JP2010078997A - Liquid crystal display element and manufacturing method thereof - Google Patents

Liquid crystal display element and manufacturing method thereof Download PDF

Info

Publication number
JP2010078997A
JP2010078997A JP2008248063A JP2008248063A JP2010078997A JP 2010078997 A JP2010078997 A JP 2010078997A JP 2008248063 A JP2008248063 A JP 2008248063A JP 2008248063 A JP2008248063 A JP 2008248063A JP 2010078997 A JP2010078997 A JP 2010078997A
Authority
JP
Japan
Prior art keywords
liquid crystal
deposition film
vapor deposition
film
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008248063A
Other languages
Japanese (ja)
Inventor
Masaki Oishi
正樹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2008248063A priority Critical patent/JP2010078997A/en
Publication of JP2010078997A publication Critical patent/JP2010078997A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a liquid crystal display element, which suppresses adsorption of foreign molecules to an oblique vapor deposition film on the side of liquid crystal to eliminate a sticking phenomenon of the liquid crystal display element due to ion adsorption to the oblique vapor deposition film, by increasing density of a structure of the oblique vapor deposition film without affecting a pretilt angle θ of liquid crystal molecules of the liquid crystal display element. <P>SOLUTION: In the liquid crystal display element wherein a pixel electrode substrate and a transparent electrode substrate are disposed facing each other across liquid crystal, a first oblique vapor deposition film having a porous structure and a second oblique vapor deposition film having a dense structure are laminated with respect to an oblique vapor deposition film formed on the side of surfaces brought into contact with the liquid crystal, of the pixel electrode substrate and the transparent electrode substrate. The overall refractive index of the oblique vapor deposition film is equalized to that of a single layer structure to prevent the change in refractive index influencing an alignment angle of liquid crystal, and the structure of the second oblique vapor deposition film on the side of the surface brought into contact with the liquid crystal is made dense to suppress adsorption of foreign matters to the oblique vapor deposition film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶表示素子およびその製造方法に関するものである。   The present invention relates to a liquid crystal display element and a method for manufacturing the same.

基板等の被蒸着材表面に対して蒸着膜を形成する方法として斜方蒸着法が知られている。この斜方蒸着法は、蒸着物質を斜めの角度から被蒸着材に導き入れ、被蒸着材表面に対して所定方向に配向した蒸着物質の柱状構造物(以下、カラムとも言う)を形成することが可能な蒸着方法である。具体的には所定の蒸着装置を用いて行われ、真空下、蒸着源を加熱して蒸着物質の蒸気流を生じさせ、予め蒸着源と傾き角θ1(蒸着源と基板面重心位置とを結ぶ基準線と、基板面法線とのなす角)でセットされた被蒸着材に対し蒸着を行うものとされている。この場合、上記傾き角θ1に基づいて蒸着物質のカラム配向方向が決定される。   An oblique vapor deposition method is known as a method for forming a vapor deposition film on the surface of a vapor deposition material such as a substrate. In this oblique vapor deposition method, a vapor deposition material is introduced into a material to be deposited from an oblique angle, and a columnar structure (hereinafter also referred to as a column) of the vapor deposition material oriented in a predetermined direction with respect to the surface of the material to be deposited is formed. This is a possible vapor deposition method. Specifically, this is performed using a predetermined vapor deposition apparatus, and the vapor deposition source is heated under vacuum to generate a vapor flow of the vapor deposition material, and the vapor deposition source and the inclination angle θ1 (the vapor deposition source and the substrate surface center of gravity position are connected in advance). It is supposed that vapor deposition is performed on the deposition material set at the angle between the reference line and the substrate surface normal. In this case, the column orientation direction of the vapor deposition material is determined based on the tilt angle θ1.

一方、このような斜方蒸着法は、例えば液晶配向膜を形成する際に用いられる場合がある。この場合、基板上に液晶配向膜として形成した斜方蒸着膜により、具体的にはカラムの形成状態による斜方蒸着膜の屈折率に応じて液晶分子を所定角度(プレティルト角とも言う)だけ傾斜させることが可能となる。例えば、蒸着物質としてSiO2を用い、SiO2の蒸気流を傾き角θ1に伴う蒸着角度で基板に導き入れることで、SiO2の斜方蒸着膜(液晶配向膜)を基板面に形成している。 On the other hand, such oblique vapor deposition may be used, for example, when forming a liquid crystal alignment film. In this case, the obliquely deposited film formed as a liquid crystal alignment film on the substrate, specifically, tilts the liquid crystal molecules by a predetermined angle (also called pretilt angle) according to the refractive index of the obliquely deposited film depending on the column formation state. It becomes possible to make it. For example, deposition of SiO 2 is used as material, by putting lead to substrate at a deposition angle due to inclination angle θ1 of SiO 2 vapor stream, SiO 2 oblique deposition film (liquid crystal alignment film) formed on the substrate surface Yes.

図4は蒸着装置の外観を模式的に示す説明図で、蒸着装置1は、蒸着物質の蒸気を生じさせる蒸着源2と、蒸気を遮蔽する遮蔽板3と、被蒸着材としての基板4と、蒸着室5のみ記載し、その他は省略してある。基板4をAに示すように蒸着源2からの蒸気(図中矢印で示す)に垂直に基板4の中心が蒸着源2の中心と一致するように配置すると基板4の全面に蒸着物質が一様に(正確には中心部から離れるに従って薄くなるが)堆積する。基板4をBに示すように蒸着源2に対し斜めに(図ではAに示す基板4の法線からθ1=23°)配置して蒸着すると前述の斜方蒸着となる。   FIG. 4 is an explanatory view schematically showing the appearance of the vapor deposition apparatus. The vapor deposition apparatus 1 includes a vapor deposition source 2 that generates vapor of a vapor deposition material, a shielding plate 3 that shields the vapor, and a substrate 4 as a vapor deposition material. Only the vapor deposition chamber 5 is shown, and the others are omitted. When the substrate 4 is arranged so that the center of the substrate 4 coincides with the center of the vapor deposition source 2 perpendicularly to the vapor from the vapor deposition source 2 (indicated by an arrow in the figure) as shown in A, the vapor deposition material is uniformly deposited on the entire surface of the substrate 4. (Accurately, it gets thinner as you move away from the center). When the substrate 4 is deposited obliquely with respect to the deposition source 2 as shown in B (θ1 = 23 ° from the normal line of the substrate 4 shown in A in the figure), the oblique deposition described above is performed.

しかしながら、上記のような斜方蒸着法においては、斜方蒸着により形成された斜方蒸着膜は非常にポーラスな構造となり、斜方蒸着膜への異分子の吸着を生じさせてしまう。斜方蒸着膜構造を密にするためには、斜方蒸着膜成膜速度の上昇及び、斜方蒸着膜入射角の変更をする方法が挙げられるが、何れの手法も斜方蒸着膜の屈折率を変化させてしまうため、液晶分子のプレティルト角θを変化させてしまうこととなり、所望の特性を得られなくなる。   However, in the oblique vapor deposition method as described above, the oblique vapor deposition film formed by the oblique vapor deposition has a very porous structure and causes adsorption of different molecules to the oblique vapor deposition film. In order to make the obliquely deposited film structure dense, there are methods of increasing the obliquely deposited film formation rate and changing the incident angle of the obliquely deposited film. Since the rate is changed, the pretilt angle θ of the liquid crystal molecules is changed, and desired characteristics cannot be obtained.

これらの問題を解決するため、斜方蒸着膜と前記基板間に親水性の無機材料からなる吸着層を設けることにより液晶表示素子内の異分子を吸着する液晶表示素子が提案されている(特許文献1参照)   In order to solve these problems, there has been proposed a liquid crystal display element that adsorbs different molecules in the liquid crystal display element by providing an adsorption layer made of a hydrophilic inorganic material between the obliquely deposited film and the substrate (Patent Document). 1)

図5は特許文献1で提案されている液晶表示素子の断面図の一部を示しており、6は前記親水性の無機材料からなる吸着層、7は液晶配向膜、8は液晶分子を示している。   FIG. 5 shows a part of a cross-sectional view of the liquid crystal display element proposed in Patent Document 1, 6 is an adsorption layer made of the hydrophilic inorganic material, 7 is a liquid crystal alignment film, and 8 is a liquid crystal molecule. ing.

液晶表示素子内に浸入した異分子を、前記親水性の無機材料からなる吸着層6に吸着させることにより、前記液晶表示素子内への侵入を防ぎ前記液晶表素子内の異分子による焼き付きの低減を行っている。
特開2005−274640号公報
By adsorbing different molecules that have penetrated into the liquid crystal display element to the adsorption layer 6 made of the hydrophilic inorganic material, the liquid crystal display element is prevented from entering the liquid crystal display element and burn-in by the different molecules in the liquid crystal display element is reduced. ing.
JP 2005-274640 A

前記液晶表素子は、液晶表示素子内に侵入した異分子の吸着を前記親水性の無機材料からなる吸着層に吸着させることは可能であるが、前記液晶配向膜に吸着させる異分子の低減は行えておらず、前記液晶配向膜に吸着された異分子は、結果液晶表示素子の焼き付きの原因となってしまう。   The liquid crystal surface element can adsorb the adsorption of different molecules that have entered the liquid crystal display element to the adsorption layer made of the hydrophilic inorganic material, but it can reduce the different molecules adsorbed on the liquid crystal alignment film. In other words, the different molecules adsorbed on the liquid crystal alignment film may cause image sticking of the liquid crystal display element.

斜方蒸着膜を使用した液晶表示素子の場合には、配向膜への異分子の吸着を行えないため、焼き付き防止の対策は行えない。本発明の目的は、液晶表示素子の液晶分子のプレティルト角θを変化させることなく、前記液晶表示素子の配向膜(斜方蒸着膜)への異分子吸着の低減を行うことにより、焼き付き対策を行った液晶表示素子を提供することにある。   In the case of a liquid crystal display element using an obliquely deposited film, different molecules cannot be adsorbed to the alignment film, and therefore, measures for preventing seizure cannot be taken. The object of the present invention is to take measures against seizure by reducing adsorption of foreign molecules to the alignment film (orthotropic deposition film) of the liquid crystal display element without changing the pretilt angle θ of the liquid crystal molecules of the liquid crystal display element. Another object is to provide a liquid crystal display device.

画素電極基板と透明電極基板とが液晶を介して互いに対向配置され、前記画素電極基板と前記透明電極基板のそれぞれの前記液晶に接する面側に斜方蒸着膜を有する液晶表示素子において、ポーラス構造に形成された第1斜方蒸着膜と、密構造に形成された第2斜方蒸着膜とが積層され、第2斜方蒸着膜が前記液晶に接する側に積層されている液晶表示素子とする。   In a liquid crystal display element in which a pixel electrode substrate and a transparent electrode substrate are arranged to face each other via a liquid crystal, and each of the pixel electrode substrate and the transparent electrode substrate has an obliquely deposited film on a surface side in contact with the liquid crystal, a porous structure A first obliquely deposited film formed on the substrate and a second obliquely deposited film formed in a dense structure, and the second obliquely deposited film is laminated on the side in contact with the liquid crystal; To do.

ポーラス構造に形成された第1斜方蒸着膜と、密構造に形成された第2斜方蒸着膜とが積層され、斜方蒸着膜全体としての屈折率を単層構造で必要な屈折率と同等に形成する液晶表示素子とする。   A first obliquely deposited film formed in a porous structure and a second obliquely deposited film formed in a dense structure are laminated, and the refractive index of the obliquely deposited film as a whole is determined as a necessary refractive index in a single layer structure. A liquid crystal display element formed in the same manner is used.

前記ポーラス構造の第1斜方蒸着膜と密構造の第2斜方蒸着膜の構造は斜方蒸着時の成膜速度を変化させて形成する液晶表示素子とする。   The structure of the first oblique vapor deposition film having the porous structure and the second oblique vapor deposition film having the dense structure is a liquid crystal display element formed by changing the film formation rate during the oblique vapor deposition.

前記斜方蒸着膜は、二酸化珪素である液晶表示素子とする。   The oblique vapor deposition film is a liquid crystal display element made of silicon dioxide.

画素電極基板と透明電極基板とが液晶を介して互いに対向配置する液晶表示素子の製造方法において、少なくとも、 前記画素電極基板表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程と、前記透明電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程とを具備する液晶表示素子の製造方法とする。   In a method of manufacturing a liquid crystal display element in which a pixel electrode substrate and a transparent electrode substrate are disposed to face each other with a liquid crystal interposed therebetween, at least a step of forming a first oblique deposition film having a porous structure on the surface of the pixel electrode substrate, Forming a dense second oblique deposition film on the surface of the first oblique deposition film; forming a porous first deposition film on the surface of the transparent electrode substrate; and the first oblique deposition. And a step of forming a dense second oblique deposition film on the surface of the deposition film.

前記画素電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程と、前記透明電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程の、第1斜方蒸着膜を形成する工程と、第2斜方蒸着膜を形成する工程を真空中で連続して行う液晶表示素子の製造方法とする。   Forming a porous first oblique deposition film on the surface of the pixel electrode substrate; forming a dense second oblique deposition film on the surface of the first oblique deposition film; and the transparent electrode. A first oblique deposition film comprising a step of forming a first oblique deposition film having a porous structure on a surface of a substrate and a step of forming a second oblique deposition film having a dense structure on the surface of the first oblique deposition film. A method for manufacturing a liquid crystal display element in which the step of forming and the step of forming the second oblique deposition film are continuously performed in a vacuum.

請求項1の発明によると、蒸着膜を第1斜方蒸着膜、第2斜方蒸着膜の2層構造とし、液晶に接する第2斜方蒸着膜構造を密にすることで、前記斜方蒸着膜への異分子の吸着を抑制し、斜方蒸着膜へのイオン吸着を起因とした液晶表示素子の焼き付き現象を無くすことができる。   According to the first aspect of the present invention, the oblique film has a two-layer structure of a first obliquely deposited film and a second obliquely deposited film, and the second obliquely deposited film structure in contact with the liquid crystal is made dense so that the oblique Adsorption of foreign molecules on the deposited film can be suppressed, and the image sticking phenomenon of the liquid crystal display element due to ion adsorption on the oblique deposited film can be eliminated.

請求項2の発明によると、配向膜を第1斜方蒸着膜、第2斜方蒸着膜の2層構造とし、第1斜方蒸着膜と第2斜方蒸着膜の構造を変化させ、斜方蒸着膜全体の屈折率を単層構造で必要な屈折率と同じにしているので、液晶分子のプレティルト角θへの影響を与えることなく、且つ前記液晶に接する第2斜方蒸着膜構造を密にすることにより、前記斜方蒸着膜への異分子の吸着を抑制し、斜方蒸着膜へのイオン吸着を起因とした液晶表示素子の焼き付き現象を無くすことができる。   According to the invention of claim 2, the alignment film has a two-layer structure of the first oblique deposition film and the second oblique deposition film, and the structures of the first oblique deposition film and the second oblique deposition film are changed. Since the refractive index of the whole of the vapor-deposited film is the same as that required for the single-layer structure, the second oblique vapor-deposited film structure in contact with the liquid crystal without affecting the pretilt angle θ of the liquid crystal molecules. By increasing the density, it is possible to suppress the adsorption of different molecules to the oblique vapor deposition film and to eliminate the image sticking phenomenon of the liquid crystal display element due to the ion adsorption to the oblique vapor deposition film.

請求項3の発明によると、斜方蒸着膜の成膜速度の変化で膜密度の異なる2層の斜方蒸着膜を形成しするので、2層構造の斜方蒸着膜が容易に形成でき、カラム構造変化による液晶分子のプレティルト角θへ影響を与えることなく、前述と同じ効果が得られる。成膜速度の変化量及び各層の膜厚は、所望の屈折率に合わせるように調整する。   According to the invention of claim 3, since the two layers of obliquely deposited films having different film densities are formed by changing the deposition rate of the obliquely deposited film, the obliquely deposited film having a two-layer structure can be easily formed. The same effect as described above can be obtained without affecting the pretilt angle θ of the liquid crystal molecules due to the column structure change. The amount of change in deposition rate and the film thickness of each layer are adjusted to match the desired refractive index.

請求項4の発明によると、一般に基板最表面のパッシベーション膜は二酸化珪素が使用されているので、蒸着膜を二酸化珪素にすると材料が同じにでき、製造と品質が安定する。   According to the invention of claim 4, since the passivation film on the outermost surface of the substrate is generally made of silicon dioxide, the material can be made the same when the deposited film is made of silicon dioxide, and the production and quality are stabilized.

請求項5の発明によると、異分子吸着を抑制可能な斜方蒸着膜が形成できると共に、蒸着機に特別な細工(遮蔽部材移動制御手段)をする必要が無く、メインテナンスが容易となり、パーティクルの発生も防げる。   According to the invention of claim 5, an oblique vapor deposition film capable of suppressing the adsorption of foreign molecules can be formed, no special work (shielding member movement control means) is required in the vapor deposition machine, maintenance is facilitated, and particles are generated. You can also prevent.

請求項6の発明によると、2層の配向膜を連続して真空槽内で形成するので、各斜方蒸着膜間に、自然酸化膜ができたり、水分や汚染物質が付着しないので、品質のよい斜方蒸着膜が形成できる。   According to the invention of claim 6, since the two alignment films are continuously formed in the vacuum chamber, a natural oxide film is not formed between each obliquely deposited film, and moisture and contaminants are not attached. Can be formed.

画素電極基板と透明電極基板とが液晶を介して互いに対向配置され、前記画素電極基板と前記透明電極基板のそれぞれの前記液晶に接する面側に斜方蒸着膜を有する液晶表示素子において、ポーラス構造に形成された第1斜方蒸着膜と、密構造に形成された第2斜方蒸着膜とが積層され、第2斜方蒸着膜が前記液晶に接する側に積層形成され、斜方蒸着膜全体としての屈折率を単層構造で必要な屈折率と同等とする液晶表示素子とする。   In a liquid crystal display element in which a pixel electrode substrate and a transparent electrode substrate are arranged to face each other via a liquid crystal, and each of the pixel electrode substrate and the transparent electrode substrate has an obliquely deposited film on a surface side in contact with the liquid crystal, a porous structure The first obliquely deposited film formed on the second layer and the second obliquely deposited film formed in a dense structure are laminated, and the second obliquely deposited film is laminated on the side in contact with the liquid crystal. A liquid crystal display element having an overall refractive index equivalent to that required for a single layer structure is used.

図1は本発明を説明するための蒸着装置の外観を模式的に示す説明図である。蒸着装置1は、蒸着物質の蒸気を生じさせる蒸着源2と、蒸気を遮蔽する遮蔽板3と、被蒸着材としての基板4と、蒸着室5のみ記載し、その他は省略してあるのは図4と同じである。異なるのは基板4の位置である。図4では基板4は蒸着源2の真上に配置しているが、本例では基板4が蒸着源2の中心の法線からX方向にL1、蒸着源2からL2の位置に複数枚(図では2枚)配置している。基板4は、蒸着源2と基板4の中心Oを結ぶ線に対しθ1傾けて配置している。基板4を支持する治具(不図示)は、基板4の中心Oを中心にして図中の矢印方向に回転できる。   FIG. 1 is an explanatory view schematically showing the appearance of a vapor deposition apparatus for explaining the present invention. The vapor deposition apparatus 1 describes only a vapor deposition source 2 that generates vapor of vapor deposition material, a shielding plate 3 that shields the vapor, a substrate 4 as a vapor deposition material, and a vapor deposition chamber 5, and the others are omitted. It is the same as FIG. The difference is the position of the substrate 4. In FIG. 4, the substrate 4 is arranged right above the vapor deposition source 2, but in this example, a plurality of substrates 4 are arranged at positions L <b> 1 in the X direction from the normal line at the center of the vapor deposition source 2, 2 in the figure). The substrate 4 is disposed with an inclination of θ1 with respect to a line connecting the vapor deposition source 2 and the center O of the substrate 4. A jig (not shown) for supporting the substrate 4 can rotate around the center O of the substrate 4 in the direction of the arrow in the figure.

斜方蒸着では、蒸着源2と基板4の位置で蒸気の入射角が変わるため、蒸着源2と基板4の距離が遠いほど膜厚が一様にできる。そのため蒸着機も大型化し、例えばL1=100cm、L2=2500cm程もある。大型化にも限度があるが、図で示すθ2、θ3は1度以下であることが望ましい。このように複数の基板を同時に蒸着できると、画素電極基板と透明電極基板を同じ条件で蒸着できるので、対向する配向膜(斜方蒸着膜)の膜厚を揃えることができる。   In oblique vapor deposition, the incident angle of vapor changes at the position of the vapor deposition source 2 and the substrate 4, so that the film thickness can be made uniform as the distance between the vapor deposition source 2 and the substrate 4 increases. For this reason, the vapor deposition apparatus is also increased in size, for example, L1 = 100 cm and L2 = 2500 cm. Although there is a limit to enlargement, it is desirable that θ2 and θ3 shown in the figure are 1 degree or less. If a plurality of substrates can be vapor-deposited in this way, the pixel electrode substrate and the transparent electrode substrate can be vapor-deposited under the same conditions, so that the thicknesses of the opposing alignment films (orthotropic vapor deposition films) can be made uniform.

図2は本発明を説明するための斜方蒸着膜の断面図であり、(A)は従来技術による単層膜、(B)は本発明による2層膜である。縦軸は膜厚、横軸は被成膜基板長さである。   FIG. 2 is a cross-sectional view of an oblique vapor deposition film for explaining the present invention, wherein (A) is a single-layer film according to the prior art, and (B) is a two-layer film according to the present invention. The vertical axis represents the film thickness, and the horizontal axis represents the deposition substrate length.

図3は本発明を説明するための斜方蒸着膜の成膜速度を示す図であり、(A)は従来技術による単層のもの、(B)は本発明による2層構造のものである。縦軸は成膜速度、横軸は成膜時間を示している。   FIG. 3 is a diagram showing the deposition rate of an oblique vapor deposition film for explaining the present invention. (A) is a single layer according to the prior art, and (B) is a two-layer structure according to the present invention. . The vertical axis represents the deposition rate, and the horizontal axis represents the deposition time.

従来技術による斜方蒸着では、図2(A)で示す斜方蒸着膜Eのように、斜方蒸着膜全体が一様な構造をとっており、斜方蒸着膜の厚さ方向(縦軸)での構造に違いは生じていない。また、本例では成膜速度は6.0Å/secと一様であり、斜方蒸着膜の厚さは300Åである。   In the oblique deposition according to the prior art, the entire oblique deposition film has a uniform structure like the oblique deposition film E shown in FIG. 2A, and the thickness direction (vertical axis) of the oblique deposition film. ) No difference in structure. In this example, the deposition rate is uniform at 6.0 mm / sec, and the thickness of the oblique deposition film is 300 mm.

図2(B)では第1斜方蒸着膜E1=180Å、第2斜方蒸着膜E2=120Å、また、成膜速度は図3(B)に示すように、E1部分=4.0Å/sec、E2部分=9.5Å/secとなるように蒸着する。図2(B)で示すようにE1部分とE2部分では斜方蒸着膜の膜密度が変化している。また、図2(B)の斜方蒸着膜構造は、図2(A)の斜方蒸着膜構造と屈折率を同様にするように各成膜速度及び成膜膜厚を調整している。第1斜方蒸着膜と第2斜方蒸着膜の成膜速度と膜厚は、異分子の吸着抑制力、屈折率、斜方蒸着の管理等を考慮し、適宜選択することができる。   In FIG. 2 (B), the first obliquely deposited film E1 = 1802, the second obliquely deposited film E2 = 120Å, and the film formation rate is E1 portion = 4.0Å / sec as shown in FIG. 3 (B). , E2 portion = 9.5 E / sec. As shown in FIG. 2B, the film density of the obliquely deposited film changes in the E1 portion and the E2 portion. Further, in the oblique vapor deposition film structure in FIG. 2B, the film formation speed and the film thickness are adjusted so that the refractive index is the same as that of the oblique vapor deposition film structure in FIG. The film formation speed and the film thickness of the first oblique vapor deposition film and the second oblique vapor deposition film can be appropriately selected in consideration of the adsorption suppressing power of different molecules, the refractive index, the management of the oblique vapor deposition, and the like.

具体的例としては、図2(A)の従来技術による単層膜の最適屈折率が1.3とした場合、図2(B)での第1斜方蒸着膜E1の屈折率を1.2、第2斜方蒸着膜の屈折率E2を1.4とすることで、E1、E2の斜方蒸着膜全体の屈折率を1.3に合わせている。   As a specific example, when the optimum refractive index of the single layer film according to the prior art of FIG. 2A is 1.3, the refractive index of the first oblique deposition film E1 in FIG. 2. By setting the refractive index E2 of the second obliquely deposited film to 1.4, the refractive index of the entire obliquely deposited film of E1 and E2 is adjusted to 1.3.

本発明を説明するための蒸着装置の外観を模式的に示す説明図Explanatory drawing which shows typically the external appearance of the vapor deposition apparatus for demonstrating this invention 本発明を説明するための斜方蒸着膜断面を示す模式図Schematic diagram showing a cross section of an obliquely deposited film for explaining the present invention 本発明を説明するための斜方蒸着膜成膜速度を示す模式図Schematic diagram showing oblique deposition film formation rate for explaining the present invention 蒸着装置の外観を模式的に示す説明図Explanatory drawing schematically showing the appearance of the vapor deposition system 従来技術を示す断面模式図Cross-sectional schematic diagram showing conventional technology

符号の説明Explanation of symbols

1 蒸着機
2 蒸着源
3 遮蔽板
4 基板(被蒸着材)
5 蒸着室
6 親水性の無機材料からなる吸着層
7 液晶配向膜
8 液晶分子
E 斜方蒸着膜
E1 第1斜方蒸着膜
E2 第2斜方蒸着膜
DESCRIPTION OF SYMBOLS 1 Deposition machine 2 Deposition source 3 Shield plate 4 Substrate (deposition material)
DESCRIPTION OF SYMBOLS 5 Deposition chamber 6 Adsorption layer which consists of hydrophilic inorganic material 7 Liquid crystal alignment film 8 Liquid crystal molecule E Obliquely deposited film E1 First obliquely deposited film E2 Second obliquely deposited film

Claims (6)

画素電極基板と透明電極基板とが液晶を介して互いに対向配置され、前記画素電極基板と前記透明電極基板のそれぞれの前記液晶に接する面側に斜方蒸着膜を有する液晶表示素子において、ポーラス構造に形成された第1斜方蒸着膜と、密構造に形成された第2斜方蒸着膜とが積層され、第2斜方蒸着膜が前記液晶に接する側に積層されていることを特徴とする液晶表示素子。   In a liquid crystal display element in which a pixel electrode substrate and a transparent electrode substrate are arranged to face each other via a liquid crystal, and each of the pixel electrode substrate and the transparent electrode substrate has an obliquely deposited film on a surface side in contact with the liquid crystal, a porous structure The first obliquely deposited film formed on the second layer and the second obliquely deposited film formed in a dense structure are laminated, and the second obliquely deposited film is laminated on the side in contact with the liquid crystal. Liquid crystal display element. 前記ポーラス構造に形成された第1斜方蒸着膜と、密構造に形成された第2斜方蒸着膜とが積層され、斜方蒸着膜全体としての屈折率を単層構造で必要な屈折率と同等に形成することを特徴とする請求項1記載の液晶表示素子。   The first obliquely deposited film formed in the porous structure and the second obliquely deposited film formed in the dense structure are laminated, and the refractive index of the obliquely deposited film as a whole is set to a necessary refractive index in the single layer structure. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is formed to be equivalent to the liquid crystal display element. 前記ポーラス構造の第1斜方蒸着膜と密構造の第2斜方蒸着膜の構造は斜方蒸着時の成膜速度を変化させて形成することを特徴とする請求項1または2記載の液晶表示素子。   3. The liquid crystal according to claim 1, wherein the first obliquely deposited film having the porous structure and the second obliquely deposited film having the dense structure are formed by changing a film forming rate during oblique deposition. Display element. 前記斜方蒸着膜は、二酸化珪素であることを特徴とする請求項1、2または3に記載の液晶表示素子。   The liquid crystal display element according to claim 1, wherein the oblique vapor deposition film is silicon dioxide. 画素電極基板と透明電極基板とが液晶を介して互いに対向配置する液晶表示素子を製造方法において、少なくとも、 前記画素電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程と、前記透明電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程とを具備することを特徴とする液晶表示素子の製造方法。   In a manufacturing method of a liquid crystal display element in which a pixel electrode substrate and a transparent electrode substrate are disposed to face each other via a liquid crystal, at least a step of forming a first oblique deposition film having a porous structure on a surface of the pixel electrode substrate; Forming a dense second oblique deposition film on the surface of the first oblique deposition film; forming a porous first deposition film on the surface of the transparent electrode substrate; and And a step of forming a dense second oblique deposition film on the surface of the lateral deposition film. 前記画素電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程と、前記透明電極基板の表面にポーラス構造の第1斜方蒸着膜を形成する工程と、前記第1斜方蒸着膜の表面に密構造の第2斜方蒸着膜を形成する工程の、第1斜方蒸着膜を形成する工程と、第2斜方蒸着膜を形成する工程を真空中で連続して行うことを特徴とする請求項5記載の液晶表示素子の製造方法。   Forming a porous first oblique deposition film on the surface of the pixel electrode substrate; forming a dense second oblique deposition film on the surface of the first oblique deposition film; and the transparent electrode. A first oblique deposition film comprising a step of forming a first oblique deposition film having a porous structure on a surface of a substrate and a step of forming a second oblique deposition film having a dense structure on the surface of the first oblique deposition film. 6. The method of manufacturing a liquid crystal display element according to claim 5, wherein the step of forming the step and the step of forming the second oblique vapor deposition film are continuously performed in a vacuum.
JP2008248063A 2008-09-26 2008-09-26 Liquid crystal display element and manufacturing method thereof Pending JP2010078997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248063A JP2010078997A (en) 2008-09-26 2008-09-26 Liquid crystal display element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248063A JP2010078997A (en) 2008-09-26 2008-09-26 Liquid crystal display element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010078997A true JP2010078997A (en) 2010-04-08

Family

ID=42209508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248063A Pending JP2010078997A (en) 2008-09-26 2008-09-26 Liquid crystal display element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010078997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095570A (en) * 2009-10-30 2011-05-12 Victor Co Of Japan Ltd Liquid crystal display device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161213A (en) * 1979-06-04 1980-12-15 Citizen Watch Co Ltd Liquid crystal display device
JP2001005003A (en) * 1999-06-18 2001-01-12 Victor Co Of Japan Ltd Manufacture of reflection type liquid crystal display device
JP2002277879A (en) * 2001-03-15 2002-09-25 Seiko Epson Corp Liquid crystal device, and manufacturing method for substrate for liquid crystal device
JP2006119401A (en) * 2004-10-22 2006-05-11 Seiko Epson Corp Method and device for manufacturing electrooptical device, electrooptical device, and electronic equipment
JP2007155865A (en) * 2005-12-01 2007-06-21 Citizen Holdings Co Ltd Liquid crystal element and its manufacturing method
JP2008170667A (en) * 2007-01-11 2008-07-24 Ulvac Japan Ltd Liquid crystal display and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161213A (en) * 1979-06-04 1980-12-15 Citizen Watch Co Ltd Liquid crystal display device
JP2001005003A (en) * 1999-06-18 2001-01-12 Victor Co Of Japan Ltd Manufacture of reflection type liquid crystal display device
JP2002277879A (en) * 2001-03-15 2002-09-25 Seiko Epson Corp Liquid crystal device, and manufacturing method for substrate for liquid crystal device
JP2006119401A (en) * 2004-10-22 2006-05-11 Seiko Epson Corp Method and device for manufacturing electrooptical device, electrooptical device, and electronic equipment
JP2007155865A (en) * 2005-12-01 2007-06-21 Citizen Holdings Co Ltd Liquid crystal element and its manufacturing method
JP2008170667A (en) * 2007-01-11 2008-07-24 Ulvac Japan Ltd Liquid crystal display and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095570A (en) * 2009-10-30 2011-05-12 Victor Co Of Japan Ltd Liquid crystal display device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10254591B2 (en) Display panel and method for manufacturing the same
US10379394B2 (en) Liquid crystal display device and method of fabricating the same
JP2010078998A (en) Liquid crystal display element and manufacturing method thereof
US20140055735A1 (en) Liquid crystal display device
JP2005189662A (en) Liquid crystal display and its manufacturing method
TWI468762B (en) Laminated wafer lens method for fabricating the same, and multilayered lens
JP2010091828A (en) Liquid crystal optical element and method of manufacturing the same
JP2009288436A (en) Liquid crystal display device
TWI485473B (en) Liquid crystal display device and method of manufacturing the same
US8629969B2 (en) Liquid crystal display panel and method of manufacturing the liquid crystal display panel
JP6490497B2 (en) Liquid crystal display device and manufacturing method thereof
JP2010078997A (en) Liquid crystal display element and manufacturing method thereof
WO2017181510A1 (en) Method for aligning liquid crystal display panel
JP5488951B2 (en) Liquid crystal display device and manufacturing method thereof
JP2009139497A (en) Method and apparatus for manufacturing alignment layer
JP2014119710A (en) Liquid crystal display unit and manufacturing method of the same
JP2009015199A (en) Liquid crystal display device and method of manufacturing the same
JP2009093097A (en) Liquid crystal display element and manufacturing method therefor
JP2006119401A (en) Method and device for manufacturing electrooptical device, electrooptical device, and electronic equipment
US20150253632A1 (en) Manufacturing method of photo-alignment film
JP2009229963A (en) Liquid crystal optical element
US10642117B2 (en) Liquid crystal display device and method of producing liquid crystal display device
JP2007101647A (en) Liquid crystal display element
JP4864405B2 (en) Ferroelectric liquid crystal display device
JP2008203712A (en) Manufacturing method of liquid crystal device and manufacturing equipment of liquid crystal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130624