JP2010075019A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2010075019A
JP2010075019A JP2008242930A JP2008242930A JP2010075019A JP 2010075019 A JP2010075019 A JP 2010075019A JP 2008242930 A JP2008242930 A JP 2008242930A JP 2008242930 A JP2008242930 A JP 2008242930A JP 2010075019 A JP2010075019 A JP 2010075019A
Authority
JP
Japan
Prior art keywords
core
power supply
supply line
pickup unit
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008242930A
Other languages
Japanese (ja)
Other versions
JP5480483B2 (en
Inventor
Yasushi Nihata
康 二畠
Hiroshi Maeda
裕史 前田
Koichi Teraura
浩一 寺裏
Yoji Endo
洋治 遠藤
Yukihiro Matsunobu
幸博 松信
Masato Toki
政人 土岐
Shinji Hara
信次 原
Hironobu Hori
堀  宏展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008242930A priority Critical patent/JP5480483B2/en
Priority to KR1020117006742A priority patent/KR101258003B1/en
Priority to PCT/IB2009/006874 priority patent/WO2010032116A1/en
Priority to CN200980137080.2A priority patent/CN102159423B/en
Priority to TW98131774A priority patent/TWI397236B/en
Publication of JP2010075019A publication Critical patent/JP2010075019A/en
Application granted granted Critical
Publication of JP5480483B2 publication Critical patent/JP5480483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power supply device for reducing the effect of a magnetic flux leaked from an opening groove of a core and the effect of a magnetic flux generated around a power supply line disposed outside the core. <P>SOLUTION: A magnetic shield body 5 is formed in a substantial cylinder by a metallic magnetic material having high magnetic permeability and externally provided on the core 2 and the coil 3. As described above, he core 2 and the coil 3 are enclosed by the magnetic shield body 5, so that a magnetic flux generated around a returning power supply line 100 can be prevented from passing through the inside of the core 2. As the result, the degradation in the efficiency of power transmission of a pickup section 1 can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that includes a pickup unit that is inductively coupled to a power supply line through which a high-frequency current flows, and that supplies power to a load by an induced electromotive force induced in the pickup unit.

この種の非接触給電装置として、例えば、移動体の移動線路に沿って高周波電流を流す給電線を張設し、前記給電線と誘導結合されたピックアップ部を前記移動体に配置し、前記ピックアップ部に誘起される誘導起電力によって負荷(移動体を移動させる電動機)に給電するものが提供されている(特許文献1,2参照)。   As this type of non-contact power supply device, for example, a power supply line that allows a high-frequency current to flow along a moving line of a moving body is stretched, and a pickup unit that is inductively coupled to the power supply line is disposed on the moving body. There is provided one that supplies power to a load (an electric motor that moves a moving body) by an induced electromotive force induced in the section (see Patent Documents 1 and 2).

ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルとを有し、給電線の周囲に生じる磁束の大半がコア内を通ることでコイルに誘起される誘導起電力を高くしている。尚、コアには、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、給電線へのピックアップ部の装着及び離脱が容易に行えるようになっている。
特開2004−120880号公報 特許第3263421号公報
The pickup unit has a cylindrical core surrounding the power supply line along the circumferential direction and a coil formed by winding a winding around the core, and most of the magnetic flux generated around the power supply line passes through the core. The induced electromotive force induced in the coil is increased. The core is provided with an opening groove along the axial direction of the power supply line so that at least the power supply line can pass in the radial direction so that the pickup portion can be easily attached to and detached from the power supply line. .
JP 2004-120880 A Japanese Patent No. 3263421

ところで、従来例におけるコアには給電線を挿通するための開口溝が設けられているため、コア内を通過する磁束の一部が開口溝を通して外部に漏れてしまう。そして、ピックアップ部の近傍に配置されている金属部材(例えば、移動体や移動線路)に漏れ磁束による渦電流が流れて損失が生じ、その結果、ピックアップ部の電力伝達の効率が低下してしまう虞がある。あるいは、高周波電源に対する往きと戻りの2本の給電線のうちの一方の給電線がコアの内側に配置され、他方の給電線がピックアップ部の近傍に配置されている場合、当該他方の給電線の周囲に生じる磁束が、開口溝を通してコア内を通過する磁束と打ち消しあい、その結果、ピックアップ部の電力伝達の効率が低下してしまう虞がある。尚、特許文献1,2に記載されている従来例では、コイルと移動体との間が磁気シールドされているが、コアの開口溝から漏れる磁束の影響やコアの外側に配置される給電線の周囲に生じる磁束の影響については何等考慮されていない。   By the way, since the core in the conventional example is provided with the opening groove for inserting the feeder, a part of the magnetic flux passing through the core leaks to the outside through the opening groove. And the eddy current by a leakage magnetic flux flows into the metal member (for example, moving body and moving line) arrange | positioned in the vicinity of a pick-up part, a loss arises, As a result, the efficiency of the electric power transmission of a pick-up part falls. There is a fear. Alternatively, when one of the two supply and return power supply lines to the high frequency power supply is disposed inside the core and the other power supply line is disposed in the vicinity of the pickup unit, the other power supply line The magnetic flux generated in the vicinity of the magnetic field cancels out with the magnetic flux passing through the core through the opening groove, and as a result, the power transmission efficiency of the pickup unit may be reduced. In the conventional examples described in Patent Documents 1 and 2, the shield between the coil and the moving body is magnetically shielded. However, the influence of the magnetic flux leaking from the opening groove of the core and the feeder line arranged outside the core No consideration is given to the influence of magnetic flux generated around the.

本発明は上記事情に鑑みて為されたものであり、その目的は、コアの開口溝から漏れる磁束の影響やコアの外側に配置される給電線の周囲に生じる磁束の影響を低減することができる非接触給電装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to reduce the influence of magnetic flux leaking from the opening groove of the core and the influence of magnetic flux generated around the power supply line arranged outside the core. An object of the present invention is to provide a non-contact power feeding device that can be used.

請求項1の発明は、上記目的を達成するために、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、ピックアップ部は、給電線を周方向に沿って囲み且つ少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられた筒状のコアと、コアに巻線を巻回してなるコイルと、高透磁率の磁性材料からなりコア及びコイルを包み込む磁気シールド体とを有することを特徴とする。   In order to achieve the above object, a first aspect of the present invention provides a non-contact power feeding device that includes a pickup unit that is inductively coupled to a feeder line through which a high-frequency current flows, and that feeds a load by an induced electromotive force induced in the pickup unit. The pickup unit includes a cylindrical core that surrounds the power supply line along the circumferential direction and has at least an opening groove through which the power supply line can pass in the radial direction is provided along the axial direction of the power supply line. And a magnetic shield made of a magnetic material having a high magnetic permeability and enclosing the core and the coil.

請求項1の発明によれば、高透磁率の磁性材料からなる磁気シールド体でコア及びコイルを包み込んでいるので、コアの開口溝から漏れる磁束の影響を低減することができる。   According to the first aspect of the present invention, since the core and the coil are wrapped with the magnetic shield body made of a magnetic material having a high magnetic permeability, the influence of the magnetic flux leaking from the opening groove of the core can be reduced.

請求項2の発明は、上記目的を達成するために、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、ピックアップ部は、給電線を周方向に沿って囲み且つ少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられた筒状のコアと、コアに巻線を巻回してなるコイルとを有し、給電線は、コア内に挿通される往きの給電線と、コアの外に配置される戻りの給電線とからなり、高透磁率の磁性材料からなる磁気シールド体が戻りの給電線とコアの開口溝との間に配設されることを特徴とする。   According to a second aspect of the present invention, there is provided a non-contact power supply apparatus including a pickup unit that is inductively coupled to a power supply line through which a high-frequency current flows, and supplying a load to the load by an induced electromotive force induced in the pickup unit. The pickup unit includes a cylindrical core that surrounds the power supply line along the circumferential direction and has at least an opening groove through which the power supply line can pass in the radial direction is provided along the axial direction of the power supply line. The feed line is composed of a forward feed line that is inserted into the core and a return feed line that is disposed outside the core, and is made of a magnetic material having a high magnetic permeability. The magnetic shield body is disposed between the return feed line and the opening groove of the core.

請求項2の発明によれば、高透磁率の磁性材料からなる磁気シールド体が戻りの給電線とコアの開口溝との間に配設されているので、戻りの給電線の周囲に生じる磁束がピックアップ部のコア及びコイルに及ぼす影響を低減することができる。   According to the invention of claim 2, since the magnetic shield body made of a magnetic material having a high magnetic permeability is disposed between the return feed line and the opening groove of the core, the magnetic flux generated around the return feed line Can affect the core and coil of the pickup unit.

請求項3の発明は、請求項2の発明において、ピックアップ部は、高透磁率の磁性材料からなりコア及びコイルを包み込む第2の磁気シールド体を有することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the pickup section includes a second magnetic shield body made of a magnetic material having a high magnetic permeability and enclosing the core and the coil.

請求項3の発明によれば、戻りの給電線の周囲に生じる磁束がピックアップ部のコア及びコイルに及ぼす影響を低減すると同時に、コアの開口溝から漏れる磁束の影響を低減することができる。   According to the third aspect of the present invention, it is possible to reduce the influence of the magnetic flux generated around the return feeder line on the core and the coil of the pickup unit, and simultaneously reduce the influence of the magnetic flux leaking from the opening groove of the core.

本発明によれば、コアの開口溝から漏れる磁束の影響やコアの外側に配置される給電線の周囲に生じる磁束の影響を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the magnetic flux which leaks from the opening groove | channel of a core, and the influence of the magnetic flux produced around the feeder line arrange | positioned on the outer side of a core can be reduced.

以下、図面を参照して本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
本実施形態の非接触給電装置は、図7(a)に示すようにループ状に設置された給電線100と、給電線100に高周波電流を流す高周波電源110と、給電線100と誘導結合されるピックアップ部1とを備え、ピックアップ部1から負荷(図示しない移動体を移動させるためのインバータ並びにモータ)111に給電するものである。尚、本実施形態の非接触給電装置を搭載した移動体(図示せず)は、図1に示すように金属製の移動線路(レール)200に沿って移動するものであって、断面形状略コ字形のレール200の内側と外側に往きと戻りの給電線100が配設されている。
(Embodiment 1)
The contactless power supply device of the present embodiment is inductively coupled to the power supply line 100 installed in a loop as shown in FIG. 7A, the high-frequency power source 110 that causes a high-frequency current to flow through the power supply line 100, and the power supply line 100. The pickup unit 1 supplies power to the load (an inverter and a motor for moving a moving body not shown) 111 from the pickup unit 1. Note that a moving body (not shown) on which the non-contact power feeding device of this embodiment is mounted moves along a metal moving line (rail) 200 as shown in FIG. Forward and return feeder lines 100 are arranged inside and outside the U-shaped rail 200.

給電線100は、図7(b)に示すように円筒形状の内管部101と、内管部101の外側に配置された円筒形状の外管部102と、内管部101と外管部102を互いに同心となるように連結する連結部103とが金属板を曲げ加工することで一体に形成された導体を、角筒状の合成樹脂成形品からなる絶縁体104で被覆して構成されている。すなわち、高周波電流が流れる給電線においては、導体の材料(金属板)が有する電気抵抗以外に表皮効果と近接効果による抵抗(高周波抵抗)が存在するが、図7(b)に示す二重管構造の導体を給電線100に用いれば、円柱形状の導体に比較して高周波抵抗を低減し且つ損失を減少させることができる。   As shown in FIG. 7B, the power supply line 100 includes a cylindrical inner tube portion 101, a cylindrical outer tube portion 102 disposed outside the inner tube portion 101, an inner tube portion 101, and an outer tube portion. The connecting part 103 that connects the two parts 102 so as to be concentric with each other is formed by coating a conductor integrally formed by bending a metal plate with an insulator 104 made of a synthetic resin molded product having a rectangular tube shape. ing. That is, in the feeder line through which high-frequency current flows, there is resistance (high-frequency resistance) due to the skin effect and proximity effect in addition to the electrical resistance of the conductor material (metal plate), but the double tube shown in FIG. If a conductor having a structure is used for the feeder line 100, the high-frequency resistance can be reduced and the loss can be reduced as compared with a cylindrical conductor.

ピックアップ部1は、コア2、コイル3、ボビン4、磁気シールド体5、受電回路部6を有している。受電回路部6は、コイル3とともに共振回路を形成するコンデンサ、コイル3並びにコンデンサの共振回路から出力される共振電圧を定電圧化する定電圧回路などを有している。   The pickup unit 1 includes a core 2, a coil 3, a bobbin 4, a magnetic shield body 5, and a power receiving circuit unit 6. The power receiving circuit unit 6 includes a capacitor that forms a resonance circuit together with the coil 3, a constant voltage circuit that makes the resonance voltage output from the resonance circuit of the coil 3 and the capacitor constant, and the like.

コア2は、図1に示すように内周面及び外周面の双方が曲面(円筒面)で構成され且つ軸方向(紙面に垂直な方向)に交差する断面形状が略C形に形成されている。ここで、開口溝2aを挟んで対向するコア2の両端部20,20は、コア2の当該両端部20を除く部位(以下、「胴部」と呼ぶ。)21よりも、軸方向に沿った断面の面積が大きく形成されている。   As shown in FIG. 1, the core 2 has both an inner peripheral surface and an outer peripheral surface formed of curved surfaces (cylindrical surfaces), and has a substantially C-shaped cross section that intersects the axial direction (direction perpendicular to the paper surface). Yes. Here, both end portions 20 and 20 of the core 2 facing each other across the opening groove 2a are more along the axial direction than portions (hereinafter referred to as “body portions”) 21 excluding the both end portions 20 of the core 2. The area of the cross section is large.

ボビン4は、円弧状に湾曲した角筒形状の合成樹脂成形品からなり、軸方向の両端部に外鍔40が設けられている。尚、コア2は開口溝2aと反対側の箇所で胴部21が二分割されており、それぞれの胴部21,21にボビン4,4が外挿された後に胴部21,21の端部同士が接合されることによって、図1に示すコア2が構成されている。   The bobbin 4 is formed of a rectangular tube-shaped synthetic resin molded product that is curved in an arc shape, and outer casings 40 are provided at both ends in the axial direction. The core 2 has a body 21 divided into two parts on the opposite side of the opening groove 2a. After the bobbins 4 and 4 are extrapolated to the body 21 and 21, the ends of the body 21 and 21 are inserted. The core 2 shown in FIG. 1 is comprised by joining each other.

コイル3は、絶縁被覆を有する巻線がボビン4,4に単層巻きされることで形成されている。尚、コア2の端部20と胴部21との段差が巻線の直径よりも大きく設定されており、コイル3がコア2の端部20よりも外側にはみ出さないようになっている。このようにコイル3がコア2の端部20よりも外側にはみ出さないことにより、コイル3の端部からコア2の端部20の外へ漏れる磁束を減らすことができる。   The coil 3 is formed by winding a winding having an insulating coating around the bobbins 4 and 4 in a single layer. The step between the end 20 of the core 2 and the body 21 is set larger than the diameter of the winding so that the coil 3 does not protrude beyond the end 20 of the core 2. Thus, since the coil 3 does not protrude outside the end portion 20 of the core 2, magnetic flux leaking from the end portion of the coil 3 to the outside of the end portion 20 of the core 2 can be reduced.

磁気シールド体5は、高透磁率である金属磁性材料により略円筒形状に形成されてコア2並びにコイル3に外挿される。但し、磁気シールド体5にはコア2の開口溝2aと連通する溝5aが軸方向に沿って設けられている。   The magnetic shield body 5 is formed in a substantially cylindrical shape by a metal magnetic material having a high magnetic permeability, and is extrapolated to the core 2 and the coil 3. However, the magnetic shield body 5 is provided with a groove 5a communicating with the opening groove 2a of the core 2 along the axial direction.

而して、開口溝2aを通してコア2の内側に配置される給電線100に高周波電流が流れると、給電線100を中心とする同心円上に高周波磁界(磁束)が発生し、磁束の大半がコア2内を周方向に沿って通過する。そして、当該磁束が高周波電流に応じて変化することによってコイル3に誘導起電力が生じる。   Thus, when a high-frequency current flows through the opening groove 2a to the feeder line 100 disposed inside the core 2, a high-frequency magnetic field (magnetic flux) is generated on a concentric circle centering on the feeder line 100, and most of the magnetic flux is the core. 2 passes along the circumferential direction. And the said magnetic flux changes according to a high frequency current, and an induced electromotive force arises in the coil 3. FIG.

ここで、本実施形態においては、図1に示すように高周波電源110に対する往きと戻りの2本の給電線100のうちの一方(往き)の給電線100がコア2の内側に配置され、他方(戻り)の給電線100がピックアップ部1の近傍に配置されている。このような場合、コア2の外に配置されている戻りの給電線100の周囲に生じる磁束は、コア2内に配置されている往きの給電線100の周囲に生じる磁束と向きが反転しているため、コア2内を通過する磁束を打ち消してしまう虞がある。しかしながら、本実施形態ではコア2並びにコイル3が磁気シールド体5で包み込まれているので、戻りの給電線100の周囲に生じる磁束がコア2内を通過するのを阻止することができ、その結果、ピックアップ部1の電力伝達の効率低下を抑制することができる。   Here, in the present embodiment, as shown in FIG. 1, one (outward) feed line 100 of the two forward and return feed lines 100 to the high-frequency power supply 110 is disposed inside the core 2, and the other A (return) feeder 100 is arranged in the vicinity of the pickup unit 1. In such a case, the magnetic flux generated around the return power supply line 100 arranged outside the core 2 is reversed in direction from the magnetic flux generated around the forward power supply line 100 arranged inside the core 2. Therefore, the magnetic flux passing through the core 2 may be canceled out. However, in this embodiment, since the core 2 and the coil 3 are encased in the magnetic shield body 5, the magnetic flux generated around the return feeder 100 can be prevented from passing through the core 2, and as a result. In addition, it is possible to suppress a reduction in power transmission efficiency of the pickup unit 1.

また、本実施形態におけるコア2には給電線100を挿通するための開口溝2aが設けられているため、コア2内を通過する磁束の一部が開口溝2aを通して外部に漏れてしまい、当該漏れ磁束によって導体であるレール200に渦電流が流れて損失が生じ、その結果、ピックアップ部1の電力伝達の効率が低下してしまう虞がある。   In addition, since the core 2 in the present embodiment is provided with the opening groove 2a for inserting the feeder 100, a part of the magnetic flux passing through the core 2 leaks to the outside through the opening groove 2a. The leakage magnetic flux causes an eddy current to flow through the rail 200 that is a conductor, resulting in a loss. As a result, the power transmission efficiency of the pickup unit 1 may be reduced.

そこで、図2に示すように磁気シールド体5の溝5aを磁気シールドカバー50によって開閉自在に閉塞する構成とすれば、開口溝2aを通過する磁束を遮蔽し、上述のように漏れ磁束によって生じる渦電流損を低減することができる。磁気シールドカバー50は、磁気シールド体5と同材料によって帯板状に形成されており、磁気シールド体5の溝5aに着脱自在に嵌合される。尚、磁気シールド体5でコア2及びコイル3全体を包み込む代わりに、図3に示すようにコア2の両端部20,20に着脱自在に取着されてコア2の開口溝2aを閉塞する磁気シールド体5’を設けても同様に渦電流損を低減することができる。   Therefore, as shown in FIG. 2, when the groove 5a of the magnetic shield body 5 is configured to be opened and closed by the magnetic shield cover 50, the magnetic flux passing through the opening groove 2a is shielded and generated by the leakage magnetic flux as described above. Eddy current loss can be reduced. The magnetic shield cover 50 is formed in the shape of a strip of the same material as the magnetic shield body 5, and is detachably fitted in the groove 5 a of the magnetic shield body 5. Instead of wrapping the entire core 2 and coil 3 with the magnetic shield 5, as shown in FIG. 3, a magnet that is detachably attached to both ends 20, 20 of the core 2 and closes the opening groove 2 a of the core 2. Even if the shield body 5 'is provided, the eddy current loss can be similarly reduced.

(実施形態2)
本実施形態の非接触給電装置の基本構成は実施形態1と共通であるから、実施形態1と共通の構成要素には同一の符号を付して適宜図示並びに説明を省略する。
(Embodiment 2)
Since the basic configuration of the contactless power supply device of this embodiment is the same as that of the first embodiment, the same reference numerals are given to the same components as those of the first embodiment, and illustration and description thereof will be omitted as appropriate.

実施形態1でも説明したように、コア2の外に配置されている戻りの給電線100の周囲に生じる磁束の影響でコア2内を通過する磁束が減少してしまう虞がある。   As described in the first embodiment, the magnetic flux passing through the core 2 may decrease due to the influence of the magnetic flux generated around the return feeder 100 disposed outside the core 2.

そこで本実施形態では、図4に示すようにコア2の外に配置されている戻りの給電線100とコア2の開口溝2aとの間に、高透磁率の磁性材料からなる磁気シールド体7を配設している。この磁気シールド体7は断面形状が略L字形の樋状に形成され、長手方向に沿った両端縁でレール200に固定されており、レール200との間に形成される空間に戻りの給電線100を収納している。   Therefore, in the present embodiment, as shown in FIG. 4, the magnetic shield body 7 made of a magnetic material having a high magnetic permeability is provided between the return feeder 100 disposed outside the core 2 and the opening groove 2 a of the core 2. Is arranged. The magnetic shield body 7 is formed in a hook shape having a substantially L-shaped cross section, and is fixed to the rail 200 at both end edges along the longitudinal direction. The feeder line returns to the space formed between the rail 200 and the magnetic shield body 7. 100 is stored.

而して、本実施形態では高透磁率の磁性材料からなる磁気シールド体7が戻りの給電線100とコア2の開口溝2aとの間に配設されているので、戻りの給電線100の周囲に生じる磁束がピックアップ部1のコア2及びコイル3に及ぼす影響を低減することができる。しかも、本実施形態ではコア2の開口溝2aとレール200との間に配設されている磁気シールド体7によって、開口溝2aから漏れてレール200と鎖交する磁束を低減することができるので、漏れ磁束によって生じる渦電流損を低減することもできる。但し、磁気シールド体7の形状は、図5に示すように平板状であってもよい。   Thus, in the present embodiment, the magnetic shield 7 made of a magnetic material having a high magnetic permeability is disposed between the return power supply line 100 and the opening groove 2a of the core 2, so that the return power supply line 100 The influence of the magnetic flux generated around the core 2 and the coil 3 of the pickup unit 1 can be reduced. In addition, in this embodiment, the magnetic shield 7 disposed between the opening groove 2a of the core 2 and the rail 200 can reduce the magnetic flux leaking from the opening groove 2a and interlinking with the rail 200. Further, eddy current loss caused by leakage magnetic flux can be reduced. However, the shape of the magnetic shield body 7 may be flat as shown in FIG.

また、図6に示すように実施形態1における磁気シールド体5でコア2並びにコイル3を包み込むようにすれば、戻りの給電線100の周囲に生じる磁束がピックアップ部1のコア2及びコイル3に及ぼす影響をさらに低減することができる。尚、図2や図3に示したようにコイル2の開口溝2aを磁気シールドカバー50や磁気シールド体5’で閉塞する構成と組み合わせれば、開口溝2aから漏れる漏れ磁束によって生じる渦電流損をさらに低減することができる。   Further, as shown in FIG. 6, if the core 2 and the coil 3 are wrapped with the magnetic shield body 5 in the first embodiment, the magnetic flux generated around the return feeder 100 is applied to the core 2 and the coil 3 of the pickup unit 1. The influence exerted can be further reduced. 2 and 3, when combined with the configuration in which the opening groove 2a of the coil 2 is closed by the magnetic shield cover 50 or the magnetic shield body 5 ', the eddy current loss caused by the leakage magnetic flux leaking from the opening groove 2a. Can be further reduced.

本発明の実施形態1の要部断面図である。It is principal part sectional drawing of Embodiment 1 of this invention. 同上の別の要部断面図である。It is another principal part sectional drawing same as the above. 同上のさらに別の要部断面図である。It is another principal part sectional drawing same as the above. 本発明の実施形態2の要部断面図である。It is principal part sectional drawing of Embodiment 2 of this invention. 同上の別の要部断面図である。It is another principal part sectional drawing same as the above. 同上のさらに別の要部断面図である。It is another principal part sectional drawing same as the above. (a)は同上の全体構成図、(b)は同上における給電線の断面図である。(A) is a whole block diagram same as the above, (b) is sectional drawing of the feeder in the same as the above.

符号の説明Explanation of symbols

1 ピックアップ部
2 コア
2a 開口溝
3 コイル
5 磁気シールド体
100 給電線
DESCRIPTION OF SYMBOLS 1 Pickup part 2 Core 2a Opening groove 3 Coil 5 Magnetic shield body 100 Feed line

Claims (3)

高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、
ピックアップ部は、給電線を周方向に沿って囲み且つ少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられた筒状のコアと、コアに巻線を巻回してなるコイルと、高透磁率の磁性材料からなりコア及びコイルを包み込む磁気シールド体とを有することを特徴とする非接触給電装置。
In a non-contact power feeding device that includes a pickup unit that is inductively coupled to a power feed line through which a high-frequency current flows, and that feeds a load by an induced electromotive force induced in the pickup unit,
The pickup unit includes a cylindrical core that surrounds the power supply line along the circumferential direction and has at least an opening groove through which the power supply line can pass in the radial direction and is provided along the axial direction of the power supply line. A non-contact power feeding device comprising a coil formed by winding and a magnetic shield body made of a magnetic material having a high magnetic permeability and enclosing the core and the coil.
高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、
ピックアップ部は、給電線を周方向に沿って囲み且つ少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられた筒状のコアと、コアに巻線を巻回してなるコイルとを有し、
給電線は、コア内に挿通される往きの給電線と、コアの外に配置される戻りの給電線とからなり、
高透磁率の磁性材料からなる磁気シールド体が戻りの給電線とコアの開口溝との間に配設されることを特徴とする非接触給電装置。
In a non-contact power feeding device that includes a pickup unit that is inductively coupled to a power feed line through which a high-frequency current flows, and that feeds a load by an induced electromotive force induced in the pickup unit,
The pickup unit includes a cylindrical core that surrounds the power supply line along the circumferential direction and has at least an opening groove through which the power supply line can pass in the radial direction and is provided along the axial direction of the power supply line. A coil formed by winding,
The feed line consists of a forward feed line inserted into the core and a return feed line arranged outside the core.
A non-contact power feeding device, wherein a magnetic shield body made of a magnetic material having a high magnetic permeability is disposed between a return power feeding line and a core opening groove.
ピックアップ部は、高透磁率の磁性材料からなりコア及びコイルを包み込む第2の磁気シールド体を有することを特徴とする請求項2記載の非接触給電装置。   3. The non-contact power feeding apparatus according to claim 2, wherein the pickup unit includes a second magnetic shield body made of a magnetic material having a high magnetic permeability and enclosing the core and the coil.
JP2008242930A 2008-09-22 2008-09-22 Non-contact power feeding device Active JP5480483B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008242930A JP5480483B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device
KR1020117006742A KR101258003B1 (en) 2008-09-22 2009-09-18 Contactless power supply system
PCT/IB2009/006874 WO2010032116A1 (en) 2008-09-22 2009-09-18 Contactless power supply system
CN200980137080.2A CN102159423B (en) 2008-09-22 2009-09-18 Contactless power supply system
TW98131774A TWI397236B (en) 2008-09-22 2009-09-21 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242930A JP5480483B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2010075019A true JP2010075019A (en) 2010-04-02
JP5480483B2 JP5480483B2 (en) 2014-04-23

Family

ID=42206274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242930A Active JP5480483B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5480483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134374A (en) * 2010-12-22 2012-07-12 Fujitsu Ten Ltd Power transmission device, power reception device, and radio power transmission system
JP2013110916A (en) * 2011-11-24 2013-06-06 Panasonic Corp Contactless power feeding device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224601A (en) * 1987-03-13 1988-09-19 Hitachi Electronics Eng Co Ltd Non-contact power feeder
JPH08175233A (en) * 1994-12-26 1996-07-09 Toyota Autom Loom Works Ltd Noncontact power feeding system
JP2001016702A (en) * 1999-06-29 2001-01-19 Tsubakimoto Chain Co Noncontact feeder and pickup part used therefor
JP2002002335A (en) * 2000-06-27 2002-01-09 Shinko Electric Co Ltd Noncontact feeder device
JP2002095103A (en) * 2000-09-14 2002-03-29 Shinko Electric Co Ltd Non-contact feeder system
JP2002165302A (en) * 2000-11-27 2002-06-07 Murata Mach Ltd Tracked flatcar system
JP2003118671A (en) * 2001-08-09 2003-04-23 Sumitomo Wiring Syst Ltd Charging system for power-assisted small vehicle
US6621183B1 (en) * 1997-12-05 2003-09-16 Auckland Uniservices, Ltd. Supply of power to primary conductors
WO2005020405A1 (en) * 2003-08-20 2005-03-03 Sew-Eurodrive Gmbh & Co. Kg Arrangement for contactless, inductive transmission of electric power
JP2006141115A (en) * 2004-11-11 2006-06-01 Asyst Shinko Inc Power supplying apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224601A (en) * 1987-03-13 1988-09-19 Hitachi Electronics Eng Co Ltd Non-contact power feeder
JPH08175233A (en) * 1994-12-26 1996-07-09 Toyota Autom Loom Works Ltd Noncontact power feeding system
US6621183B1 (en) * 1997-12-05 2003-09-16 Auckland Uniservices, Ltd. Supply of power to primary conductors
JP2001016702A (en) * 1999-06-29 2001-01-19 Tsubakimoto Chain Co Noncontact feeder and pickup part used therefor
JP2002002335A (en) * 2000-06-27 2002-01-09 Shinko Electric Co Ltd Noncontact feeder device
JP2002095103A (en) * 2000-09-14 2002-03-29 Shinko Electric Co Ltd Non-contact feeder system
JP2002165302A (en) * 2000-11-27 2002-06-07 Murata Mach Ltd Tracked flatcar system
JP2003118671A (en) * 2001-08-09 2003-04-23 Sumitomo Wiring Syst Ltd Charging system for power-assisted small vehicle
WO2005020405A1 (en) * 2003-08-20 2005-03-03 Sew-Eurodrive Gmbh & Co. Kg Arrangement for contactless, inductive transmission of electric power
JP2006141115A (en) * 2004-11-11 2006-06-01 Asyst Shinko Inc Power supplying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134374A (en) * 2010-12-22 2012-07-12 Fujitsu Ten Ltd Power transmission device, power reception device, and radio power transmission system
JP2013110916A (en) * 2011-11-24 2013-06-06 Panasonic Corp Contactless power feeding device

Also Published As

Publication number Publication date
JP5480483B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
CN107004496B (en) Power receiving device and power transmission device
EP2862025A1 (en) Fixing device
US9667089B2 (en) Secondary coil module
KR20160031333A (en) ROGOWSKI COIL and current measurement sensor using the same
JP5480483B2 (en) Non-contact power feeding device
JP5297129B2 (en) Non-contact power feeding device
JP2009269579A (en) Noise reduction structure in electric wire
KR20070103052A (en) Transformer core comprising magnetic shielding
KR101258003B1 (en) Contactless power supply system
JP5276393B2 (en) Non-contact power feeding device
JP2007324380A (en) Common-mode choke coil for high-frequency waves
JP5635729B2 (en) Non-contact power feeding device
JP2014179543A (en) Non-contact power-feeding device and non-contact power-receiving device
JP5857204B2 (en) Non-contact power feeding device
CN109660033B (en) Power transfer unit
WO2012102008A1 (en) Coil unit used in noncontact electric-power-supplying system
US9806582B2 (en) Motor
JP4615425B2 (en) Matching transformer
JP2010074116A (en) Transformer
JP2017184486A (en) Transmission device
JP2008205105A (en) Electrostatic induction apparatus
JP2008091147A (en) Proximity sensor and core for the sensor
JP5179305B2 (en) Non-contact power feeding device
JP2007129721A (en) Power line communication system, and power source cable and plug therefor
KR920008489A (en) Inspection device by electromagnetic induction

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150