JP2010071825A - Passive infrared sensor - Google Patents

Passive infrared sensor Download PDF

Info

Publication number
JP2010071825A
JP2010071825A JP2008240103A JP2008240103A JP2010071825A JP 2010071825 A JP2010071825 A JP 2010071825A JP 2008240103 A JP2008240103 A JP 2008240103A JP 2008240103 A JP2008240103 A JP 2008240103A JP 2010071825 A JP2010071825 A JP 2010071825A
Authority
JP
Japan
Prior art keywords
detectors
detection
infrared sensor
detector
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240103A
Other languages
Japanese (ja)
Other versions
JP5143682B2 (en
Inventor
Kazuhiro Egawa
和浩 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumi Electric Co Ltd
Original Assignee
Atsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumi Electric Co Ltd filed Critical Atsumi Electric Co Ltd
Priority to JP2008240103A priority Critical patent/JP5143682B2/en
Publication of JP2010071825A publication Critical patent/JP2010071825A/en
Application granted granted Critical
Publication of JP5143682B2 publication Critical patent/JP5143682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a passive infrared sensor for adjacently disposing a plurality of detectors comprising infrared detecting elements and optical systems and having different alarm distances within a housing, individually setting the number of detections of each detector, and easily obtaining a high-accuracy detection performance, regardless of the alarm distance. <P>SOLUTION: The passive infrared sensor includes: the detectors disposed within the housing comprising a base and a cover, and having the optical systems and the infrared detecting elements; and a signal processing means for processing signals detected by the detectors. The detectors are composed of a plurality of the detectors comprising the optical systems and the infrared detecting elements, individually and adjacently disposed at an adjustable angle, and having different alarm distances. The signal processing means singularly processes the signals detected by a plurality of the detectors, and outputs a human body detection signal when a human body is detected by any detector. In a plurality of the detectors, the number of detections until the human detection signal is output can be individually set. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検知エリア内において人体の放射する赤外線を光学系と赤外線検知素子からなる検知器で検知可能な受動型赤外線センサに係わり、特に、筺体内に複数の検知器を配置した受動型赤外線センサに関する。   The present invention relates to a passive infrared sensor capable of detecting infrared rays radiated by a human body in a detection area with a detector comprising an optical system and an infrared detection element, and in particular, a passive infrared sensor in which a plurality of detectors are arranged in a housing. It relates to sensors.

一般的に、受動型赤外線センサ(以下、赤外線センサという)は、ベースやカバー等からなる筺体内に、焦電素子等の赤外線検知素子とミラーハウジング等の光学系からなる検知器を配置し、警戒エリア内から放射される赤外線(熱線)を光学系で集光しつつ赤外線検知素子で検知し、この検知信号を信号処理手段で処理して赤外線に係わる移動物体が人体か否かを判別し人体の場合に所定の検知信号を出力するようになっている。従来、この種の赤外線センサとしては、例えば特許文献1に開示されている、この赤外線センサは、筺体内に配置された放物線ミラーと該ミラーに対応して二つの焦電素子を配置し、焦電素子の間隔を検出軸間隔変更手段により変更させて、赤外線センサを長距離用から短距離用まで設定可能に構成したものである。
特許第3491270号公報
In general, a passive infrared sensor (hereinafter referred to as an infrared sensor) includes an infrared detection element such as a pyroelectric element and a detector including an optical system such as a mirror housing in a casing including a base and a cover. Infrared rays (heat rays) emitted from the warning area are collected by the optical system and detected by the infrared detection element, and this detection signal is processed by the signal processing means to determine whether the moving object related to the infrared rays is a human body. A predetermined detection signal is output in the case of a human body. Conventionally, as this type of infrared sensor, for example, this infrared sensor is disclosed in Patent Document 1, which includes a parabolic mirror disposed in a housing and two pyroelectric elements corresponding to the mirror. The distance between the electric elements is changed by the detection axis distance changing means, and the infrared sensor can be set from a long distance to a short distance.
Japanese Patent No. 3491270

しかしながら、このような赤外線センサにあっては、筺体内に放物線ミラー(光学系)とこのミラーに対応して二つの焦電素子を配置しているものの、光学系と焦電素子で形成される検知器が実質的に一つであるため、侵入者がセンサ近傍を高速で横切る場合に生じる熱変化からセンサ遠方を低速で横切る場合に生じる熱変化までを捉えようとすると、例えば熱変化の幅が赤外線センサにおける単一の特性で検知できる幅を超える場合に、赤外線センサの特性を中庸かあるいはいずれかに一方に有利な特性に固定せざるを得ず、警戒エリア全体にわたって一様に高い検知性能を得ることができない。   However, in such an infrared sensor, a parabolic mirror (optical system) and two pyroelectric elements corresponding to the mirror are arranged in the housing, but the optical sensor and the pyroelectric element are used. Since there is essentially one detector, if we try to capture from the heat change that occurs when an intruder crosses the vicinity of the sensor at high speed to the heat change that occurs when the intruder crosses the distance of the sensor at low speed, for example, the width of the heat change If the sensor exceeds the width that can be detected by a single characteristic of the infrared sensor, the characteristic of the infrared sensor has to be fixed to one that is moderate or advantageous, and it is uniformly high throughout the warning area. Unable to get performance.

すなわち、検知器自体が一つの前記赤外線センサの場合、警戒エリアを形成する各検知ゾーンが水平面においてセンサからの距離に従い扇形に広くなっていることから、センサ近傍においては移動物体が少ない移動量で複数の検知ゾーンを横切り易く、例えば移動物体としての小動物が近傍の複数の検知ゾーンを横切った場合にこれを人体と検知して検知信号を出力する誤報が生じ易い。   That is, when the detector itself is a single infrared sensor, each detection zone forming a warning area is widened in a fan shape according to the distance from the sensor on the horizontal plane, so that there is a small amount of moving objects in the vicinity of the sensor. It is easy to cross a plurality of detection zones. For example, when a small animal as a moving object crosses a plurality of nearby detection zones, it is easy to generate a false report of detecting this as a human body and outputting a detection signal.

そこで、この誤報を低減させるために、検知出力を行うまでの検知器による検知回数を複数回に設定する方法が知られているが、この方法を近傍と遠方の検知ゾーンの検知を同一の検知器で行う前記赤外線センサに適用すると、近傍の検知ゾーンを横切る小動物による誤報は低減できるものの、遠方の検知ゾーンを横切る侵入者に対しても複数回検知した後に検知信号が出力される状態となり、侵入者の移動経路によっては侵入者が検知され難くなり、警戒距離に係わらず高精度な検知性能を得ることが困難となる。   Therefore, in order to reduce this false alarm, there is a known method of setting the number of detections by the detector until the detection output is made multiple times, but this method is used to detect the detection zone in the vicinity and the distant detection zone. When applied to the infrared sensor that is used in a vessel, the false alarms caused by small animals crossing the nearby detection zone can be reduced, but a detection signal is output after multiple detections for an intruder crossing the remote detection zone, Depending on the movement path of the intruder, it is difficult to detect the intruder, and it is difficult to obtain highly accurate detection performance regardless of the warning distance.

本発明は、このような事情に鑑みてなされたもので、その目的は、赤外線検知素子と光学系を有して警戒距離が異なる検知器を筺体内に近接して複数配置すると共に、各検知器の検知回数を個別に設定することにより、警戒距離に係わらず高精度な検知性能を容易に得ることが可能な受動型赤外線センサを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to arrange a plurality of detectors having an infrared detection element and an optical system and having different warning distances close to the housing, and to detect each detection. It is an object of the present invention to provide a passive infrared sensor capable of easily obtaining highly accurate detection performance regardless of the guard distance by individually setting the number of times of detection of the device.

かかる目的を達成すべく、本発明のうち請求項1に記載の発明は、ベースとカバー等からなる筺体内に配置されて、複数の検知ゾーンからなる警戒エリア内の赤外線を集光する光学系及び該光学系で集光した赤外線を検知する赤外線検知素子を有する検知器と、該検知器で検知された検知信号を処理する信号処理手段と、を備えた受動型赤外線センサにおいて、前記検知器は、それぞれ前記光学系と赤外線検知素子を有して各々個別に角度調整可能に近接配置された警戒距離の異なる複数の検知器からなり、前記信号処理手段は、前記複数の検知器で検知された各信号を単独で処理していずれかの検知器で人体を検知した際に人体検知信号を出力可能であると共に、前記複数の検知器は、前記人体検知信号を出力するまでの検知回数を個別に設定可能であることを特徴とする。   In order to achieve this object, the invention described in claim 1 of the present invention is an optical system that is arranged in a casing made up of a base and a cover and collects infrared rays in a warning area made up of a plurality of detection zones. And a passive infrared sensor comprising: a detector having an infrared detection element for detecting infrared light collected by the optical system; and a signal processing means for processing a detection signal detected by the detector. Comprises a plurality of detectors each having the optical system and an infrared detecting element and arranged in close proximity to each other so as to be individually adjustable in angle, and the signal processing means is detected by the plurality of detectors. When the human body is detected by any one of the detectors and the human body detection signal can be output, the plurality of detectors can detect the number of detection times until the human body detection signal is output. Individually Characterized in that it is a constant possible.

また、請求項2に記載の発明は、前記信号処理手段が、該信号処理手段に接続された設定部に設けた設定スイッチの操作により、前記複数の検知器の検知回数を個別に設定可能であることを特徴とする。   In the invention according to claim 2, the signal processing means can individually set the number of detections of the plurality of detectors by operating a setting switch provided in a setting unit connected to the signal processing means. It is characterized by being.

本発明のうち請求項1に記載の発明によれば、光学系と赤外線検知素子をそれぞれ有して各々角度調整可能で警戒距離が異なる複数の検知器が筺体内に近接配置され、この複数の検知器から人体の検知信号が信号処理手段で単独で処理されると共に、各検知器の人体検知信号を出力するまでの検知回数が個別に設定されるため、警戒距離の異なる各検知器の検知回数を異ならせることができ、例えば近傍の検知ゾーンの小動物による誤報を低減させつつ、遠方の検知ゾーンの侵入者(人体)を確実に検知できる等、警戒距離に係わらず高精度な検知性能を容易に得ることが可能となる。   According to the invention described in claim 1 of the present invention, a plurality of detectors each having an optical system and an infrared detection element, each of which is adjustable in angle and has a different warning distance, are arranged close to each other in the housing. Since the detection signal of the human body from the detector is processed independently by the signal processing means and the number of detections until the detection of the human body detection signal of each detector is individually set, detection of each detector with different warning distances The number of times can be varied, for example, it is possible to reliably detect an intruder (human body) in a remote detection zone while reducing false alarms due to small animals in the detection zone in the vicinity. It can be easily obtained.

また、請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、信号処理手段に接続された設定部に設けた設定スイッチの操作により、信号処理部に複数の検知器の検知回数が個別に設定されるため、取り付ける環境に合わせた検知回数の設定作業が簡単に行えると共に、赤外線センサの設置やメンテナンス作業を容易に行うことができる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, a plurality of detections are detected in the signal processing unit by operating a setting switch provided in the setting unit connected to the signal processing means. Since the number of times of detection of the device is individually set, it is possible to easily set the number of times of detection according to the installation environment, and it is possible to easily perform installation and maintenance work of the infrared sensor.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1〜図7は、本発明に係わる受動型赤外線センサの一実施形態を示し、図1がその斜視図、図2がその内部構成を示す概念図、図3が制御系のブロック図、図4及び図5が動作の一例を示すフローチャート、図6及び図7が警戒エリアを示す平面図及び側面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 7 show an embodiment of a passive infrared sensor according to the present invention, FIG. 1 is a perspective view thereof, FIG. 2 is a conceptual diagram showing its internal configuration, and FIG. 3 is a block diagram of a control system. 4 and 5 are a flowchart showing an example of the operation, and FIGS. 6 and 7 are a plan view and a side view showing a warning area.

図1に示すように、受動型赤外線センサ1(赤外線センサ1という)は、警戒エリアの天井や壁面に取り付けられる円盤状のベース2aと、このベース2aを覆うように着脱可能に取り付けられた半球状のカバー2bと、前記ベース2aやカバー2bを互いに着脱可能に係止させるリング状の係止部材2c等からなる筺体2を備えている。   As shown in FIG. 1, a passive infrared sensor 1 (referred to as infrared sensor 1) includes a disc-shaped base 2a that is attached to the ceiling or wall surface of a warning area, and a hemisphere that is detachably attached to cover the base 2a. And a housing 2 comprising a ring-shaped locking member 2c for detachably locking the base 2a and the cover 2b to each other.

そして、この赤外線センサ1は、図2に示すように、前記円盤状のベース2a上に、警戒距離が近傍用の検知器3と中間用の検知器4及び遠方用の検知器5からなる3つの検知器3〜5が、それぞれ互いに近接して略三角形の頂点に位置するようにして配置されている。前記検知器3は、光学系としてのミラー3aと赤外線検知素子としての焦電素子3b及び後述する増幅・フィルタ部3cを有し、また、前記検知器4、5は、光学系としてのミラーハウジング4a、5aと赤外線検知素子としての焦電素子4b、5b及び後述する増幅・フィルタ部4c、54cを有している。   As shown in FIG. 2, the infrared sensor 1 includes a detector 3 for the vicinity, an intermediate detector 4, and a remote detector 5 on the disk-shaped base 2 a. The two detectors 3 to 5 are arranged so as to be close to each other and positioned at the apex of the substantially triangle. The detector 3 includes a mirror 3a as an optical system, a pyroelectric element 3b as an infrared detection element, and an amplification / filter unit 3c described later, and the detectors 4 and 5 are mirror housings as an optical system. 4a and 5a, pyroelectric elements 4b and 5b as infrared detection elements, and amplification / filter sections 4c and 54c described later.

このとき、検知器4と検知器5は、ベース2aの直径方向の一端側寄りに左右方向に併設されており、各検知器4、5の前記焦電素子4b、5bは素子基板7上に実装されている。また、検知器4、5の前記ミラーハウジング4a、5aは、前記素子基板7の両端に連結された一対の側壁8aと、この側壁8aの後端部に一体形成された底壁8b等を有し、その内面には複数のミラー8cが形成されている。さらに、前記ミラーハウジング4a、5aは、その側壁8aがベース2aに固定された一対の支持板9に回動可能に取り付けられることにより、各検知器4、5のミラー8cの向きがそれぞれ所定方向に設定されて、ミラー8cで反射(集光)された赤外線(熱線)が各焦電素子4b、5bに入射されるように構成されている。   At this time, the detector 4 and the detector 5 are provided side by side in the left-right direction near one end in the diameter direction of the base 2a, and the pyroelectric elements 4b and 5b of the detectors 4 and 5 are on the element substrate 7. Has been implemented. The mirror housings 4a and 5a of the detectors 4 and 5 have a pair of side walls 8a connected to both ends of the element substrate 7, a bottom wall 8b integrally formed at the rear end portion of the side walls 8a, and the like. A plurality of mirrors 8c are formed on the inner surface. Further, the mirror housings 4a and 5a are rotatably attached to a pair of support plates 9 whose side walls 8a are fixed to the base 2a, so that the directions of the mirrors 8c of the detectors 4 and 5 are in a predetermined direction. The infrared rays (heat rays) reflected (condensed) by the mirror 8c are made incident on the pyroelectric elements 4b and 5b.

また、前記検知器3は、ベース2上の前記検知器4、5の上方位置(図2において左下方位置)となる前記直径方向の他端側寄りに配置され、ベース2a上に複数のミラーからなる前記ミラー3aが角度調整可能もしくは所定角度で配置されると共に、このミラー3aの所定距離前方の素子基板6上に、前記増幅・フィルタ部3cが形成されると共に前記焦電素子3bが実装されている。   The detector 3 is disposed near the other end in the diametrical direction, which is an upper position (lower left position in FIG. 2) of the detectors 4 and 5 on the base 2, and a plurality of mirrors are provided on the base 2a. The mirror 3a is adjustable in angle or arranged at a predetermined angle, and the amplification / filter part 3c is formed on the element substrate 6 ahead of the mirror 3a by a predetermined distance, and the pyroelectric element 3b is mounted. Has been.

なお、図示はしないが、ベース2aの所定位置には、素子基板6、7上に実装された焦電素子3b、4b、5bで検知された信号を処理する後述する信号処理部11が形成された信号処理基板が配置されており、この信号処理基板の信号処理部11から検知信号等が無線や有線で図示しないコントローラに送信されるようになっている。また、前記焦電素子3b、4b、5bとしては、例えば2つの焦電素子を互いに逆極性で直列に差動接続し、プラス(+)極性の焦電素子の出力信号と、マイナス(−)極性の焦電素子の出力信号との合成出力が得られる多素子多出力型が使用されている。   Although not shown, a signal processing unit 11 (to be described later) that processes signals detected by the pyroelectric elements 3b, 4b, and 5b mounted on the element substrates 6 and 7 is formed at a predetermined position of the base 2a. A signal processing board is arranged, and a detection signal or the like is transmitted from a signal processing unit 11 of the signal processing board to a controller (not shown) wirelessly or by wire. Further, as the pyroelectric elements 3b, 4b, and 5b, for example, two pyroelectric elements are differentially connected in series with opposite polarities, and an output signal of a positive (+) polarity pyroelectric element and a minus (-) A multi-element multi-output type capable of obtaining a combined output with an output signal of a polar pyroelectric element is used.

図3は、前記赤外線センサ1の制御系のブロック図を示している。以下、これについて説明する。3つの検知器3〜5は、例えば素子基板6、7上に形成された前記増幅・フィルタ部3c〜5cを介して前記信号処理基板上の信号処理部11(信号処理手段)にそれぞれ接続されている。前記増幅・フィルタ部3c〜5cは、各焦電素子3b、4b、5bで検知された検知信号を増幅すると共に、この検知信号を濾過して熱源の移動に関する検知信号のみを通過させるもので、その増幅率やフィルタの周波数特性は、例えば各検知器3〜5に応じて予め所定に設定されている。   FIG. 3 shows a block diagram of a control system of the infrared sensor 1. This will be described below. The three detectors 3 to 5 are respectively connected to the signal processing unit 11 (signal processing means) on the signal processing substrate via the amplification / filter units 3c to 5c formed on the element substrates 6 and 7, for example. ing. The amplification / filter units 3c to 5c amplify the detection signals detected by the pyroelectric elements 3b, 4b, and 5b, and filter only the detection signals related to the movement of the heat source by filtering the detection signals. The amplification factor and the frequency characteristic of the filter are set in advance according to the detectors 3 to 5, for example.

また、前記信号処理部11は、例えばマイコン等により形成されて判定部11aや記憶部11b等を有し、その入力側には設定部12が接続されている。この設定部12は、各検知器3〜5で検知された検知信号の入力を無効もしくは有効とするための例えば3つの設定スイッチ12a〜12cと、各検知器3〜5の検知回数を設定する設定スイッチ12dと、各検知器3〜5の感度を設定する設定スイッチ12eと、各増幅・フィルタ部3c〜5cの周波数特性を設定する設定スイッチ12f、及び検知信号と比較されて人体か否かを判定するための閾値(基準値)を設定する設定スイッチ12g等を有している。   The signal processing unit 11 is formed of, for example, a microcomputer and has a determination unit 11a, a storage unit 11b, and the like, and a setting unit 12 is connected to the input side thereof. The setting unit 12 sets, for example, three setting switches 12a to 12c for invalidating or validating input of detection signals detected by the detectors 3 to 5, and the number of detections of the detectors 3 to 5. The setting switch 12d, the setting switch 12e for setting the sensitivity of each detector 3-5, the setting switch 12f for setting the frequency characteristics of each amplification / filter unit 3c-5c, and whether the human body is compared with the detection signal A setting switch 12g for setting a threshold value (reference value) for determining whether or not.

また、信号処理部11の出力側には、判定部11aで判定した人体検知信号をコントローラに送信するための送信部13aや、設定部12による設定状態を例えばコード表示可能な表示部13b等からなる出力部13が接続されている。さらに、前記設定スイッチ12a〜12c等の操作に応じた所定の信号が、信号処理部11から増幅・フィルタ部3c〜5cに出力されるようになっている。なお、前記設定部12や出力部13の形態は、図示した例に限定されず、例えば設定部12に入力用のキーボードを配置する等、適宜の形態を使用することができる。   Further, on the output side of the signal processing unit 11, from a transmission unit 13a for transmitting the human body detection signal determined by the determination unit 11a to the controller, a setting state by the setting unit 12, for example, a display unit 13b capable of displaying a code The output unit 13 is connected. Further, a predetermined signal corresponding to the operation of the setting switches 12a to 12c and the like is output from the signal processing unit 11 to the amplification / filter units 3c to 5c. The configuration of the setting unit 12 and the output unit 13 is not limited to the illustrated example. For example, an appropriate configuration such as arranging an input keyboard on the setting unit 12 can be used.

次に、このように構成された信号処理部11の動作の一例を、図4及び図5のフローチャートに基づいて説明する。なお、図4及び図5に示すフローチャートは信号処理部11の前記記憶部11bに記憶されたプログラムに従い自動的に実行される。先ず、各検知器3〜5の検知回数の設定は、図4に示すようにして行われる。すなわち、例えば赤外線センサ1を警戒場所の部屋の天井に取り付けて、該赤外線センサ1の警戒エリアの設定等の各種設定を行うために、赤外線センサ1の電源を投入すると、プログラムが開始(S100)され、前記設定部12の検知回数を設定する設定スイッチ12dがオンか否かが判断(S101)される。この判断S101は「YES」になるまで繰り返される。   Next, an example of operation | movement of the signal processing part 11 comprised in this way is demonstrated based on the flowchart of FIG.4 and FIG.5. 4 and 5 are automatically executed according to the program stored in the storage unit 11b of the signal processing unit 11. First, the detection times of the detectors 3 to 5 are set as shown in FIG. That is, for example, when the infrared sensor 1 is attached to the ceiling of a room at a warning place and various settings such as setting of a warning area of the infrared sensor 1 are performed, the program starts when the power of the infrared sensor 1 is turned on (S100). Then, it is determined whether or not the setting switch 12d for setting the number of detections by the setting unit 12 is ON (S101). This determination S101 is repeated until “YES”.

そして、設定部12の設定スイッチ12dがオン操作されると、判断S101で「YES」となり、検知器3の検知回数n1が設定(S102)され、次に検知器4の検知回数n2が設定(S103)され、さらに検知器5の検知回数n3が設定(S104)される。これらの検知回数n1〜n3の設定は、例えば信号処理部11の記憶部11bに予め記憶されている回数を選択したり、あるいは検知回数n1〜n3を図示しない設定部12に設けたキーボード等を使用して直接入力することで、信号処理部11に設けられた図示しないカウンタに設定されるが、その具体的な数値(回数)は、警戒エリアの大きさ等に応じて予め実験等により求めたデータを使用することが好ましい。   When the setting switch 12d of the setting unit 12 is turned on, “YES” is determined in the determination S101, the detection number n1 of the detector 3 is set (S102), and then the detection number n2 of the detector 4 is set ( S103) and the number of detections n3 of the detector 5 is set (S104). These detection times n1 to n3 are set, for example, by selecting the number of times stored in advance in the storage unit 11b of the signal processing unit 11, or by using a keyboard or the like provided in the setting unit 12 (not shown) for the detection times n1 to n3. It is set to a counter (not shown) provided in the signal processing unit 11 by directly using it, but the specific numerical value (number of times) is obtained in advance by experiments or the like according to the size of the warning area. It is preferable to use data.

ステップS102〜104で3つの検知器3〜5の検知回数n1〜n3が設定されたら、これらの検知回数n1〜n3がOKか否かが判断(S105)され、この判断S105で「YES」の場合、すなわち3つの検知器3〜5の検知回数n1〜n3が予め設定されいる範囲内の回数に設定されている場合は、各検知器3〜5の検知回数n1〜n3を記憶部11bに記憶(106)させて、一連をプログラムを終了(S107)する。   When the detection times n1 to n3 of the three detectors 3 to 5 are set in steps S102 to S104, it is determined whether or not these detection times n1 to n3 are OK (S105), and “YES” is determined in this determination S105. In this case, that is, when the number of detections n1 to n3 of the three detectors 3 to 5 is set to a number within a preset range, the number of detections n1 to n3 of each detector 3 to 5 is stored in the storage unit 11b. The program is stored (106), and the program is terminated (S107).

一方、判断S105で「NO」の場合、すなわち、各検知器3〜5の検知回数n1〜n3が例えば予め設定されている範囲の適正な回数でない場合は、ステップS102〜105で設定した回数をリセット(S108)してステップS101に戻り、該ステップ以降を実行して各検知器3〜5の検知回数n1〜n3を再び設定する。なお、ステップS105とステップS108を省略し、設定した回数n1〜n3を設定したらそれをそのまま記憶して終了させることもできる。   On the other hand, if “NO” in the determination S105, that is, if the number of detections n1 to n3 of the detectors 3 to 5 is not an appropriate number in a preset range, for example, the number set in the steps S102 to S105 is used. After resetting (S108), the process returns to step S101, and the subsequent steps are executed to set again the detection times n1 to n3 of the detectors 3 to 5. Note that step S105 and step S108 may be omitted, and if the set number of times n1 to n3 is set, it can be stored as it is and terminated.

そして、前記ステップS106で各検知器3〜5の検知回数n1〜n3が設定されると、信号処理回路11は、図5に示すようにして、人体検知信号Sを出力する。なお、図5は、主に検知器3について説明するが、検知器4、5についても同様である。図5に示すように、赤外線センサ1が所定位置に設置されてプログラムが開始(S200)されると、検知器3(もしくは検知器4、5)から検知信号の入力が有りか否かが判断(S201)される。   When the detection times n1 to n3 of the detectors 3 to 5 are set in step S106, the signal processing circuit 11 outputs the human body detection signal S as shown in FIG. FIG. 5 mainly describes the detector 3, but the same applies to the detectors 4 and 5. As shown in FIG. 5, when the infrared sensor 1 is installed at a predetermined position and the program is started (S200), it is determined whether or not a detection signal is input from the detector 3 (or the detectors 4 and 5). (S201).

この判断S201で「YES」の場合、すなわち、警戒エリア内の移動物体が検知器3の複数の検知ゾーンのうちの一つを横切り検知信号のレベルが前記閾値以上となった場合は、前記カウンタがカウントアップ(S202)され、そのカウント数が前記検知回数n1(もしくはn2、n3)か否かが判断(S203)される。この判断S203で使用される検知回数n1は、前記ステップS102で設定された回数であり、ステップS202におけるカウント数が検知回数n1の場合は、判断S203で「YES」となり、人体検知信号Sを出力(S207)して一連のプログラムが終了(S209)する。   If “YES” in this determination S201, that is, if the moving object in the warning area crosses one of the plurality of detection zones of the detector 3 and the level of the detection signal is equal to or higher than the threshold, the counter Is counted up (S202), and it is determined whether the count number is the detection number n1 (or n2, n3) (S203). The number of detections n1 used in this determination S203 is the number set in step S102. If the number of detections in step S202 is the number of detections n1, “YES” is determined in determination S203, and the human body detection signal S is output. (S207) and a series of programs are ended (S209).

一方、前記判断S201で「NO」の場合、すなわち検知信号の入力がない場合は、例えば信号処理部11に設けられた図示しないタイマが動作中か否かが判断(S204)され、この判断S204で「YES」の場合は、タイマ時間内か否かが判断(S205)される。この判断S205で「NO」の場合は、カウンタをリセットすると共にタイマをリセット(S206)して判断S201に戻り、検知信号の入力を待つことになる。また、判断S204で「NO」の場合、及び判断S205で「YES」の場合も判断S201に戻る。また、前記判断S203で「NO」の場合、すなわち、最初の検知信号が入力されカウント数が検知回数n1に達していない場合は、タイマをスタート(S208)させて、判断S201に戻る。   On the other hand, if “NO” in the determination S201, that is, if no detection signal is input, it is determined whether a timer (not shown) provided in the signal processing unit 11 is operating (S204), for example. If “YES”, it is determined whether it is within the timer time (S205). If “NO” in this determination S205, the counter is reset and the timer is reset (S206), and the process returns to the determination S201 to wait for the input of the detection signal. Also, if “NO” in the determination S204 and “YES” in the determination S205, the process returns to the determination S201. If “NO” in the determination S203, that is, if the first detection signal is input and the count number has not reached the detection number n1, the timer is started (S208), and the process returns to the determination S201.

つまり、これらのフローチャートによれば、各検知器3〜5の検知回数n1〜n3の設定は、例えば赤外線センサ1の設置時に、検知回数設定用の設定スイッチ12dをオン操作することにより、各検知器3〜5毎の検知回数n1〜n3がそれぞれ個別に設定されて記憶される。そして、赤外線センサ1を設置した警戒状態においては、各検知器3〜5により検知信号が警戒距離に対応して予め記憶された検知回数n1〜n3検知された際に、人体検知信号Sが出力部13からコントローラに出力されることになる。   That is, according to these flowcharts, the detection times n1 to n3 of the detectors 3 to 5 are set by turning on the setting switch 12d for setting the detection frequency when the infrared sensor 1 is installed, for example. The number of detections n1 to n3 for each of the devices 3 to 5 is individually set and stored. In the alert state in which the infrared sensor 1 is installed, the human body detection signal S is output when the detectors 3 to 5 detect the detection number n1 to n3 stored in advance corresponding to the alert distance. This is output from the unit 13 to the controller.

図6は、前記赤外線センサ1による警戒エリアの一例を示している。図6(a)(b)に示すように、警戒距離が近傍用の検知器3は、水平面において検知ゾーンA1〜A3と垂直面において検知ゾーンaを有し、また、警戒距離が中間用の検知器4は、水平面において検知ゾーンB1〜B7と垂直面において検知ゾーンbを有している。さらに、警戒距離が遠方用の検知器5は、水平面において検知ゾーンC1〜C7と垂直面において検知ゾーンcを有している。そして、これらの各検知ゾーンによって、赤外線センサ1に立体警戒型の警戒エリアが形成されている。   FIG. 6 shows an example of a warning area by the infrared sensor 1. As shown in FIGS. 6 (a) and 6 (b), the detector 3 for the vicinity of the warning distance has the detection zones A1 to A3 in the horizontal plane and the detection zone a in the vertical plane, and the warning distance is for intermediate use. The detector 4 has detection zones B1 to B7 on the horizontal plane and a detection zone b on the vertical plane. Furthermore, the detector 5 for a distant warning distance has detection zones C1 to C7 on the horizontal plane and a detection zone c on the vertical plane. A three-dimensional warning type warning area is formed in the infrared sensor 1 by each of these detection zones.

なお、本発明の赤外線センサ1の警戒エリアは、図6に示す立体警戒型に限らず、例えば図7に示す面警戒型の警戒エリアにも適用することができる。この面警戒型の警戒エリアは、図7(b)に示すように、垂直面において検知ゾーンd1〜d6を有しており、これらの各検知ゾーンd1〜d6は、図7(a)に示すように、水平面における検知ゾーンD1〜D6が1本程度にまとまった状態となっている。この面警戒型の警戒エリアの場合は、警戒距離が長い場合に使用される。   The warning area of the infrared sensor 1 of the present invention is not limited to the three-dimensional warning type shown in FIG. As shown in FIG. 7 (b), the surface warning type warning area has detection zones d1 to d6 in the vertical plane, and these detection zones d1 to d6 are shown in FIG. 7 (a). As described above, the detection zones D1 to D6 on the horizontal plane are in a state of about one. In the case of this area alert type alert area, it is used when the alert distance is long.

このように、上記実施形態の赤外線センサ1によれば、ミラー3aやミラーハウジング4a、5aと焦電素子3b、4b、5b等を有する複数の検知器3〜5が筺体2内に近接配置されると共に、この複数の検知器3〜5から人体検知信号が出力されるまでの各検知器3〜5の検知回数n1〜n3が信号処理部11により個別に設定されるため、警戒距離の異なる各検知器3〜5の検知回数n1〜n3を異ならせることができ、例えば近傍の検知ゾーンの小動物による誤報を低減させつつ、遠方の検知ゾーンの侵入者(人体)を確実に検知できる等、赤外線センサ1に警戒距離に係わらず高精度な検知性能を容易に得ることが可能となる。   Thus, according to the infrared sensor 1 of the said embodiment, the some detectors 3-5 which have the mirror 3a, the mirror housings 4a, 5a, the pyroelectric elements 3b, 4b, 5b, etc. are arrange | positioned closely in the housing 2. FIG. In addition, since the number of detections n1 to n3 of each of the detectors 3 to 5 until the human body detection signal is output from the plurality of detectors 3 to 5 is individually set by the signal processing unit 11, the warning distances are different. The number of detections n1 to n3 of each detector 3 to 5 can be made different, for example, it is possible to reliably detect an intruder (human body) in a remote detection zone while reducing false alarms due to small animals in the detection zone in the vicinity, etc. The infrared sensor 1 can easily obtain highly accurate detection performance regardless of the alert distance.

また、信号処理部11に接続された設定部12に設けた設定スイッチ12dの操作により、信号処理部11に3つの検知器3〜5の検知回数n〜n3を個別に設定することができるため、検知回数n1〜n3の設定作業が簡単に行えると共に、赤外線センサ1の設置やメンテナンス作業を容易に行うことができる。   In addition, the number of detections n to n3 of the three detectors 3 to 5 can be individually set in the signal processing unit 11 by operating the setting switch 12d provided in the setting unit 12 connected to the signal processing unit 11. In addition, the setting operation of the detection times n1 to n3 can be easily performed, and the installation and maintenance operation of the infrared sensor 1 can be easily performed.

また、設定部12の設定スイッチ12a〜12cの操作により、3つの検知器3〜5で検知された各検知信号が信号処理部11により個別に処理されるため、各検知器3〜5の感度や増幅・フィルタ部3c〜5cの周波数特性等を各検知器3〜5毎に設定することにより、赤外線センサ1の検知距離が短い近傍の検知ゾーンと検知距離が長い遠方の検知ゾーンにおける検知性能のバランスの崩れを抑えることができて、小動物に対する検知性能を抑えつつ警戒距離に係わらず高精度な警戒エリアを容易に得ることが可能となる。   Further, since the detection signals detected by the three detectors 3 to 5 are individually processed by the signal processing unit 11 by operating the setting switches 12a to 12c of the setting unit 12, the sensitivity of the detectors 3 to 5 is determined. And the frequency characteristics of the amplifying / filter units 3c to 5c are set for each of the detectors 3 to 5, so that the detection performance in the detection zone in the vicinity where the detection distance of the infrared sensor 1 is short and the detection zone in the distance where the detection distance is long Can be suppressed, and a highly accurate alert area can be easily obtained regardless of the alert distance while suppressing the detection performance for small animals.

また、赤外線センサ1の警戒エリアとして、水平面においてA1〜A3、B1〜B7、C1〜C7の各検知ゾーンで垂直面においてa〜cの各検知ゾーンからなる立体警戒型の警戒エリアに適用し、側面視で扇形の複数の検知ゾーンに対応して各検知器3〜5を配置すれば、警戒距離に係わらず侵入者(人体)から放射される赤外線を確実に検知できる。また、垂直面においてd1〜d6を有しこれらが水平面において1本程度にまとまった面警戒型の警戒エリアに適用し、警戒距離が長いセンサ近傍からセンサ遠方までの各検知ゾーンに対応して複数の検知器3〜5を配置すれば、侵入者から放射される赤外線を確実に検知でき、赤外線センサ1の検知性能を一層高めることができる。   In addition, as a warning area of the infrared sensor 1, it is applied to a three-dimensional warning type warning area composed of detection zones A1 to A3, B1 to B7, C1 to C7 in the horizontal plane and detection zones a to c in the vertical plane. If each detector 3-5 is arrange | positioned corresponding to the fan-shaped several detection zone by side view, the infrared rays radiated | emitted from an intruder (human body) can be detected reliably irrespective of a warning distance. In addition, d1 to d6 are provided on the vertical plane, and these are applied to a surface warning type warning area in which about one is arranged on the horizontal plane. If the detectors 3 to 5 are arranged, the infrared rays emitted from the intruder can be reliably detected, and the detection performance of the infrared sensor 1 can be further enhanced.

また、3つの検知器3〜5の警戒距離が近傍、中間、遠方に設定されて筺体2の円盤状のベース2a上に略三角形状に近接して配置されているため、警戒距離の異なる3つの検知器3〜5で各検知ゾーンを検知できて、一層高精度な警戒エリアを得ることができると共に、3つ検知器3〜5の筺体2内における配置を効率的に行うことができて、小型で高性能な赤外線センサ1を得ることが可能となる。さらに、検知器3にミラー3aが使用され、検知器4、5にミラーハウジング4a、5aが使用されるため、警戒距離がそれぞれ異なる各検知器3〜5に最適な光学系を使用できて、各検知器3〜5における検知性能をより一層高めることができると共に、赤外線センサ1自体のコストアップを抑えることができる。   Further, since the warning distances of the three detectors 3 to 5 are set near, middle, and far and are arranged in a substantially triangular shape on the disc-like base 2a of the housing 2, the warning distances 3 differ. Each detector zone can be detected by the three detectors 3 to 5, and a more accurate warning area can be obtained, and the arrangement of the three detectors 3 to 5 in the housing 2 can be performed efficiently. Thus, a small and high-performance infrared sensor 1 can be obtained. Furthermore, since the mirror 3a is used for the detector 3 and the mirror housings 4a and 5a are used for the detectors 4 and 5, an optimal optical system can be used for each of the detectors 3 to 5 having different warning distances. While the detection performance in each detector 3-5 can be improved further, the cost increase of infrared sensor 1 itself can be suppressed.

また、設定部12の設定スイッチ12a〜12cの操作により、3つの検知器3〜5の各検知信号が個別に処理可能であったり、設定スイッチ12e、12f等の操作により、感度や周波数特性を各検知器3〜5毎に設定できるため、比較的警戒距離が短い範囲を警戒したい場合は検知器5を無効(使用不可)としたり、赤外線センサ1近傍にFAX等の誤報要因となる熱源がある場合には検知器3を無効とする等、警戒エリアの警戒状態の形態に合わせて3つの検知器3〜5を適宜に選択使用できて、各種形態の警戒エリアに的確かつ容易に対応することが可能となる。   Further, the detection signals of the three detectors 3 to 5 can be individually processed by operating the setting switches 12a to 12c of the setting unit 12, or the sensitivity and frequency characteristics can be adjusted by operating the setting switches 12e and 12f. Since it can be set for each of the detectors 3 to 5, when it is desired to be alert for a range with a relatively short alert distance, the detector 5 is disabled (unusable), or there is a heat source that causes false alarms such as FAX near the infrared sensor 1. In some cases, such as disabling the detector 3, the three detectors 3 to 5 can be appropriately selected and used in accordance with the form of the alert state of the alert area, so that various types of alert areas can be handled accurately and easily. It becomes possible.

またさらに、赤外線センサ1に設けられる各検知器3〜5により警戒エリアが分離状態でカバーされるため、警戒距離の設定のため検知器3〜5の向きを調整する際に、センサ近傍の検知ゾーンに与える影響の考慮が不要となるほか、検知器3〜5がそれぞれ受け持つ検知ゾーンが従来のような一体型の光学系の検知器の場合に比較して解りやすいため、警戒エリア内にFAX等の誤報要因となる熱源がありその部分の検知ゾーンをマスキングするような場合において、その作業を簡単に行うことができ、これらのことから、赤外線センサ1の設置作業やメンテナンス作業の作業能率の向上を図ることができる。   Furthermore, since the warning area is covered in a separated state by the detectors 3 to 5 provided in the infrared sensor 1, when adjusting the direction of the detectors 3 to 5 for setting the warning distance, detection in the vicinity of the sensor is performed. In addition to eliminating the need to consider the effects on the zone, the detection zones each of the detectors 3 to 5 are easier to understand than in the case of a conventional integrated optical system detector. When there is a heat source that causes false alarms such as masking the detection zone of the part, the work can be easily performed. From these, the work efficiency of the installation work and maintenance work of the infrared sensor 1 can be improved. Improvements can be made.

ここで、本発明に係わる前記赤外線センサ1のように、検知器が警戒距離の遠・近に対応して複数に分離されている遠近分離方式の赤外線センサ1の特徴を、従来の検知器が一つの一体型の赤外線センサと比較しつつ図8及び図9等を参照して説明する。なお、図8及び図9は、図7のような検知ゾーンを持つ赤外線センサについて、本発明に係わる方式の警戒距離調整方法と従来方式の警戒距離調整方法で調整した場合の検知ゾーンの状態を示している。図8に示すように、遠近分離方式の赤外線センサ1の場合は、例えば面警戒型の警戒エリアを形成する各検知ゾーンd1〜d4の幅に相対的な変化がほとんどなく、警戒エリアの外周を規制するために遠方の検知器の角度を変更しようとすると、遠方の警戒ゾーンd4の幅はd1−1、d4−2のように小さくなるが、近傍の検知ゾーンd1、d2等についてはほとんど変化させる必要がない。   Here, like the infrared sensor 1 according to the present invention, the feature of the infrared sensor 1 of the perspective separation type in which the detector is separated into a plurality corresponding to the distance of the warning distance is as follows. This will be described with reference to FIGS. 8 and 9 and the like while comparing with one integrated infrared sensor. 8 and 9 show the state of the detection zone when the infrared sensor having the detection zone as shown in FIG. 7 is adjusted by the warning distance adjustment method of the method according to the present invention and the warning distance adjustment method of the conventional method. Show. As shown in FIG. 8, in the case of the perspective separation type infrared sensor 1, for example, there is almost no relative change in the width of each detection zone d <b> 1 to d <b> 4 that forms a surface warning type warning area, and the outer periphery of the warning area is When trying to change the angle of the distant detector for regulation, the width of the distant warning zone d4 becomes small like d1-1, d4-2, but almost changes in the nearby detection zones d1, d2, etc. There is no need to let them.

一方、図9に示す従来の赤外線センサの場合は、各検知ゾーンe1〜e6の幅に大きな相対的変化が生じ、近傍の検知ゾーンe1等が侵入者に対して大きくなりすぎる一方、遠方の検知ゾーンe6等は侵入者に対して小さくなり、小動物の投影面積がそこに占める割合と、侵入者の投影面積が検知ゾーンe1に占める割合との間に差がなくなるため、近傍の検知ゾーンe1等における侵入者を検知するための検知器の感度を上げると遠方の小動物も検知して誤報となるおそれがある。   On the other hand, in the case of the conventional infrared sensor shown in FIG. 9, a large relative change occurs in the widths of the detection zones e1 to e6, and the detection zones e1 and the like in the vicinity are too large for the intruder. The zone e6 and the like are smaller with respect to the intruder, and there is no difference between the ratio of the projected area of the small animal and the ratio of the projected area of the intruder to the detection zone e1, so the nearby detection zone e1 and the like Increasing the sensitivity of the detector for detecting intruders in the country may detect distant small animals and cause false alarms.

つまり、遠近分離式の前記赤外線センサ1は、複数のそれぞれ独立した検知器により警戒エリアが複数に分離されていることから、遠方を警戒する検知器は近傍の検知ゾーンを受け持つ必要がない。そのため、最長警戒距離を短くするために遠方を警戒する検知器の角度を調整しても、従来のように近傍の検知ゾーンの角度まで変更されることはなく、その結果、検知ゾーンの大きさの変化、特に遠方・近傍の検知ゾーンの大きさのバランスの崩れが小さく、検知対象物の移動速度に対し、それぞれの検知器に設定した周波数特性でカバーしきれない状態に陥り難い。また、遠方・近傍で検知器がそれぞれ個別であるため、遠方の検知器のみ感度を下げる等の方法により、遠方の検知ゾーンにおける小動物による誤報を低減することができる。   That is, in the perspective separation type infrared sensor 1, the warning area is separated into a plurality of independent detectors, so that a detector that warns far away does not need to have a nearby detection zone. Therefore, even if the angle of the detector that guards the distance is adjusted to shorten the longest warning distance, it will not be changed to the angle of the nearby detection zone as in the past, and as a result, the size of the detection zone In particular, the balance of the size of the detection zones in the distance and the vicinity is small, and it is difficult to fall into a state that cannot be covered with the frequency characteristics set for each detector with respect to the moving speed of the detection target. In addition, since the detectors are separate for the distant and the vicinity, false alarms caused by small animals in the distant detection zone can be reduced by reducing the sensitivity of only the distant detector.

さらに、赤外線センサ1の検知器が複数の検知器を有するため、遠方を警戒する検知器の検知ゾーンと近傍を警戒する検知器の検知ゾーンが重なっても、そこに侵入する熱源(移動物体)からの信号は、それぞれの検知器において互いに影響を受けることなく検知され、必要に応じて完全に独立した複数の検知器の信号として単独で発報判定したり、演算処理により発報判定を行う一つの検知器として扱うことができる。例えば、複数の検知器全体で検知回数(パルスカウント数)をある値に設定すれば、通常は検知ゾーンが密で検知回数が多くなりがちな近傍の検知ゾーンは重ならずより遠方側の検知ゾーンが重なっているため、警戒エリア内の場所に係わらず熱源の移動距離に対してより一様な検知回数になり易い。また、検知回数を検知器毎にそれぞれ独立して設定できるため、警戒エリア内の検知性能をより均一にすることができる。   Furthermore, since the detector of the infrared sensor 1 has a plurality of detectors, even if the detection zone of the detector that warns the distance and the detection zone of the detector that warns the vicinity overlap, a heat source (moving object) that enters there Are detected without being affected by each other in each detector, and if necessary, it is judged as a single independent signal from multiple detectors, or it is judged by calculation processing. It can be handled as a single detector. For example, if the number of detections (pulse count number) is set to a certain value across multiple detectors, the detection zones in the vicinity, which usually tend to be dense and have a high number of detections, do not overlap and are detected on the far side. Since the zones overlap, the number of detections tends to be more uniform with respect to the movement distance of the heat source regardless of the location in the alert area. Moreover, since the detection frequency can be set independently for each detector, the detection performance in the alert area can be made more uniform.

これに対して、従来の赤外線センサでは、全ての検知ゾーンの角度が変更され、また、もし検知器を独立させずに遠方を警戒する光学系と近傍を警戒する光学系とを分離したものがあったとしても、その方式では、最長警戒距離を短くするために遠方を警戒する光学系のみの角度を調整すると、遠方を警戒する光学系の検知ゾーンと近傍を警戒する光学系の検知ゾーンが重なった際に、その重なった検知ゾーンは重なっていない検知ゾーンと比べて感度が高くなり、例えば小動物等のように侵入者に対して比較的エネルギーの小さい外乱要素がかかっても、発報閾値を超える検知信号が得られ、誤報となるおそれがある。   On the other hand, in the conventional infrared sensor, the angles of all the detection zones are changed, and if the optical system that warns the distance and the optical system that warns the vicinity are separated without making the detector independent. Even if there is, in that method, if the angle of only the optical system that guards the distance is adjusted to shorten the longest guard distance, the detection zone of the optical system that guards the distance and the detection zone of the optical system that guards the vicinity When overlapped, the overlapping detection zone becomes more sensitive than the non-overlapping detection zone, and even if a disturbance element with relatively low energy is applied to the intruder, such as a small animal, the alert threshold A detection signal exceeding 1 can be obtained, which may cause false alarms.

またさらに、遠近分離方式の赤外線センサ1においては、複数の検知器が独立しているため、例えば小型化のために特に遠方の検知ゾーンを形成する光学系の焦点距離を従来より短くした場合に、遠方の検知ゾーンを形成する検知器の増幅率を近傍の検知ゾーンを形成する検知器に影響なく上げることができ、それによって検知性能を落とさずに小型化を図ることができる。   Furthermore, in the far-infrared separation type infrared sensor 1, since a plurality of detectors are independent, for example, when the focal length of an optical system that forms a far detection zone is made shorter than before in order to reduce the size, for example. Thus, the amplification factor of the detector that forms the distant detection zone can be increased without affecting the detector that forms the detection zone in the vicinity, thereby reducing the size without degrading the detection performance.

これに対して従来の赤外線センサは、遠方の検知ゾーンは検知対象に対して大きくなり感度が低くなりがちだが、近傍の検知ゾーンは検知対象に対して小さくなり感度が高くなりがちといった感度バランスの崩れに対し、検知ゾーンを形成する光学系の口径を変えてバランスをとる等の方法で多少の調整は行っていた。しかし、遠方の検知ゾーンを形成するにあたって大きくなりがちな検知ゾーンを小さくするために焦点距離を長くとった光学系においては、感度が低くなりがちなためさらに口径も大きくすることは、求められているセンサの小型化と相反することになり、十分な調整を行うことが難しい。このように本発明に係わる赤外線センサ1は、従来の赤外線センサに比較して多くの利点を有しているといえる。   In contrast, conventional infrared sensors tend to have lower sensitivity because the detection zone in the distance is larger and lower in sensitivity, but the detection zone in the vicinity tends to be smaller and higher in sensitivity. For the collapse, some adjustments were made by changing the aperture of the optical system forming the detection zone to achieve a balance. However, in order to reduce the detection zone that tends to be large when forming a remote detection zone, in an optical system that takes a long focal length, the sensitivity tends to be low, so it is required to further increase the aperture. This is in conflict with the downsizing of existing sensors, and it is difficult to perform sufficient adjustment. Thus, it can be said that the infrared sensor 1 according to the present invention has many advantages over the conventional infrared sensor.

なお、上記実施形態においては、検知器3〜5として警戒距離が近傍・中間・遠方用の3つの検知器3〜5を筺体2内に略三角形状に配置したが、本発明はこの構成に限定されず、例えば、警戒距離が近傍と遠方用の2つの検知器をベース2上に直径方向の上下位置に配置したり直径方向の左右位置に配置することもできるし、4つ以上の検知器を所定の配列で配置することも可能である。また、上記実施形態における、検知器の数、光学系の形態、赤外線センサのベースやカバー等の構造、制御系のブロック図等は一例であって、例えば光学系としてレンズを使用する等、本発明に係わる各発明の要旨を逸脱しない範囲において適宜に変更することができる。   In the above embodiment, the detectors 3 to 5 are arranged in a substantially triangular shape in the housing 2 as three detectors 3 to 5 having a warning distance in the vicinity, middle and distance, but the present invention has this configuration. For example, two detectors for near and far warning distances can be arranged on the base 2 in the upper and lower positions in the diametrical direction or in the left and right positions in the diametrical direction. It is also possible to arrange the vessels in a predetermined arrangement. In the above embodiment, the number of detectors, the form of the optical system, the structure of the base and cover of the infrared sensor, the block diagram of the control system, etc. are only examples. For example, a lens is used as the optical system. The present invention can be changed as appropriate without departing from the gist of the invention.

本発明は、円盤状のベースに複数の検知器が配置される受動型赤外線センサに限らず、赤外線検知素子と光学系からなる複数の検知器が、各種形状のベースを有する筺体内に配置される全ての受動型赤外線センサに利用できる。   The present invention is not limited to a passive infrared sensor in which a plurality of detectors are arranged on a disk-shaped base, but a plurality of detectors each including an infrared detection element and an optical system are arranged in a casing having a base having various shapes. It can be used for all passive infrared sensors.

本発明に係わる受動型赤外線センサの一実施形態を示す斜視図The perspective view which shows one Embodiment of the passive type infrared sensor concerning this invention 同その内部構成を示す概念図Conceptual diagram showing the internal configuration 同制御系のブロック図Block diagram of the control system 同その動作の一例を示すフローチャートFlow chart showing an example of the operation 同他の動作の一例を示すフローチャートFlow chart showing an example of other operations 同立体警戒型の警戒エリアを示す平面図及び側面図Plan view and side view showing the three-dimensional warning type warning area 同面警戒型の警戒エリアの平面図及び側面図Plan view and side view of the same area 遠近分離方式の赤外線センサの警戒エリアの説明図Explanatory drawing of the warning area of the perspective separation type infrared sensor 従来方式の赤外線センサの警戒エリアの説明図Explanatory drawing of warning area of conventional infrared sensor

符号の説明Explanation of symbols

1・・・受動型赤外線センサ、2・・・筺体、2a・・・ベース、2b・・・カバー、3〜5・・・検知器、3a・・・ミラー、3b・・・焦電素子、3c・・・増幅・フィルタ部、4a、5a・・・ミラーハウジング、4b、5b・・・焦電素子、4c、5c・・・増幅・フィルタ部、6、7・・・素子基板、8c・・・ミラー、9・・・支持板、11・・・信号処理部、11a・・・判定部、11b・・・記憶部、12・・・設定部、12a〜12g・・・設定スイッチ、13・・・出力部、S・・・人体検知信号、n1〜n3・・・検知回数。   DESCRIPTION OF SYMBOLS 1 ... Passive infrared sensor, 2 ... Housing, 2a ... Base, 2b ... Cover, 3-5 ... Detector, 3a ... Mirror, 3b ... Pyroelectric element, 3c: amplification / filter unit, 4a, 5a ... mirror housing, 4b, 5b ... pyroelectric element, 4c, 5c ... amplification / filter unit, 6, 7 ... element substrate, 8c ..Mirror, 9 ... support plate, 11 ... signal processing unit, 11a ... determining unit, 11b ... storage unit, 12 ... setting unit, 12a-12g ... setting switch, 13 ... Output unit, S ... Human body detection signal, n1 to n3 ... Number of detections.

Claims (2)

ベースとカバー等からなる筺体内に配置されて、複数の検知ゾーンからなる警戒エリア内の赤外線を集光する光学系及び該光学系で集光した赤外線を検知する赤外線検知素子を有する検知器と、該検知器で検知された検知信号を処理する信号処理手段と、を備えた受動型赤外線センサにおいて、
前記検知器は、それぞれ前記光学系と赤外線検知素子を有して各々個別に角度調整可能に近接配置された警戒距離の異なる複数の検知器からなり、前記信号処理手段は、前記複数の検知器で検知された各信号を単独で処理していずれかの検知器で人体を検知した際に人体検知信号を出力可能であると共に、前記複数の検知器は、前記人体検知信号を出力するまでの検知回数が個別に設定可能であることを特徴とする受動型赤外線センサ。
An optical system for collecting infrared rays in a warning area composed of a plurality of detection zones, and a detector having an infrared detection element for detecting infrared rays collected by the optical system; In a passive infrared sensor comprising a signal processing means for processing a detection signal detected by the detector,
The detector includes a plurality of detectors each having the optical system and an infrared detection element and arranged close to each other so as to be individually adjustable in angle, and the signal processing means includes the plurality of detectors. When the human body is detected by any one of the detectors and the human body detection signal can be output when each of the signals detected in step S1 is detected, the plurality of detectors can output the human body detection signal. A passive infrared sensor characterized in that the number of detections can be set individually.
前記信号処理手段は、該信号処理手段に接続された設定部に設けた設定スイッチの操作により、前記複数の検知器の検知回数を個別に設定可能であることを特徴とする請求項1に記載の受動型赤外線センサ。   2. The signal processing unit can individually set the number of detections of the plurality of detectors by operating a setting switch provided in a setting unit connected to the signal processing unit. Passive infrared sensor.
JP2008240103A 2008-09-19 2008-09-19 Passive infrared sensor Expired - Fee Related JP5143682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240103A JP5143682B2 (en) 2008-09-19 2008-09-19 Passive infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240103A JP5143682B2 (en) 2008-09-19 2008-09-19 Passive infrared sensor

Publications (2)

Publication Number Publication Date
JP2010071825A true JP2010071825A (en) 2010-04-02
JP5143682B2 JP5143682B2 (en) 2013-02-13

Family

ID=42203751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240103A Expired - Fee Related JP5143682B2 (en) 2008-09-19 2008-09-19 Passive infrared sensor

Country Status (1)

Country Link
JP (1) JP5143682B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210307A (en) * 2012-03-30 2013-10-10 Secom Co Ltd Human body detector
JP2013210306A (en) * 2012-03-30 2013-10-10 Secom Co Ltd Human body detector
JP2017116398A (en) * 2015-12-24 2017-06-29 株式会社チノー Human-body detector
WO2019244672A1 (en) * 2018-06-19 2019-12-26 オプテックス株式会社 Object detecting device
JP2020060391A (en) * 2018-10-05 2020-04-16 株式会社チノー Human body detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118600A (en) * 1997-10-20 1999-04-30 Atsumi Electron Corp Ltd Heat ray sensor
JP2000306170A (en) * 1999-04-16 2000-11-02 Secom Co Ltd Human body detector
JP2002310788A (en) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd Heat-ray sensor system
JP2003051076A (en) * 2001-08-07 2003-02-21 Fujitsu General Ltd Device for monitoring intrusion
JP2006105742A (en) * 2004-10-04 2006-04-20 Matsushita Electric Works Ltd Hot wire sensor
JP2007256057A (en) * 2006-03-23 2007-10-04 Mitsubishi Electric Corp Detection apparatus, detection system and lighting control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118600A (en) * 1997-10-20 1999-04-30 Atsumi Electron Corp Ltd Heat ray sensor
JP2000306170A (en) * 1999-04-16 2000-11-02 Secom Co Ltd Human body detector
JP2002310788A (en) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd Heat-ray sensor system
JP2003051076A (en) * 2001-08-07 2003-02-21 Fujitsu General Ltd Device for monitoring intrusion
JP2006105742A (en) * 2004-10-04 2006-04-20 Matsushita Electric Works Ltd Hot wire sensor
JP2007256057A (en) * 2006-03-23 2007-10-04 Mitsubishi Electric Corp Detection apparatus, detection system and lighting control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210307A (en) * 2012-03-30 2013-10-10 Secom Co Ltd Human body detector
JP2013210306A (en) * 2012-03-30 2013-10-10 Secom Co Ltd Human body detector
JP2017116398A (en) * 2015-12-24 2017-06-29 株式会社チノー Human-body detector
WO2019244672A1 (en) * 2018-06-19 2019-12-26 オプテックス株式会社 Object detecting device
JPWO2019244672A1 (en) * 2018-06-19 2021-06-24 オプテックス株式会社 Object detection device
JP2020060391A (en) * 2018-10-05 2020-04-16 株式会社チノー Human body detection device
JP7202054B2 (en) 2018-10-05 2023-01-11 株式会社チノー human body detector

Also Published As

Publication number Publication date
JP5143682B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
ES2396577T3 (en) Dual technology sensor device with range regulated sensitivity
EP2459808B1 (en) Pir motion sensor system
JP5590762B2 (en) Hot wire sensor
US9310253B2 (en) Single technology micro-motion occupancy sensor system
JP5143682B2 (en) Passive infrared sensor
JPH0358050B2 (en)
JP2009506422A (en) Passive infrared intrusion detection device with field coverage setting
JP5864335B2 (en) Human body detection device
JP4515490B2 (en) Range selectable motion detection system and method
JP5274953B2 (en) Passive infrared sensor
JP5274950B2 (en) Passive infrared sensor
JP2005201754A (en) Passive infrared ray detector
JP5996237B2 (en) Human body detection device
JP6279407B2 (en) Human body detection device
JP2008190923A (en) Heat ray sensor
KR101202610B1 (en) Infrared Intrusion Detector and Method Thereof
JP3458738B2 (en) Human body detection device
JP3669454B2 (en) Human body detection sensor
JP3172274U (en) Passive infrared detector
JP2006017667A (en) Warning range regulating method of passive infrared sensor
KR100404743B1 (en) Apparatus for detecting minute movement using infrared sensor and spatial filter
EP3211614B1 (en) Device and method for a security sensor
JP5467695B2 (en) Hot wire sensor
JP6785072B2 (en) Infrared source detection system and infrared source detection method
GB2553133A (en) Motion detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees