JPH0770665A - Separation of rhenium and impurity - Google Patents

Separation of rhenium and impurity

Info

Publication number
JPH0770665A
JPH0770665A JP24215993A JP24215993A JPH0770665A JP H0770665 A JPH0770665 A JP H0770665A JP 24215993 A JP24215993 A JP 24215993A JP 24215993 A JP24215993 A JP 24215993A JP H0770665 A JPH0770665 A JP H0770665A
Authority
JP
Japan
Prior art keywords
rhenium
precipitate
barium
selenium
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24215993A
Other languages
Japanese (ja)
Other versions
JP3341389B2 (en
Inventor
Nobuo Takahashi
信夫 高橋
Satoshi Asano
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24215993A priority Critical patent/JP3341389B2/en
Publication of JPH0770665A publication Critical patent/JPH0770665A/en
Application granted granted Critical
Publication of JP3341389B2 publication Critical patent/JP3341389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove the anionic impurities of selenium, molybdenum and arsenic which behave in a similar manner to rhenium and are hardly separated from rhenium by anion exchange from a rhenxum-contg. soln. CONSTITUTION:An aq. soln. contg. >=1 element among selenium, molybdenum and arsenic and rhenium is oxidized by an oxidizing agent such as hydrogen peroxide and hypochlorites, a calcium compd., strontium compd. and barium compd. soluble in water are added, and the elements other than rhenium are separated as the precipitate at <=pH10. In this case, the calcium compd. is initially added, the formed precipite is separated, and then the barium compd. is added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅、モリブデン鉱の製
錬工程や廃触媒から得られるレニウム含有溶液から、レ
ニウムを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering rhenium from a rhenium-containing solution obtained from a smelting process of copper or molybdenum ore or a waste catalyst.

【0002】[0002]

【従来の技術】銅製錬工程で発生する排ガス洗浄液やレ
ニウム含有触媒の浸出液から比較的選択的にレニウムを
回収する方法として、陰イオン交換樹脂に吸着させる方
法が知られている。しかしながら、陰イオンを形成しや
すいセレン、モリブデン、砒素は多少なりとも吸着され
る。これらの元素は、特開昭60−131828に示さ
れているように水酸化ナトリウムによりイオン交換樹脂
の洗浄を行ったとしても、完全な分離は困難である。し
たがって、溶離液中にはこれらの元素が必ず混入する。
また、イオン交換樹脂の洗浄操作により、10%前後の
レニウムが洗浄液中に失われていた。
2. Description of the Related Art As a method of relatively selectively recovering rhenium from an exhaust gas cleaning liquid generated in a copper smelting process or a leachate of a rhenium-containing catalyst, a method of adsorbing it onto an anion exchange resin is known. However, selenium, molybdenum, and arsenic, which easily form anions, are adsorbed to some extent. It is difficult to completely separate these elements even if the ion exchange resin is washed with sodium hydroxide as disclosed in JP-A-60-131828. Therefore, these elements are always mixed in the eluent.
Moreover, about 10% of rhenium was lost in the cleaning liquid due to the cleaning operation of the ion exchange resin.

【0003】また、特開昭60−131829あるいは
特開昭62−123020に示されているように、硫化
によってレニウム以外の元素を溶離液から分離しようと
しても、モリブデン、砒素、セレンが沈澱するpH条件
では、レニウムも大部分が共沈してしまい、分離はでき
なかった。
Further, as shown in JP-A-60-131829 or JP-A-62-123020, the pH at which molybdenum, arsenic and selenium precipitate even when an element other than rhenium is separated from the eluent by sulfurization. Under the conditions, most of rhenium also co-precipitated and could not be separated.

【0004】さらに、製品となる難溶性の過レニウム酸
塩を溶離液から濃縮により晶出させる際、共存する陰イ
オン不純物は単独ではpHを上げても沈澱しないため、
これらの多くは母液(溶離液)に分配し、特開昭62−
119115に示されているように、陰イオン不純物を
沈澱として水簸により分離することができる場合は限定
されている。したがって、母液を濃縮して、過レニウム
酸塩の結晶を回収する操作を繰り返すと、液中に陰イオ
ン不純物が濃縮され、最終的には液中にレニウムがかな
り残存しているにもかかわらず、製品となる高純度の過
レニウム酸塩が回収できなくなるという事態を招いてい
た。
Further, when the poorly soluble perrhenate to be the product is crystallized from the eluent by concentration, coexisting anionic impurities alone do not precipitate even if the pH is raised.
Most of these are distributed in the mother liquor (eluent), and are disclosed in JP-A-62-
As shown in 119115, there are limited cases where anionic impurities can be separated by elutriation as a precipitate. Therefore, when the operation of concentrating the mother liquor and recovering the crystals of perrhenate was repeated, the anionic impurities were concentrated in the liquid, and finally rhenium remained in the liquid considerably. However, the high-purity perrhenate used as a product cannot be recovered.

【0005】特に、セレンについてはレニウムと挙動が
似ており、陰イオン交換工程でも共吸着し、またセレン
を選択的に還元しうるとされる二酸化硫黄を用いても共
に沈澱して相互分離することはできなかった。
In particular, selenium has a behavior similar to that of rhenium, co-adsorbs in the anion exchange step, and even when sulfur dioxide, which is said to be capable of selectively reducing selenium, is used to precipitate and mutually separate. I couldn't do that.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、陰イ
オン交換法や選択硫化法によりレニウムから分離除去が
困難な、セレン、砒素、モリブデンなどの陰イオンを形
成しやすい不純物元素を、完全に、かつ選択的に分離す
る方法を提供することにある。
The object of the present invention is to eliminate impurities such as selenium, arsenic, and molybdenum, which are difficult to separate and remove from rhenium by anion exchange method or selective sulfurization method, to completely eliminate impurities. And to provide a method for selective separation.

【0007】[0007]

【課題を解決するための手段】本発明は、セレン、モリ
ブデン、砒素のいずれか一元素以上とレニウムとを含む
水溶液を過酸化水素、次亜塩素酸塩などの酸化剤により
酸化処理を行った後、水に可溶性なカルシウム化合物、
ストロンチウム化合物、バリウム化合物を添加し、pH
10以下においてレニウム以外の元素を沈澱として分離
することを特徴とするレニウムと不純物の分離方法であ
る。本発明では、望ましくは、酸化処理の後、初めにカ
ルシウム化合物を加え、生成した沈澱を分離した後、バ
リウム化合物を添加する。
According to the present invention, an aqueous solution containing at least one element selected from selenium, molybdenum and arsenic and rhenium is oxidized by an oxidizing agent such as hydrogen peroxide or hypochlorite. Later, a water-soluble calcium compound,
Add strontium compound and barium compound, pH
A method for separating rhenium and impurities is characterized in that an element other than rhenium is separated as a precipitate at a ratio of 10 or less. In the present invention, preferably, after the oxidation treatment, the calcium compound is added first, the precipitate formed is separated, and then the barium compound is added.

【0008】[0008]

【作用】次に本発明を詳細に説明する。Next, the present invention will be described in detail.

【0009】酸化処理における反応は、次の通りであ
る。
The reaction in the oxidation treatment is as follows.

【0010】 2ReO3 2- + 3(O)+2H+ → 2ReO4 - + H2O (1) SeO3 2- + (O) → SeO4 2- (2) AsO2 - + (O) + H2O → AsO4 3- + 2H+ (3)[0010] 2ReO 3 2- + 3 (O) + 2H + → 2ReO 4 - + H 2 O (1) SeO 3 2- + (O) → SeO 4 2- (2) AsO 2 - + (O) + H 2 O → AsO 4 3- + 2H + (3)

【0011】なお、モリブデンは、酸化処理前より、M
oO4 2- の形で存在している。
It should be noted that molybdenum contains M
It exists in the form of oO 4 2- .

【0012】本発明では、過レニウム酸イオンReO4 -
のカルシウム塩、ストロンチウム塩、バリウム塩は水に
可溶性であるが、セレン酸イオンSeO4 2- 、砒酸イオ
ンAsO4 3- 、モリブデン酸イオンMoO4 2- のカルシ
ウム塩、ストロンチウム塩、バリウム塩はいずれも難溶
性であるという現象を利用している。
[0012] In the present invention, perrhenate ion ReO 4 -
Calcium salt, strontium salt, and barium salt of selenium ion SeO 4 2− , arsenate ion AsO 4 3− , molybdate ion MoO 4 2− of calcium salt, strontium salt, and barium salt are all soluble in water. Also utilizes the phenomenon of being poorly soluble.

【0013】レニウムと共存しやすい陰イオン不純物の
うち、モリブデンについては特に錯形成しない限り最高
価数である6価を取りやすいが、レニウム、セレン、砒
素については、通常水溶液中で様々な価数をとってい
る。レニウム、セレン、砒素の陰イオンは、中心元素の
価数によって塩の溶解度が異なり、例えばレニウムは亜
レニウム酸イオンReO3 2- の状態では前記アルカリ土
類金属とから成る塩が難溶性であり、逆にセレンは亜セ
レン酸イオンSeO3 2- の状態では同様の塩が可溶性で
あるため、これらの混合物にそのまま前記アルカリ土類
金属イオンを作用させても、相互分離は極めて不完全と
なる。そこで、(1)〜(3)式に示すように酸化剤を
作用させて、相互分離可能なイオンに変化させる必要が
ある。
Among the anionic impurities that are likely to coexist with rhenium, molybdenum tends to have the highest valence of 6 unless complexed, but rhenium, selenium, and arsenic usually have various valences in an aqueous solution. Is taking. The anions of rhenium, selenium, and arsenic have different salt solubilities depending on the valence of the central element. For example, in the state of rhenium ion ReO 3 2− , rhenium is a poorly soluble salt of the alkaline earth metal. On the contrary, selenium is soluble in a similar salt in the state of selenite ion SeO 3 2− , and therefore, even if the alkaline earth metal ion is allowed to act on these mixtures as they are, mutual separation is extremely incomplete. . Therefore, it is necessary to act on an oxidizing agent to change the ions into mutually separable ions as shown in the equations (1) to (3).

【0014】使用する酸化剤としては、亜レニウム酸イ
オン及び共存する不純物イオンを全て最高原子価まで酸
化できればどのような化合物でも使用可能である。例え
ば、排水時に問題となる重金属やCOD源の副生、残存
が少なく、工業的に大量に安価に入手可能な化合物とし
て、次亜塩素酸塩類、過酸化水素などが適している。但
し、前記条件を満たす酸化剤であっても、ペルオキソニ
硫酸塩のように反応後に硫酸イオンが副生する酸化剤
は、後工程で前記アルカリ土類金属イオンを消費し、ま
た、不純物を含む沈澱の量を増やすことになるので好ま
しくない。また、液中にアンモニウムイオンを含む場合
は、次亜塩素酸塩類を用いると、アンモニウム塩の酸化
に酸化剤が消費されるので消費量が多くなる。
As the oxidizing agent to be used, any compound can be used as long as it can oxidize all rhenite ions and coexisting impurity ions to the maximum valence. For example, hypochlorites, hydrogen peroxide and the like are suitable as compounds that can be obtained industrially in large quantities at low cost, with few by-products and residuals of heavy metals and COD sources that are problems during drainage. However, even if the oxidant satisfies the above conditions, an oxidant such as peroxodisulfate, which produces a sulfate ion as a by-product after the reaction, consumes the alkaline earth metal ion in a subsequent step and precipitates containing impurities. It is not preferable because it increases the amount. Further, when the liquid contains ammonium ions, the use of hypochlorites increases the consumption amount because the oxidizing agent is consumed for oxidizing the ammonium salt.

【0015】酸化反応の終点は、酸化還元電位を測定し
ていれば、急に電位が上昇する事によって判断できる。
実際の電位は、pHや酸化剤の種類によって異なるが、
例えば、次亜塩素酸ナトリウムの場合、pH1で、反応
中は銀−塩化銀電極に対して480〜510mV程度の
電位を示すが、終点付近では900mV以上に急上昇
し、この電位が安定していれば終点と判断される。共存
するレニウムが褐色の亜レニウム酸イオンとして共存し
ている場合は、終点付近でほぼ無色となるため、色の変
化も終点を知る大きな助けとなる。
If the redox potential is measured, the end point of the oxidation reaction can be judged by the sudden rise in the potential.
The actual potential depends on the pH and type of oxidant,
For example, in the case of sodium hypochlorite, at pH 1, it shows a potential of about 480 to 510 mV against the silver-silver chloride electrode during the reaction, but it rapidly rises to 900 mV or more near the end point, and this potential should be stable. If it is the end point. When the coexisting rhenium coexists as a brown rhenite ion, it becomes almost colorless near the end point, and the color change also greatly helps to know the end point.

【0016】酸化処理の後にカルシウム化合物を加えた
ときの反応は、次の通りである。
The reaction when a calcium compound is added after the oxidation treatment is as follows.

【0017】 SeO4 2- + Ca2+ → CaSeO4 (4) 2AsO4 3- + 3Ca2+ → Ca3 (AsO42 (5) MoO4 2- + Ca2+ → CaMoO4 (6)SeO 4 2- + Ca 2+ → CaSeO 4 (4) 2AsO 4 3- + 3Ca 2+ → Ca 3 (AsO 4 ) 2 (5) MoO 4 2- + Ca 2+ → CaMoO 4 (6)

【0018】酸化終了後、カルシウムイオンによりモリ
ブデン酸、セレン酸、砒酸イオンは難溶性塩として沈澱
分離される。
After completion of the oxidation, molybdic acid, selenate and arsenate ions are precipitated and separated by calcium ions as sparingly soluble salts.

【0019】これらの陰イオンとカルシウムイオンのよ
うな金属イオンとから成る塩の溶解度は硫酸塩の場合と
類似しており、カルシウムよりも原子番号が大きなアル
カリ土類金属イオン、あるいは、鉛イオンを添加するこ
とにより、例えば(4)〜(6)式に示すような反応に
より難溶性塩を沈澱させることができる。このうち、鉛
イオンは毒性が高く、ラジウムイオンは放射性元素であ
るため、実現的な元素としてはカルシウム、ストロンチ
ウム、バリウムの水に可溶性な化合物、例えば、これら
の元素の塩化物、硝酸塩、酢酸塩などが使用できる。
The solubility of a salt composed of these anions and a metal ion such as calcium ion is similar to that of sulfate, and alkaline earth metal ions having a larger atomic number than calcium or lead ions are used. By adding, the sparingly soluble salt can be precipitated by the reaction represented by the formulas (4) to (6), for example. Among them, lead ion is highly toxic and radium ion is a radioactive element, and therefore, viable elements include calcium, strontium, and barium, which are water-soluble compounds such as chlorides, nitrates, and acetates of these elements. Etc. can be used.

【0020】さらに、前記3元素の中でも、カルシウ
ム、ストロンチウム、バリウムの順に溶解度が減少する
ため、バリウムを用いると最も不純物の除去率が高くな
る。しかし、これらの化合物のうち、カルシウム化合物
が最も安価であるから、まずカルシウムイオンでレニウ
ム以外の不純物元素の大部分を沈澱させ、沈澱を分離
後、液中にわずかに残存した陰イオン不純物をバリウム
イオンで沈澱させれば、より少ない費用でバリウム化合
物単独で回収した場合とほぼ同等の結果を得ることがで
きる。この際、沈澱したカルシウム塩を分離せずにバリ
ウム化合物を添加すると、(7)式のようにカルシウム
塩中の陰イオンがバリウムイオンと反応してしまうた
め、必ず、バリウム化合物を添加する前に生成した難溶
性カルシウム塩は分離する必要がある。
Further, among the three elements, the solubility decreases in the order of calcium, strontium, and barium, so that the use of barium provides the highest removal rate of impurities. However, of these compounds, the calcium compound is the cheapest, so first, most of the impurity elements other than rhenium are precipitated with calcium ions, and after the precipitation is separated, the anion impurities slightly remaining in the liquid are barium. If the precipitation is performed with ions, it is possible to obtain almost the same results as the case where the barium compound alone is recovered at a lower cost. At this time, if the barium compound is added without separating the precipitated calcium salt, the anion in the calcium salt reacts with the barium ion as shown in formula (7). Therefore, be sure to add the barium compound before adding the barium compound. The sparingly soluble calcium salt formed needs to be separated.

【0021】 CaSeO4 + Ba2+ → BaSeO4 + Ca2+ (7) CaSeO4 + CO3 2- → CaCO3 + SeO4 2- (8)CaSeO 4 + Ba 2+ → BaSeO 4 + Ca 2+ (7) CaSeO 4 + CO 3 2- → CaCO 3 + SeO 4 2- (8)

【0022】沈澱生成する場合の液性としては、過レニ
ウム酸、モリブデン酸、セレン酸、砒酸イオンのいずれ
もpHが高いほど安定になるが、逆にpHが高すぎると
生成した塩が例えば(7)式のような反応により複分解
反応し、再び陰イオンを放出してしまうため、pHは1
0以下、特にpH5〜9付近が最も適している。
Regarding the liquid property in the case of forming precipitates, any of perrhenic acid, molybdic acid, selenate, and arsenate ions becomes more stable as the pH increases, but conversely, when the pH is too high, salts formed are, for example ( Since the metathesis reaction due to the reaction like the formula 7) releases the anion again, the pH is 1 or less.
It is most suitable to be 0 or less, especially around pH 5 to 9.

【0023】また、反応温度としては、いずれの温度で
も反応そのものは進行するが、沈澱生成時は温度が高い
ほど他のイオンの共沈が少なく、また、結晶成長が促進
されることによりろ過性が改善される。
As for the reaction temperature, the reaction itself proceeds at any temperature, but at the time of precipitation formation, the higher the temperature is, the less coprecipitation of other ions occurs, and the crystal growth is promoted so that the filterability is improved. Is improved.

【0024】また、添加する塩類も固体としてよりも水
溶液として加えた方が、結晶表面が沈澱で覆われず、迅
速かつ均一に反応する。
Further, when the salt to be added is added as an aqueous solution rather than as a solid, the crystal surface is not covered with a precipitate and the reaction is rapid and uniform.

【0025】反応の終点は、母液に前記アルカリ土類化
合物溶液を添加して、沈澱がこれ以上生成しなくなるこ
とによって知ることができる。沈澱生成後、1時間程度
攪拌を続けると、沈澱生成が完結しかつ結晶成長して沈
澱生成物のろ過性がより改善される。
The end point of the reaction can be known by adding the alkaline earth compound solution to the mother liquor so that no more precipitate is formed. If the stirring is continued for about 1 hour after the precipitate is formed, the precipitation is completed and crystals grow to improve the filterability of the precipitated product.

【0026】不純物を沈澱分離した液は、過レニウム酸
以外の陰イオン不純物を含まないため、既知の方法で濃
縮することにより、製品化可能な過レニウム酸塩を回収
することができる。
Since the liquid from which impurities have been separated by precipitation does not contain anionic impurities other than perrhenic acid, a perrhenate which can be commercialized can be recovered by concentrating by a known method.

【0027】[0027]

【実施例1】 (バリウム塩のみで沈澱生成)レニウム:1.11、セ
レン:3.03、モリブデン:23.0、砒素:0.3
2(g/l)を含むpHの6.8の水溶液100mlに
12%次亜塩素酸ナトリウム水溶液を添加し続けたとこ
ろ、pH2.7において銀−塩化銀電極に対して安定し
て1000mV以上を示すようになったため、終点と見
なし、水酸化ナトリウムでpH7に調整後、90℃まで
昇温した。次いで、塩化バリウムの飽和水溶液を沈澱が
生成しなくなるまで添加し、攪拌しつつ90℃にて1時
間維持した。沈澱はろ過により分離し、100mlの水
で洗浄後、沈澱及び母液と洗浄液を合わせた液を分析し
た。
[Example 1] (Precipitation generated only with barium salt) Rhenium: 1.11, selenium: 3.03, molybdenum: 23.0, arsenic: 0.3
When a 12% sodium hypochlorite aqueous solution was continuously added to 100 ml of an aqueous solution of pH 6.8 containing 2 (g / l), a stable voltage of 1,000 mV or more was obtained for a silver-silver chloride electrode at pH 2.7. Since it became as shown, it was regarded as the end point, and after adjusting the pH to 7 with sodium hydroxide, the temperature was raised to 90 ° C. Then, a saturated aqueous solution of barium chloride was added until no precipitate was formed, and the mixture was maintained at 90 ° C. for 1 hour while stirring. The precipitate was separated by filtration, washed with 100 ml of water, and the combined solution of the precipitate and the mother liquor and the washing liquid was analyzed.

【0028】その結果、セレンの98%以上、モリブデ
ンの99.8%、砒素の93%以上が沈澱した。レニウ
ムの沈澱への分配率は0.2%未満であり、レニウム以
外はほぼ完全に沈澱へ分配したことがわかる。
As a result, 98% or more of selenium, 99.8% of molybdenum, and 93% or more of arsenic were precipitated. The distribution ratio of rhenium to the precipitate was less than 0.2%, which means that the components other than rhenium were almost completely distributed to the precipitate.

【0029】[0029]

【実施例2】 (カルシウムとバリウム併用)実施例1で用いたレニウ
ム及び不純物を含む液100mlを用い、同様に酸化処
理を行った後、pH7に調整し、90℃まで昇温した。
次いで、塩化カルシウムの飽和水溶液を沈澱が生成しな
くなるまで添加し、攪拌しつつ90℃にて1時間維持し
た。沈澱を分離し、100mlの水で洗浄した。得たろ
液と、洗浄液を合わせ再び90℃まで昇温し、塩化バリ
ウムの飽和水溶液を沈澱が生成しなくなるまで添加し、
攪拌しつつ90℃にて1時間維持した。沈澱はろ過によ
り分離し、100mlの水で洗浄後、全沈澱及び母液と
洗浄液を合わせた液を分析した。
Example 2 (Used together with calcium and barium) 100 ml of the liquid containing rhenium and impurities used in Example 1 was subjected to the same oxidation treatment, adjusted to pH 7, and heated to 90 ° C.
Then, a saturated aqueous solution of calcium chloride was added until no precipitate was formed, and the mixture was maintained at 90 ° C. for 1 hour while stirring. The precipitate was separated and washed with 100 ml water. The obtained filtrate and the washing solution are combined and heated again to 90 ° C., and a saturated aqueous solution of barium chloride is added until precipitation does not occur,
It was maintained at 90 ° C. for 1 hour with stirring. The precipitate was separated by filtration, washed with 100 ml of water, and then the total precipitate and the combined liquid of the mother liquor and the washing liquid were analyzed.

【0030】その結果、セレンの99.4%以上、モリ
ブデンの99.9%以上、砒素の93%以上が沈澱し
た。レニウムの沈澱への分配率は0.4%であり、沈澱
剤としてバリウム塩単独で使用した場合とほぼ同等の結
果が得られた。
As a result, 99.4% or more of selenium, 99.9% or more of molybdenum, and 93% or more of arsenic were precipitated. The distribution ratio of rhenium to the precipitate was 0.4%, which was almost the same as that when barium salt alone was used as the precipitant.

【0031】[0031]

【比較例1】 (酸化の影響)酸化処理を行わなかった他は、実施例2
と全く同じように塩化カルシウム及び塩化バリウムによ
る沈澱分離試験を実施し、全沈澱及び液を分析した。
Comparative Example 1 (Effect of Oxidation) Example 2 was repeated except that no oxidation treatment was performed.
Precipitation separation tests with calcium chloride and barium chloride were carried out exactly as above, and the total precipitation and the liquid were analyzed.

【0032】その結果、沈澱への分配率は、セレンが4
7.2%、モリブデンが99.7%、砒素が95%以上
と、セレンの沈澱が不完全であることがわかった。ま
た、レニウムの沈澱への分配率も19.6%と高かっ
た。
As a result, the distribution ratio to the precipitate was 4 for selenium.
It was found that the precipitation of selenium was incomplete, with 7.2%, molybdenum 99.7%, and arsenic 95% or more. Further, the distribution ratio of rhenium to the precipitate was as high as 19.6%.

【0033】[0033]

【比較例2】 (pHの影響)沈澱生成時のpHを1.7と低くした他
は、実施例2と全く同じように塩化カルシウム及び塩化
バリウムによる沈澱分離試験を実施し、全沈澱及び液を
分析した。
Comparative Example 2 (Effect of pH) A precipitation separation test using calcium chloride and barium chloride was carried out in the same manner as in Example 2 except that the pH at the time of precipitate formation was lowered to 1.7. Was analyzed.

【0034】その結果、沈澱への分配率は、セレンが9
9.1%、モリブデンが87.6%、砒素が93%以
上、レニウムが0.4%であった。pHが低い場合で
は、モリブデンの沈澱がやや不完全になるものの、ほ
ぼ、全不純物を沈澱除去可能であることがわかる。
As a result, the distribution ratio to the precipitate was 9 for selenium.
9.1%, molybdenum 87.6%, arsenic 93% or more, and rhenium 0.4%. It can be seen that, when the pH is low, almost all the impurities can be removed by precipitation, although the precipitation of molybdenum is slightly incomplete.

【0035】一方、沈澱生成時のpHを炭酸ナトリウム
にてpH11.3に調整し、同様の試験を実施したとこ
ろ、沈澱への分配率は、セレンが0.9%以下、モリブ
デンが0.06%、砒素が7.4%、レニウムが0.3
%以下と、いずれの元素もほとんど沈澱しなかった。p
Hが10を超えると、不純物の分離は事実上不可能にな
ることがわかる。
On the other hand, when the precipitation was adjusted to pH 11.3 with sodium carbonate and the same test was carried out, the distribution ratio to the precipitation was 0.9% or less for selenium and 0.06 for molybdenum. %, Arsenic 7.4%, rhenium 0.3
% Or less, almost no element was precipitated. p
It can be seen that when H exceeds 10, separation of impurities becomes virtually impossible.

【0036】[0036]

【発明の効果】本発明によれば、レニウムと共存するセ
レン、モリブデン、砒素などの不純物陰イオンを選択的
高効率にレニウムから分離する事が可能であり、工業的
意味は大きい。
According to the present invention, it is possible to separate impurity anions such as selenium, molybdenum and arsenic coexisting with rhenium from rhenium selectively and highly efficiently, which is of great industrial significance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セレン、モリブデン、砒素のいずれか一
元素以上とレニウムとを含む水溶液を酸化剤により酸化
処理を行った後、水に可溶性なカルシウム化合物、スト
ロンチウム化合物、バリウム化合物のいずれか一種類以
上を添加し、pH10以下においてレニウム以外の元素
を沈澱として固定し、分離することを特徴とするレニウ
ムと不純物の分離方法。
1. An aqueous solution containing at least one element selected from selenium, molybdenum, and arsenic and rhenium is oxidized with an oxidizing agent, and then any one of water-soluble calcium compounds, strontium compounds, and barium compounds is used. A method for separating rhenium and impurities, characterized in that the above elements are added and elements other than rhenium are fixed as a precipitate at pH 10 or less and separated.
【請求項2】 酸化処理の後、初めにカルシウム化合物
を加え、生成した沈澱を分離した後、バリウム化合物を
添加することを特徴とする請求項1に記載のレニウムと
不純物の分離方法。
2. The method for separating rhenium and impurities according to claim 1, wherein after the oxidation treatment, a calcium compound is added first, the formed precipitate is separated, and then a barium compound is added.
JP24215993A 1993-09-03 1993-09-03 Separation method of rhenium and impurities Expired - Fee Related JP3341389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24215993A JP3341389B2 (en) 1993-09-03 1993-09-03 Separation method of rhenium and impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24215993A JP3341389B2 (en) 1993-09-03 1993-09-03 Separation method of rhenium and impurities

Publications (2)

Publication Number Publication Date
JPH0770665A true JPH0770665A (en) 1995-03-14
JP3341389B2 JP3341389B2 (en) 2002-11-05

Family

ID=17085212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24215993A Expired - Fee Related JP3341389B2 (en) 1993-09-03 1993-09-03 Separation method of rhenium and impurities

Country Status (1)

Country Link
JP (1) JP3341389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136843A (en) * 2004-11-15 2006-06-01 Dowa Mining Co Ltd Method for treating selenium-containing water
JP2010077499A (en) * 2008-09-26 2010-04-08 Dowa Metals & Mining Co Ltd Method for treating substance to be treated containing platinum group element, rhenium and arsenic
WO2013129130A1 (en) * 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136843A (en) * 2004-11-15 2006-06-01 Dowa Mining Co Ltd Method for treating selenium-containing water
JP4670004B2 (en) * 2004-11-15 2011-04-13 Dowaメタルマイン株式会社 Method for treating selenium-containing water
JP2010077499A (en) * 2008-09-26 2010-04-08 Dowa Metals & Mining Co Ltd Method for treating substance to be treated containing platinum group element, rhenium and arsenic
WO2013129130A1 (en) * 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
JP5382269B1 (en) * 2012-03-02 2014-01-08 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
AU2013227632B2 (en) * 2012-03-02 2014-08-21 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium
US8956583B2 (en) 2012-03-02 2015-02-17 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium

Also Published As

Publication number Publication date
JP3341389B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
WO2008061231A9 (en) Purification of molybdenum technical oxide
KR20090082925A (en) Purified molybdenum technical oxide from molybdenite
AU2013227632B2 (en) Method for separating rhenium and arsenic, and method for purification of rhenium
JP7016463B2 (en) How to collect tellurium
JPWO2005023716A1 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
JP3341389B2 (en) Separation method of rhenium and impurities
JP2010264331A (en) Separation method of arsenic
KR20000035098A (en) Process for preparing usable products from an impure ferric sulfate solution
EP0630856B1 (en) Process for removing iron and manganese from acid solutions of zinc salts
EA007859B1 (en) Method for removing thallium from a zinc-containing solution
JP2923757B2 (en) Reduction method of hexavalent selenium
JP6060877B2 (en) Method for producing rhenium-containing solution
US1167701A (en) Process of recovering zinc from its ores.
JP3837879B2 (en) Method for reducing and precipitating metal ions
JPS6160130B2 (en)
JP6790561B2 (en) Heavy metal recovery method
JPH0760135A (en) Method for regenerating anion exchange resin for adsorbing rhenium
JPH11236633A (en) Cerium recovering method
JP2000007332A (en) Recovery of cerium
JP2022032693A (en) Selenium (vi) compound reduction method and selenium recovery method
RU1801139C (en) Method of molybdenum calcine processing
JP4715621B2 (en) Method for purifying ammonium hexachloroiridium (IV) containing lead
JPH11236217A (en) Recovering method of cerium
JPH05148561A (en) Method for recovering rhodium
JPH11236632A (en) Cerium recovering method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees