JP2010077825A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2010077825A
JP2010077825A JP2008244210A JP2008244210A JP2010077825A JP 2010077825 A JP2010077825 A JP 2010077825A JP 2008244210 A JP2008244210 A JP 2008244210A JP 2008244210 A JP2008244210 A JP 2008244210A JP 2010077825 A JP2010077825 A JP 2010077825A
Authority
JP
Japan
Prior art keywords
injection
fuel
plate
fuel flow
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008244210A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008244210A priority Critical patent/JP2010077825A/en
Publication of JP2010077825A publication Critical patent/JP2010077825A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform control of fuel injection, in particular, control of contraction suppression, according to the operation state of an engine, in a cylinder injection type spark ignition internal combustion engine equipped with a slit-like injection hole and a fuel injection valve that forms a fan-shaped fuel spray in a combustion chamber. <P>SOLUTION: In this cylinder injection type spark ignition internal combustion engine equipped with the slit-like injection hole 28 and the fuel injection valve 18 forming the flat fan-shaped fuel spray in the combustion chamber 5, near each of injection hole inlet edge parts on sides of two side wall faces 28a in the slit-like injection hole 28 for restricting widening of a fan-shaped central angle α of the fuel spray 35, a fuel flow control valve 30 having a rotary shaft 30a fixed in parallel with the injection hole inlet edge part, and a plate-like member 30b having one end connected to the rotary shaft 30a and rotatable around the rotary shaft 30a, are disposed resoectively. During fuel injection, the rotational position of the plate-like member 30b is controlled, and the fuel flow along the surface of the plate-like member 30b is made to flow into the slit-like injection hole 28 while being deflected with respect to an injection central axis X of the fuel hole 28. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は筒内噴射式火花点火内燃機関に関する。   The present invention relates to a direct injection spark ignition internal combustion engine.

燃焼室内に燃料を噴射する燃料噴射弁を備えた筒内噴射式火花点火内燃機関において、噴射された燃料噴霧の内側(即ち、噴孔の噴射中心軸線近傍)の圧力が低く、燃料噴霧の外側の圧力が高い場合、その圧力差によって、燃料噴霧が内側に引き込まれて縮む場合がある(以下、このように燃料噴霧が内側に引き込まれて縮むことを「縮流」という)。縮流の発生とその程度は、機関の運転状態(主に筒内圧力)に応じて変化する。意図しない縮流の発生は、意図しない燃料噴霧の挙動を生じさせ、燃焼状態に悪影響を及ぼすため好ましいことではない。   In a cylinder injection spark ignition internal combustion engine having a fuel injection valve for injecting fuel into a combustion chamber, the pressure inside the injected fuel spray (that is, near the injection center axis of the injection hole) is low and the outside of the fuel spray When the pressure of the fuel spray is high, the fuel spray may be drawn inward and contracted due to the pressure difference (hereinafter referred to as “constricted flow”). The occurrence and the degree of contraction change depending on the operating state of the engine (mainly in-cylinder pressure). The generation of unintended contracted flow is not preferable because it causes unintended fuel spray behavior and adversely affects the combustion state.

そこで、ホローコーン状に燃料を燃焼室内に噴射する内開式の燃料噴射弁を備えた筒内噴射式火花点火内燃機関において、燃料噴射弁の燃料噴孔近傍に燃料噴霧案内用の壁面を設け、燃料噴霧を該壁面に沿って移動させることによって燃料噴霧が縮流することを抑制した筒内噴射式火花点火内燃機関が公知である(特許文献1参照)。   Therefore, in a cylinder injection spark ignition internal combustion engine provided with an inwardly open fuel injection valve for injecting fuel into a combustion chamber in a hollow cone shape, a wall surface for fuel spray guidance is provided in the vicinity of the fuel injection hole of the fuel injection valve, A cylinder injection spark ignition internal combustion engine in which the fuel spray is prevented from contracting by moving the fuel spray along the wall surface is known (see Patent Document 1).

特開2005−201062号公報JP 2005-201062 A

しかしながら、この筒内噴射式火花点火内燃機関では、縮流抑制の効果は燃料噴霧案内用の壁面の形状に依存するため、機関の運転状態に応じた燃料噴霧の制御、特に、縮流抑制の制御をすることが難しいという問題がある。   However, in this in-cylinder spark-ignition internal combustion engine, the effect of suppressing the contraction flow depends on the shape of the wall surface for guiding the fuel spray. There is a problem that it is difficult to control.

ところで、こうした縮流抑制の制御の必要性は、スリット状噴孔を備え燃焼室内に扁平な扇形状の燃料噴霧を形成する燃料噴射弁を具備した筒内噴射式火花点火内燃機関においても同様に存在する。これに関し、図13を参照しながら簡単に説明する。図13は燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図である。5は燃焼室、6は吸気弁、8は排気弁、18は燃料噴射弁を示す。破線で示す低筒内圧下における燃料噴霧35aに比べ、実線で示す高筒内圧下における燃料噴霧35bは、その扇形の中心角αが小さく、縮流してしまっていることが分かる。縮流が発生した結果、燃料噴霧が集中して燃焼室内を進行するため、貫徹力(ペネトレーション)が大きくなり、例えば、ピストンに形成されたボアへの燃料付着による排気ガス中の粒子状物質(PM)の増大等の問題が生じる。   By the way, the necessity for such control of contraction control is similarly applied to a cylinder injection spark ignition internal combustion engine having a fuel injection valve which has a slit-like injection hole and forms a flat fan-shaped fuel spray in the combustion chamber. Exists. This will be briefly described with reference to FIG. FIG. 13 is a schematic view showing the spread of fuel spray in the combustion chamber as viewed from the top of the combustion chamber. 5 is a combustion chamber, 6 is an intake valve, 8 is an exhaust valve, and 18 is a fuel injection valve. It can be seen that the fuel spray 35b under the high in-cylinder pressure indicated by the solid line has a smaller fan-shaped central angle α and is contracted compared to the fuel spray 35a under the low in-cylinder pressure indicated by the broken line. As a result of the contraction, the fuel spray concentrates and travels through the combustion chamber, so the penetration force (penetration) increases. For example, particulate matter in the exhaust gas due to fuel adhering to the bore formed in the piston ( Problems such as an increase in PM) occur.

そこで本発明は、スリット状噴孔を備え燃焼室内に扇形状の燃料噴霧を形成する燃料噴射弁を具備した筒内噴射式火花点火内燃機関において、機関の運転状態に応じた燃料噴霧の制御、特に、縮流抑制の制御を行う筒内噴射式火花点火内燃機関を提供することを目的とする。   Accordingly, the present invention provides a fuel injection control in accordance with the operating state of an engine in a cylinder injection spark ignition internal combustion engine having a fuel injection valve that has a slit-shaped injection hole and forms a fan-shaped fuel spray in a combustion chamber. In particular, it is an object of the present invention to provide an in-cylinder injection spark ignition internal combustion engine that performs control of contraction flow suppression.

前記課題を解決するために請求項1に記載の発明によれば、スリット状噴孔を備え燃焼室内に扁平な扇形状の燃料噴霧を形成する燃料噴射弁を具備した筒内噴射式火花点火内燃機関において、燃料噴霧の扇形の中心角の広がりを規制するスリット状噴孔内の2つの側壁面側の噴孔入口縁部近傍に、該噴孔入口縁部と平行に固定された回転軸と、一端が該回転軸に接続され該回転軸回りに回動可能な板状部材とを有する燃料流れ制御弁をそれぞれ配置し、燃料噴射時、前記板状部材の回動位置を制御し、前記板状部材表面に沿う燃料流れを噴孔の噴射中心軸線に対して偏向させながらスリット状噴孔内に流入させる筒内噴射式火花点火内燃機関が提供される。   In order to solve the above-mentioned problem, according to the invention described in claim 1, a cylinder injection type spark ignition internal combustion engine having a fuel injection valve provided with a slit-like nozzle hole and forming a flat fan-shaped fuel spray in the combustion chamber. In the engine, a rotation shaft fixed in parallel with the nozzle hole inlet edge in the vicinity of the nozzle hole inlet edge on the two side wall surfaces in the slit-shaped nozzle hole for restricting the spread of the fan-shaped central angle of the fuel spray. A fuel flow control valve having a plate-like member having one end connected to the rotary shaft and rotatable around the rotary shaft, and controlling the rotational position of the plate-like member during fuel injection, An in-cylinder injection spark ignition internal combustion engine is provided in which a fuel flow along a surface of a plate-like member is deflected with respect to an injection center axis of the injection hole and flows into the injection hole.

即ち、請求項1に記載の発明では、板状部材の回動位置を制御することによって、スリット状噴孔内に流入する燃料流れを噴孔の噴射中心軸線に対して偏向させ、スリット状噴孔内に燃料流れの偏りが形成される。スリット状噴孔内における燃料流れの偏りは、結果として噴射される燃料噴霧を偏らせるので、運転状態に応じた噴射される燃料噴霧の形状や噴射方向等を制御することが可能となる。   That is, in the first aspect of the invention, by controlling the rotational position of the plate-shaped member, the fuel flow flowing into the slit-shaped nozzle hole is deflected with respect to the injection center axis of the nozzle hole, and the slit-shaped nozzle An uneven fuel flow is formed in the hole. The bias of the fuel flow in the slit-shaped nozzle hole biases the fuel spray to be injected as a result, so that it is possible to control the shape, injection direction, etc. of the fuel spray to be injected according to the operating state.

また、請求項2に記載の発明によれば請求項1に記載の発明において、燃料噴射時の筒内圧が高いほど、前記板状部材が前記回転軸に対して板状部材表面に沿う燃料流れの上流側に配置され且つ前記板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線と平行に近づくように前記板状部材の回動位置を制御する筒内噴射式火花点火内燃機関が提供される。   According to a second aspect of the invention, in the first aspect of the invention, the higher the in-cylinder pressure during fuel injection, the more the plate-like member flows along the plate-like member surface with respect to the rotation shaft. An in-cylinder injection spark ignition internal combustion engine that controls the rotational position of the plate member so that the direction of fuel flow along the plate member surface is parallel to the injection center axis of the injection hole. Is provided.

即ち、請求項2に記載の発明では、燃料噴射時の筒内圧が高いほど、板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線と平行に近づくように燃料流れ制御弁を制御することによって、燃料流れ制御弁の下流端である回転軸近傍における板状部材表面に沿う燃料流れの剥離量が小さくなる。剥離量が小さいと、側壁面方向に回りこんで流入する燃料流れであって側壁面近傍を流れる燃料流れの流速の減衰が少なく、燃料流れ制御弁を有さない従来の燃料噴射弁に比べてその流速が速くなり、縮流が抑制される。即ち、燃料噴霧の外側部分を形成する側壁面近傍を流れる燃料流れの流速を速めることによって、外側の燃料噴霧を内側に引き込もうとする力に抗して燃料噴霧が直進することが可能となり、その結果縮流が抑制される。   That is, in the invention according to claim 2, the fuel flow control valve is controlled such that the higher the in-cylinder pressure at the time of fuel injection, the closer the fuel flow direction along the plate-like member surface is parallel to the injection center axis of the injection hole. By doing so, the amount of separation of the fuel flow along the surface of the plate member in the vicinity of the rotating shaft, which is the downstream end of the fuel flow control valve, is reduced. If the amount of separation is small, the fuel flow that flows in and flows in the direction of the side wall surface, and the flow velocity of the fuel flow flowing in the vicinity of the side wall surface is less attenuated, compared to a conventional fuel injection valve that does not have a fuel flow control valve. The flow velocity becomes faster and the contraction is suppressed. That is, by increasing the flow velocity of the fuel flow that flows in the vicinity of the side wall surface that forms the outer portion of the fuel spray, it becomes possible for the fuel spray to go straight against the force trying to draw the outer fuel spray inward. As a result, contraction is suppressed.

また、請求項3に記載の発明によれば請求項2に記載の発明において、前記2つの燃料流れ制御弁の板状部材を互いに異なる回動位置に制御し、燃料流れをスリット状噴孔内に偏って流入させる筒内噴射式火花点火内燃機関が提供される。   According to a third aspect of the present invention, in the second aspect of the present invention, the plate-like members of the two fuel flow control valves are controlled to different rotational positions so that the fuel flow is within the slit-like nozzle hole. There is provided an in-cylinder injection spark ignition internal combustion engine that flows in a biased manner.

即ち、請求項3に記載の発明では、2つの燃料流れ制御弁の板状部材を互いに異なる回動位置に制御することによって、スリット状噴孔内に流入する燃料流れを偏らせ、結果として噴射される燃料噴霧も偏って噴射させる。それによって、燃焼室内にスワールを形成することができ、またその強化をすることも可能となる。   That is, in the invention according to claim 3, by controlling the plate-like members of the two fuel flow control valves to different rotational positions, the fuel flow flowing into the slit-like nozzle is biased, and as a result, the injection is performed. The fuel spray is also injected unevenly. As a result, a swirl can be formed in the combustion chamber and can be strengthened.

また、請求項4に記載の発明によれば請求項1に記載の発明において、前記板状部材が前記回転軸に対して板状部材表面に沿う燃料流れの下流側に配置され且つ前記板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線方向を向くように前記板状部材の回動位置を制御する筒内噴射式火花点火内燃機関が提供される。   According to a fourth aspect of the invention, in the first aspect of the invention, the plate-like member is disposed on the downstream side of the fuel flow along the plate-like member surface with respect to the rotating shaft, and the plate-like member is provided. An in-cylinder spark-ignition internal combustion engine is provided that controls the rotational position of the plate member so that the direction of fuel flow along the surface of the member faces the injection center axis direction of the injection hole.

即ち、請求項4に記載の発明では、板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線方向を向くように板状部材の回動位置を制御することによって、スリット状噴孔内の噴孔の噴射中心軸線近傍に燃料流れを集中させ、結果として噴射される燃料噴霧も中心角が小さい扇形状となる。そのため、燃料噴霧の貫徹力が大きくなり、タンブルを形成することができると共にその強化をすることも可能となる。   That is, in the invention described in claim 4, the slit-shaped nozzle hole is controlled by controlling the rotation position of the plate-shaped member so that the fuel flow direction along the surface of the plate-shaped member faces the injection center axis direction of the nozzle hole. The fuel flow is concentrated in the vicinity of the injection center axis of the inner nozzle hole, and as a result, the fuel spray to be injected also has a fan shape with a small central angle. Therefore, the penetration force of the fuel spray is increased, and the tumble can be formed and strengthened.

各請求項に記載の発明によれば、スリット状噴孔を備え燃焼室内に扇形状の燃料噴霧を形成する燃料噴射弁を具備した筒内噴射式火花点火内燃機関において、機関の運転状態に応じた燃料噴霧の制御を行うことができるという共通の効果を奏する。   According to the invention described in each claim, in a cylinder injection type spark ignition internal combustion engine having a slit injection hole and a fuel injection valve that forms a fan-shaped fuel spray in a combustion chamber, the internal combustion engine is responsive to the operating state of the engine. The fuel spray can be controlled in common.

図1を参照しながら本発明による筒内噴射式火花点火内燃機関について説明する。図1において、1は例えば四つの気筒を備えた機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気通路、8は排気弁、9は排気通路、10は点火栓をそれぞれ示す。吸気通路7は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。吸気ダクト13内には吸入空気流量を検出するためのエアフローメータ15と、ステップモータ16により駆動されるスロットル弁17とが配置される。また、燃焼室5内には燃焼室5内に燃料を噴射する電気制御式の燃料噴射弁18が配置される。   A cylinder injection spark ignition internal combustion engine according to the present invention will be described with reference to FIG. In FIG. 1, 1 is an engine body having four cylinders, for example, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake passage, 8 is an exhaust valve, Reference numeral 9 denotes an exhaust passage, and 10 denotes a spark plug. The intake passage 7 is connected to a surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air cleaner 14 via an intake duct 13. An air flow meter 15 for detecting the intake air flow rate and a throttle valve 17 driven by a step motor 16 are arranged in the intake duct 13. Further, an electrically controlled fuel injection valve 18 for injecting fuel into the combustion chamber 5 is disposed in the combustion chamber 5.

一方、排気通路9は排気枝管19を介して小容量の三元触媒20に連結される。機関本体1には機関冷却水温を検出するための水温センサ21が取り付けられ、シリンダヘッド3には、燃焼室5の気筒内圧を検出するための筒内圧センサ22が取り付けられる。   On the other hand, the exhaust passage 9 is connected to a small capacity three-way catalyst 20 through an exhaust branch pipe 19. A water temperature sensor 21 for detecting the engine cooling water temperature is attached to the engine body 1, and an in-cylinder pressure sensor 22 for detecting the cylinder internal pressure of the combustion chamber 5 is attached to the cylinder head 3.

電子制御ユニット(ECU)40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。アクセルペダル49にはアクセルペダル49の踏み込み量を検出するための負荷センサ50が接続される。ここで、アクセルペダル49の踏み込み量は要求負荷を表している。   The electronic control unit (ECU) 40 is a digital computer and includes a ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45, An output port 46 is provided. The accelerator pedal 49 is connected to a load sensor 50 for detecting the depression amount of the accelerator pedal 49. Here, the depression amount of the accelerator pedal 49 represents a required load.

エアフローメータ15、水温センサ21、筒内圧センサ22、及び負荷センサ50の出力信号はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ51が接続される。CPU44ではクランク角センサ51の出力パルスに基づいて機関回転数が算出される。一方、出力ポート46は対応する駆動回路48を介して点火栓10、ステップモータ16、及び燃料噴射弁18にそれぞれ接続され、これらは電子制御ユニット40からの出力信号に基づいて制御される。   Output signals of the air flow meter 15, the water temperature sensor 21, the in-cylinder pressure sensor 22, and the load sensor 50 are input to the input port 45 via the corresponding AD converters 47. Further, the input port 45 is connected to a crank angle sensor 51 that generates an output pulse every time the crankshaft rotates, for example, 30 °. The CPU 44 calculates the engine speed based on the output pulse of the crank angle sensor 51. On the other hand, the output port 46 is connected to the spark plug 10, the step motor 16, and the fuel injection valve 18 via the corresponding drive circuit 48, and these are controlled based on the output signal from the electronic control unit 40.

図2は、燃料噴射弁18先端部の概略縦断面図である。図2において、25はニードル弁、26は噴射弁本体、27は球状壁面27aによって形成されたサック部、28はスリット状に形成されたスリット状噴孔、30はスリット状噴孔28内に流入する燃料流れの方向を制御する燃料流れ制御弁を示す。燃料流れ制御弁30について、次に図3及び図4を参照しながら説明する。   FIG. 2 is a schematic longitudinal sectional view of the tip portion of the fuel injection valve 18. In FIG. 2, 25 is a needle valve, 26 is an injection valve main body, 27 is a sack portion formed by a spherical wall surface 27a, 28 is a slit-shaped nozzle hole formed in a slit shape, and 30 flows into the slit-shaped nozzle hole 28. 1 shows a fuel flow control valve for controlling the direction of fuel flow. Next, the fuel flow control valve 30 will be described with reference to FIGS.

図3は図2の線A−Aにおける断面図を示し、図4はサック部27方向から見たスリット状噴孔28の入口部分を示す。燃料流れ制御弁30は、燃料噴霧が形成する扇形の中心角αの広がりを規制するスリット状噴孔28内の2つの側壁面28a側の噴孔入口縁部近傍に、噴孔入口縁部と平行に固定された回転軸30aと、一端が該回転軸30aに接続され該回転軸回りに回動可能な板状部材30bとを有し、図示しないアクチュエータによって板状部材30bの回動位置が制御される。出力ポート46は対応する駆動回路48を介して燃料流れ制御弁30のアクチュエータにも接続され、電子制御ユニット40からの出力信号に基づいて制御される。板状部材30bの回動位置は、図3に示すように、板状部材30bの平面とそれが配設された縁部を含む側壁面28aとが成す角を剥離角θと称すると、この剥離角θを用いてアクチュエータによって段階的又は無段階的に制御される。   3 shows a cross-sectional view taken along line AA in FIG. 2, and FIG. 4 shows an inlet portion of the slit-like nozzle hole 28 viewed from the direction of the sack portion 27. FIG. The fuel flow control valve 30 is formed in the vicinity of the nozzle hole inlet edge on the two side wall surfaces 28a side in the slit-shaped nozzle hole 28 that regulates the expansion of the fan-shaped central angle α formed by the fuel spray. The rotary shaft 30a is fixed in parallel, and has a plate-like member 30b that is connected to the rotary shaft 30a and is rotatable about the rotary shaft. Be controlled. The output port 46 is also connected to the actuator of the fuel flow control valve 30 via a corresponding drive circuit 48 and is controlled based on an output signal from the electronic control unit 40. As shown in FIG. 3, the rotation position of the plate-like member 30b is defined as an angle formed by the plane of the plate-like member 30b and the side wall surface 28a including the edge where the plate-like member 30b is disposed. The separation angle θ is controlled stepwise or steplessly by the actuator.

板状部材30bの回動位置は、板状部材30bの先端がサック部27の球状壁面27aに当接する剥離角θが最大のθmaxから剥離角θが零、即ち、板状部材30bの平面と側壁面28aとが同一面となる位置の間で制御されるが、場合によっては、剥離角θがマイナス方向に、例えば、板状部材30bがスリット状噴孔28内に入るようにも制御可能である。   The rotation position of the plate member 30b is such that the peel angle θ at which the tip of the plate member 30b contacts the spherical wall surface 27a of the sack portion 27 is the maximum θmax, and the peel angle θ is zero, that is, the plane of the plate member 30b Control is performed between the positions where the side wall surface 28a and the side surface 28a become the same surface, but in some cases, the separation angle θ can be controlled in the negative direction, for example, so that the plate-like member 30b enters the slit-like nozzle hole 28. It is.

ところで、上述のように、縮流は、燃料噴霧の内側(即ち、噴孔の噴射中心軸線X近傍の燃料流れによって噴射される燃料噴霧)の圧力が低く、燃料噴霧の外側(即ち、側壁面28a近傍の燃料流れによって噴射される燃料噴霧)の圧力が高い場合、その圧力差によって、燃料噴霧が内側に引き込まれて縮むことによって発生する。そのため、縮流は、燃料噴霧の外側の圧力が高いため圧力差が大きくなるような、筒内圧が高い状況下において発生しやすい。   By the way, as described above, the contracted flow has a low pressure inside the fuel spray (that is, fuel spray injected by the fuel flow in the vicinity of the injection center axis X of the nozzle hole), and the outside of the fuel spray (that is, the side wall surface). When the pressure of the fuel spray injected by the fuel flow in the vicinity of 28a is high, the fuel spray is drawn inward and contracted due to the pressure difference. Therefore, the contracted flow is likely to occur under a situation where the in-cylinder pressure is high such that the pressure difference becomes large because the pressure outside the fuel spray is high.

そこで、本発明では、燃料流れ制御弁30を用いて側壁面28a近傍の燃料噴霧の流量を増やし、即ち燃料流れの流速を速めることによって、内側に引き込もうとする力に抗して燃料噴霧が直進するようにし、縮流を抑制するようにしている。以下、側壁面28a近傍の燃料流れの流速を速める方法について説明する。   Therefore, in the present invention, the fuel flow control valve 30 is used to increase the flow rate of the fuel spray in the vicinity of the side wall surface 28a, that is, to increase the flow velocity of the fuel flow. So that the contraction is suppressed. Hereinafter, a method for increasing the flow velocity of the fuel flow in the vicinity of the side wall surface 28a will be described.

図5及び図6は、図3と同じ図2の線A−Aにおける断面図であり、図中、サック部27からスリット状噴孔28内に延びる矢印は燃料の流れを示す。まず、図5は低筒内圧下における板状部材30bの回動位置を示す。筒内圧が低い状況下においては、上述のような燃料噴霧の内側と外側との圧力差が小さく、縮流がほとんど発生しない。従って、板状部材30bの回動位置は、噴孔の噴射中心軸線X近傍と外側の側壁面28a近傍から噴射された燃料噴霧を全体として均一にするため、剥離角θが大きくなるように、例えば燃料流れ制御弁30の先端がサック部27の球状壁面27aに当接する剥離角θmaxとなるように制御される。この場合、側壁面28a近傍の燃料流れは、図5に示すように、燃料流れ制御弁30の下流端部で剥離した燃料流れが、側壁面方向に回り込むことによって形成される。   5 and 6 are cross-sectional views taken along the line AA of FIG. 2 which is the same as FIG. 3. In the drawing, arrows extending from the sack portion 27 into the slit-like injection holes 28 indicate the flow of fuel. First, FIG. 5 shows the rotational position of the plate-like member 30b under a low in-cylinder pressure. Under a situation where the in-cylinder pressure is low, the pressure difference between the inside and outside of the fuel spray as described above is small, and the contracted flow hardly occurs. Therefore, the rotation position of the plate-like member 30b is made uniform so that the fuel spray injected from the vicinity of the injection center axis X of the injection hole and the outer side wall surface 28a is uniform, so that the peeling angle θ is increased. For example, the fuel flow control valve 30 is controlled so that the tip of the fuel flow control valve 30 has a separation angle θmax that comes into contact with the spherical wall surface 27 a of the sack portion 27. In this case, as shown in FIG. 5, the fuel flow in the vicinity of the side wall surface 28 a is formed by the fuel flow separated at the downstream end of the fuel flow control valve 30 wrapping around in the side wall surface direction.

一方、図6は高筒内圧下における板状部材30bの回動位置を示す。筒内圧が高い状況下においては、上述のように縮流が発生する。そこで、板状部材30bの回動位置は、剥離角θがより小さくなるように制御される。即ち、剥離角θが小さいと、側壁面28a近傍の燃料流れを形成する剥離した燃料流れの回り込み量が少なくて済み、剥離角θが大きい場合に比べてその流れの流速の減衰が少ない。従って、剥離角θが小さい場合には、側壁面28a近傍の燃料流れの流速は、剥離角θが大きい場合に比べて速く、その燃料流れによって噴射された外側の燃料噴霧は、内側に引き込もうとする力に抗して直進することが可能となり、縮流の抑制が可能となる。   On the other hand, FIG. 6 shows the rotational position of the plate-like member 30b under a high cylinder pressure. Under the situation where the in-cylinder pressure is high, the contracted flow occurs as described above. Therefore, the rotation position of the plate-like member 30b is controlled so that the peeling angle θ becomes smaller. That is, when the separation angle θ is small, the amount of wraparound of the separated fuel flow that forms the fuel flow in the vicinity of the side wall surface 28a is small, and the flow velocity is less attenuated than when the separation angle θ is large. Therefore, when the separation angle θ is small, the flow velocity of the fuel flow in the vicinity of the side wall surface 28a is faster than when the separation angle θ is large, and the outer fuel spray injected by the fuel flow tends to be drawn inward. Therefore, it is possible to go straight against the force, and the contraction can be suppressed.

図7は圧縮行程中の燃料噴射時期と剥離角θとの関係を示す図である。図7を参照すると、燃料噴射時期が圧縮上死点(TDC)側になるにつれ、即ち遅角側になるにつれ、剥離角θが小さく設定される。これは、燃料噴射時期が遅角側になるほど、筒内圧が高くなるため縮流が発生しやすくなる。そこで、剥離角θを大きくすることによって、側壁面28a近傍の流量を増やすようにしている。なお、この場合において、剥離角θはθminより小さくなることはなく、剥離角θminは、燃料噴霧の内側の燃料の密度が薄くなりすぎないように決定される。一方、燃料噴射時期の圧縮下死点(BDC)側については、剥離角θmaxより大きくなることは、構造上当然にない。図7に示す関係は、予め実験又は計算によって求めROM42に保存する。   FIG. 7 is a diagram showing the relationship between the fuel injection timing during the compression stroke and the separation angle θ. Referring to FIG. 7, as the fuel injection timing becomes the compression top dead center (TDC) side, that is, the retard angle side, the separation angle θ is set smaller. This is because the in-cylinder pressure becomes higher as the fuel injection timing is retarded, so that the contracted flow is likely to occur. Therefore, the flow rate in the vicinity of the side wall surface 28a is increased by increasing the peeling angle θ. In this case, the peel angle θ is never smaller than θmin, and the peel angle θmin is determined so that the density of the fuel inside the fuel spray does not become too thin. On the other hand, the compression bottom dead center (BDC) side of the fuel injection timing is naturally not larger than the separation angle θmax. The relationship shown in FIG. 7 is obtained in advance by experiment or calculation and stored in the ROM 42.

図8は、スロットル弁17の開度や、排気ガス再循環ガスの導入によって変化した吸入空気量の変化による筒内圧の変化に応じて、変化する燃料噴射時期と剥離角θとの関係を示す図である。これは、筒内圧が変化する要因として、図7に示す燃料噴射時期以外の要因も考慮し、筒内圧と燃料噴射時期とに応じて剥離角θを決定している。筒内圧が低いほど、燃料噴射時期と剥離角θとの関係を示す直線の傾きの絶対値は大きくなる。図8に示す関係は、予め実験又は計算によって求めROM42に保存する。   FIG. 8 shows the relationship between the fuel injection timing and the separation angle θ that change according to the change in the in-cylinder pressure due to the change in the intake air amount that has changed due to the opening of the throttle valve 17 and the introduction of the exhaust gas recirculation gas. FIG. This considers factors other than the fuel injection timing shown in FIG. 7 as a factor for changing the in-cylinder pressure, and determines the separation angle θ according to the in-cylinder pressure and the fuel injection timing. The lower the in-cylinder pressure, the larger the absolute value of the slope of the straight line indicating the relationship between the fuel injection timing and the separation angle θ. The relationship shown in FIG. 8 is obtained in advance by experiment or calculation and stored in the ROM 42.

図9は、図3と同じ図2の線A−Aにおける断面図であり、燃料流れ制御弁30を応用した実施形態を示す。図9に示す実施形態によれば、2つの板状部材30bのうちいずれか一方の剥離角θ(例えば、図9においては左側の燃料流れ制御弁30の剥離角θ)を他方に比べて小さくすることによって、燃料流れをスリット状噴孔28内で偏らせ、結果として、噴射された燃料噴霧を一方に偏向させることが可能となる。図10は燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図であり、図9に示す実施形態によって噴射された偏向された燃料噴霧35を示す。このように、燃料噴霧35を偏向させることによって、矢印に示すような燃焼室5内にスワールSを形成すると共にそれを強化することが可能となる。2つの板状部材30bの異なる剥離角θとスワールの強さとの関係は、予め実験又は計算によって求めROM42に保存する。   9 is a cross-sectional view taken along line AA in FIG. 2 which is the same as FIG. 3, and shows an embodiment in which the fuel flow control valve 30 is applied. According to the embodiment shown in FIG. 9, the separation angle θ of one of the two plate-like members 30b (for example, the separation angle θ of the left fuel flow control valve 30 in FIG. 9) is smaller than the other. By doing so, it is possible to bias the fuel flow within the slit-shaped injection hole 28, and as a result, it is possible to deflect the injected fuel spray to one side. FIG. 10 is a schematic view showing the spread of the fuel spray in the combustion chamber as seen from the top of the combustion chamber, showing the deflected fuel spray 35 injected by the embodiment shown in FIG. Thus, by deflecting the fuel spray 35, it is possible to form the swirl S in the combustion chamber 5 as shown by the arrow and strengthen it. The relationship between the different peel angles θ of the two plate-like members 30b and the strength of the swirl is obtained in advance by experiment or calculation and stored in the ROM 42.

図11は、図3と同じ図2の線A−Aにおける断面図であり、燃料流れ制御弁30を応用した別の実施形態を示す。図11に示す実施形態によれば、2つの燃料流れ制御弁30の板状部材30b両方が、スリット状噴孔28内に入るように制御される。即ち、剥離角θがマイナスの値であって、且つ、燃料流れが上述のその他の実施形態とは異なる板状部材30bの表面(即ち、裏面)に沿って流れるような回動位置に板状部材30bが制御される。このように板状部材30bを配置することによって、燃料噴霧35の扇形の中心角αが小さく燃料流れが噴孔の噴射中心軸線X近傍に集中し、燃料噴霧の貫徹力が増大する。図12は燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図であり、図11に示す実施形態によって噴射された噴孔の噴射中心軸線X近傍に集中した燃料噴霧35を示し、貫徹力が増大していることを示している。このように、燃料噴霧35を集中されることによって、タンブルを形成すると共にそれを強化することが可能となる。剥離角θとタンブルの強さとの関係は、予め実験又は計算によって求めROM42に保存する。   11 is a cross-sectional view taken along line AA in FIG. 2 which is the same as FIG. 3, and shows another embodiment to which the fuel flow control valve 30 is applied. According to the embodiment shown in FIG. 11, both the plate-like members 30 b of the two fuel flow control valves 30 are controlled to enter the slit-like injection holes 28. That is, the plate-like shape is in a rotational position where the peel angle θ is a negative value and the fuel flow flows along the front surface (that is, the back surface) of the plate-like member 30b different from the other embodiments described above. The member 30b is controlled. By arranging the plate-like member 30b in this manner, the fan-shaped central angle α of the fuel spray 35 is small, and the fuel flow is concentrated in the vicinity of the injection center axis X of the nozzle hole, thereby increasing the penetration force of the fuel spray. FIG. 12 is a schematic view showing the spread of fuel spray in the combustion chamber as seen from the top of the combustion chamber, showing the fuel spray 35 concentrated in the vicinity of the injection center axis X of the injection hole injected by the embodiment shown in FIG. It shows that the penetrating power is increasing. Thus, by concentrating the fuel spray 35, it is possible to form a tumble and strengthen it. The relationship between the peel angle θ and the strength of the tumble is obtained in advance by experiment or calculation and stored in the ROM 42.

筒内噴射式火花点火内燃機関の全体図である。1 is an overall view of a direct injection spark ignition internal combustion engine. 燃料噴射弁先端部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the front-end | tip part of a fuel injection valve. 図2の線A−Aにおける断面図である。It is sectional drawing in line AA of FIG. サック部方向から見たスリット状噴孔の入口部分を示す。The entrance part of the slit-shaped nozzle hole seen from the sack part direction is shown. 図2の線A−Aにおける断面図であり、低筒内圧下における燃料流れ制御弁の配置を示す図である。It is sectional drawing in line AA of FIG. 2, and is a figure which shows arrangement | positioning of the fuel flow control valve under a low cylinder pressure. 図2の線A−Aにおける断面図であり、高筒内圧下における燃料流れ制御弁の配置を示す図である。It is sectional drawing in line AA of FIG. 2, and is a figure which shows arrangement | positioning of the fuel flow control valve under high cylinder pressure. 燃料噴射時期と剥離角との関係を示す図である。It is a figure which shows the relationship between a fuel-injection time and a peeling angle. 筒内圧の変化に応じた燃料噴射時期と剥離角との関係を示す図である。It is a figure which shows the relationship between the fuel injection timing according to the change of a cylinder pressure, and a peeling angle. 図2の線A−Aにおける断面図であり、燃料流れ制御弁を応用した実施形態を示す。It is sectional drawing in line AA of FIG. 2, and shows embodiment which applied the fuel flow control valve. 図9に示す実施形態における、燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図である。FIG. 10 is a schematic view showing the spread of fuel spray in the combustion chamber as viewed from the top of the combustion chamber in the embodiment shown in FIG. 9. 図2の線A−Aにおける断面図であり、燃料流れ制御弁を応用した実施形態を示す。It is sectional drawing in line AA of FIG. 2, and shows embodiment which applied the fuel flow control valve. 図11に示す実施形態における、燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図である。FIG. 12 is a schematic view showing the spread of fuel spray in the combustion chamber as viewed from the top of the combustion chamber in the embodiment shown in FIG. 11. 従来の燃料噴射弁による縮流を示すための、燃焼室頂部から見た燃焼室内の燃料噴霧の広がりを示す概略図である。It is the schematic which shows the breadth of the fuel spray in a combustion chamber seen from the combustion chamber top part for showing the contracted flow by the conventional fuel injection valve.

符号の説明Explanation of symbols

18 燃料噴射弁
27 サック部
28 スリット状噴孔
28a 側壁面
30 燃料流れ制御弁
30a 回転軸
30b 板状部材
DESCRIPTION OF SYMBOLS 18 Fuel injection valve 27 Sack part 28 Slit-shaped injection hole 28a Side wall surface 30 Fuel flow control valve 30a Rotating shaft 30b Plate-shaped member

Claims (4)

スリット状噴孔を備え燃焼室内に扁平な扇形状の燃料噴霧を形成する燃料噴射弁を具備した筒内噴射式火花点火内燃機関において、燃料噴霧の扇形の中心角の広がりを規制するスリット状噴孔内の2つの側壁面側の噴孔入口縁部近傍に、該噴孔入口縁部と平行に固定された回転軸と、一端が該回転軸に接続され該回転軸回りに回動可能な板状部材とを有する燃料流れ制御弁をそれぞれ配置し、燃料噴射時、前記板状部材の回動位置を制御し、前記板状部材表面に沿う燃料流れを噴孔の噴射中心軸線に対して偏向させながらスリット状噴孔内に流入させる筒内噴射式火花点火内燃機関。   In a cylinder-injection spark ignition internal combustion engine equipped with a fuel injection valve that has a slit-shaped nozzle hole and forms a flat fan-shaped fuel spray in the combustion chamber, a slit-shaped jet that regulates the spread of the central angle of the fan-shaped fuel spray A rotating shaft fixed in parallel with the nozzle hole inlet edge in the vicinity of the nozzle hole inlet edge on the two side wall surfaces in the hole, and one end connected to the rotating shaft and rotatable about the rotating shaft A fuel flow control valve having a plate-like member is disposed, and during fuel injection, the rotational position of the plate-like member is controlled, and the fuel flow along the plate-like member surface is directed to the injection center axis of the nozzle hole. An in-cylinder spark-ignition internal combustion engine that flows into a slit-shaped injection hole while being deflected. 燃料噴射時の筒内圧が高いほど、前記板状部材が前記回転軸に対して板状部材表面に沿う燃料流れの上流側に配置され且つ前記板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線と平行に近づくように前記板状部材の回動位置を制御する請求項1に記載の筒内噴射式火花点火内燃機関。   The higher the in-cylinder pressure at the time of fuel injection, the more the plate-like member is arranged on the upstream side of the fuel flow along the plate-like member surface with respect to the rotating shaft, and the direction of the fuel flow along the plate-like member surface is the injection hole The in-cylinder injection spark ignition internal combustion engine according to claim 1, wherein the rotational position of the plate-like member is controlled so as to approach parallel to the injection center axis. 前記2つの燃料流れ制御弁の板状部材を互いに異なる回動位置に制御し、燃料流れをスリット状噴孔内に偏って流入させる請求項2に記載の筒内噴射式火花点火内燃機関。   3. The direct injection spark ignition internal combustion engine according to claim 2, wherein the plate-like members of the two fuel flow control valves are controlled to different rotational positions so that the fuel flow is biased into the slit-like injection holes. 前記板状部材が前記回転軸に対して板状部材表面に沿う燃料流れの下流側に配置され且つ前記板状部材表面に沿う燃料流れの方向が噴孔の噴射中心軸線方向を向くように前記板状部材の回動位置を制御する請求項1に記載の筒内噴射式火花点火内燃機関。   The plate-like member is disposed on the downstream side of the fuel flow along the plate-like member surface with respect to the rotation axis, and the direction of the fuel flow along the plate-like member surface is directed to the injection center axis direction of the injection hole. The in-cylinder spark-ignition internal combustion engine according to claim 1, wherein the rotational position of the plate member is controlled.
JP2008244210A 2008-09-24 2008-09-24 Cylinder injection type spark ignition internal combustion engine Withdrawn JP2010077825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244210A JP2010077825A (en) 2008-09-24 2008-09-24 Cylinder injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244210A JP2010077825A (en) 2008-09-24 2008-09-24 Cylinder injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010077825A true JP2010077825A (en) 2010-04-08

Family

ID=42208536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244210A Withdrawn JP2010077825A (en) 2008-09-24 2008-09-24 Cylinder injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010077825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129285A1 (en) * 2014-02-28 2015-09-03 マツダ株式会社 Device for controlling direct-injection gasoline engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129285A1 (en) * 2014-02-28 2015-09-03 マツダ株式会社 Device for controlling direct-injection gasoline engine
CN106030079A (en) * 2014-02-28 2016-10-12 马自达汽车株式会社 Device for controlling direct-injection gasoline engine
JPWO2015129285A1 (en) * 2014-02-28 2017-03-30 マツダ株式会社 Control unit for direct injection gasoline engine
US9816445B2 (en) 2014-02-28 2017-11-14 Mazda Motor Corporation Device for controlling direct-injection gasoline engine
CN106030079B (en) * 2014-02-28 2018-12-14 马自达汽车株式会社 The control device of direct injection spark ignition engine

Similar Documents

Publication Publication Date Title
US8657214B2 (en) Fuel injection valve and internal combustion engine
JP2007291929A (en) Intake device for internal combustion engine
JP3885614B2 (en) Internal combustion engine
US20160273475A1 (en) Control system for spark-ignition internal combustion engine
JP2010281333A (en) Fuel injection control device
JP6825553B2 (en) Internal combustion engine control device
JP2012188937A (en) Internal combustion engine
JP2010037964A (en) Cylinder fuel injection spark ignition internal combustion engine
US20120227706A1 (en) Internal combustion engine
JP6217670B2 (en) Internal combustion engine
JP2010077825A (en) Cylinder injection type spark ignition internal combustion engine
JP4513817B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP5664349B2 (en) Internal combustion engine
WO2019163893A1 (en) Air intake device for internal combustion engine
JP4984976B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2008240706A (en) Intake control device for internal combustion engine
JP2006342707A (en) In-cylinder direct injection type stratified combustion engine
JP2019183791A (en) Control device for internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
WO2019159840A1 (en) Fuel injection apparatus and fuel injection control apparatus
JP2008057463A (en) Intake control device and control method for engine
JP3799857B2 (en) Fuel injection valve injection hole structure
JPH0242122A (en) Intake device for internal combustion engine with turbocharger
JP2020067021A (en) Internal combustion engine and its control device
JP3969156B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206