above, explanatory diagram showing own vehicle and pedestrian crossing area 同上、横断歩道エリアに立体物が存在しない場合のリスク分布を示す説明図Same as above, explanatory diagram showing risk distribution when there is no solid object in the pedestrian crossing area 同上、横断歩道エリアに立体物が存在する場合のリスク分布を示す説明図Same as above, explanatory diagram showing risk distribution when there is a solid object in the pedestrian crossing area 同上、進行方向と直交する方向から見た横断リスクの分布を示す説明図Same as above, explanatory diagram showing the distribution of crossing risk as seen from the direction perpendicular to the direction of travel 本発明の実施の第2形態に係り、立体物の移動ベクトルを示す説明図Explanatory drawing which shows the movement vector of a solid object according to 2nd Embodiment of this invention. 同上、仮の横断歩道を示す説明図Same as above, explanatory diagram showing a temporary crosswalk

符号の説明Explanation of symbols

1 自車両
2 運転支援装置
3 ステレオカメラ(横断立体物認識部)
4 ステレオ画像認識装置(横断立体物認識部)
5 走行環境情報取得装置(横断立体物認識部)
6 制御ユニット(横断リスク設定部)
Dcross 横断リスク関数
P 横断歩道
Pimg 仮の横断歩道
1 Vehicle 2 Driving support device 3 Stereo camera
4 Stereo image recognition device (crossing solid object recognition unit)
5 Driving environment information acquisition device (crossing solid object recognition unit)
6 Control unit (crossing risk setting section)
Dcross Crossing risk function P Crosswalk Pimg Temporary crosswalk

Claims (5)

自車両の周辺環境にリスクを設定し、該リスクに基づいて自車両の走行支援を行う車両の運転支援装置において、
自車両が進行する道路を横断中或いは横断すると推測される立体物を認識する横断立体物認識部と、
上記立体物の存在に基づくリスクを、上記道路の幅方向に少なくとも自車両の走行車線を横断して分布する横断リスクとして設定する横断リスク設定部と
を備えたことを特徴とする車両の運転支援装置。
In a driving support device for a vehicle that sets a risk in the surrounding environment of the host vehicle and supports driving of the host vehicle based on the risk,
A crossing three-dimensional object recognition unit for recognizing a three-dimensional object presumed to cross or cross the road on which the host vehicle travels,
A vehicle driving support, comprising: a crossing risk setting unit that sets a risk based on the presence of the three-dimensional object as a crossing risk distributed across at least the traveling lane of the host vehicle in the width direction of the road. apparatus.
上記立体物が停止状態であっても上記立体物の位置が横断歩道或いは交差点に近い場合には、該横断歩道或いは交差点に上記横断リスクを設定することを特徴とする請求項1記載の車両の運転支援装置。   2. The vehicle according to claim 1, wherein, even if the three-dimensional object is in a stopped state, if the position of the three-dimensional object is close to a pedestrian crossing or an intersection, the crossing risk is set at the pedestrian crossing or the intersection. Driving assistance device. 横断歩道或いは交差点の位置を認識できない状態で上記道路を横断している上記立体物を認識したとき、上記立体物の位置を基準とする仮の横断歩道を設定し、この仮の横断歩道に上記横断リスクを設定することを特徴とする請求項1記載の車両の運転支援装置。   When the three-dimensional object crossing the road in a state where the position of the pedestrian crossing or the intersection cannot be recognized, a temporary pedestrian crossing based on the position of the three-dimensional object is set, and the temporary pedestrian crossing is The vehicle driving support apparatus according to claim 1, wherein a crossing risk is set. 上記立体物が複数存在する場合、自車両に最も近い立体物の位置を基準として上記仮の横断歩道を設定することを特徴とする請求項3記載の車両の運転支援装置。   4. The driving support apparatus for a vehicle according to claim 3, wherein when there are a plurality of the three-dimensional objects, the temporary crosswalk is set based on the position of the three-dimensional object closest to the own vehicle. 上記横断リスクを、上記立体物の手前で自車両を一時停止させるための運転支援を介入させるリスク分布とすることを特徴とする請求項1〜4の何れか一に記載の車両の運転支援装置。   The vehicle driving support device according to any one of claims 1 to 4, wherein the crossing risk is a risk distribution that intervenes driving support for temporarily stopping the host vehicle in front of the three-dimensional object. .
JP2008244533A 2008-09-24 2008-09-24 Vehicle driving support device Active JP5452004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244533A JP5452004B2 (en) 2008-09-24 2008-09-24 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244533A JP5452004B2 (en) 2008-09-24 2008-09-24 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2010079425A true JP2010079425A (en) 2010-04-08
JP5452004B2 JP5452004B2 (en) 2014-03-26

Family

ID=42209827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244533A Active JP5452004B2 (en) 2008-09-24 2008-09-24 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP5452004B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108987A1 (en) * 2013-01-11 2014-07-17 日産自動車株式会社 Display control device for vehicle and display control method for vehicle
JP2015055921A (en) * 2013-09-10 2015-03-23 矢崎エナジーシステム株式会社 Driving evaluation device
JP2018106351A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Travel support device
WO2019171100A1 (en) 2018-03-09 2019-09-12 日産自動車株式会社 Vehicle travel assist method and vehicle travel assist device
CN112677966A (en) * 2019-10-18 2021-04-20 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
DE102022114621A1 (en) 2021-06-22 2022-12-22 Subaru Corporation DRIVING ASSISTANT DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244295A (en) * 2005-03-04 2006-09-14 Advics:Kk Travel support device for vehicle
JP2007280263A (en) * 2006-04-11 2007-10-25 Denso Corp Driving support device
JP2008003762A (en) * 2006-06-21 2008-01-10 Honda Motor Co Ltd Obstacle recognition determining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244295A (en) * 2005-03-04 2006-09-14 Advics:Kk Travel support device for vehicle
JP2007280263A (en) * 2006-04-11 2007-10-25 Denso Corp Driving support device
JP2008003762A (en) * 2006-06-21 2008-01-10 Honda Motor Co Ltd Obstacle recognition determining device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108987A1 (en) * 2013-01-11 2014-07-17 日産自動車株式会社 Display control device for vehicle and display control method for vehicle
JP5930072B2 (en) * 2013-01-11 2016-06-08 日産自動車株式会社 Vehicle display control device and vehicle display control method
JPWO2014108987A1 (en) * 2013-01-11 2017-01-19 日産自動車株式会社 Vehicle display control device and vehicle display control method
JP2015055921A (en) * 2013-09-10 2015-03-23 矢崎エナジーシステム株式会社 Driving evaluation device
JP2018106351A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Travel support device
WO2019171100A1 (en) 2018-03-09 2019-09-12 日産自動車株式会社 Vehicle travel assist method and vehicle travel assist device
CN112677966A (en) * 2019-10-18 2021-04-20 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
JP2021068016A (en) * 2019-10-18 2021-04-30 本田技研工業株式会社 Vehicle controller, vehicle control method and program
US11738742B2 (en) 2019-10-18 2023-08-29 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
CN112677966B (en) * 2019-10-18 2024-04-19 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
DE102022114621A1 (en) 2021-06-22 2022-12-22 Subaru Corporation DRIVING ASSISTANT DEVICE

Also Published As

Publication number Publication date
JP5452004B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5345350B2 (en) Vehicle driving support device
JP5167051B2 (en) Vehicle driving support device
JP5952859B2 (en) Vehicle driving support device
JP3358709B2 (en) Driving support device for vehicles
JP4949063B2 (en) Vehicle driving support device
JP2010018062A (en) Vehicle driving support device
JP2010083314A (en) Driving support device for vehicle
JP2008307951A (en) Driving support apparatus of vehicle
JP7266709B2 (en) Vehicle control method and vehicle control device
JP2018039303A (en) Vehicle control device
JP5210064B2 (en) Vehicle collision prevention device
JP6376523B2 (en) Vehicle control device
JP5452004B2 (en) Vehicle driving support device
JP2017068461A (en) Vehicle driving assistance device
JP2021039659A (en) Drive support device
JP6494020B2 (en) Vehicle driving support control device
JP6376522B2 (en) Vehicle control device
JPWO2019077669A1 (en) Vehicle control device
JP6805767B2 (en) Vehicle control system
JP6331233B2 (en) Vehicle control device
JP5083959B2 (en) Vehicle driving support device
JP5249696B2 (en) Vehicle driving support device
JP6733616B2 (en) Vehicle control device
JP6376520B2 (en) Vehicle control device
JP6376521B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250