JP2010077499A - Method for treating substance to be treated containing platinum group element, rhenium and arsenic - Google Patents

Method for treating substance to be treated containing platinum group element, rhenium and arsenic Download PDF

Info

Publication number
JP2010077499A
JP2010077499A JP2008247426A JP2008247426A JP2010077499A JP 2010077499 A JP2010077499 A JP 2010077499A JP 2008247426 A JP2008247426 A JP 2008247426A JP 2008247426 A JP2008247426 A JP 2008247426A JP 2010077499 A JP2010077499 A JP 2010077499A
Authority
JP
Japan
Prior art keywords
rhenium
arsenic
platinum group
solid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008247426A
Other languages
Japanese (ja)
Other versions
JP5355977B2 (en
Inventor
Nobuaki Kita
宣明 喜多
Masashi Sawada
匡 澤田
Takeshi Matsumoto
武 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PGM KK
Dowa Metals and Mining Co Ltd
Original Assignee
NIPPON PGM KK
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PGM KK, Dowa Metals and Mining Co Ltd filed Critical NIPPON PGM KK
Priority to JP2008247426A priority Critical patent/JP5355977B2/en
Publication of JP2010077499A publication Critical patent/JP2010077499A/en
Application granted granted Critical
Publication of JP5355977B2 publication Critical patent/JP5355977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for concentrating a platinum group element, rhenium and arsenic in a substance to be treated which contains the platinum group element, rhenium and arsenic respectively, and separating each element from the others. <P>SOLUTION: This separating method includes: leaching the substance to be treated such as dust, which has been collected from an exhaust gas produced when various catalysts or the like, for instance, have been melted and smelted in an electric furnace and an oxidation furnace, and contains the platinum group element, rhenium and arsenic, with an alkaline solution such as an NaOH solution; subsequently separating a solid in which the platinum group element is concentrated, from a solution in which the rhenium and arsenic are leached; then adding a chloride such as potassium chloride into the solution; and subsequently separating the solid in which the rhenium is concentrated, from a solution in which the arsenic is concentrated. A liquid temperature in the step of adding the chloride and the subsequent step of solid-liquid separation is preferably 20-40°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、白金族元素、レニウム及び砒素を含有する被処理物質から、例えば使用済みの石油化学系触媒、使用済みの自動車排ガス浄化用触媒、使用済みの電子基板やリードフレーム等を溶融製錬して副生したダストなどから、上記各元素をそれぞれ効率的に濃縮して分離する方法に関するものである。   The present invention melts and smelts, for example, used petrochemical catalysts, used automobile exhaust gas purification catalysts, used electronic substrates and lead frames, etc., from materials to be treated containing platinum group elements, rhenium and arsenic. In addition, the present invention relates to a method for efficiently concentrating and separating the above elements from dust or the like as a by-product.

従来、使用済みの自動車排ガス浄化用触媒(排ガスコンバータのセラミック担体触媒やメタル担体触媒など:これらを「自動車用触媒」とよぶ)等から白金族元素等の各含有元素を回収する方法として、王水などの酸に酸化剤を加えた溶液、アルカリ水溶液、アンモニア水溶液などで白金族元素等を抽出する方法、硫酸等を用いて担体を溶かし未溶解の白金族元素等と分離する方法などの湿式処理法がある。   Conventionally, as a method for recovering each contained element such as platinum group elements from used automobile exhaust gas purification catalyst (ceramic carrier catalyst and metal carrier catalyst of exhaust gas converter: these are called "automobile catalyst") Wet methods such as a solution in which an oxidizing agent is added to an acid such as water, a method of extracting a platinum group element or the like with an aqueous alkali solution or an aqueous ammonia solution, a method of dissolving a carrier using sulfuric acid or the like and separating it from an undissolved platinum group element or the like There is a processing method.

さらに、本出願人らによる特開平4−317423号公報、特開2000−248322号公報、特開2005−54201号公報には、自動車用触媒等の白金族元素含有物質を電気炉内で銅源材料(酸化銅及び/又は金属銅)と共に溶融処理することによって溶融メタル(溶融銅メタル)中に白金族元素を移行させ、このようにして得られた白金族元素を含む溶融メタルをさらに酸化処理して溶融酸化物と白金族元素が一層濃縮した溶融メタルとに層分離する乾式処理法の記載がある。
特開2006−130387号公報 特開平6−17160号公報 特開平4−317423号公報 特開2000−248322号公報 特開2005−54201号公報
Further, JP-A-4-317423, JP-A-2000-248322, and JP-A-2005-5201 by the applicants disclose that a platinum group element-containing substance such as an automobile catalyst is contained in a copper source in an electric furnace. The platinum group element is transferred into the molten metal (molten copper metal) by melting with the material (copper oxide and / or metallic copper), and the molten metal containing the platinum group element thus obtained is further oxidized. Thus, there is a description of a dry processing method in which a molten oxide and a molten metal in which a platinum group element is further concentrated are separated into layers.
JP 2006-130387 A JP-A-6-17160 JP-A-4-317423 JP 2000-248322 A JP 200554201 A

しかしながら、白金族元素、レニウム及び砒素を含有する被処理物質の処理については、前記の特許文献1〜2などの湿式処理法(すなわち、酸又はアルカリを用いて白金族元素又は触媒担体を浸出する方法)によれば、白金族元素等の抽出率が悪かったり、担体を溶かすのに多量の酸を用いたりするなどの欠点があるなど、回収率やコストの点で問題があって実用的な方法ではなかった。
一方、前記の特許文献3〜5などの溶融メタル中に白金族元素を移行させる乾式処理法(すなわち、溶融処理法)は、高収率で且つ低コストで白金族元素を回収することができるものであって効率的な有価金属回収法として湿式処理法にはない利点を有している非常に優れた方法であるが、被処理物質中に白金族元素とともにレニウム及び砒素が含有されている場合に、これらのレニウム、砒素をそれぞれ濃縮させて分離する方法が未解決であった。
本発明は白金族元素、レニウム及び砒素を含有する被処理物質から、特に、使用済みの石油化学系触媒、使用済みの自動車排ガス浄化用触媒、使用済みの電子基板やリードフレーム等を溶融製錬して副生したダストから、上記各元素をそれぞれ濃縮して分離する方法を提供することを目的とするものである。
However, for the treatment of a material to be treated containing platinum group elements, rhenium and arsenic, wet treatment methods such as the above-mentioned Patent Documents 1 and 2 (that is, leaching out the platinum group element or catalyst carrier using acid or alkali). Method), there are problems in terms of recovery rate and cost, such as poor extraction rate of platinum group elements, and the use of a large amount of acid to dissolve the carrier. It wasn't the way.
On the other hand, the dry processing method (that is, the melting processing method) for transferring the platinum group element into the molten metal such as Patent Documents 3 to 5 can recover the platinum group element at a high yield and at a low cost. Although it is an excellent method that has advantages not found in wet processing methods as an efficient method for recovering valuable metals, rhenium and arsenic are contained in the material to be treated along with platinum group elements In some cases, a method of concentrating and separating these rhenium and arsenic has not been solved.
The present invention melts and smelts used petrochemical catalysts, used automobile exhaust gas purification catalysts, used electronic boards and lead frames, etc., from the materials to be treated containing platinum group elements, rhenium and arsenic. It is an object of the present invention to provide a method for concentrating and separating each of the above elements from dust produced as a by-product.

前記の課題を解決せんとしてなされた本発明は、旧来のような白金族元素を浸出する方法でも触媒担体を浸出する方法でもなく、新たな観点に基づいてなされた処理法であって、第1に、白金族元素、レニウム及び砒素を含有する被処理物質をアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法であり、第2に、製錬炉の排ガスからダストとして回収した白金族元素、レニウム及び砒素を含有する被処理物質をアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法であり、第3に、白金族元素、レニウム及び砒素を含有する被処理物質と、金属銅と酸化銅からなる群から選ばれる少なくとも一種が主体の銅源材料とを、フラックス成分及び還元剤と共に電気炉に装入して溶融し酸化物主体の一次スラグ層と金属銅主体の一次メタル層に層分離した後、該一次メタルを酸化炉に装入して酸化処理し酸化物主体の二次スラグ層と白金族元素が濃縮した金属銅主体の二次メタル層に層分離するとともに、該酸化炉内空間から導いたガスからダストを回収し、次いで該ダストをアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法である。
なお、本発明における「レニウム」はレニウム元素を意味するものであって、レニウム単体、レニウム合金、レニウム化合物などの場合を含む概念であり、「砒素」は砒素元素を意味するものであって、砒素単体、砒素化合物などの場合を含む概念である。
The present invention made to solve the above-mentioned problems is not a conventional method of leaching a platinum group element nor a method of leaching a catalyst carrier, and is a treatment method based on a new viewpoint. In addition, after leaching a material to be treated containing platinum group elements, rhenium and arsenic with an alkaline solution, followed by solid-liquid separation to obtain a solid enriched with platinum group elements and a solution in which rhenium and arsenic were leached, A method for treating a substance containing platinum group elements, rhenium and arsenic, which is obtained by adding a chloride to a solution and then solid-liquid separation to obtain a solid enriched in rhenium and a solution enriched in arsenic. The material to be treated containing platinum group elements, rhenium and arsenic recovered as dust from the exhaust gas from the smelting furnace is leached with an alkaline solution, and then solid-liquid separation is performed to leach out the rhenium and arsenic. A solution containing platinum group elements, rhenium and arsenic, which is obtained by adding chloride to the solution and then solid-liquid separation to obtain a solid enriched in rhenium and a solution enriched in arsenic Third, a material to be treated containing a platinum group element, rhenium and arsenic, and a copper source material mainly comprising at least one selected from the group consisting of metallic copper and copper oxide, a flux component and After charging into an electric furnace together with a reducing agent and melting and separating into a primary slag layer mainly composed of oxide and a primary metal layer mainly composed of copper metal, the primary metal is charged into an oxidation furnace and oxidized to be mainly composed of oxide. The secondary slag layer and the secondary metal layer mainly composed of metallic copper enriched with platinum group elements are separated into layers, and dust is recovered from the gas introduced from the space inside the oxidation furnace, and then the dust is leached with an alkaline solution. Then solid-liquid separation and platinum group Platinum obtained after obtaining a solid enriched with elemental and a solution leached with rhenium and arsenic, and then adding chloride to the solution, followed by solid-liquid separation to obtain a solid enriched with rhenium and a solution enriched with arsenic This is a method for treating a substance containing a group element, rhenium and arsenic.
In the present invention, “rhenium” means a rhenium element and includes a case of rhenium alone, a rhenium alloy, a rhenium compound, etc., and “arsenic” means an arsenic element, It is a concept that includes cases of arsenic alone, arsenic compounds, and the like.

これらの本発明において、前記の回収されたダストの少なくとも一部を前記電気炉と前記酸化炉のうちの少なくとも一方の炉に繰り返して装入することが好ましく、これによってダスト中のレニウム及び砒素を一層高濃度化でき、レニウム及び砒素を一層高濃度に濃縮させて分離することができる。
また、これらの本発明において、前記二次スラグの少なくとも一部を溶融状態のまま水冷して酸化銅を含有する粒状体を得て該粒状体を前記銅源材料として使用することが好ましく、若しくは、前記二次スラグの少なくとも一部を溶融状態のまま還元して金属銅含有材を得てこれを前記銅源材料として使用することが好ましい。これらの態様によれば、銅原材料の少なくとも一部を繰り返し使用することができ且つ廃棄スラグ量を削減することが出来、コスト削減を図ることができる。
さらには、前記のレニウム及び砒素が浸出された溶液に塩化物を添加し次いで固液分離する一連の工程を液温20〜40℃に維持して行うことが好ましい。
In these present inventions, it is preferable that at least a part of the collected dust is repeatedly charged into at least one of the electric furnace and the oxidation furnace, thereby removing rhenium and arsenic in the dust. The concentration can be further increased, and rhenium and arsenic can be concentrated to a higher concentration and separated.
In these present inventions, it is preferable that at least a part of the secondary slag is cooled with water in a molten state to obtain a granule containing copper oxide, and the granule is used as the copper source material, or It is preferable that at least a part of the secondary slag is reduced in a molten state to obtain a metallic copper-containing material and used as the copper source material. According to these aspects, at least a part of the copper raw material can be repeatedly used, the amount of waste slag can be reduced, and the cost can be reduced.
Furthermore, it is preferable to carry out a series of steps of adding chloride to the solution in which rhenium and arsenic are leached and then separating the solid and liquid at a liquid temperature of 20 to 40 ° C.

本発明によれば、白金族元素、レニウム及び砒素を含有する被処理物質から、例えば使用済みの石油化学系触媒、使用済みの自動車排ガス浄化用触媒、使用済みの電子基板やリードフレーム等を溶融製錬して副生したダストなどから、上記各元素をそれぞれ効率的に濃縮して分離することができる。
さらには、レニウム及び砒素が浸出された溶液に塩化物を添加してから固液分離する一連の添加及び固液分離の工程を液温20〜40℃に維持して行うことによって、この溶液中からレニウムの沈殿比率を高め、且つ、溶液中の砒素を沈殿させることなく液中に維持する比率を高め、レニウムと砒素を一層効率的に分離することができる。
According to the present invention, for example, a used petrochemical catalyst, a used automobile exhaust gas purification catalyst, a used electronic substrate, a lead frame, etc. are melted from a material to be treated containing platinum group elements, rhenium and arsenic. Each of the above elements can be efficiently concentrated and separated from dust or the like by-produced by smelting.
Further, a series of addition and solid-liquid separation steps of solid-liquid separation after adding chloride to the solution leached with rhenium and arsenic is performed while maintaining the liquid temperature at 20 to 40 ° C. Thus, the ratio of rhenium precipitation can be increased, and the ratio of the arsenic in the solution maintained without being precipitated can be increased, so that rhenium and arsenic can be separated more efficiently.

本発明においては、上記のアルカリ浸出後のスラリーを固液分離して得られたレニウム及び砒素が溶解した溶液に塩化物を添加することによってレニウムをレニウム塩化物沈殿として分離して回収し、この沈殿から公知の方法でレニウムを採取することができ、一方、砒素溶液は公知の排水処理工程で脱砒素処理することができる。
上記の添加用の塩化物としては、塩化ナトリウム、塩化カリウム、塩化アンモニウムなどを用いることができ、特に限定されない。
ここで、レニウム及び砒素が浸出された溶液に塩化物を添加してから固液分離する一連の添加及び固液分離の工程においては、レニウムは液温の上昇に伴って沈殿率が低下し、特に40℃を超えると急激に低下し当量以上の塩化物を添加してもレニウムの沈殿率は60%を下回る。一方、この一連の添加及び固液分離の工程においては、砒素は液温の低下に伴って沈殿し始め、特に20℃未満では急激に砒素沈殿量が増加し、例えば10℃では砒素の沈殿率は50%にも達する。従って、レニウム及び砒素が浸出された溶液に塩化物を添加してから固液分離する一連の添加及び固液分離の工程においては、液温を20〜40℃に維持して行うことによって、レニウムと砒素を一層効率的に分離することができる。
本発明においては処理対象となる、白金族元素、レニウム及び砒素を含有する被処理物質は特に限定されるものではないが、廃触媒等を出発原料としてダストを回収し、これを処理対象とする場合について以下に例示の記載を行う。
In the present invention, rhenium is separated and recovered as a rhenium chloride precipitate by adding chloride to a solution in which rhenium and arsenic are obtained by solid-liquid separation of the slurry after alkali leaching, Rhenium can be collected from the precipitate by a known method, while the arsenic solution can be dearsenated by a known wastewater treatment process.
Sodium chloride, potassium chloride, ammonium chloride and the like can be used as the chloride for addition described above, and is not particularly limited.
Here, in a series of addition and solid-liquid separation processes in which chloride is added to the solution in which rhenium and arsenic are leached and then solid-liquid separation is performed, rhenium decreases in precipitation rate as the liquid temperature increases, In particular, when it exceeds 40 ° C., it rapidly decreases and the precipitation rate of rhenium is less than 60% even when an equivalent amount of chloride is added. On the other hand, in this series of addition and solid-liquid separation steps, arsenic begins to precipitate as the liquid temperature decreases, and the amount of arsenic precipitation increases sharply below 20 ° C., for example, the arsenic precipitation rate at 10 ° C. Reaches 50%. Therefore, in a series of addition and solid-liquid separation processes in which chloride is added to a solution in which rhenium and arsenic are leached and then solid-liquid separation is performed, the liquid temperature is maintained at 20 to 40 ° C., thereby performing rhenium. And arsenic can be separated more efficiently.
In the present invention, the material to be treated containing platinum group elements, rhenium and arsenic to be treated is not particularly limited, but dust is recovered using a waste catalyst or the like as a starting material, and this is treated. Examples of cases are described below.

すなわち、前述の電気炉及び酸化炉による処理(溶融製錬と言う。)の対象となる白金族元素、レニウム及び砒素を含有する溶融製錬の原料は、例えば使用済みの石油化学系廃触媒、使用済みの自動車排ガス浄化用触媒、使用済みの電子基板、リードフレーム等はもとより、それらの製造工程から得られるロットアウト品やスクラップ等も含まれる。このような白金族元素とレニウム及び砒素を含有する原料は、通常は金属酸化物やセラミツクス等の担体に微量の白金族元素とレニウム及び砒素が担持された状態にある。   That is, the raw materials for melting and smelting containing platinum group elements, rhenium and arsenic, which are the targets of the above-described electric furnace and oxidation furnace (referred to as melting and smelting), are, for example, used petrochemical waste catalysts, This includes not only used automobile exhaust gas purification catalysts, used electronic boards, lead frames, but also lot-out products and scraps obtained from these manufacturing processes. Such a raw material containing a platinum group element and rhenium and arsenic is usually in a state where a trace amount of the platinum group element and rhenium and arsenic are supported on a carrier such as a metal oxide or ceramics.

溶融製錬においては、これら白金族元素、レニウム及び砒素(これらの元素を白金族元素等と総称することがある。)を含有する前記原料は、先ず、金属銅と酸化銅からなる群から選ばれる少なくとも一種が主体の銅源材料、フラックスおよび炭素質などの還元剤と共に電気炉に装入して溶融し、形成される酸化物主体の溶融一次スラグ層の下方に金属銅主体の溶融一次メタル層を沈降させ、下方に沈降した溶融一次メタル層に白金族元素等を濃縮させるものであるが、そのさい、装入物の溶融から融体排出に至るまで電気炉内の圧力を大気圧より低い圧力に維持し、また、電気炉に装入する銅源材料として粒径が0.1mm以上10mm以下の粒状体を使用するのが好ましい。
以下、これらの事項について説明する。
In melt smelting, the raw material containing these platinum group elements, rhenium and arsenic (these elements may be collectively referred to as platinum group elements) is first selected from the group consisting of metallic copper and copper oxide. At least one of the main copper source material, flux, and a reducing agent such as carbonaceous material are charged into an electric furnace and melted, and a molten primary metal mainly composed of copper metal is formed below the formed primary oxide-based molten primary slag layer. In this case, the platinum group elements and the like are concentrated in the molten primary metal layer that has settled down. At this time, the pressure in the electric furnace is changed from atmospheric pressure from the melting of the charge to the discharge of the melt. It is preferable to use a granular material having a particle size of 0.1 mm or more and 10 mm or less as a copper source material to be maintained at a low pressure and charged into the electric furnace.
Hereinafter, these matters will be described.

図1に溶融製錬で使用する電気炉の例を示した。図1において、1は密閉型電気炉を示している。この密閉型電気炉1は、外気と実質的に遮断された炉内空間2をもつ炉体3と、この炉体3の上半身部分に設けられた装入物投入口4および排気口5と、この炉体3の下半身部分に設けられた高さレベルの異なる少なくとも2個の流体排出口6および7と、該装入物投入口4に連結された装入物投入シュート8と、該排気口5に連結された排気装置9と、炉内に装入された装入物を通電加熱するための電極10a、10b、10cとからなる。   FIG. 1 shows an example of an electric furnace used in melting and smelting. In FIG. 1, reference numeral 1 denotes a closed electric furnace. The closed electric furnace 1 includes a furnace body 3 having a furnace space 2 that is substantially blocked from outside air, a charge input port 4 and an exhaust port 5 provided in an upper body portion of the furnace body 3, At least two fluid discharge ports 6 and 7 having different height levels provided in the lower half of the furnace body 3, a charge input chute 8 connected to the charge input port 4, and the exhaust port And an electrode 10a, 10b, 10c for energizing and heating the charge charged in the furnace.

図例の炉体3は耐火物で内張りされた円形の内壁をもつ炉であり、その天井面のほぼ中央に装入物投入シュート8が配置されており、この装入物投入シュート8を中心とした同心円上に3本の電極10a、10b、10cが互いに等間隔で垂直に天井面から配置されている。換言すれば、垂直な電極10a、10b、10cの配置位置は正三角形の各頂点にあり、この正三角形のほぼ中心に装入物投入シュート8が存在している。   The furnace body 3 shown in the figure is a furnace having a circular inner wall lined with a refractory, and a charge charging chute 8 is arranged at the substantially center of the ceiling surface. The three electrodes 10a, 10b, and 10c are arranged vertically from the ceiling surface at equal intervals from each other on the concentric circle. In other words, the positions of the vertical electrodes 10a, 10b, and 10c are at the vertices of the equilateral triangle, and the charge throwing chute 8 exists at the approximate center of the equilateral triangle.

このように構成された密閉型電気炉1には、白金族元素、レニウム及び砒素を含有する粒状の被処理物質(原料)11、金属銅と酸化銅からなる群から選ばれる少なくとも一種が主体の銅源材料12、固形還元材(粉状コークス)13および粉状のフラックス14が混ぜ合わされて装入される。すなわち、これらの装入原料は、それぞれのホーパーから計量して切り出され、スクリューコンベア15によって混合搬送されつつ電気炉1の装入物投入シュート8に送り込まれる。装入物投入シュート8には、材料の炉内への投入時に気密が保たれるように、上下二段のシャッター16と17が設けられている。まず、上段シャッター16を開、下段シャッター17を閉にして、シュート8内に装入物を1バッチ分だけ投入し、次いで上段シャッター16を閉、下段シャッター17を開にしてシュート8内に貯溜しているバッチ分を炉内に投入する。このバッチの炉内への投入を終えると上下のシャッター16と17を閉じて次の投入操作に備える。図例の設備では、シュート8の下端(装入物投入口4の下方)に分岐部材18を取付けることによって、シュート8から炉内に落下する装入物が3本の電極10a、10b、10cを結ぶ3角形の各辺の近傍に、より好ましくは各三辺のそれぞれの中点位置近くに着地するようにしてある。これにより、各電極10a、10b、10cを結ぶ最短距離に新たな投入装入物が堆積することになり溶融効率が高まる。   The closed electric furnace 1 configured in this way is mainly composed of at least one selected from the group consisting of a granular material to be processed (raw material) 11 containing platinum group elements, rhenium and arsenic, and metallic copper and copper oxide. The copper source material 12, the solid reducing material (powdered coke) 13, and the powdery flux 14 are mixed and charged. That is, these charging raw materials are weighed and cut out from the respective hoppers, and are fed into the charging charge chute 8 of the electric furnace 1 while being mixed and conveyed by the screw conveyor 15. The charging material charging chute 8 is provided with two upper and lower shutters 16 and 17 so that airtightness is maintained when the material is charged into the furnace. First, the upper shutter 16 is opened, the lower shutter 17 is closed, and one batch of charge is put into the chute 8, then the upper shutter 16 is closed, the lower shutter 17 is opened and stored in the chute 8. The batch that is being processed is put into the furnace. When the batch is charged into the furnace, the upper and lower shutters 16 and 17 are closed to prepare for the next charging operation. In the facility shown in the figure, the branch member 18 is attached to the lower end of the chute 8 (below the charge inlet 4), so that the charge falling into the furnace from the chute 8 is three electrodes 10a, 10b, 10c. Are landed in the vicinity of each side of the triangle connecting the two, more preferably near the midpoint position of each of the three sides. As a result, a new charge is deposited at the shortest distance connecting the electrodes 10a, 10b, and 10c, thereby increasing the melting efficiency.

新たな装入物が投入される炉の操業初期には、炉体3の下半身部分に設けられた高さレベルの異なる少なくとも2個の流体排出口6および7はいずれも閉塞されている。各電極10a、10b、10cに通電することによって炉内に装入された物質は溶融し始めるが、その間、排気装置9の駆動により炉内で発生する排ガスは排気口5から粉塵除去装置19に導かれ、排ガスの処理を終えたうえで系外に排出される。排気装置9の連続した稼働により、外気と実質的に遮断されている炉内空間2は大気圧よりも低い圧力に保持されることになる。   At the initial stage of operation of the furnace in which a new charge is charged, at least two fluid discharge ports 6 and 7 having different height levels provided in the lower body portion of the furnace body 3 are closed. The substance charged in the furnace starts to melt by energizing each electrode 10a, 10b, 10c, but during that time, the exhaust gas generated in the furnace by driving the exhaust device 9 passes from the exhaust port 5 to the dust removing device 19 Guided and exhausted after the exhaust gas treatment. By the continuous operation of the exhaust device 9, the furnace space 2 that is substantially blocked from the outside air is maintained at a pressure lower than the atmospheric pressure.

なお、この粉塵除去装置19は洗浄液を用いない乾式方式、洗浄液で排ガスを洗浄する湿式方式のいずれでもよい。また、乾式方式の場合、稲妻型煙道(Zig−Zag Flue)、集塵室(Dust Chamber)、サイクロン、バグハウス、コットレルなど任意に選定することができる。また、この粉塵除去装置19で回収されたダストは必要に応じて焼結又は製団して新たな装入原料とともに密閉型電気炉1に繰り返し装入することができる。   The dust removing device 19 may be either a dry system that does not use a cleaning liquid or a wet system that cleans exhaust gas using a cleaning liquid. In the case of the dry method, lightning type flues (Zig-Zag Blue), dust collection chambers (Dust Chamber), cyclones, bag houses, cotrels, etc. can be arbitrarily selected. In addition, the dust collected by the dust removing device 19 can be sintered or made as needed and repeatedly charged into the closed electric furnace 1 together with new charged raw materials.

電気炉内において装入物が溶融し始めると、原料及び銅源材料中の金属銅は溶融し、酸化銅は還元材(粉コークス)によってメタル銅に還元され、溶融した一次メタル銅を形成する。このメタルの融解物は、酸化物の融解物(スラグ)よりも比重が重いのでスラグ中を下降し、炉の下方に沈降してメタル溶湯のプール20を形成する。このメタル溶湯20の上には酸化物の融解物すなわち一次スラグ層21が形成される。   When the charge begins to melt in the electric furnace, the metal copper in the raw material and the copper source material melts, and the copper oxide is reduced to metal copper by a reducing material (powder coke) to form molten primary metal copper. . Since the metal melt has a higher specific gravity than the oxide melt (slag), the metal melt descends in the slag and settles below the furnace to form a molten metal pool 20. An oxide melt, that is, a primary slag layer 21 is formed on the molten metal 20.

金属銅及び酸化銅が還元されて生成したメタル銅の融液がスラグ中を下降する過程で、スラグ中に存在する白金族元素等をそのメタル銅の融液中に取り込む、すなわち溶け込ませる。これによって、メタル溶湯20中に白金族元素等が溶け込んだ状態で収集され、白金族元素等の濃度が高くなったメタル溶湯20が得られる。他方、白金族元素等がメタル溶湯20に溶け込んだ分だけ、スラグ21の中の白金族元素等の濃度は低下する。したがって、高い方の流体排出口6から白金族元素等の濃度が低くなった一次スラグ21を、また、低い方の流体排出口7から白金族元素濃度等の高い一次メタル溶湯20を互いに分別して炉外に流出させると、白金族元素等濃度の高いメタル溶湯(金属銅中に白金族元素等が溶け込んだメタル)を採取することができる。   In the process in which the molten metal copper produced by reduction of metallic copper and copper oxide descends in the slag, platinum group elements and the like existing in the slag are taken into the molten metal copper, that is, dissolved. As a result, the molten metal 20 is collected in a state in which the platinum group elements and the like are dissolved in the molten metal 20, and the molten metal 20 having a high concentration of the platinum group elements and the like is obtained. On the other hand, the concentration of the platinum group element or the like in the slag 21 is lowered by the amount of the platinum group element or the like dissolved in the molten metal 20. Therefore, the primary slag 21 having a lower concentration of platinum group elements or the like is separated from the higher fluid discharge port 6, and the primary metal melt 20 having a higher platinum group element concentration or the like is separated from the lower fluid discharge port 7. When flowing out of the furnace, it is possible to collect a molten metal having a high concentration such as platinum group elements (metal in which platinum group elements or the like are dissolved in metallic copper).

この密閉型電気炉1内は還元雰囲気にあるため、白金族元素とともに装入されたレニウム及び砒素は、その多くが白金族元素とともにメタル溶湯20に移行する。すなわち、還元雰囲気の密閉型電気炉1に装入された白金族元素、レニウム、砒素のいずれの元素もメタル溶湯20に濃縮される。   Since this closed electric furnace 1 is in a reducing atmosphere, most of the rhenium and arsenic charged together with the platinum group element is transferred to the molten metal 20 together with the platinum group element. That is, any element of platinum group elements, rhenium, and arsenic charged in the closed electric furnace 1 in a reducing atmosphere is concentrated in the molten metal 20.

溶融製錬においては、電気炉に装入する銅源材料として粒径が0.1mm以上10mm以下の粒状体を使用するのが好ましい。銅源材料として粒径が0.1mm以上10mm以下の粒状体を用いると、原料と銅源材料が加熱溶融する段階で、原料中の白金族元素等が溶融メタル中に移行しやすくなることがわかった。とくに銅源材料は粒径が0.1mm以上10mm以下のものが50質量%以上存在することが望ましく、その条件が満たされるのであれば、それ以外のものは10mm以上の塊状物であってもよく、場合によっては0.1mm未満の粉体が混入していても構わない。   In melt smelting, it is preferable to use a granular material having a particle size of 0.1 mm or more and 10 mm or less as a copper source material charged into an electric furnace. When a granular material having a particle size of 0.1 mm or more and 10 mm or less is used as the copper source material, the platinum group element or the like in the raw material may easily move into the molten metal at the stage where the raw material and the copper source material are heated and melted. all right. In particular, it is desirable that the copper source material has a particle size of 0.1 mm or more and 10 mm or less in an amount of 50% by mass or more. If the condition is satisfied, the other materials may be a lump of 10 mm or more. In some cases, a powder of less than 0.1 mm may be mixed.

白金族元素等を含有する前記原料についても、銅源材料との混合性を良好にするために、その少なくとも50質量%以上が粒径10mm以下の粒状体であるのが好ましい。原料と銅源材料がともに適切な粒度をもつ粒状体であり、これが炭素質還元材およびフラックスと共に混合された状態で炉内に装入されると、銅源材料中の金属銅が溶融されやすく、また、酸化銅が溶融・還元されやすくなり、生成した溶融メタルの銅がその近傍に存在する原料中の白金族元素等と接触する機会が多くなって、白金族元素等が溶融メタル銅に多く取り込まれるようになる。   Also for the raw material containing a platinum group element or the like, at least 50% by mass or more of the raw material containing a platinum group element or the like is preferably a granule having a particle size of 10 mm or less. Both the raw material and the copper source material are granular bodies having appropriate particle sizes, and when this is mixed with the carbonaceous reductant and the flux in the furnace, the copper metal in the copper source material is easily melted. In addition, the copper oxide is easily melted and reduced, and the opportunity for the generated molten metal copper to come into contact with the platinum group elements in the raw materials present in the vicinity increases, so that the platinum group elements and the like become molten metal copper. Many will be captured.

原料と銅源材料のメルトダウンを促進し且つ生成するスラグの流動性を改善するために、フラックスを装入原料中に同時に添加するのが望ましい。フラックスとしては、シリカ、酸化カルシウム、炭酸カルシウム等を適当な比率で混合したものがよい。フラックス成分の混合比は原料の組成により異なるが加熱溶融後のスラグの組成として、Al23 :20〜40質量%、SiO2:25〜35質量%、CaO:20〜30質量%、FeO:1〜30質量%となるようにフラックス成分を装入原料に配合するのが好ましい。 In order to promote the meltdown of the raw material and the copper source material and improve the fluidity of the slag to be produced, it is desirable to add the flux to the charging raw material simultaneously. As the flux, a mixture of silica, calcium oxide, calcium carbonate and the like in an appropriate ratio is preferable. The mixing ratio of the flux components varies depending on the composition of the raw material, but as the composition of the slag after heating and melting, Al 2 O 3 : 20 to 40% by mass, SiO 2 : 25 to 35% by mass, CaO: 20 to 30% by mass, FeO : It is preferable to mix | blend a flux component with a charging raw material so that it may become 1-30 mass%.

還元剤として好ましくはコークスを配合するが、コークス以外にも還元作用のある有価金属を含有する卑金属や、炭素源としての樹脂系材料、活性炭、SiC等も使用することができる。これらの還元剤の中に含有されている有価金属(貴金属類や白金族元素)も本発明によれば同時に回収することができる。   Coke is preferably blended as the reducing agent, but other than the coke, a base metal containing a valuable metal having a reducing action, a resin material as a carbon source, activated carbon, SiC, or the like can also be used. According to the present invention, valuable metals (noble metals and platinum group elements) contained in these reducing agents can also be recovered simultaneously.

溶融製錬に際しては、密閉型電気炉に原料、銅源材料、フラックスおよび還元剤を混合したものを装入し、炉内圧を大気圧より若干低い圧力に維持しながら1100℃〜1700℃、さらに好ましくは1300℃〜1500℃の温度で加熱溶融し、装入材料中の酸化物を溶融し、装入材料中の酸化銅を銅に還元する。加熱溶融温度が1100℃未満ではスラグの溶融状態が完全でなく粘性も高まって白金族元素等の回収率が低下する恐れがあり、1700℃を越えるとエネルギーの浪費はもちろん電気炉の炉体の破損・焼損・損耗等を招く要因となる。炉内を減圧下に維持することにより、還元雰囲気が保持され、酸化銅の銅への還元が良好に進行し、白金族元素等のメタル溶湯への吸収効率も高まる。   In melt smelting, a sealed electric furnace is charged with a mixture of raw materials, copper source material, flux and reducing agent, and the furnace internal pressure is maintained at a pressure slightly lower than atmospheric pressure. Preferably, heat melting is performed at a temperature of 1300 ° C. to 1500 ° C., the oxide in the charging material is melted, and the copper oxide in the charging material is reduced to copper. If the heating and melting temperature is lower than 1100 ° C, the molten state of the slag is not perfect and the viscosity increases, and the recovery rate of platinum group elements and the like may be reduced. This may cause damage, burnout, wear, etc. By maintaining the inside of the furnace under reduced pressure, a reducing atmosphere is maintained, the reduction of copper oxide to copper proceeds well, and the absorption efficiency of the platinum group elements and the like into the molten metal is also increased.

装入物のメルトダウンの状態では、原料の殆どはガラス状の溶融した酸化物層(スラグ層)となる。金属銅は溶融し、酸化銅は還元剤によって還元されて溶融メタル銅となる。スラグ層とメタル層は比重差により自然に2層に分離し、上層に一次スラグ層、下層に一次メタル層を形成する。このとき原料中の白金族元素、レニウム、砒素はいずれも下層の溶融一次メタル層に移行し吸収されるが、前記のように、銅源材料の粒径がそのセットリング時間の短縮および溶融メタル層に吸収される白金族元素等の収率の向上に大きく影響を及ぼし、銅源材料の粒径を0.1mm以上10mm以下とした時にそれらの向上に対して顕著な効果が現れる。   In the melt-down state of the charge, most of the raw material is a glassy molten oxide layer (slag layer). Metallic copper melts, and copper oxide is reduced by a reducing agent to become molten metal copper. The slag layer and the metal layer are naturally separated into two layers due to the difference in specific gravity, and a primary slag layer is formed in the upper layer and a primary metal layer is formed in the lower layer. At this time, the platinum group element, rhenium, and arsenic in the raw material all move to the lower molten primary metal layer and are absorbed. As described above, the particle size of the copper source material reduces the settling time and reduces the molten metal. It greatly affects the improvement of the yield of platinum group elements and the like absorbed by the layer, and when the particle size of the copper source material is set to 0.1 mm or more and 10 mm or less, a remarkable effect appears on these improvements.

その理由は必ずしも明確ではないが次のように考えることができる。原料中の白金族元素等は、その原料がフラックスと共にメルトダウンした時点で適度な粘性を有するスラグ中に分散される。また、同時に添加された金属銅や酸化銅も還元された直後ではスラグ中に溶融メタルとなって分散され、適度な粘性を有するスラグ中に分散浮遊している白金族元素等を吸収しながら、スラグ層中を下降する。発明者らはこの溶融メタル(銅メタル)が白金族元素等を吸収する挙動を「銅のシャワリング効果」と名付けた。初期に投入された銅源材料の粒径が0.1mm未満の粉体であると、スラグ中に分散された溶融メタル銅も微粒であるために下層のメタル層にまで沈降するのに多くの時間がかかり、銅のシャワリング効果が十分に作用しない。一方、初期に投入される銅源材料の径が10mmを越えるような塊状であると、スラグ中に分散している白金族元素等を十分に吸収する前に溶融メタル銅が下層のメタル層にまで沈降してしまって、この場合にも銅のシャワリング効果が十分に機能しない。また、スラグ中に分散した白金族元素等を、降下する溶融メタル銅が吸収するにはそれなりの表面積および断面積が必要である。すなわち、投入する銅源材料の質量が同じでも表面積および断面積が大きいほど吸収効率が挙がる。このような理由により、初期に投入する銅源材料の粒径が0.1mm以上10mm以下であるときに銅のシャワリング効果が最も効率よく作用することになり、メルトダウンした原料から溶融メタル中への白金族元素等の移行が良好に行われるようになると考えられる。   The reason is not necessarily clear, but can be considered as follows. Platinum group elements and the like in the raw material are dispersed in slag having an appropriate viscosity when the raw material melts down together with the flux. In addition, immediately after the metal copper and copper oxide added simultaneously are reduced, the molten metal is dispersed in the slag as a molten metal, while absorbing the platinum group elements dispersed and suspended in the slag having an appropriate viscosity, Go down in the slag layer. The inventors named the behavior of the molten metal (copper metal) absorbing platinum group elements and the like as the “copper showering effect”. When the particle diameter of the initially supplied copper source material is less than 0.1 mm, the molten metal copper dispersed in the slag is also fine, so that it often settles down to the lower metal layer. It takes time and the copper showering effect does not work sufficiently. On the other hand, if the diameter of the initially introduced copper source material exceeds 10 mm, the molten metal copper is applied to the lower metal layer before sufficiently absorbing platinum group elements and the like dispersed in the slag. In this case, the copper showering effect does not function sufficiently. Further, in order for the descending molten metal copper to absorb the platinum group elements and the like dispersed in the slag, a certain surface area and cross-sectional area are required. That is, the absorption efficiency increases as the surface area and cross-sectional area increase even if the mass of the copper source material to be input is the same. For these reasons, the copper showering effect works most efficiently when the particle size of the initially introduced copper source material is 0.1 mm or more and 10 mm or less. It is considered that the migration of platinum group elements and the like to the substrate is favorably performed.

本発明者らの経験によれば、銅源材料の50質量%以上、好ましくは80質量%以上がこの範囲の粒径を有していれば、白金族元素等の回収に実質上問題はなく、この粒径のものが50質量%未満の場合には、白金族元素等の回収率を高くするには静置すなわちセットリング時間を長くとる必要があった。ここで、静置すなわちセットリングとは、電気炉に原料投入後に既に融解したスラグを所定温度に維持するためにそのまま通電することを意味する。その間、密閉型電気炉内の圧力は減圧下に維持しておくのが好ましい。   According to the experience of the present inventors, there is substantially no problem in the recovery of platinum group elements and the like if the copper source material has a particle size in this range of 50% by mass or more, preferably 80% by mass or more. When the particle size is less than 50% by mass, it is necessary to take a long time for standing, that is, settling time, in order to increase the recovery rate of platinum group elements and the like. Here, standing, that is, a set ring, means that the slag that has already melted after being charged into the electric furnace is energized as it is to maintain a predetermined temperature. In the meantime, the pressure in the closed electric furnace is preferably maintained under reduced pressure.

この静置後、上層の溶融一次スラグを炉外に排滓する。この際、上層の溶融一次スラグはその一部を炉内に残す状態で大半を炉外に排滓すると炉内温度変化による炉内耐火物への熱応力を軽減できて好ましい。炉内の下層に存在する白金族元素等を吸収した溶融一次メタル層も炉外にタッピングする。この際も同様に、炉内の下層に存在する白金族元素等を吸収した溶融一次メタル層も、その一部を炉内に残したまま炉外にタッピングすると、炉内温度変化による炉内耐火物への熱応力を軽減できて好ましい。上記の好ましい状態では、炉内には溶融スラグおよび溶融メタルの他部が残存するが、この状態で次ヒートの装入原料を炉内に装入し、炉内耐火物への熱応力を軽減して再び同じ操業を繰り返すことができる。   After this standing, the upper molten primary slag is discharged out of the furnace. At this time, it is preferable that most of the molten primary slag in the upper layer is discharged outside the furnace while part of the molten primary slag remains in the furnace because the thermal stress on the refractory in the furnace due to the temperature change in the furnace can be reduced. The molten primary metal layer that has absorbed platinum group elements and the like existing in the lower layer in the furnace is also tapped outside the furnace. Similarly, when the molten primary metal layer that has absorbed platinum group elements and the like existing in the lower layer in the furnace is tapped outside the furnace while leaving a part of it in the furnace, the refractory in the furnace due to the temperature change in the furnace. It is preferable because the thermal stress on the object can be reduced. In the above preferred state, molten slag and other parts of the molten metal remain in the furnace, but in this state, the raw material for the next heat is charged into the furnace to reduce the thermal stress on the refractory in the furnace. The same operation can be repeated again.

密閉型電気炉から、溶融一次スラグとは分別して取り出された白金族元素等が濃縮した溶融一次メタルは、これを(好ましくは溶融状態のまま)酸化炉に装入して、さらに白金族元素を溶融メタル中に濃縮する処理を行う。   The molten primary metal, which is concentrated from the sealed electric furnace and separated from the molten primary slag, is concentrated in the molten primary metal (preferably in a molten state) and charged in an oxidation furnace. Is concentrated in the molten metal.

酸化炉ではこの溶融メタルを溶融状態のまま酸化処理し、湯面上に生成した溶融酸化物(酸化銅主体)は炉外に排出し、白金族元素がさらに濃縮した溶融メタルを残す。すなわち、湯面上に生成する溶融酸化物層(二次スラグ)には白金族元素は殆ど移行せず、下層の溶融二次メタル層に残存するので、生成した溶融酸化物層を排出する度に、溶融メタル層中の白金族元素濃度は高くなる。この酸化炉での酸化処理は材料温度を1100℃〜1700℃,好ましくは1200℃〜1500℃の温度に維持しながら、酸素ガスまたは酸素含有ガスを導入して行うのがよい。1100℃未満では溶融酸化物または溶融メタルの凝固が起こって酸化の進行を阻害するようになる。また1700℃を越すと炉体の破損・焼損・損耗等が生じる。   In the oxidation furnace, this molten metal is oxidized in the molten state, and the molten oxide (mainly copper oxide) generated on the molten metal surface is discharged out of the furnace, leaving a molten metal in which the platinum group elements are further concentrated. That is, since the platinum group element hardly transfers to the molten oxide layer (secondary slag) formed on the molten metal surface and remains in the lower molten secondary metal layer, every time the generated molten oxide layer is discharged. In addition, the platinum group element concentration in the molten metal layer increases. The oxidation treatment in this oxidation furnace is preferably performed by introducing oxygen gas or oxygen-containing gas while maintaining the material temperature at a temperature of 1100 ° C. to 1700 ° C., preferably 1200 ° C. to 1500 ° C. If it is less than 1100 ° C., solidification of the molten oxide or molten metal occurs, and the progress of oxidation is inhibited. If the temperature exceeds 1700 ° C., the furnace body will be damaged, burned out, worn out, and the like.

このようにして、酸化炉において、酸化処理と酸化物層の排出処理を繰り返すことにより、白金族元素が濃縮した溶融二次メタル層の白金族元素の含有量を10〜75質量%にまで高めることができる。これを酸化炉から取り出したあと、次工程の白金族元素回収精製工程に送り、金属銅と白金族元素を分離精製する。   In this way, the content of the platinum group element in the molten secondary metal layer enriched with the platinum group element is increased to 10 to 75% by mass by repeating the oxidation process and the discharge process of the oxide layer in the oxidation furnace. be able to. After taking this out from the oxidation furnace, it is sent to the platinum group element recovery and purification step of the next step to separate and purify the copper metal and the platinum group element.

他方、酸化炉から排出された溶融酸化物層(酸化銅が主体の酸化物)は、電気炉に装入する銅源材料として再利用することができる。その際、酸化炉から溶融状態で排出された酸化物層を水中に投入することにより、すなわち水砕化することによって、粒径が0.1mm以上10mm以下の粒状体が50質量%以上好ましくは80質量%以上含有した銅源材料とすることができる。得られた水砕品は、乾燥後、さらに篩等によって整粒化し、電気炉での処理に適した粒度の銅源材料とすることができる。また、この酸化炉から溶融状態で排出された酸化物層は還元して金属銅として銅源材料とすることもできる。酸化炉から排出された溶融酸化物層(酸化銅が主体の酸化物)は、少量の白金族元素が不可避的に同伴するが、銅源材料として再利用することによって、この同伴する少量の白金族元素もやがて溶融メタル層中に移行するので白金族元素の回収率がさらに高まることになる。   On the other hand, the molten oxide layer (oxide mainly composed of copper oxide) discharged from the oxidation furnace can be reused as a copper source material charged in the electric furnace. At that time, by putting the oxide layer discharged in a molten state from the oxidation furnace into water, that is, by granulating, the granular material having a particle size of 0.1 mm or more and 10 mm or less is preferably 50% by mass or more. It can be set as the copper source material containing 80 mass% or more. The obtained granulated product can be dried and then further sized with a sieve or the like to obtain a copper source material having a particle size suitable for treatment in an electric furnace. Moreover, the oxide layer discharged | emitted in the molten state from this oxidation furnace can be reduce | restored, and it can also be made into copper source material as metallic copper. The molten oxide layer (oxide mainly composed of copper oxide) discharged from the oxidation furnace is inevitably accompanied by a small amount of platinum group elements. Since the group element eventually moves into the molten metal layer, the recovery rate of the platinum group element is further increased.

またこの酸化炉においては酸素ガスまたは酸素含有ガスを導入した酸化雰囲気であるため、酸化炉に白金族元素とともに装入された溶融メタル中のレニウムと砒素はその多くがダストとなり、酸化炉内で発生するこのダストを含有する排ガスは酸化炉内空間から排気口を経由してダスト回収装置に導かれて、ダストが回収される。すなわち、酸化雰囲気の酸化炉に装入された溶融メタル中のレニウム、砒素のいずれの元素もダストとなって二次メタル溶体から分離される。   In addition, in this oxidation furnace, an oxygen atmosphere or an oxygen-containing gas is introduced in an oxidizing atmosphere. Therefore, most of the rhenium and arsenic in the molten metal charged with the platinum group element into the oxidation furnace becomes dust, and in the oxidation furnace The generated exhaust gas containing dust is guided from the space in the oxidation furnace to the dust recovery device via the exhaust port, and the dust is recovered. That is, both the elements of rhenium and arsenic in the molten metal charged in the oxidation furnace in an oxidizing atmosphere are separated from the secondary metal solution as dust.

この酸化炉排ガスからのダスト回収装置は、洗浄液を用いずに酸化炉排ガスからダストを回収する乾式ダスト回収装置でも、洗浄液を用いて酸化炉排ガスを洗浄して排ガス中のダストを洗浄液中に回収する湿式ダスト回収装置のいずれの装置でも採用することができる。酸化炉装入物が一次溶体メタルであることから酸化炉排ガス中には水分が殆んど含有されないため、乾式方式においては、稲妻型煙道(Zig−Zag Flue)、集塵室(Dust Chamber)、サイクロンなどのいずれを採用しても排ガス通路に湿ったダストが付着して通路が狭くなって排気ファンに負荷がかかってダスト回収が不安定になるなどの不都合は発生せず、また、バグハウスを採用した場合でもバグフィルターが湿ったダストで目詰まりを起こして排気ファンに負荷がかかってダスト回収が不安定になるなどの不都合は発生せず、さらに、コットレルを採用した場合でも、排ガス中の水分の変動や、集塵電極にダストが付着することなどによって電場が不安定化してダスト回収が不安定になるなどの不都合も発生しないという利点があり、さらに、乾式方式で回収されたダストは回収装置内の下方等のダスト保管部において一時的に粉体状態で保管することもできる。   This dust recovery device from the oxidation furnace exhaust gas is a dry dust recovery device that recovers dust from the oxidation furnace exhaust gas without using the cleaning liquid, and cleaning the oxidation furnace exhaust gas using the cleaning liquid to recover the dust in the exhaust gas into the cleaning liquid. Any of the wet dust collecting apparatuses can be employed. Since the oxidation furnace charge is a primary solution metal, almost no moisture is contained in the oxidation furnace exhaust gas. Therefore, in the dry method, a lightning-type flue (Zig-Zag Fluid), a dust chamber (Dust Chamber) ), No matter which cyclone is used, there is no inconvenience such as wet dust adhering to the exhaust gas passage, narrowing the passage, applying load to the exhaust fan, and unstable dust collection, Even when the baghouse is adopted, the bag filter is not clogged with moist dust, and the exhaust fan is loaded and the dust collection becomes unstable, and even when the cotrel is adopted, There will be no inconveniences such as fluctuations in moisture in the exhaust gas or dust adhering to the dust collecting electrode, resulting in unstable electric field and unstable dust collection. In addition, the dust recovered by the dry method can be temporarily stored in a powder state in a dust storage unit such as below in the recovery device.

引続いて、酸化炉のダスト回収装置で回収されたダストの浸出処理を行う。乾式方式でダストを回収した場合はダスト回収部またはダスト保管部から抜き出してアルカリ溶液でダストを浸出する。この浸出処理によって、レニウム、砒素及び少量の白金族元素、銅を含有するダスト中のレニウムと砒素が共に浸出される。
ここでアルカリ溶液としては水酸化ナトリウム、水酸化カリウム、水酸化アンモニウムなどを用いることができる。
Subsequently, the leaching process of the dust collected by the dust collecting device of the oxidation furnace is performed. When dust is collected by a dry method, the dust is extracted from the dust collecting part or the dust storage part and leached with an alkaline solution. By this leaching treatment, rhenium and arsenic in the dust containing rhenium, arsenic, a small amount of platinum group element, and copper are leached together.
Here, sodium hydroxide, potassium hydroxide, ammonium hydroxide, or the like can be used as the alkaline solution.

なお、前記の酸化炉排ガスからのダスト回収装置としてアルカリ溶液を洗浄液として酸化炉排ガスを洗浄して排ガス中のダストを洗浄液中に回収する湿式ダスト回収装置を採用した場合には、ダスト回収とアルカリ溶液浸出処理を同時に行うことができる。   In addition, when a wet dust recovery device for cleaning the oxidation furnace exhaust gas using an alkaline solution as a cleaning liquid and recovering dust in the exhaust gas into the cleaning liquid is adopted as the dust recovery device from the oxidation furnace exhaust gas, dust recovery and alkali Solution leaching can be performed simultaneously.

ここで、前記の浸出処理は回収したダストの全量を処理してもよい。また、回収したダストの一部を前記電気炉と前記酸化炉のうちの少なくとも一方の炉に装入して系内で繰り返し、残部を浸出処理するようにすれば、ダストのレニウム、砒素が濃縮してレニウム、砒素を高濃度に浸出させることができる。   Here, the leaching process may process the entire amount of collected dust. In addition, if a part of the collected dust is charged into at least one of the electric furnace and the oxidation furnace and repeated in the system, and the remainder is leached, the rhenium and arsenic in the dust are concentrated. As a result, rhenium and arsenic can be leached to a high concentration.

次いで、ダスト浸出処理後の前記スラリーを固液分離してレニウム、砒素が溶解した溶液と浸出残渣とに分別する。浸出残渣は少量のレニウム、砒素と酸化炉から飛散した銅、白金族元素を含有するため、前記電気炉と前記酸化炉のうちの少なくとも一方の炉に装入し系内に繰り返す。   Next, the slurry after the dust leaching treatment is subjected to solid-liquid separation to be separated into a solution in which rhenium and arsenic are dissolved and a leaching residue. Since the leaching residue contains a small amount of rhenium, arsenic, copper scattered from the oxidation furnace, and a platinum group element, it is charged into at least one of the electric furnace and the oxidation furnace and repeated in the system.

その後、上記の浸出後のスラリーを固液分離して得られたレニウム及び砒素が溶解した溶液に塩化物を添加することによってレニウムをレニウム塩化物沈殿として分離して回収し、一方、砒素溶液は公知の排水処理工程で脱砒素処理することができる。塩化物添加工程及び固液分離工程における液温を所定温度範囲に維持することが好ましい点については前述の通りである。
また、上記の添加用の塩化物としては、塩化ナトリウム、塩化カリウム、塩化アンモニウムなどを用いることができる。
Thereafter, rhenium is separated and recovered as a rhenium chloride precipitate by adding chloride to a solution in which rhenium and arsenic are obtained by solid-liquid separation of the leached slurry, while the arsenic solution is Arsenic removal can be performed by a known wastewater treatment process. As described above, the liquid temperature in the chloride addition step and the solid-liquid separation step is preferably maintained within a predetermined temperature range.
Moreover, sodium chloride, potassium chloride, ammonium chloride etc. can be used as said chloride for addition.

〔実施例1〕
製錬原料として、Ptを900ppm、Reを40ppm含有し、不純物である砒素を100ppm含んだ被処理物質1500kgに対して、銅源材料(金属銅)700kgを混合し、さらに、フラックス成分としてCaO1000kg、Fe23 200kgおよびSiO2 800kg、そして還元剤としてコークス60kgを混合した。
この混合物を電気炉に投入し、1350℃に加熱し溶融状態で4時間保持したのち、上層に生成したガラス状の酸化物である一次スラグを電気炉の側面より流出させ、次いで下層の金属銅である一次メタル500kgを電気炉の下部より抜き出して加熱された酸化炉に導いた。この金属銅を分析したところPt:1890ppm、Re:82ppm、As205ppmであった。該金属銅(一次メタル)に酸素40%とした酸素富化空気をランスで溶融している湯の表面下約50mmの位置に吹きつけ、金属銅の一部分を酸化し、酸化銅450kgを得た。この間、酸化炉の上部から集塵し、バッグフィルターに1.05kgの酸化炉ダストを回収した。
このダストを分析したところ、Pt:520ppm、Re:26000ppm、As:65000ppm、Cu:12.7質量%(単に%と表す。)であった。
[Example 1]
As a smelting raw material, 700 kg of a copper source material (metallic copper) is mixed with 1500 kg of a substance to be treated containing 900 ppm of Pt, 40 ppm of Re, and 100 ppm of arsenic as an impurity, and further 1000 kg of CaO as a flux component. 200 kg of Fe 2 O 3 and 800 kg of SiO 2 and 60 kg of coke as a reducing agent were mixed.
This mixture is put into an electric furnace, heated to 1350 ° C. and held in a molten state for 4 hours, and then the primary slag, which is a glassy oxide formed in the upper layer, flows out from the side of the electric furnace, and then the lower layer copper metal The primary metal (500 kg) was extracted from the lower part of the electric furnace and led to a heated oxidation furnace. Analysis of this metallic copper revealed Pt: 1890 ppm, Re: 82 ppm, and As205 ppm. Oxygen-enriched air with 40% oxygen was blown onto the metallic copper (primary metal) at a position approximately 50 mm below the surface of the hot water melted with a lance, and a portion of the metallic copper was oxidized to obtain 450 kg of copper oxide. . During this time, dust was collected from the upper part of the oxidation furnace, and 1.05 kg of oxidation furnace dust was collected on the bag filter.
When this dust was analyzed, they were Pt: 520 ppm, Re: 26000 ppm, As: 65000 ppm, Cu: 12.7 mass% (simply expressed as%).

次いで該ダスト1000gを25%NaOH溶液4リットル(Lと表す。)に浸出させたところ、Reの浸出率が96.4%、Asの浸出率は75.6%、Cuの浸出率は2%、Ptは浸出せず残渣に残った。
この浸出残渣を水洗し、100℃で乾燥して質量を測定したところ570gで、Pt:910ppm、Re:1640ppm、As:27800ppm、Cu:21.8%であった。該浸出残渣はPtを回収するために、新たな製錬原料とともに電気炉に投入した。
一方、NaOH浸出後液4LにはRe:6.6g/L、As:12.9g/L含まれていた。この液について以下の塩化物添加操作を行った。
該NaOH浸出後液1Lに塩化カリウム150gを攪拌しながら添加して沈殿物を得た。この塩化カリウム添加および固液分離の工程は液温30℃に維持して行った。
この沈殿物を水洗して100℃で乾燥したところ、質量は12g、Re:51.7質量%(回収率94%)、As:4.3質量%(混入率4%)のRe濃縮物を得た。該Re濃縮物はRe回収対象とし、濾液についてはAsの排水処理工程へ送った。
Next, 1000 g of the dust was leached into 4 liters of 25% NaOH solution (denoted as L). The leaching rate of Re was 96.4%, the leaching rate of As was 75.6%, and the leaching rate of Cu was 2%. , Pt did not leach and remained in the residue.
This leaching residue was washed with water, dried at 100 ° C., and measured for mass. As a result, it was 570 g, Pt: 910 ppm, Re: 1640 ppm, As: 27800 ppm, Cu: 21.8%. The leaching residue was put into an electric furnace together with a new smelting raw material in order to recover Pt.
On the other hand, 4 L after the NaOH leaching contained Re: 6.6 g / L and As: 12.9 g / L. The following chloride addition operation was performed about this liquid.
After leaching with NaOH, 150 g of potassium chloride was added to 1 L of the liquid with stirring to obtain a precipitate. The steps of adding potassium chloride and solid-liquid separation were performed while maintaining the liquid temperature at 30 ° C.
When this precipitate was washed with water and dried at 100 ° C., a Re concentrate having a mass of 12 g, Re: 51.7% by mass (recovery rate 94%), and As: 4.3% by mass (mixing rate 4%) was obtained. Obtained. The Re concentrate was targeted for Re recovery, and the filtrate was sent to the As wastewater treatment process.

〔実施例2〕
実施例1で得られたRe:6.6g/L、As:12.9g/LのNaOH浸出後液1Lに塩化カリウム100gを攪拌しながら添加して沈殿物を得た。この塩化カリウム添加および固液分離の工程は液温20℃に維持して行った。
この沈殿物を水洗して100℃で乾燥したところ、質量は19g、Re:33.0質量%(回収率95%)、As:1.8質量%(混入率2.6%)のRe濃縮物を得た。該Re濃縮物はRe回収対象とし、濾液についてはAsの排水処理工程へ送った。
[Example 2]
After leaching NaOH of Re: 6.6 g / L and As: 12.9 g / L obtained in Example 1, 100 g of potassium chloride was added to 1 L of the liquid with stirring to obtain a precipitate. The steps of adding potassium chloride and solid-liquid separation were performed while maintaining the liquid temperature at 20 ° C.
When this precipitate was washed with water and dried at 100 ° C., the Re concentration was 19 g, Re: 33.0% by mass (recovery rate 95%), As: 1.8% by mass (mixing rate 2.6%). I got a thing. The Re concentrate was targeted for Re recovery, and the filtrate was sent to the As wastewater treatment process.

[参考例1]
塩化カリウム添加および固液分離の工程を液温10℃に維持して行った以外は実施例1と同様に行った。
この沈殿物を水洗して100℃で乾燥したところ、質量は65g、Re:10質量%(回収率98%)、As:11.5質量%(混入率57%)のRe濃縮物を得た。該Re濃縮物はRe回収対象とし、濾液についてはAsの排水処理工程へ送った。
[Reference Example 1]
The same procedure as in Example 1 was performed except that the steps of adding potassium chloride and solid-liquid separation were performed while maintaining the liquid temperature at 10 ° C.
When the precipitate was washed with water and dried at 100 ° C., a Re concentrate having a mass of 65 g, Re: 10% by mass (recovery rate: 98%), and As: 11.5% by mass (contamination rate: 57%) was obtained. . The Re concentrate was targeted for Re recovery, and the filtrate was sent to the As wastewater treatment process.

溶融製錬で使用する電気炉の例を示す略断面図である。It is a schematic sectional drawing which shows the example of the electric furnace used by melt smelting.

符号の説明Explanation of symbols

1 密閉型電気炉
2 炉内空間
3 炉体
4 装入物投入口
5 排気口
6 高い方の流体(一次スラグ)排出口
7 低い方の流体(一次メタル)排出口
8 装入物投入シュート
9 排気装置
10 電極
DESCRIPTION OF SYMBOLS 1 Sealed type electric furnace 2 Furnace space 3 Furnace body 4 Charge input 5 Exhaust 6 Higher fluid (primary slag) discharge 7 Lower fluid (primary metal) discharge 8 Charge input chute 9 Exhaust device 10 Electrode

Claims (7)

白金族元素、レニウム及び砒素を含有する被処理物質をアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法。   The material to be treated containing platinum group elements, rhenium and arsenic is leached with an alkaline solution and then solid-liquid separated to obtain a solid enriched with platinum group elements and a solution leached with rhenium and arsenic. A method for treating a substance to be treated containing platinum group elements, rhenium and arsenic, wherein chloride is added and then solid-liquid separation is performed to obtain a solid enriched in rhenium and a solution enriched in arsenic. 製錬炉の排ガスからダストとして回収した白金族元素、レニウム及び砒素を含有する被処理物質をアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法。   Processed materials containing platinum group elements, rhenium and arsenic recovered as dust from smelting furnace exhaust gas were leached with an alkaline solution, then solid-liquid separation was performed and rhenium and arsenic were leached. After obtaining a solution, a chloride is added to the solution, followed by solid-liquid separation to obtain a rhenium-concentrated solid and an arsenic-concentrated solution of a substance to be treated containing platinum group elements, rhenium and arsenic. Processing method. 白金族元素、レニウム及び砒素を含有する被処理物質と、金属銅と酸化銅からなる群から選ばれる少なくとも一種が主体の銅源材料とを、フラックス成分及び還元剤と共に電気炉に装入して溶融し酸化物主体の一次スラグ層と金属銅主体の一次メタル層に層分離した後、該一次メタルを酸化炉に装入して酸化処理し酸化物主体の二次スラグ層と白金族元素が濃縮した金属銅主体の二次メタル層に層分離するとともに、該酸化炉内空間から導いたガスからダストを回収し、次いで該ダストをアルカリ溶液で浸出し次いで固液分離して白金族元素が濃縮した固体とレニウム及び砒素が浸出された溶液とを得た後、該溶液に塩化物を添加し次いで固液分離してレニウムが濃縮した固体と砒素が濃縮した溶液とを得る、白金族元素、レニウム及び砒素を含有する被処理物質の処理法。   A material to be treated containing a platinum group element, rhenium and arsenic, and a copper source material mainly composed of at least one selected from the group consisting of metallic copper and copper oxide are charged into an electric furnace together with a flux component and a reducing agent. After being melted and separated into a primary slag layer mainly composed of oxide and a primary metal layer mainly composed of metal copper, the primary metal is charged into an oxidation furnace and oxidized to form a secondary slag layer mainly composed of oxide and a platinum group element. While separating into a concentrated metallic copper-based secondary metal layer, the dust is recovered from the gas introduced from the space in the oxidation furnace, and then the dust is leached with an alkaline solution, followed by solid-liquid separation. A platinum group element that obtains a concentrated solid and a solution leached with rhenium and arsenic, and then adds chloride to the solution, followed by solid-liquid separation to obtain a solid enriched with rhenium and a solution enriched with arsenic. , Rhenium and arsenic Treatment of the treated substance containing. 前記の回収されたダストの少なくとも一部を前記電気炉と前記酸化炉のうちの少なくとも一方の炉に装入する、請求項3に記載の処理法。   The processing method according to claim 3, wherein at least a part of the collected dust is charged into at least one of the electric furnace and the oxidation furnace. 前記二次スラグの少なくとも一部を溶融状態のまま水冷して酸化銅を含有する粒状体を得て前記銅源材料として使用する、請求項3または4に記載の処理法。   The processing method according to claim 3 or 4, wherein at least a part of the secondary slag is cooled with water in a molten state to obtain a granular material containing copper oxide and used as the copper source material. 前記二次スラグの少なくとも一部を溶融状態のまま還元して金属銅含有材を得て前記銅源材料として使用する、請求項3または4に記載の処理法。   The processing method according to claim 3 or 4, wherein at least part of the secondary slag is reduced in a molten state to obtain a metal copper-containing material and used as the copper source material. 前記のレニウム及び砒素が浸出された溶液に塩化物を添加し次いで固液分離する工程を液温20〜40℃に維持して行う、請求項1〜6のいずれかに記載の処理法。   The processing method according to any one of claims 1 to 6, wherein the step of adding chloride to the solution leached with rhenium and arsenic and then performing solid-liquid separation is performed while maintaining the liquid temperature at 20 to 40 ° C.
JP2008247426A 2008-09-26 2008-09-26 Method for treating materials containing platinum group elements, rhenium and arsenic Expired - Fee Related JP5355977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247426A JP5355977B2 (en) 2008-09-26 2008-09-26 Method for treating materials containing platinum group elements, rhenium and arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247426A JP5355977B2 (en) 2008-09-26 2008-09-26 Method for treating materials containing platinum group elements, rhenium and arsenic

Publications (2)

Publication Number Publication Date
JP2010077499A true JP2010077499A (en) 2010-04-08
JP5355977B2 JP5355977B2 (en) 2013-11-27

Family

ID=42208254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247426A Expired - Fee Related JP5355977B2 (en) 2008-09-26 2008-09-26 Method for treating materials containing platinum group elements, rhenium and arsenic

Country Status (1)

Country Link
JP (1) JP5355977B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212699A (en) * 2011-05-23 2011-10-12 重庆国际复合材料有限公司 Method for recovering noble metal
WO2012008453A1 (en) * 2010-07-12 2012-01-19 住友重機械工業株式会社 Rotary kiln and metal recovery method
CN102703711A (en) * 2012-06-28 2012-10-03 株洲凯特高新材料有限公司 Method for extracting rhenium from rhenium-containing waste liquor
WO2013129130A1 (en) * 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
CN115003830A (en) * 2020-01-30 2022-09-02 国立大学法人福井大学 Method for recovering platinum group metal, composition containing platinum group metal, and ceramic material
CN116751984A (en) * 2023-08-03 2023-09-15 怀集国东铜材制造有限公司 Copper waste smelting, recycling and reutilizing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114511A (en) * 1973-02-19 1974-11-01
JPH0770665A (en) * 1993-09-03 1995-03-14 Sumitomo Metal Mining Co Ltd Separation of rhenium and impurity
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid
JP2005054201A (en) * 2003-08-04 2005-03-03 Dowa Mining Co Ltd Method for recovering platinum group metal and apparatus therefor
JP2006130387A (en) * 2004-11-04 2006-05-25 Nippon Mining & Metals Co Ltd Method of recovering platinum and rhenium from waste catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114511A (en) * 1973-02-19 1974-11-01
JPH0770665A (en) * 1993-09-03 1995-03-14 Sumitomo Metal Mining Co Ltd Separation of rhenium and impurity
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid
JP2005054201A (en) * 2003-08-04 2005-03-03 Dowa Mining Co Ltd Method for recovering platinum group metal and apparatus therefor
JP2006130387A (en) * 2004-11-04 2006-05-25 Nippon Mining & Metals Co Ltd Method of recovering platinum and rhenium from waste catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008453A1 (en) * 2010-07-12 2012-01-19 住友重機械工業株式会社 Rotary kiln and metal recovery method
CN102893113A (en) * 2010-07-12 2013-01-23 住友重机械工业株式会社 Rotary kiln and metal recovery method
KR101434807B1 (en) 2010-07-12 2014-08-27 스미도모쥬기가이고교 가부시키가이샤 Rotary kiln and metal recovery method
CN102212699A (en) * 2011-05-23 2011-10-12 重庆国际复合材料有限公司 Method for recovering noble metal
WO2013129130A1 (en) * 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
JP5382269B1 (en) * 2012-03-02 2014-01-08 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
AU2013227632B2 (en) * 2012-03-02 2014-08-21 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium
US8956583B2 (en) 2012-03-02 2015-02-17 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium
CN102703711A (en) * 2012-06-28 2012-10-03 株洲凯特高新材料有限公司 Method for extracting rhenium from rhenium-containing waste liquor
CN115003830A (en) * 2020-01-30 2022-09-02 国立大学法人福井大学 Method for recovering platinum group metal, composition containing platinum group metal, and ceramic material
CN116751984A (en) * 2023-08-03 2023-09-15 怀集国东铜材制造有限公司 Copper waste smelting, recycling and reutilizing device
CN116751984B (en) * 2023-08-03 2023-12-12 怀集国东铜材制造有限公司 Copper waste smelting, recycling and reutilizing device

Also Published As

Publication number Publication date
JP5355977B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US8366991B2 (en) Apparatus for recovering platinum group elements
JP5355977B2 (en) Method for treating materials containing platinum group elements, rhenium and arsenic
JP5074332B2 (en) Platinum group element recovery equipment
JP2018145479A (en) Recovery method of platinum group metals
CN105821214B (en) Reviver high-purity energy-conserving and environment-protective smelting process
PL213990B1 (en) Method for refining copper concentrate
JP2010077470A (en) Method for treating material to be treated, containing platinum group element, rhenium and/or arsenic
JP2008545888A (en) Separation of valuable metal from zinc leaching residue
CN112176202B (en) Antimony smelting method adopting oxygen-enriched side-blown column smelting
WO2021014946A1 (en) Pgm recovery method
JP2006307268A (en) Method for collecting dust formed in slag fuming
JP4284124B2 (en) Methods for recovering platinum group elements
JP4355334B2 (en) Operation method of copper smelting
JP2008088452A (en) METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP2007521393A (en) Mechanical separation of volatile metals at high temperatures.
KR100642964B1 (en) Method for smelting treatment of fine granular material containing water and iron in copper ps converter
KR100877090B1 (en) Operation method of copper smelting
US9650695B2 (en) Method for treating lead anode slime
JP2004275866A (en) Dry recovering method for platinum group element
CN109266844B (en) Method for extracting copper from pyrite cinder in rotary kiln
RU2205884C1 (en) Method of pyrometallurgical processing of copper- containing raw material
JP2004277791A (en) Method for concentrating gold or platinum group element
Tursunbay et al. STUDY OF THE EFFECT OF TEMPERATURE AND PROCESS TIME ON THE PREPARATION OF THE LEACHING PROCESS OF CRUDE WAELZ OXIDE
JP2006028586A (en) Method for utilizing copper alloy and mat obtained by slag fuming method
JPS63105936A (en) Treatment of flue cinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5355977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees