JP2010071222A - Fuel injection control device and fuel injection control system for internal combustion engine - Google Patents

Fuel injection control device and fuel injection control system for internal combustion engine Download PDF

Info

Publication number
JP2010071222A
JP2010071222A JP2008240725A JP2008240725A JP2010071222A JP 2010071222 A JP2010071222 A JP 2010071222A JP 2008240725 A JP2008240725 A JP 2008240725A JP 2008240725 A JP2008240725 A JP 2008240725A JP 2010071222 A JP2010071222 A JP 2010071222A
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel injection
pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240725A
Other languages
Japanese (ja)
Other versions
JP4862873B2 (en
Inventor
Manabu Yoshitome
学 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008240725A priority Critical patent/JP4862873B2/en
Priority to DE102009041535.1A priority patent/DE102009041535B4/en
Publication of JP2010071222A publication Critical patent/JP2010071222A/en
Application granted granted Critical
Publication of JP4862873B2 publication Critical patent/JP4862873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dilute lubricating oil in a crankcase CK by scraping injected fuel adhered on an inner wall of a combustion chamber 16 using a piston 30 into the crankcase CK when injecting fuel for regeneration control of a DPF 38a by a fuel injection valve 20 into the fuel chamber 16. <P>SOLUTION: Main injection contributing to generation of torque is performed upon the piston 30 of a diesel engine 10 coming near a compression top dead center. Thereafter, in a latter stage of a compression stroke when the piston 30 is moved down, post injection for regeneration control of a DPF 30a is performed. By opening a pressure-reducing valve 46 between the main injection and the post injection, fuel pressure of the common rail 44 is lowered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、蓄圧容器に蓄えられた高圧燃料を、排気系に後処理装置を備える内燃機関の燃焼室に燃料噴射弁を介して噴射する燃料噴射装置を操作対象とする内燃機関の燃料噴射制御装置及び燃料噴射制御システムに関する。   The present invention relates to a fuel injection control for an internal combustion engine having a fuel injection device for injecting, via a fuel injection valve, a high pressure fuel stored in a pressure accumulating vessel into a combustion chamber of the internal combustion engine having an aftertreatment device in an exhaust system. The present invention relates to an apparatus and a fuel injection control system.

例えばディーゼル機関等にあっては、排気中の粒子状物質(PM)に対する規制の強化に伴って、これを除去するための後処理装置として、ディーゼルパティキュレートフィルタ(DPF)が実用化されている。DPFは、排気中のPMを捕捉し、除去する機能を有するフィルタである。具体的には、PMの捕捉量が所定以上となることで、排気中に未燃燃料を添加し、排気温を上昇させることでDPFに捕捉されたPMを燃焼除去する。   For example, in a diesel engine or the like, a diesel particulate filter (DPF) has been put into practical use as a post-treatment device for removing particulate matter (PM) in exhaust gas as regulations are strengthened. . The DPF is a filter having a function of capturing and removing PM in exhaust gas. Specifically, when the trapped amount of PM becomes a predetermined value or more, unburned fuel is added to the exhaust gas, and the PM trapped in the DPF is burned and removed by raising the exhaust gas temperature.

ここで、排気中に未燃燃料を添加する手段を排気通路に設ける場合には、部品点数が増加することに起因したコストアップも無視できない。このため、ディーゼル機関のトルクの生成のための燃料噴射を行う手段を流用してDPF再生のための燃料噴射であるいわゆるポスト噴射を行うことも提案され、実用化されている。ポスト噴射は、排気バルブの開弁直前等に燃焼室に燃料を噴射するものであり、これにより、排気通路内に未燃燃料を供給することができる。   Here, when a means for adding unburned fuel to the exhaust is provided in the exhaust passage, an increase in cost due to an increase in the number of parts cannot be ignored. For this reason, it has also been proposed and put into practical use, so-called post-injection, which is fuel injection for DPF regeneration, by diverting fuel injection means for generating torque of a diesel engine. Post-injection is to inject fuel into the combustion chamber immediately before the exhaust valve is opened, so that unburned fuel can be supplied into the exhaust passage.

ただし、ポスト噴射によって噴射される燃料は、燃焼室にて燃料が燃焼しないようにしつつ燃焼室内に直接噴射されるものであるため、シリンダ内壁に付着しやすい。そして、シリンダ内壁に付着した燃料は、ピストンによってクランクケースに掻き落とされるおそれがある。未燃燃料がクランクケースに掻き落とされると、クランクケース内の潤滑油(エンジンオイル)が希釈される。   However, since the fuel injected by the post injection is directly injected into the combustion chamber while preventing the fuel from burning in the combustion chamber, it tends to adhere to the inner wall of the cylinder. The fuel adhering to the inner wall of the cylinder may be scraped off to the crankcase by the piston. When unburned fuel is scraped off the crankcase, the lubricating oil (engine oil) in the crankcase is diluted.

そこで従来は、1燃焼サイクル中にポスト噴射を複数回行うようにしたり、ポスト噴射量自体を制限したりすることも提案されている。これらは、いずれも1回の燃料噴射量を短くすることで、噴射された燃料がシリンダ内壁に到達することを抑制するものである。   Therefore, conventionally, it has been proposed to perform post injection a plurality of times during one combustion cycle or to limit the post injection amount itself. These all suppress the amount of injected fuel from reaching the cylinder inner wall by shortening the amount of fuel injection at one time.

なお、従来の燃料噴射制御装置としては、他にも例えば下記特許文献1に見られるものがある。
特許第3760583号公報
As another conventional fuel injection control device, for example, there is one which can be found in the following Patent Document 1.
Japanese Patent No. 3760583

ところで、1燃焼サイクル中にポスト噴射を複数回行う場合には、燃料噴射弁の駆動回路の発熱量が増大する。この発熱量の増大は、例えば多気筒内燃機関において、各燃料噴射弁の駆動部分を極力独立のものとすることで抑制することはできるものの、この場合には部品点数の増加によるコストアップも無視できない。そしてこうした部品点数の増加を回避する場合には、メイン噴射に先立って行われるパイロット噴射等による発熱量を低減すべくパイロット噴射等を制限する要求が生じる。   Incidentally, when post injection is performed a plurality of times during one combustion cycle, the amount of heat generated by the drive circuit of the fuel injection valve increases. This increase in the amount of heat generation can be suppressed by making the drive part of each fuel injection valve as independent as possible, for example, in a multi-cylinder internal combustion engine, but in this case, the cost increase due to an increase in the number of parts is also ignored. Can not. In order to avoid such an increase in the number of parts, there is a demand for limiting pilot injection or the like in order to reduce the amount of heat generated by pilot injection or the like performed prior to main injection.

また、上記ポスト噴射量自体を制限する場合には、排気温度を十分に上昇させることができないことから、DPFを再生するまでに必要な燃料量の増大を招き、燃料消費量の増大をもたらすおそれもある。   Further, when the post injection amount itself is limited, the exhaust gas temperature cannot be sufficiently increased, which may increase the amount of fuel necessary to regenerate the DPF and increase the fuel consumption. There is also.

本発明は、上記課題を解決するためになされたものであり、その目的は、蓄圧容器に蓄えられた高圧燃料を、排気系に後処理装置を備える内燃機関の燃焼室に燃料噴射弁を介して噴射する場合であっても、機関潤滑油の希釈をより適切に抑制することのできる内燃機関の燃料噴射制御装置及び燃料噴射制御システムを提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide high-pressure fuel stored in a pressure accumulating vessel through a fuel injection valve in a combustion chamber of an internal combustion engine provided with an aftertreatment device in an exhaust system. It is an object of the present invention to provide a fuel injection control device and a fuel injection control system for an internal combustion engine that can more appropriately suppress the dilution of engine lubricating oil even when injecting.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、蓄圧容器に蓄えられた高圧燃料を、排気系に後処理装置を備える内燃機関の燃焼室に燃料噴射弁を介して噴射する燃料噴射装置を操作対象とし、前記後処理装置の再生のためのポスト噴射を行う要求が生じる場合、該要求が生じない場合と比較して前記燃料噴射弁から噴射される燃料の圧力を低下させる低下手段を備えることを特徴とする。   The invention described in claim 1 is directed to a fuel injection device that injects high-pressure fuel stored in a pressure accumulating vessel into a combustion chamber of an internal combustion engine having a post-processing device in an exhaust system via a fuel injection valve. In the case where a request to perform post injection for regeneration of the processing apparatus occurs, there is provided a reduction means for reducing the pressure of the fuel injected from the fuel injection valve as compared with the case where the request does not occur.

燃料噴射弁から噴射される燃料の圧力が低いほど、燃料噴射弁から噴射される燃料の初速度が低下することなどから、燃焼室の内壁への燃料の付着量が低減すると考えられる。上記発明では、この点に鑑み、ポスト噴射を行う場合に燃料噴射弁から噴射される燃料の圧力を低下させることで、蓄圧容器に蓄えられた高圧燃料を内燃機関の燃焼室に噴射する場合であっても、機関潤滑油の希釈をより適切に抑制することができる。   It is considered that the lower the pressure of the fuel injected from the fuel injection valve, the lower the initial velocity of the fuel injected from the fuel injection valve, and the like, so that the amount of fuel adhering to the inner wall of the combustion chamber decreases. In the above invention, in view of this point, when post-injection is performed, the pressure of the fuel injected from the fuel injection valve is reduced to inject the high-pressure fuel stored in the pressure accumulating vessel into the combustion chamber of the internal combustion engine. Even if it exists, dilution of engine lubricating oil can be suppressed more appropriately.

請求項2記載の発明は、請求項1記載の発明において、前記ポスト噴射は、1燃焼サイクル中の膨張行程中央以降に行われるものであることを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the post injection is performed after the center of the expansion stroke in one combustion cycle.

上記発明では、圧縮行程中央以降にポスト噴射を行うことで、ポスト噴射によって噴射された燃料を燃焼室にて燃焼させることなく排気系に好適に供給することができる。   In the above invention, by performing the post injection after the center of the compression stroke, the fuel injected by the post injection can be suitably supplied to the exhaust system without burning in the combustion chamber.

請求項3記載の発明は、請求項1又は2記載の発明において、前記低下手段は、前記ポスト噴射の噴射量が多くなるほど前記圧力の低下量を大きくすることを特徴とする。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the reducing means increases the pressure reduction amount as the post injection amount increases.

燃料噴射量が少量であるほど、燃料の飛距離が短くなる。これは、ポスト噴射量が少量であるほど、内壁に付着する燃料量を低減するために要求されるポスト噴射の噴射圧の低下量が小さくなることを意味する。上記発明では、この点に鑑み、ポスト噴射の噴射量が多くなるほど圧力の低下量を大きくすることで、ポスト噴射のための圧力低下量を極力抑制することができる。   The smaller the fuel injection amount, the shorter the flight distance of the fuel. This means that the smaller the post-injection amount, the smaller the amount of decrease in post-injection injection pressure required to reduce the amount of fuel adhering to the inner wall. In the above invention, in view of this point, the pressure drop amount for the post injection can be suppressed as much as possible by increasing the pressure drop amount as the post injection amount increases.

請求項4記載の発明は、請求項1〜3のいずれか1項に記載の発明において、前記低下手段は、前記内燃機関のトルクを生成するためのメイン噴射がなされた後、前記ポスト噴射がなされるのに先立ち、前記燃料噴射弁から噴射される燃料の圧力を低下させることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the lowering means performs the post injection after the main injection for generating the torque of the internal combustion engine is performed. Prior to being performed, the pressure of the fuel injected from the fuel injection valve is reduced.

上記発明では、メイン噴射期間を回避してポスト噴射のための圧力低下処理を行うために、燃焼室を区画する内壁に付着する燃料量を低減する目的によって、メイン噴射時の噴射圧がメイン噴射にとって最適な噴射圧からずれる事態を好適に抑制又は回避することができる。   In the above invention, in order to perform the pressure reduction process for the post injection while avoiding the main injection period, the injection pressure at the time of main injection is set to the main injection for the purpose of reducing the amount of fuel adhering to the inner wall defining the combustion chamber. For this reason, it is possible to suitably suppress or avoid the situation of deviation from the optimum injection pressure.

請求項5記載の発明は、請求項4記載の発明において、前記燃料噴射装置は、前記蓄圧容器に供給する燃料を蓄える燃料タンクへと前記蓄圧容器内の燃料を流出させる流出手段を更に備え、前記低下手段は、前記メイン噴射がなされた後、前記ポスト噴射に先立って、前記流出手段を操作することで前記圧力の低下処理を行うことを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, the fuel injection device further comprises outflow means for causing the fuel in the pressure accumulation container to flow out to a fuel tank that stores fuel to be supplied to the pressure accumulation container. The reduction means performs the pressure reduction processing by operating the outflow means prior to the post injection after the main injection is performed.

請求項6記載の発明は、請求項4記載の発明において、前記燃料噴射装置は、前記蓄圧容器に供給する燃料を蓄える燃料タンクを備え、前記低下手段は、燃料噴射をすることなく前記燃料噴射弁を介して前記蓄圧容器内の燃料を前記燃料タンクへと流出させるように前記燃料噴射弁を操作することで前記圧力の低下処理を行うことを特徴とする。   According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the fuel injection device includes a fuel tank that stores fuel to be supplied to the pressure accumulating vessel, and the lowering means performs the fuel injection without performing fuel injection. The pressure reduction process is performed by operating the fuel injection valve so that the fuel in the pressure accumulating vessel flows out to the fuel tank through a valve.

請求項7記載の発明は、請求項1〜3のいずれか1項に記載の発明において、前記内燃機関のトルクを生成するためのメイン噴射に際して前記燃料噴射弁から噴射される燃料の圧力の目標値を設定する設定手段を更に備え、前記低下手段は、前記後処理装置の再生のためのポスト噴射を行う要求が生じる場合、前記設定手段の設定する目標値を低下補正することを特徴とする。   A seventh aspect of the present invention provides the target of the pressure of the fuel injected from the fuel injection valve in the main injection for generating the torque of the internal combustion engine in the first aspect of the present invention. Setting means for setting a value is further provided, wherein the lowering means corrects the target value set by the setting means to be lower when a request to perform post-injection for regeneration of the post-processing device occurs. .

上記発明では、設定手段によって設定される圧力の目標値を低下補正することで、ポスト噴射を行う要求が生じる場合には、設定手段の設定よりも燃焼室を区画する内壁に付着する燃料量を低減させる要求の方を優先させることができる。   In the above invention, when the demand for post injection is generated by correcting the target value of the pressure set by the setting means to be reduced, the amount of fuel adhering to the inner wall partitioning the combustion chamber is set rather than the setting of the setting means. Priority can be given to the request to reduce.

請求項8記載の発明は、請求項7記載の発明において、前記設定手段は、前記内燃機関の運転状態を示すパラメータに基づき前記目標値の設定処理を行うものであり、前記低下手段は、前記目標値の設定処理に用いるパラメータに基づき前記目標値の低下量を設定することを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the setting means performs setting processing of the target value based on a parameter indicating an operating state of the internal combustion engine, and the reduction means The reduction amount of the target value is set based on a parameter used for the target value setting process.

上記設定手段は、内燃機関の運転状態毎に、トルク、排気特性、及び騒音等の様々な要求要素に応じて適合されている。上記発明では、この点に鑑み、上記設定手段の用いるパラメータに基づき低下量を設定することで、上記様々な要求要素に配慮しつつ低下処理を行うことができる。   The setting means is adapted according to various required elements such as torque, exhaust characteristics, and noise for each operating state of the internal combustion engine. In the above invention, in view of this point, by setting the amount of reduction based on the parameters used by the setting means, it is possible to perform the reduction processing while taking into account the various required elements.

請求項9記載の発明は、請求項1〜8のいずれか1項に記載の内燃機関の燃料噴射制御装置と、前記燃料噴射装置とを備えることを特徴とする内燃機関の燃料噴射制御システムである。   An invention according to claim 9 is a fuel injection control system for an internal combustion engine, comprising the fuel injection control device for an internal combustion engine according to any one of claims 1 to 8 and the fuel injection device. is there.

上記発明では、低下手段を備えるために、機関潤滑油の希釈をより適切に抑制可能な燃料噴射制御システムを実現することができ、ひいては市場価値の高いシステムを実現している。   In the above invention, since the lowering means is provided, it is possible to realize a fuel injection control system that can more appropriately suppress dilution of engine lubricating oil, and thus realize a system with high market value.

(第1の実施形態)
以下、本発明にかかる内燃機関の燃料噴射制御装置を4気筒を有するディーゼル機関の燃料噴射制御装置に適用した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment in which a fuel injection control device for an internal combustion engine according to the present invention is applied to a fuel injection control device for a diesel engine having four cylinders will be described with reference to the drawings.

図1に、本実施形態にかかるシステム構成を示す。   FIG. 1 shows a system configuration according to the present embodiment.

図示されるディーゼル機関10の吸気通路12は、吸気バルブ14の開弁に伴って燃焼室16に連通される。燃焼室16には、燃料噴射弁20の噴射口22が突出して配置されている。燃焼室16においては、燃料噴射弁20から噴射された燃料と吸気通路12から吸入された空気とが圧縮されることで、燃料が着火し、燃焼エネルギが生じる。この燃焼エネルギは、ピストン30を介してクランク軸32の回転エネルギに変換される。一方、燃焼に供された空気と燃料とは、排気バルブ34の開弁に伴って、排気として排気通路36に排出される。排気通路36には、後処理装置として排気浄化装置38が設けられている。排気浄化装置38には、粒子状物質(PM)を捕捉しこれを燃焼除去するためのディーゼルパティキュレートフィルタ(DPF38a)が設けられている。   The illustrated intake passage 12 of the diesel engine 10 communicates with the combustion chamber 16 as the intake valve 14 opens. In the combustion chamber 16, an injection port 22 of the fuel injection valve 20 is disposed so as to protrude. In the combustion chamber 16, the fuel injected from the fuel injection valve 20 and the air sucked from the intake passage 12 are compressed, so that the fuel is ignited and combustion energy is generated. This combustion energy is converted into rotational energy of the crankshaft 32 via the piston 30. On the other hand, the air and fuel used for combustion are discharged into the exhaust passage 36 as exhaust gas as the exhaust valve 34 is opened. The exhaust passage 36 is provided with an exhaust purification device 38 as a post-processing device. The exhaust gas purification device 38 is provided with a diesel particulate filter (DPF 38a) for capturing particulate matter (PM) and burning it out.

上記燃料噴射弁20には、ディーゼル機関10の各気筒に共通の蓄圧容器(コモンレール44)内の高圧燃料が供給される。すなわち、コモンレール44は、燃料ポンプ42によって燃料タンク40から汲み上げられた燃料が加圧供給(圧送)されるため、この圧送された燃料を高圧状態で蓄える。コモンレール44内の高圧燃料は、高圧燃料通路24を介して燃料噴射弁20に供給される。   The fuel injection valve 20 is supplied with high-pressure fuel in a pressure accumulating container (common rail 44) common to each cylinder of the diesel engine 10. That is, since the fuel pumped up from the fuel tank 40 by the fuel pump 42 is pressurized (suppressed), the common rail 44 stores the pumped fuel in a high pressure state. The high pressure fuel in the common rail 44 is supplied to the fuel injection valve 20 through the high pressure fuel passage 24.

燃料噴射弁20は、噴射口22を開閉するノズルニードル21を備えている。ノズルニードル21には、コモンレール44から高圧燃料通路24を介して供給される高圧燃料の燃圧が印加される。詳しくは、ノズルニードル21には、噴射口22の開閉のそれぞれに対応した変位方向の双方に対して燃圧が印加されるとともに、弾性体23によって閉弁方向に力が付与されている。ここで、ノズルニードル21を閉弁させる側に圧力を印加する燃料を充填する背圧室25は、電磁ソレノイド27によって駆動されるバルブ26の開弁によって、低圧系(燃料タンク40側)に連通される。こうした構成によれば、バルブ26の開閉によって、ノズルニードル21の変位方向のそれぞれに燃料や弾性体23が加える力の相対的な大小関係を調節することで、燃料噴射弁20を開閉させることができる。   The fuel injection valve 20 includes a nozzle needle 21 that opens and closes an injection port 22. A fuel pressure of high pressure fuel supplied from the common rail 44 via the high pressure fuel passage 24 is applied to the nozzle needle 21. Specifically, the fuel pressure is applied to the nozzle needle 21 in both the displacement directions corresponding to the opening and closing of the injection port 22, and a force is applied in the valve closing direction by the elastic body 23. Here, the back pressure chamber 25 filled with fuel for applying pressure to the side that closes the nozzle needle 21 communicates with the low pressure system (fuel tank 40 side) by opening the valve 26 driven by the electromagnetic solenoid 27. Is done. According to such a configuration, the fuel injection valve 20 can be opened and closed by adjusting the relative magnitude relationship between the force applied by the fuel and the elastic body 23 in each of the displacement directions of the nozzle needle 21 by opening and closing the valve 26. it can.

ちなみに、コモンレール44と低圧燃料通路28との間には、コモンレール44内の燃料を燃料タンク40に流出させるための電子制御式の減圧弁46が設けられている。   Incidentally, between the common rail 44 and the low-pressure fuel passage 28, an electronically controlled pressure reducing valve 46 for allowing the fuel in the common rail 44 to flow out to the fuel tank 40 is provided.

電子制御装置(ECU50)は、ディーゼル機関10を制御対象とする制御装置である。ECU50は、クランク軸32の回転角度を検出するクランク角センサ52や、コモンレール44内の燃圧を検出する燃圧センサ54、排気浄化装置38の下流側の排気温度を検出する排気温センサ56、アクセルペダルの操作量を検出するアクセルセンサ58等の各種センサの出力信号を取り込む。そしてこれらに基づき、ディーゼル機関10の制御量(トルク、排気特性等)を制御すべく、燃料噴射弁20や燃料ポンプ42等の各種アクチュエータを操作する。   The electronic control unit (ECU 50) is a control unit that controls the diesel engine 10. The ECU 50 includes a crank angle sensor 52 that detects the rotation angle of the crankshaft 32, a fuel pressure sensor 54 that detects the fuel pressure in the common rail 44, an exhaust temperature sensor 56 that detects the exhaust temperature downstream of the exhaust purification device 38, and an accelerator pedal. The output signals of various sensors such as the accelerator sensor 58 for detecting the operation amount are taken in. Based on these, various actuators such as the fuel injection valve 20 and the fuel pump 42 are operated to control the control amount (torque, exhaust characteristics, etc.) of the diesel engine 10.

ここで、燃料噴射弁20の操作は、ドライバユニット(EDU60)を介して行われる。EDU60は、図中、その一部の回路構成を示すように、電磁ソレノイド27に電荷を供給するためのコンデンサ60aと、コンデンサ60aと電磁ソレノイド27との間を電気的に開閉するためのスイッチング素子60bと、定電流回路60cと、気筒選択スイッチ60dとを備えている。ここで、コンデンサ60aは、電磁ソレノイド27の通電初期において大電流を流すための電力供給手段であり、定電流回路60cは、電磁ソレノイド27の通電中期以降において通電状態を維持するための定電流を流すための回路である。これらコンデンサ60a、スイッチング素子60b及び定電流回路60cは、気筒間で共有されている。一方、気筒選択スイッチ60dは、気筒毎に各別に設けられるものであり、これにより、いずれの気筒の電磁ソレノイド27に対する通電を行うかを選択することを可能とする。   Here, the operation of the fuel injection valve 20 is performed via the driver unit (EDU 60). The EDU 60 has a capacitor 60a for supplying electric charge to the electromagnetic solenoid 27 and a switching element for electrically opening and closing between the capacitor 60a and the electromagnetic solenoid 27, as shown in a partial circuit configuration in the figure. 60b, a constant current circuit 60c, and a cylinder selection switch 60d. Here, the capacitor 60a is power supply means for flowing a large current in the initial energization of the electromagnetic solenoid 27, and the constant current circuit 60c is a constant current for maintaining the energization state after the middle energization of the electromagnetic solenoid 27. It is a circuit for flowing. The capacitor 60a, the switching element 60b, and the constant current circuit 60c are shared between the cylinders. On the other hand, the cylinder selection switch 60d is provided separately for each cylinder, and this makes it possible to select which cylinder the electromagnetic solenoid 27 is energized.

上記ECU50は、更に、DPF38aの再生制御をも行う。これは、燃焼室16において燃焼に供されないと想定されるタイミングにおいて燃料噴射弁20から燃料を噴射するいわゆるポスト噴射を行うことで、燃料を排気浄化装置38等の排気系にて燃焼させ、排気温度を上昇させるものである。DPF38aに流入する排気の温度を上昇させることで、DPF38aに捕捉されたPMを燃焼除去することができ、これによりDPF38aを再生させることができる。   The ECU 50 also controls regeneration of the DPF 38a. This is because the so-called post-injection in which fuel is injected from the fuel injection valve 20 at a timing that is assumed not to be used for combustion in the combustion chamber 16 causes the fuel to be combusted in an exhaust system such as the exhaust purification device 38 and the exhaust. The temperature is raised. By raising the temperature of the exhaust gas flowing into the DPF 38a, the PM trapped by the DPF 38a can be burned and removed, thereby regenerating the DPF 38a.

図2に、DPF38aの再生制御時の燃料噴射制御態様を示す。図示されるように、ディーゼル機関のトルクの生成に寄与して且つ多段噴射中の最大の噴射量を有するメイン噴射mは、圧縮上死点近傍で行われる。そして、メイン噴射mに先立ち、パイロット噴射piを行う。パイロット噴射piは、極微小な燃料の噴射によって着火の直前の燃料と空気との混合を促進させるとともに、メイン噴射後の着火時期の遅れを短縮して窒素酸化物(NOx)の発生を抑制し、燃焼音及び振動を低減する目的でなされるものである。ここで、本実施形態では、各気筒の圧縮上死点の出現周期と燃料ポンプ42の圧送上死点の出現周期とを一致させるいわゆる同期システムを構成しており、メイン噴射m前に燃料ポンプ42による燃料の圧送が完了するように設定されている。   FIG. 2 shows a fuel injection control mode during regeneration control of the DPF 38a. As shown in the figure, the main injection m that contributes to the generation of torque of the diesel engine and has the maximum injection amount during the multistage injection is performed in the vicinity of the compression top dead center. Prior to the main injection m, pilot injection pi is performed. The pilot injection pi promotes the mixing of fuel and air immediately before ignition by injecting a very small amount of fuel, and reduces the delay in the ignition timing after the main injection to suppress the generation of nitrogen oxides (NOx). This is done for the purpose of reducing combustion noise and vibration. Here, in the present embodiment, a so-called synchronous system is configured to match the appearance period of the compression top dead center of each cylinder with the appearance period of the pumping top dead center of the fuel pump 42, and the fuel pump before the main injection m. It is set so that the fuel pumping by 42 is completed.

上述したポスト噴射poは、膨張行程の中央以降(例えば「140°ATDC」)にて行われる。これは、ポスト噴射poとして噴射された燃料を、燃焼室16において燃焼することなく排気系において燃焼させるための設定である。   The post injection po described above is performed after the center of the expansion stroke (for example, “140 ° ATDC”). This is a setting for burning the fuel injected as the post injection po in the exhaust system without burning in the combustion chamber 16.

ここで、ポスト噴射poの噴射量は、ディーゼル機関10の運転状態を示すパラメータに基づき設定される。詳しくは、本実施形態では、このパラメータとして、ディーゼル機関10に対する指令トルクと回転速度とが用いられている。ここで、指令トルクは、アクセルペダルの操作量に応じて算出されるものである。具体的には、上記パラメータによって算出される基本値を、排気温センサ56によって検出される排気温度を目標値にフィードバック制御すべく補正することで、最終的なポスト噴射poの噴射量が算出される。こうしてポスト噴射poの噴射量が定まると、コモンレール44内の燃圧に応じて燃料噴射弁20の開弁時間が一義的に定まるため、開弁時間を調節することでポスト噴射poとして所望の燃料を噴射することができる。   Here, the injection amount of the post injection po is set based on a parameter indicating the operation state of the diesel engine 10. Specifically, in this embodiment, a command torque and a rotational speed for the diesel engine 10 are used as this parameter. Here, the command torque is calculated according to the operation amount of the accelerator pedal. Specifically, the final injection amount of the post injection po is calculated by correcting the basic value calculated by the above parameters so that the exhaust temperature detected by the exhaust temperature sensor 56 is feedback controlled to the target value. The When the injection amount of the post injection po is determined in this way, the valve opening time of the fuel injection valve 20 is uniquely determined according to the fuel pressure in the common rail 44. Therefore, by adjusting the valve opening time, desired fuel can be supplied as the post injection po. Can be injected.

ただし、ポスト噴射poによって噴射された燃料が燃焼室16を区画するシリンダ内壁に付着する場合、この燃料がピストン30によってクランクケースCKに掻き落とされ、潤滑油が希釈されるおそれがある。そしてこうした事態を回避すべく、ポスト噴射poを分割噴射とする場合には、EDU60内のスイッチング素子60b等の発熱量が増大するため、EDU60をこれに見合った仕様とする必要からコストアップの問題が生じる。そこで本実施形態では、ポスト噴射poを行う場合には、コモンレール44内の燃圧を低下させる処理を行う。   However, when the fuel injected by the post injection po adheres to the inner wall of the cylinder that defines the combustion chamber 16, the fuel may be scraped off by the piston 30 into the crankcase CK and the lubricating oil may be diluted. In order to avoid such a situation, when the post injection po is divided injection, the amount of heat generated by the switching element 60b and the like in the EDU 60 increases. Occurs. Therefore, in the present embodiment, when performing the post injection po, a process for reducing the fuel pressure in the common rail 44 is performed.

図3に、本実施形態にかかるコモンレール44内の燃圧制御(噴射圧制御)の処理手順を示す。この処理は、ECU50によって、例えば所定周期で繰り返し実行される。   FIG. 3 shows a processing procedure of fuel pressure control (injection pressure control) in the common rail 44 according to the present embodiment. This process is repeatedly executed by the ECU 50 at a predetermined cycle, for example.

この一連の処理では、ステップS10においてポスト噴射poの要求があると判断されると、ステップS12において、ディーゼル機関10の運転状態を示すパラメータに基づき基本噴射圧PBASEを算出する。このパラメータには、ディーゼル機関10の負荷と相関を有するパラメータと回転速度とを含める。本実施形態では、負荷と相関を有するパラメータとして、指令トルクを用いる。ここで、図に模式的に示すように、基本的には、回転速度NEが大きいほど基本噴射圧PBASEを高くする。これは、回転速度NEが大きいほど、所定クランク角度間隔の回転に要する時間が短くなることによる。また、基本的には、指令トルクが大きくなるほど基本噴射圧PBASEを高くする。これは、指令トルクが大きくなるほど要求噴射量が増大するため、噴射期間が伸張し易いことによる。ただし実際には、こうした傾向に大きく反しない範囲で、ディーゼル機関10のトルク、排気特性、騒音等を要求要素として、これら要求要素にとって最適な値に適合されている。   In this series of processes, if it is determined in step S10 that there is a request for post-injection po, in step S12, the basic injection pressure PBASE is calculated based on a parameter indicating the operating state of the diesel engine 10. This parameter includes a parameter correlated with the load of the diesel engine 10 and the rotational speed. In this embodiment, command torque is used as a parameter having a correlation with the load. Here, as schematically shown in the figure, basically, the basic injection pressure PBASE increases as the rotational speed NE increases. This is because the time required for rotation at a predetermined crank angle interval is shortened as the rotational speed NE is increased. Basically, the basic injection pressure PBASE is increased as the command torque increases. This is because the required injection amount increases as the command torque increases, so that the injection period easily extends. However, in practice, the torque, exhaust characteristics, noise, and the like of the diesel engine 10 are used as required elements within a range that does not greatly contradict such a tendency, and the optimum values for these required elements are adapted.

続くステップS14においては、噴射圧補正量PCORを算出する。本実施形態では、これを、補正可能量PCORBと補正係数PCORCとの積とする。ここで、補正可能量PCORBについては、基本噴射圧PBASEの算出に用いたパラメータに基づき算出する。これは、基本噴射圧PBASEが様々な要求要素を考慮した最適な値に適合されていることによる。このため、これら各要求要素にとって許容できる範囲を定めるために、上記パラメータを用いる。また、補正係数PCORCは、ポスト噴射量と基本噴射圧PBASEとに基づき算出する。ここでは、ポスト噴射量が多いほど噴射される燃料の飛距離が増大することに鑑み、ポスト噴射量が多いほど補正係数PCORCを増大させる。また、基本噴射圧PBASEが高いほどポスト噴射によって噴射された燃料のシリンダ壁面への到達量が増大することに鑑み、基本噴射圧PBASEが高いほど補正係数PCORCを増大させる。   In subsequent step S14, an injection pressure correction amount PCOR is calculated. In the present embodiment, this is the product of the correctable amount PCORB and the correction coefficient PCORC. Here, the correctable amount PCORB is calculated based on the parameters used for calculating the basic injection pressure PBASE. This is because the basic injection pressure PBASE is adapted to an optimum value in consideration of various requirements. For this reason, the above parameters are used in order to define an allowable range for each of these required elements. The correction coefficient PCORC is calculated based on the post injection amount and the basic injection pressure PBASE. Here, considering that the flying distance of the injected fuel increases as the post injection amount increases, the correction coefficient PCORC increases as the post injection amount increases. In view of the fact that as the basic injection pressure PBASE increases, the amount of fuel injected by post-injection reaches the cylinder wall surface increases, the correction coefficient PCORC increases as the basic injection pressure PBASE increases.

続くステップS16においては、基本噴射圧PBASEから噴射圧補正量PCORを減算することで目標噴射圧PFINを算出する。こうして算出された目標噴射圧PFINにコモンレール44内の燃圧を制御すべく、燃料ポンプ42の吐出量が操作されることとなる。   In the subsequent step S16, the target injection pressure PFIN is calculated by subtracting the injection pressure correction amount PCOR from the basic injection pressure PBASE. In order to control the fuel pressure in the common rail 44 to the target injection pressure PFIN calculated in this way, the discharge amount of the fuel pump 42 is operated.

なお、上記ステップS10において否定判断される場合や、ステップS16の処理が完了する場合には、この一連の処理を一旦終了する。   When a negative determination is made in step S10 or when the process of step S16 is completed, this series of processes is temporarily terminated.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)ポスト噴射を行う要求が生じる場合、要求が生じない場合と比較して燃料噴射弁20から噴射される燃料の圧力を低下させた。これにより、機関潤滑油の希釈をより適切に抑制することができる。   (1) When the request | requirement which performs a post injection arises, the pressure of the fuel injected from the fuel injection valve 20 was reduced compared with the case where a request | requirement does not arise. Thereby, dilution of engine lubricating oil can be suppressed more appropriately.

(2)ポスト噴射を、1燃焼サイクル中の膨張行程中央以降に行った。これにより、ポスト噴射によって噴射された燃料を燃焼室16にて燃焼させることなく排気系に好適に供給することができる。   (2) Post injection was performed after the center of the expansion stroke in one combustion cycle. Thereby, the fuel injected by the post injection can be suitably supplied to the exhaust system without burning in the combustion chamber 16.

(3)ポスト噴射の噴射量が多くなるほど圧力の低下量(噴射圧補正量PCOR)を大きくした。これにより、ポスト噴射のための圧力低下量を極力抑制することができるため、ポスト噴射がなされる状況下にあっても、コモンレール44内の燃圧を基本噴射圧PBASEに極力近似させることができる。   (3) The pressure reduction amount (injection pressure correction amount PCOR) was increased as the post injection amount increased. Thereby, since the pressure drop amount for post injection can be suppressed as much as possible, even under the situation where post injection is performed, the fuel pressure in the common rail 44 can be approximated to the basic injection pressure PBASE as much as possible.

(4)ポスト噴射を行う要求が生じる場合、基本噴射圧PBASEを低下補正した。これにより、ポスト噴射を行う要求が生じる場合には、基本噴射圧PBASEの適合時の要求よりも、燃焼室16を区画する内壁に付着する燃料量を低減させる要求の方を優先させることができる。   (4) When a request to perform post injection occurs, the basic injection pressure PBASE is corrected to decrease. Thereby, when the request | requirement which performs post injection arises, the request | requirement which reduces the fuel amount adhering to the inner wall which divides the combustion chamber 16 can be prioritized rather than the request | requirement at the time of adaptation of the basic injection pressure PBASE. .

(5)基本噴射圧PBASEの算出に用いるパラメータに基づき基本噴射圧PBASEの低下量を設定した。これにより、基本噴射圧PBASEの適合のための様々な要求要素に配慮しつつ低下処理を行うことができる。   (5) A reduction amount of the basic injection pressure PBASE is set based on a parameter used for calculation of the basic injection pressure PBASE. As a result, the reduction process can be performed while taking into consideration various required elements for the adaptation of the basic injection pressure PBASE.

(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、メイン噴射については、コモンレール44内の燃圧が基本噴射圧PBASEに制御された状態で行って且つ、メイン噴射後であってポスト噴射に先立ちコモンレール44内の燃圧を低下させるべく、空打ちを行う。ここで、空打ちとは、燃料噴射弁20の噴射口22から燃料を噴射させることなく、燃料噴射弁20を介して高圧燃料通路24から低圧燃料通路28へと燃料を流出させる処理である。これは、ノズルニードル21の変位が開始されない程度、ごく短い期間に渡って電磁ソレノイド27を通電することでバルブ26を極短時間に渡って開弁させることで行うことができる。   In the present embodiment, the main injection is performed in a state where the fuel pressure in the common rail 44 is controlled to the basic injection pressure PBASE, and the fuel pressure in the common rail 44 is decreased after the main injection and before the post injection. Make an empty shot. Here, idling is a process in which fuel flows out from the high-pressure fuel passage 24 to the low-pressure fuel passage 28 via the fuel injection valve 20 without injecting fuel from the injection port 22 of the fuel injection valve 20. This can be performed by opening the valve 26 for an extremely short time by energizing the electromagnetic solenoid 27 for a very short period of time so that the displacement of the nozzle needle 21 is not started.

図4に、本実施形態にかかるコモンレール44内の燃圧制御(噴射圧制御)の処理手順を示す。この処理は、ECU50によって、例えば所定周期で繰り返し実行される。なお、図4において、先の図3に示した処理に対応する処理については、便宜上同一の符号を付している。   FIG. 4 shows a processing procedure of fuel pressure control (injection pressure control) in the common rail 44 according to the present embodiment. This process is repeatedly executed by the ECU 50 at a predetermined cycle, for example. In FIG. 4, processes corresponding to the processes shown in FIG. 3 are given the same reference numerals for convenience.

この一連の処理では、ステップS14の処理の完了後、ステップS16aにおいて、目標噴射圧PFINを、基本噴射圧PBASEとする。続くステップS20においては、基本噴射圧PBASEと噴射圧補正量PCORとに基づき、空打ち回数Nを算出する。ここでは、噴射圧補正量PCORが大きいほど空打ち回数Nを大きくする。これは、噴射圧補正量PCORが大きいほど、噴射圧の低下量が大きくなることによる。また、基本噴射圧PBASEが高いほど空打ち回数Nを小さくする。これは、単一の空打ちによってコモンレール44からリークさせることのできる燃料量は、コモンレール44の燃圧が高いほど多くなることによる。ちなみに、ポスト噴射にとって適切な燃圧が基本噴射圧PBASEの適合に際しての要求要素によって制約を受けることはないが、ポスト噴射時に燃圧を低下させすぎるとその直後における燃圧の制御性が低下するおそれがあるため、本実施形態では、噴射圧補正量PCORに基づき空打ち回数Nを設定する。   In this series of processes, after the process of step S14 is completed, the target injection pressure PFIN is set to the basic injection pressure PBASE in step S16a. In the subsequent step S20, the number of idle shots N is calculated based on the basic injection pressure PBASE and the injection pressure correction amount PCOR. Here, the larger the injection pressure correction amount PCOR, the larger the number of idle shots N. This is because the amount of decrease in injection pressure increases as the injection pressure correction amount PCOR increases. Further, the higher the basic injection pressure PBASE, the smaller the number of idle shots N. This is because the amount of fuel that can be leaked from the common rail 44 by a single idle shot increases as the fuel pressure of the common rail 44 increases. Incidentally, the fuel pressure appropriate for post-injection is not restricted by the requirements for adapting the basic injection pressure PBASE, but if the fuel pressure is reduced too much during post-injection, the controllability of the fuel pressure immediately after that may decrease. Therefore, in the present embodiment, the number of idle shots N is set based on the injection pressure correction amount PCOR.

ステップS20の処理が完了する場合、ステップS22において空打ち実行条件が成立するか否かを判断する。この条件は、メイン噴射が終了しているとの条件とポスト噴射の実行前であるとの条件との論理積条件である。そして、実行条件が成立すると判断される場合、空打ち回数Nだけ空打ち処理を行う(ステップS24、S26)。   When the process of step S20 is completed, it is determined in step S22 whether or not the blank run execution condition is satisfied. This condition is a logical product condition of the condition that the main injection is completed and the condition that the post injection is not executed. If it is determined that the execution condition is satisfied, the blanking process is performed for the number N of blank shots (steps S24 and S26).

なお、上記ステップS10、S22、S24において否定判断される場合や、ステップS26の処理が完了する場合には、この一連の処理を一旦終了する。   When a negative determination is made in steps S10, S22, and S24, or when the process of step S26 is completed, this series of processes is temporarily ended.

図5に、本実施形態にかかる燃圧の低下処理態様を示す。詳しくは、図5(a)に、操作信号の推移を示し、図5(b)に、噴射率の推移を示し、図5(c)に、噴射圧(コモンレール44内の燃圧)の推移を示す。図示されるように、空打ちを行うことで、ポスト噴射poに先立って、噴射圧を十分に低下させることができる。   FIG. 5 shows a fuel pressure reduction process according to this embodiment. Specifically, FIG. 5A shows the transition of the operation signal, FIG. 5B shows the transition of the injection rate, and FIG. 5C shows the transition of the injection pressure (fuel pressure in the common rail 44). Show. As shown in the figure, by performing idle driving, the injection pressure can be sufficiently reduced prior to the post injection po.

以上説明した本実施形態によれば、先の第1の実施形態の上記(1)〜(3)の各効果に加えて、更に以下の効果が得られるようになる。   According to this embodiment described above, the following effects can be obtained in addition to the effects (1) to (3) of the first embodiment.

(6)メイン噴射がなされた後、ポスト噴射がなされるに先立ち、コモンレール44内の圧力を低下させた。これにより、燃焼室16を区画する内壁に付着する燃料量を低減する目的によって、メイン噴射m時の噴射圧がメイン噴射mにとって最適な噴射圧からずれる事態を好適に抑制又は回避することができる。   (6) After the main injection is performed, the pressure in the common rail 44 is reduced prior to the post injection. Thereby, the situation where the injection pressure at the time of the main injection m deviates from the optimal injection pressure for the main injection m can be suitably suppressed or avoided for the purpose of reducing the amount of fuel adhering to the inner wall defining the combustion chamber 16. .

(7)メイン噴射mがなされた後、ポスト噴射poに先立って空打ちを行うことで圧力の低下処理を行った。これにより、メイン噴射後にコモンレール44内の燃圧を低下させることができる。   (7) After the main injection m was performed, a pressure reduction process was performed by performing an idle shot prior to the post injection po. Thereby, the fuel pressure in the common rail 44 can be reduced after the main injection.

(第3の実施形態)
以下、第3の実施形態について、先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Third embodiment)
Hereinafter, the third embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

図6に、本実施形態にかかるコモンレール44内の燃圧制御(噴射圧制御)の処理手順を示す。この処理は、ECU50によって、例えば所定周期で繰り返し実行される。なお、図6において、先の図4に示した処理に対応する処理については、便宜上同一の符号を付している。   FIG. 6 shows a processing procedure of fuel pressure control (injection pressure control) in the common rail 44 according to the present embodiment. This process is repeatedly executed by the ECU 50 at a predetermined cycle, for example. In FIG. 6, processes corresponding to the processes shown in FIG. 4 are given the same reference numerals for convenience.

この一連の処理では、ステップS16aの処理が完了すると、ステップS30において、基本噴射圧PBASEと噴射圧補正量PCORとに基づき、減圧弁46の駆動時間Tを算出する。ここでは、減圧弁46を同一時間開弁させた際、コモンレール44内の燃圧が高いほどコモンレール44から流出する燃料量が増大することに鑑み、基本噴射圧PBASEが高いほど駆動時間Tを短縮する。続くステップS32においては、減圧処理の実行条件が成立するか否かを判断する。この実行条件は、先の図4のステップS22における条件と同一である。そして、実行条件が成立すると、駆動時間Tに渡って減圧弁46を開弁させる(ステップS34、S36)。   In this series of processes, when the process of step S16a is completed, the driving time T of the pressure reducing valve 46 is calculated based on the basic injection pressure PBASE and the injection pressure correction amount PCOR in step S30. Here, in view of the fact that when the pressure reducing valve 46 is opened for the same period of time, the amount of fuel flowing out from the common rail 44 increases as the fuel pressure in the common rail 44 increases, the drive time T decreases as the basic injection pressure PBASE increases. . In a succeeding step S32, it is determined whether or not a decompression process execution condition is satisfied. This execution condition is the same as that in step S22 of FIG. When the execution condition is satisfied, the pressure reducing valve 46 is opened over the driving time T (steps S34 and S36).

以上説明した本実施形態によれば、先の第1の実施形態の上記(1)〜(3)の各効果や第2の実施形態の上記(6)の効果に加えて、更に以下の効果が得られるようになる。   According to this embodiment described above, in addition to the effects (1) to (3) of the first embodiment and the effect (6) of the second embodiment, the following effects are further obtained. Can be obtained.

(8)メイン噴射mがなされた後、ポスト噴射poに先立って減圧弁46を用いて圧力の低下処理を行った。これにより、メイン噴射後にコモンレール44内の燃圧を低下させることができる。   (8) After the main injection m was performed, a pressure reduction process was performed using the pressure reducing valve 46 prior to the post injection po. Thereby, the fuel pressure in the common rail 44 can be reduced after the main injection.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified as follows.

・上記第2、第3の実施形態においては、噴射圧補正量PCORに基づき空打ち回数Nや減圧弁駆動時間Tを算出したが、これに限らない。例えば、ポスト噴射時目標噴射圧を、上記目標噴射圧PFINとは別に設定し、このポスト噴射時目標噴射圧に基づき空打ち回数Nや減圧弁駆動時間Tを算出してもよい。この場合、ポスト噴射時目標噴射圧を、ポスト噴射量が多いほど低圧とすることが望ましい。   In the second and third embodiments, the number of idle shots N and the pressure reducing valve drive time T are calculated based on the injection pressure correction amount PCOR. However, the present invention is not limited to this. For example, the post-injection target injection pressure may be set separately from the target injection pressure PFIN, and the idling number N and the pressure reducing valve driving time T may be calculated based on the post-injection target injection pressure. In this case, it is desirable that the target injection pressure at the time of post injection is set to be lower as the post injection amount is larger.

・上記各実施形態では、補正可能量PCORBを、基本噴射圧PBASEを算出するための入力パラメータと同一のパラメータに基づき算出したがこれに限らない。例えば、これらに更に別のパラメータを加味してもよい。   In each of the above embodiments, the correctable amount PCORB is calculated based on the same parameter as the input parameter for calculating the basic injection pressure PBASE, but is not limited thereto. For example, you may add another parameter to these.

・ポスト噴射としては、膨張行程に行われるものに限らない。例えば、排気行程に行われるものであってもよい。   -Post injection is not limited to that performed during the expansion stroke. For example, it may be performed during the exhaust stroke.

・燃料噴射制御システムとしては、同期式システムに限らず、非同期式システムであってもよい。ここで例えば、4気筒のものにおいて燃料ポンプ42による燃料の圧送周期が「360°CA」である場合には、上記第2、第3の実施形態において、圧送直後に燃料を噴射するグループと圧送後他の気筒での燃料噴射の後に燃料を噴射するグループとで、空打ち回数Nや減圧弁駆動時間Tの設定態様を相違させることが有効である。また、特定の気筒の上死点と圧送上死点とのクランク角度間隔が変化するものにあっては、特定の気筒にとっての直近の圧送上死点のクランク角度を加味して、空打ち回数Nや減圧弁駆動時間Tを設定してもよい。   The fuel injection control system is not limited to a synchronous system, and may be an asynchronous system. Here, for example, in the case of a 4-cylinder engine, when the fuel pumping cycle by the fuel pump 42 is “360 ° CA”, in the second and third embodiments, the group and the pumping for injecting fuel immediately after pumping It is effective to make the number of idle shots N and the pressure reducing valve driving time T different from each other in the group that injects fuel after fuel injection in other cylinders. If the crank angle interval between the top dead center and the top dead center of a specific cylinder varies, the number of idle shots will be taken into account with the crank angle of the nearest top dead center for the specific cylinder. N or a pressure reducing valve driving time T may be set.

・上記各実施形態では、基本噴射圧を算出するために用いる負荷と相関を有するパラメータとして、指令トルクを用いたがこれに限らない。例えば、燃料噴射弁20に対する指令噴射量やアクセルペダルの操作量であってもよい。   In each of the above embodiments, the command torque is used as a parameter having a correlation with the load used for calculating the basic injection pressure, but the present invention is not limited to this. For example, it may be a command injection amount for the fuel injection valve 20 or an accelerator pedal operation amount.

・燃料噴射弁20を駆動する駆動回路60としては、燃料噴射弁20への電力供給のためのスイッチング素子(図1におけるスイッチング素子60b、定電流回路60cのスイッチング素子)を複数気筒で共有するものに限らない。気筒毎に電力供給のためのスイッチング素子を独立に設ける場合、ポスト噴射による燃料がシリンダ内壁に付着することを回避すべくポスト噴射を分割して行ったとしても、スイッチング素子の温度上昇量を低減することはできるものの、噴射回数の増加に伴い燃料噴射弁20の消耗速度が増大するおそれがある。このため、こうした事態を回避するうえで本発明を適用することは有効である。   As the drive circuit 60 for driving the fuel injection valve 20, a switching element for supplying power to the fuel injection valve 20 (switching element 60b in FIG. 1, switching element of the constant current circuit 60c) is shared by a plurality of cylinders. Not limited to. When switching elements for power supply are provided independently for each cylinder, the temperature rise of the switching element is reduced even if the post injection is divided to avoid the fuel from the post injection adhering to the cylinder inner wall. Although it can be done, the consumption rate of the fuel injection valve 20 may increase as the number of injections increases. For this reason, it is effective to apply the present invention to avoid such a situation.

・燃料噴射弁20としては、電磁ソレノイド27をアクチュエータとするものに限らず、例えばピエゾ素子をアクチュエータとするものであってもよい。また、燃料噴射弁20の構造としても、先の図1に例示したものに限らない。ただし、上記第2の実施形態においては、ノズルニードルの開弁方向及び閉弁方向の双方向に燃料の圧力が印加されて且つ、閉弁方向に圧力を印加する燃料が充填されている室内と燃料タンク側とを連通及び遮断することで燃料噴射弁を開閉するものであることが望ましい。   The fuel injection valve 20 is not limited to the one that uses the electromagnetic solenoid 27 as an actuator, and may be one that uses a piezoelectric element as an actuator, for example. Further, the structure of the fuel injection valve 20 is not limited to that illustrated in FIG. However, in the second embodiment, the fuel pressure is applied in both the valve opening direction and the valve closing direction of the nozzle needle, and the chamber is filled with fuel that applies pressure in the valve closing direction. It is desirable to open and close the fuel injection valve by communicating with and blocking the fuel tank side.

・圧縮着火式内燃機関としては、軽油を燃料とするものに限らず、例えば重油やバイオ燃料を燃料とするものであってもよい。また、圧縮着火式内燃機関にも限らず、例えば筒内噴射式ガソリン機関であってもよい。この場合であっても、後処理装置の再生のために燃焼室に燃料を噴射する場合には、潤滑油が希釈するおそれがあるため、本発明の適用は有効である。   The compression ignition type internal combustion engine is not limited to one that uses light oil as a fuel, and may be one that uses heavy oil or biofuel as a fuel, for example. Further, the invention is not limited to the compression ignition type internal combustion engine, and may be, for example, a cylinder injection type gasoline engine. Even in this case, when the fuel is injected into the combustion chamber for regeneration of the post-processing device, the lubricating oil may be diluted, so that the application of the present invention is effective.

第1の実施形態にかかるシステム構成図。1 is a system configuration diagram according to a first embodiment. FIG. 同実施形態にかかる多段噴射態様を例示するタイムチャート。The time chart which illustrates the multistage injection aspect concerning the embodiment. 同実施形態にかかる噴射圧の制御処理の手順を示す流れ図。The flowchart which shows the procedure of the control process of the injection pressure concerning the embodiment. 第2の実施形態にかかる噴射圧の制御処理の手順を示す流れ図。The flowchart which shows the procedure of the control process of the injection pressure concerning 2nd Embodiment. 同実施形態の効果を示すタイムチャート。The time chart which shows the effect of the embodiment. 第3の実施形態にかかる噴射圧の制御処理の手順を示す流れ図。The flowchart which shows the procedure of the control process of the injection pressure concerning 3rd Embodiment.

符号の説明Explanation of symbols

10…ディーゼル機関、16…燃焼室、20…燃料噴射弁、44…コモンレール、50…ECU(燃料噴射制御装置の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... Diesel engine, 16 ... Combustion chamber, 20 ... Fuel injection valve, 44 ... Common rail, 50 ... ECU (one embodiment of fuel injection control apparatus).

Claims (9)

蓄圧容器に蓄えられた高圧燃料を、排気系に後処理装置を備える内燃機関の燃焼室に燃料噴射弁を介して噴射する燃料噴射装置を操作対象とし、
前記後処理装置の再生のためのポスト噴射を行う要求が生じる場合、該要求が生じない場合と比較して前記燃料噴射弁から噴射される燃料の圧力を低下させる低下手段を備えることを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection device for injecting the high-pressure fuel stored in the pressure accumulating vessel into the combustion chamber of the internal combustion engine provided with the aftertreatment device in the exhaust system via the fuel injection valve is an operation target.
When a request to perform post-injection for regeneration of the post-processing device is generated, a reduction means is provided for reducing the pressure of the fuel injected from the fuel injection valve as compared with the case where the request does not occur. A fuel injection control device for an internal combustion engine.
前記ポスト噴射は、1燃焼サイクル中の膨張行程中央以降に行われるものであることを特徴とする請求項1記載の内燃機関の燃料噴射制御装置。   The fuel injection control device for an internal combustion engine according to claim 1, wherein the post-injection is performed after the center of the expansion stroke in one combustion cycle. 前記低下手段は、前記ポスト噴射の噴射量が多くなるほど前記圧力の低下量を大きくすることを特徴とする請求項1又は2記載の内燃機関の燃料噴射制御装置。   3. The fuel injection control device for an internal combustion engine according to claim 1, wherein the lowering unit increases the decrease amount of the pressure as the injection amount of the post injection increases. 前記低下手段は、前記内燃機関のトルクを生成するためのメイン噴射がなされた後、前記ポスト噴射がなされるのに先立ち、前記燃料噴射弁から噴射される燃料の圧力を低下させることを特徴とする請求項1〜3のいずれか1項に記載の内燃機関の燃料噴射制御装置。   The reducing means reduces the pressure of the fuel injected from the fuel injection valve prior to the post-injection after the main injection for generating the torque of the internal combustion engine is performed. The fuel injection control device for an internal combustion engine according to any one of claims 1 to 3. 前記燃料噴射装置は、前記蓄圧容器に供給する燃料を蓄える燃料タンクへと前記蓄圧容器内の燃料を流出させる流出手段を更に備え、
前記低下手段は、前記メイン噴射がなされた後、前記ポスト噴射に先立って、前記流出手段を操作することで前記圧力の低下処理を行うことを特徴とする請求項4記載の内燃機関の燃料噴射制御装置。
The fuel injection device further includes outflow means for flowing out the fuel in the pressure accumulating container to a fuel tank for storing fuel to be supplied to the pressure accumulating container,
5. The fuel injection for an internal combustion engine according to claim 4, wherein the lowering means performs the pressure lowering process by operating the outflow means prior to the post injection after the main injection is performed. Control device.
前記燃料噴射装置は、前記蓄圧容器に供給する燃料を蓄える燃料タンクを備え、
前記低下手段は、燃料噴射をすることなく前記燃料噴射弁を介して前記蓄圧容器内の燃料を前記燃料タンクへと流出させるように前記燃料噴射弁を操作することで前記圧力の低下処理を行うことを特徴とする請求項4記載の内燃機関の燃料噴射制御装置。
The fuel injection device includes a fuel tank that stores fuel to be supplied to the pressure accumulating vessel,
The reduction means performs the pressure reduction process by operating the fuel injection valve so that the fuel in the pressure accumulating vessel flows out to the fuel tank through the fuel injection valve without performing fuel injection. The fuel injection control device for an internal combustion engine according to claim 4, wherein the fuel injection control device is an internal combustion engine.
前記内燃機関のトルクを生成するためのメイン噴射に際して前記燃料噴射弁から噴射される燃料の圧力の目標値を設定する設定手段を更に備え、
前記低下手段は、前記後処理装置の再生のためのポスト噴射を行う要求が生じる場合、前記設定手段の設定する目標値を低下補正することを特徴とする請求項1〜3のいずれか1項に記載の内燃機関の燃料噴射制御装置。
Further comprising setting means for setting a target value of the pressure of fuel injected from the fuel injection valve during main injection for generating torque of the internal combustion engine;
The reduction means corrects the target value set by the setting means to be reduced when a request to perform post injection for regeneration of the post-processing device occurs. 2. A fuel injection control device for an internal combustion engine according to 1.
前記設定手段は、前記内燃機関の運転状態を示すパラメータに基づき前記目標値の設定処理を行うものであり、
前記低下手段は、前記目標値の設定処理に用いるパラメータに基づき前記目標値の低下量を設定することを特徴とする請求項7記載の内燃機関の燃料噴射制御装置。
The setting means performs the setting process of the target value based on a parameter indicating an operating state of the internal combustion engine,
8. The fuel injection control apparatus for an internal combustion engine according to claim 7, wherein the lowering means sets the amount of decrease in the target value based on a parameter used for the target value setting process.
請求項1〜8のいずれか1項に記載の内燃機関の燃料噴射制御装置と、
前記燃料噴射装置とを備えることを特徴とする内燃機関の燃料噴射制御システム。
A fuel injection control device for an internal combustion engine according to any one of claims 1 to 8,
A fuel injection control system for an internal combustion engine, comprising the fuel injection device.
JP2008240725A 2008-09-19 2008-09-19 Fuel injection control device and fuel injection control system for internal combustion engine Expired - Fee Related JP4862873B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008240725A JP4862873B2 (en) 2008-09-19 2008-09-19 Fuel injection control device and fuel injection control system for internal combustion engine
DE102009041535.1A DE102009041535B4 (en) 2008-09-19 2009-09-15 A fuel injection control apparatus and a fuel injection control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240725A JP4862873B2 (en) 2008-09-19 2008-09-19 Fuel injection control device and fuel injection control system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010071222A true JP2010071222A (en) 2010-04-02
JP4862873B2 JP4862873B2 (en) 2012-01-25

Family

ID=42035175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240725A Expired - Fee Related JP4862873B2 (en) 2008-09-19 2008-09-19 Fuel injection control device and fuel injection control system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4862873B2 (en)
DE (1) DE102009041535B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190289A (en) * 2013-03-28 2014-10-06 Mitsubishi Motors Corp Fuel injection device
DE102016105625A1 (en) 2015-03-30 2016-10-06 Toyota Jidosha Kabushiki Kaisha Fuel injection device for internal combustion engine
KR101806357B1 (en) 2016-11-25 2017-12-07 현대오트론 주식회사 Post injection pressure control device and method in DPF regeneration of diesel vehicle
JP2018071384A (en) * 2016-10-26 2018-05-10 株式会社デンソー Fuel injection control device of engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432563B2 (en) * 2016-06-29 2018-12-05 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141123A (en) * 1996-11-08 1998-05-26 Hino Motors Ltd Common rail pressure control device of fuel injection device for direct injection type diesel engine
JP2006037734A (en) * 2004-07-22 2006-02-09 Toyota Motor Corp Control device of internal combustion engine
JP2007023812A (en) * 2005-07-13 2007-02-01 Denso Corp Fuel injection controller
JP2007239605A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel injection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760583B2 (en) 1997-07-31 2006-03-29 トヨタ自動車株式会社 Fuel injection device
DE10210163A1 (en) 2002-03-07 2003-09-18 Bosch Gmbh Robert Control method for direct fuel injection internal combustion engine provides selective suppression of individual fuel injection phases
DE10329506A1 (en) 2003-06-30 2005-01-20 Daimlerchrysler Ag Auto-ignition internal combustion engine
DE102005012998B3 (en) 2005-03-21 2006-09-21 Siemens Ag Common rail injection system for e.g. diesel engine, has injectors comprising injection nozzles for injecting fuel into combustion chamber, where one of injectors or part of injectors serves for pressure reduction in high pressure area
DE102005054387A1 (en) 2005-11-15 2007-05-16 Bosch Gmbh Robert Regeneration of a particulate filter by post-injection at intervals
DE102006039523A1 (en) 2006-08-23 2008-02-28 Siemens Ag Method for controlling a fuel injection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141123A (en) * 1996-11-08 1998-05-26 Hino Motors Ltd Common rail pressure control device of fuel injection device for direct injection type diesel engine
JP2006037734A (en) * 2004-07-22 2006-02-09 Toyota Motor Corp Control device of internal combustion engine
JP2007023812A (en) * 2005-07-13 2007-02-01 Denso Corp Fuel injection controller
JP2007239605A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel injection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190289A (en) * 2013-03-28 2014-10-06 Mitsubishi Motors Corp Fuel injection device
DE102016105625A1 (en) 2015-03-30 2016-10-06 Toyota Jidosha Kabushiki Kaisha Fuel injection device for internal combustion engine
US10221803B2 (en) 2015-03-30 2019-03-05 Toyota Jidosha Kabushiki Kaisha Fuel injection apparatus for internal combustion engine
DE102016105625B4 (en) * 2015-03-30 2020-10-08 Toyota Jidosha Kabushiki Kaisha Fuel injection device for internal combustion engine
JP2018071384A (en) * 2016-10-26 2018-05-10 株式会社デンソー Fuel injection control device of engine
KR101806357B1 (en) 2016-11-25 2017-12-07 현대오트론 주식회사 Post injection pressure control device and method in DPF regeneration of diesel vehicle

Also Published As

Publication number Publication date
DE102009041535A1 (en) 2010-04-22
DE102009041535B4 (en) 2019-10-10
JP4862873B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4407731B2 (en) Fuel injection control device
JP4483908B2 (en) Fuel injection control device
JP4428405B2 (en) Fuel injection control device and engine control system
EP1959118B1 (en) Fuel injection controller and fuel injection control system
US8676475B2 (en) Method for regenerating a diesel particulate filter
EP2045458A2 (en) Defective injection detection device and fuel injection system having the same
JP4946900B2 (en) Combustion control device and engine control system for compression ignition type cylinder injection engine
JP6447434B2 (en) Fuel injection control device
JP5459443B2 (en) Control device for internal combustion engine
JP4862873B2 (en) Fuel injection control device and fuel injection control system for internal combustion engine
JP5774521B2 (en) Fuel leak detection device
JP2007162644A (en) Fuel injection control device
JP2009250051A (en) Device and system for fuel-injection control for in-vehicle internal combustion engine
JP2013024197A (en) Fuel injection control device of internal combustion engine
JP5884834B2 (en) Control device for internal combustion engine
JP2007132315A (en) Fuel injection control device
JP5766654B2 (en) Fuel injection control device and fuel injection control method
JP2011236770A (en) Fuel injection control device of internal combustion engine
JP2008309077A (en) Diagnostic system and information-acquiring system for fuel-injection valve
JP4407620B2 (en) Fuel injection control device
JP2008280851A (en) Fuel injection property detecting device and engine control system
JP4306117B2 (en) Accumulated fuel injection system
JP3975559B2 (en) Accumulated fuel injection control device for internal combustion engine
JP7275955B2 (en) engine controller
JP6790793B2 (en) Engine control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees