JP2010069578A - Edge-exchangeable rotary tool for use in high-feed machining - Google Patents

Edge-exchangeable rotary tool for use in high-feed machining Download PDF

Info

Publication number
JP2010069578A
JP2010069578A JP2008240303A JP2008240303A JP2010069578A JP 2010069578 A JP2010069578 A JP 2010069578A JP 2008240303 A JP2008240303 A JP 2008240303A JP 2008240303 A JP2008240303 A JP 2008240303A JP 2010069578 A JP2010069578 A JP 2010069578A
Authority
JP
Japan
Prior art keywords
cutting edge
width
cutting
main cutting
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240303A
Other languages
Japanese (ja)
Other versions
JP4919298B2 (en
Inventor
Yoshiyuki Kobayashi
由幸 小林
Yoshimitsu Nagashima
由光 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008240303A priority Critical patent/JP4919298B2/en
Publication of JP2010069578A publication Critical patent/JP2010069578A/en
Application granted granted Critical
Publication of JP4919298B2 publication Critical patent/JP4919298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge-exchangeable rotary tool having an insert suitable for high-feed machining, which can reduce cutting resistance while keeping high defect-resistance of a main cutting blade of a cutting insert. <P>SOLUTION: In the edge-exchangeable rotary tool for high-feed machining employing a detachable insert, a negative horning, a flat land and a breaker groove are provided from a main cutting blade. In the edge-exchangeable rotary tool for high-feed machining, a negative horning width and a flat land width gradually increase from the lowest point to a joint and satisfy the relation of 0.03≤H1≤0.1, 0.15≤H1/H2≤0.5, 0.03≤F1≤0.1 and 0.15≤F1/F2≤0.5 where the negative horning width (mm) refers to H1 and the flat land width (mm) refers to F1 at the lowest point, and the negative horning width (mm) refers to H2 and the flat land width (mm) refers to F2 at the joint portion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、工具突き出し量の長い高送り加工に適した構造のインサートを装着した刃先交換式切削工具に関する。   The present invention relates to a cutting edge exchangeable cutting tool equipped with an insert having a structure suitable for high feed processing with a long tool protrusion.

刃先交換式切削工具に関する技術が、特許文献1から3に開示されている。特許文献1は、直線状の主切刃のホーニング幅と角度を変化させて耐欠損性を改善する技術を開示している。特許文献2は、高送り切削加工に適した刃先交換式切削工具が開示されている。特許文献3は、平坦なランドを設けた刃先交換式切削工具が開示されている。   Patent Documents 1 to 3 disclose techniques related to the cutting edge-exchangeable cutting tool. Patent document 1 is disclosing the technique which improves the fracture resistance by changing the honing width and angle of a linear main cutting edge. Patent Document 2 discloses a blade-tip-exchange-type cutting tool suitable for high-feed cutting. Patent Document 3 discloses a cutting edge exchangeable cutting tool provided with a flat land.

特開2002−46002号公報JP 2002-46002 A 特許第3317490号公報Japanese Patent No. 3317490 特開2008−207273号公報JP 2008-207273 A

本願発明は、切削用インサートの主切刃の耐欠損性を維持しながら切削抵抗の低抵抗化を可能とし、特に工具突き出し量が200mmを超えるような長い場合における高送り加工に好適なインサートを装着した刃先交換式回転工具を提供することである。   The present invention makes it possible to reduce the cutting resistance while maintaining the fracture resistance of the main cutting edge of the cutting insert, and in particular, an insert suitable for high-feed machining when the tool protrusion amount exceeds 200 mm. It is to provide an attached blade-tip-replaceable rotary tool.

本願発明は、着脱可能なインサートを用いた高送り用刃先交換式回転工具において、該インサートはすくい面と逃げ面との稜線部を切刃とし、該切刃は、コーナー刃と該コーナー刃を挟んで主切刃と外周刃とを備え、該主切刃における回転工具最下点と該主切刃と該コーナー刃との繋ぎ部を結んだ線分が工具回転軸の垂線となす角度(度)をθとしたとき、5≦θ≦30であり、該主切刃は該線分に対して工具回転軸と垂直な方向に凸形状であり、該すくい面には該主切刃に対して略垂直な方向で内向きに該主切刃の稜線部からネガホーニング、フラットランド、ブレーカ溝を有し、該最下点における該ネガホーニングの幅(mm)をH1、該フラットランドの幅(mm)をF1、該繋ぎ部における該ネガホーニングの幅(mm)をH2、該フラットランドの幅(mm)をF2、としたとき、ネガホーニング幅とフラットランド幅とが該最下点から該繋ぎ部に向かって漸次増加し、0.03≦H1≦0.1、0.15≦H1/H2≦0.5、0.03≦F1≦0.1、0.15≦F1/F2≦0.5、であることを特徴とする高送り加工用刃先交換式回転工具である。上記の構成を採用することによって、切削用インサートの主切刃の耐欠損性を維持しながら切削抵抗の低抵抗化を可能とし、特に工具突き出し量が200mmを超えるような長い場合における高送り加工に好適なインサートを装着した刃先交換式回転工具を提供することができる。   The present invention relates to a high-feed-blade replaceable rotary tool using a detachable insert, wherein the insert has a ridge line portion between a rake face and a flank face as a cutting edge, and the cutting edge includes a corner edge and the corner edge. The main cutting edge and the outer peripheral edge are sandwiched, and the angle formed by the line segment connecting the lowest point of the rotary tool on the main cutting edge and the connecting portion between the main cutting edge and the corner edge with the perpendicular of the tool rotation axis ( Θ) is 5 ≦ θ ≦ 30, and the main cutting edge has a convex shape in a direction perpendicular to the tool rotation axis with respect to the line segment, and the rake face has the main cutting edge on the main cutting edge. From the ridgeline portion of the main cutting edge in a direction substantially perpendicular to the main knives, there is a negative honing, a flat land, and a breaker groove, and the width (mm) of the negative honing at the lowest point is H1, The width (mm) is F1, the negative honing width (mm) at the joint is H2, When the width (mm) of the rat land is F2, the negative honing width and the flat land width gradually increase from the lowest point toward the connecting portion, and 0.03 ≦ H1 ≦ 0.1,. 15 ≦ H1 / H2 ≦ 0.5, 0.03 ≦ F1 ≦ 0.1, 0.15 ≦ F1 / F2 ≦ 0.5. . By adopting the above configuration, it is possible to reduce the cutting resistance while maintaining the fracture resistance of the main cutting edge of the cutting insert, and in particular, high feed machining when the tool protrusion exceeds 200 mm. It is possible to provide a blade-exchangeable rotary tool equipped with a suitable insert.

本願発明の高送り加工用刃先交換式回転工具は、少なくとも該インサート上面の該主切刃の近傍には、該主切刃の接線に対して略直交する方向に縦長に形成された複数のU字溝を有し、また該U字溝どうしの間にはすくい面を有することが好ましい。また、該繋ぎ部における該U字溝どうしの間のすくい面の幅(mm)をRW、該U字溝の横幅(mm)をUW、縦方向長さ(mm)をUH、該主切刃の稜線部から該U字溝端までの長さ(mm)をUL、としたとき、0.3≦RW≦0.35、1.5≦RW/UW≦2.0、UH≧1、0.45≦UL≦0.8、であることが好ましい。   The high-feed cutting edge replaceable rotary tool of the present invention has a plurality of U's formed vertically at least in the vicinity of the main cutting edge on the upper surface of the insert in a direction substantially orthogonal to the tangent to the main cutting edge It is preferable to have a groove and a rake face between the U-shaped grooves. Further, the width (mm) of the rake face between the U-shaped grooves in the connecting portion is RW, the horizontal width (mm) of the U-shaped groove is UW, the longitudinal length (mm) is UH, and the main cutting edge When the length (mm) from the ridge line portion to the U-shaped groove end is UL, 0.3 ≦ RW ≦ 0.35, 1.5 ≦ RW / UW ≦ 2.0, UH ≧ 1, 0. It is preferable that 45 ≦ UL ≦ 0.8.

本願発明は、インサートの主切刃の耐欠損性を維持しながら切削抵抗の低抵抗化を可能とし、特に工具突き出し量が200mmを超えるような長い場合における高送り加工に好適なインサートを装着した刃先交換式回転工具を提供することができた。   The present invention makes it possible to reduce the cutting resistance while maintaining the fracture resistance of the main cutting edge of the insert, and in particular, an insert suitable for high-feed machining when the tool protrusion amount exceeds 200 mm is mounted. We were able to provide a blade-changeable rotary tool.

本願発明の高送り加工用刃先交換式回転工具の概略について、図を用いて説明する。まず、図1は本願発明の回転工具本体1とインサート2の装着の様子を説明する図を示す。図1に示すように、インサート2は中央部に設けた取付け孔3を介して、クランプねじ4により回転工具本体1に装着される。図2はインサート2を回転工具本体1に装着したときの図を示す。図2において、本願発明の切刃は、コーナー刃5を挟むように主切刃6と外周刃7が形成されている。インサートを回転工具本体に装着したとき、主切刃は最下点8を有する。外周刃は工具回転軸に対して外側に位置し、他方、取付け穴に関して外周刃と対称な面は、回転工具本体に装着したときの拘束面になる。インサートは、工具回転軸方向に対して所定の角度に傾けた状態で装着され、バックテーパがついた状態になっている。本願発明の刃先交換式切削工具は、切込深さap値を主切刃の範囲内で設定する為、たとえ垂直の立壁を加工したとしても外周刃は切削には関与せず、切刃としての役割はしないため切削抵抗が発生しない。図3は、図2に示すインサート2を拡大した図である。図3に示すインサート2は、本願発明の第1の実施形態である。図3に示すように、本願発明の刃先交換式切削工具に装着されたインサートの主切刃の最下点8とし、主切刃とコーナー刃との繋ぎ部9とし、最下点8と繋ぎ部9とを結んだ線分が工具回転軸に垂直な直線となす角度(度)をθとしたとき、5≦θ≦30である。更に該主切刃は該線分に対して工具回転軸と垂直な方向に凸形状である。主切刃の形状は曲線状、円弧状、若しくはこれらと直線の組み合わせにより形成されてもよい。本願発明のインサートのサイズは、内接円の直径が6mm〜16mm、最下点8、交点10、繋ぎ部9の3点を結んだ円弧の半径Rは、6mmから20mmとするのが好ましい。ここで、該交点10とは、該線分の垂直2等分線と主切刃との交点であり、該交点10は最下点8と繋ぎ部9とを結んだ線分に対して工具回転軸と垂直な方向に外側となっている。図4に本願発明のインサートの斜視図を示す。インサートは略四角形状をなし、工具本体の着座面と接する底面11、この底面と対向するすくい面12、底面とすくい面との間に形成された逃げ面13を備えている。そして、すくい面と逃げ面とがなす稜線部には切刃が形成され、インサート中央部に設けた取付け孔に対して対称な位置にも同様に切刃が形成されている。   An outline of the high-feed cutting edge replaceable rotary tool of the present invention will be described with reference to the drawings. First, FIG. 1 shows a view for explaining how the rotary tool main body 1 and the insert 2 of the present invention are mounted. As shown in FIG. 1, the insert 2 is attached to the rotary tool main body 1 by a clamp screw 4 through an attachment hole 3 provided in the center portion. FIG. 2 shows a view when the insert 2 is mounted on the rotary tool body 1. In FIG. 2, the cutting blade of the present invention has a main cutting edge 6 and an outer peripheral edge 7 so as to sandwich the corner blade 5. When the insert is mounted on the rotary tool body, the main cutting edge has the lowest point 8. The outer peripheral blade is located on the outer side with respect to the tool rotation axis. On the other hand, a surface symmetrical to the outer peripheral blade with respect to the mounting hole is a restraining surface when the rotating tool body is mounted. The insert is mounted in a state of being inclined at a predetermined angle with respect to the tool rotation axis direction, and is in a state of having a back taper. Since the cutting edge replaceable cutting tool of the present invention sets the cutting depth ap value within the range of the main cutting edge, even if a vertical vertical wall is machined, the outer peripheral blade is not involved in cutting, Therefore, no cutting resistance is generated. FIG. 3 is an enlarged view of the insert 2 shown in FIG. The insert 2 shown in FIG. 3 is a first embodiment of the present invention. As shown in FIG. 3, the lowermost point 8 of the main cutting edge of the insert mounted on the cutting edge-exchangeable cutting tool of the present invention is set as the connecting portion 9 between the main cutting edge and the corner blade, and the lowermost point 8 is connected. 5 ≦ θ ≦ 30, where θ is an angle (degree) formed by a line connecting the part 9 and a straight line perpendicular to the tool rotation axis. Further, the main cutting edge has a convex shape in the direction perpendicular to the tool rotation axis with respect to the line segment. The shape of the main cutting edge may be formed by a curved shape, an arc shape, or a combination of these and a straight line. As for the size of the insert of the present invention, the radius R of the arc connecting the three points of the inscribed circle having a diameter of 6 mm to 16 mm, the lowest point 8, the intersection point 10, and the connecting portion 9 is preferably 6 mm to 20 mm. Here, the intersection point 10 is an intersection point of the perpendicular bisector of the line segment and the main cutting edge, and the intersection point 10 is a tool with respect to a line segment connecting the lowest point 8 and the connecting portion 9. It is outside in the direction perpendicular to the rotation axis. FIG. 4 shows a perspective view of the insert of the present invention. The insert has a substantially rectangular shape, and includes a bottom surface 11 in contact with the seating surface of the tool body, a rake surface 12 facing the bottom surface, and a flank surface 13 formed between the bottom surface and the rake surface. And the cutting edge is formed in the ridgeline part which a rake surface and a flank face make, and the cutting edge is similarly formed in the symmetrical position with respect to the attachment hole provided in the insert center part.

図5は図4に示すインサートの主切刃における最下点8付近のA−A線の断面図であり、ネガホーニング幅がH1、フラットランドの幅がF1であることを示す。図6は図4に示す主切刃とコーナー刃との繋ぎ部9付近のB−B線の断面図であり、ネガホーニング幅がH2、フラットランドの幅がF2であることを示す。高送り加工用の刃先交換式切削工具には、主切刃のすくい面側には、主切刃の耐欠損性を向上させ、特にコーナー刃近傍の外周側における耐欠損性の向上を目的にネガホーニング及びフラットランドを設けて切刃強度の強化を図っている。しかし、ネガホーニング及びフラットランドは、その幅が広いと耐欠損性は向上する反面、切削抵抗が増大して切削に使用する工作機械、例えば、マシニングセンターなどの工作機械への負荷が大きくなり、高能率な高送り加工が出来なくなる。また、突き出し量が200mmを超えるような長い場合、又は、工具径に対して4倍以上の突き出し量を有する工具には、ビビリ振動が大きくなり切刃の欠損が発生し易い状態となり、被削材の加工面粗さの劣化も生じる。一方、ネガホーニング及びフラットランドは、その幅が小さいと切削抵抗は小さくなるが切刃強度の強化が不十分となり切刃が欠損し易くなる。従って、ネガホーニング幅及びフラットランド幅の設定は、被削材の剛性が弱く、切削中にビビリ振動などが発生し易くなる突き出し量が200mmを超えるような長い場合、又は、工具径に対して4倍以上の突き出し量を有する工具にはネガホーニング幅及びフラットランド幅を小さく設定し、強断続切削になって切刃の欠損が発生し易いときには逆に大きく設定する。ネガホーニングの角度α(度)は、5≦α≦30に設定することが好ましく、α値は、該最下点8から該繋ぎ部9の間で変化させても良い。更に、すくい面にブレーカ溝を設けることで、切削抵抗の低減化が可能となる。ブレーカ溝のすくい角β(度)は、β≦20、より好ましくは10≦β≦20にすることが好ましい。   FIG. 5 is a cross-sectional view taken along line AA in the vicinity of the lowest point 8 in the main cutting edge of the insert shown in FIG. 4, and shows that the negative honing width is H1 and the flat land width is F1. FIG. 6 is a cross-sectional view taken along line BB in the vicinity of the connecting portion 9 between the main cutting edge and the corner edge shown in FIG. 4, and shows that the negative honing width is H2 and the flat land width is F2. For high-feed cutting tools with replaceable cutting edges, the main cutting edge has an improved chipping resistance on the rake face side, especially for the purpose of improving the chipping resistance on the outer peripheral side near the corner cutting edge. Negative honing and flat lands are provided to enhance the cutting edge strength. However, with negative honing and flat lands, the chipping resistance is improved if the width is wide, but the cutting resistance increases and the load on machine tools used for cutting, such as machining centers, increases. Efficient high-feed machining is not possible. In addition, when the protruding amount is longer than 200 mm, or when the protruding amount is more than 4 times the tool diameter, the chatter vibration is increased and the cutting edge is likely to be broken. Degradation of the processed surface roughness of the material also occurs. On the other hand, if the negative honing and flat land are small in width, the cutting resistance becomes small, but the strength of the cutting edge is insufficiently strengthened and the cutting edge tends to be lost. Accordingly, the negative honing width and the flat land width are set when the work material has a low rigidity and the protrusion amount that tends to generate chatter vibration during cutting is longer than 200 mm, or with respect to the tool diameter. The negative honing width and the flat land width are set small for a tool having a protrusion amount of 4 times or more, and conversely, when the cutting edge is likely to be broken due to strong interrupted cutting. The angle α (degree) of negative honing is preferably set to 5 ≦ α ≦ 30, and the α value may be changed between the lowest point 8 and the connecting portion 9. Furthermore, cutting resistance can be reduced by providing a breaker groove on the rake face. The rake angle β (degree) of the breaker groove is preferably β ≦ 20, more preferably 10 ≦ β ≦ 20.

図7は本願発明の切削工具の主切刃部分における切屑厚みのを説明するための模式図である。本願発明は、工具回転軸方向下側に凸形状となっている円弧状の主切刃によって生成される切屑厚みは、主切刃の長さ方向の全てに渡って一定の厚みではない。例えば、主切刃の半径Rが15mmの場合、高送り加工の切削条件として、切込深さap値が1.5mm、1刃の送り量fz値が1.5mmで加工したときの切屑厚みT2は、約0.6mm、最下点8付近での切屑厚みT1は、約0.06mmとなる。即ち、T1値はT2値の約1/10まで薄くなる。これより、本願発明は、切屑厚みが厚くなるコーナー刃近傍の箇所と、切屑厚みが最も薄くなる最下点8付近とでは、夫々切刃の部位により適切なネガホーニング幅及びフラットランド幅を設けることにより、切削抵抗を低減し、同時に耐欠損性を改善した刃先交換式切削工具を実現することができる。上記の通り、切削抵抗を低減させる為には、切屑厚みが最も薄くなる最下点8のH1値、F1値を小さくすることである。このとき、H1値、F1値を小さくしても、切屑厚みは薄いことから、耐欠損性が大幅に損なわれることは無い。他方、切屑厚みが最大となるコーナー刃近傍の外周側の箇所では、ネガホーニング幅及びフラットランド幅を大きくすることによって耐欠損性を向上させなければならない。ここでインサートの主切刃におけるコーナー刃近傍の外周側では、耐欠損性を優先して改善する。本願発明は、ネガホーニング幅及びフラットランド幅が主切刃の最下点8のH1値、F1値を最小とし、主切刃とコーナー刃との繋ぎ部9のH2値、F2値を最大として、回転工具最下点8から該繋ぎ部9に向かって漸次増加させることにより、主切刃の耐欠損性と低抵抗化の両立を可能としている。これに対して、従来の高送り加工用工具におけるインサートのネガホーニング幅は略0.2mmの一定幅、フラットランド幅も一定幅が施されているため、工具最下点付近はネガホーニングの中で切削が行われていることになり、切れ味が悪く、大きな切削抵抗を示していた。   FIG. 7 is a schematic diagram for explaining the chip thickness at the main cutting edge portion of the cutting tool of the present invention. In the present invention, the chip thickness generated by the arcuate main cutting edge that is convex downward in the tool rotation axis direction is not constant over the entire length direction of the main cutting edge. For example, when the radius R of the main cutting edge is 15 mm, the chip thickness when machining is performed with a cutting depth ap value of 1.5 mm and a cutting amount fz value of 1.5 mm as cutting conditions for high-feed machining. T2 is about 0.6 mm, and the chip thickness T1 near the lowest point 8 is about 0.06 mm. That is, the T1 value is reduced to about 1/10 of the T2 value. Thus, in the present invention, an appropriate negative honing width and flat land width are provided depending on the portion of the cutting blade in the vicinity of the corner blade where the thickness of the chip becomes thick and in the vicinity of the lowest point 8 where the thickness of the chip becomes the thinnest. Thus, it is possible to realize a cutting edge-exchangeable cutting tool with reduced cutting resistance and at the same time improved fracture resistance. As described above, in order to reduce the cutting resistance, the H1 value and the F1 value of the lowest point 8 at which the chip thickness is the thinnest are reduced. At this time, even if the H1 value and the F1 value are reduced, the chip thickness is thin, so that the fracture resistance is not significantly impaired. On the other hand, fracture resistance must be improved by increasing the negative honing width and the flat land width at the outer peripheral portion in the vicinity of the corner blade where the chip thickness is maximum. Here, on the outer peripheral side in the vicinity of the corner edge of the main cutting edge of the insert, the fracture resistance is preferentially improved. In the present invention, the negative honing width and flat land width minimize the H1 value and F1 value of the lowest point 8 of the main cutting edge, and maximize the H2 value and F2 value of the joint portion 9 between the main cutting edge and the corner blade. Further, by gradually increasing from the lowest point 8 of the rotary tool toward the connecting portion 9, both the fracture resistance of the main cutting edge and the reduction in resistance can be achieved. On the other hand, since the negative honing width of the insert in the conventional high-feed machining tool is a constant width of approximately 0.2 mm and the flat land width is also constant, the vicinity of the lowest point of the tool is in the negative honing area. In other words, cutting was performed, and the sharpness was poor and the cutting resistance was high.

本願発明のインサートにおいて、まず主切刃のH1値(mm)は、0.03≦H1≦0.1とする必要がある。その理由は、加工時のfz値と最下点8付近の切屑厚みを割り出し、その値を元にH1値を設定したとき、H1値が0.03mm未満では耐欠損性が著しく低下してしまうからである。これは、刃先強度が不足する為、切屑厚みの影響よりも、切削時にインサートの最下点と被削材が接触するときの衝撃で欠損が発生する為である。一方、H1値が0.1mmを超えて大きいと切削抵抗が増大して不都合となってしまう。次に、H2値(mm)は、H1値を設定の後、H1値とH2値との比、H1/H2値が0.15〜0.5となるように設定する必要がある。こうすることで、主切刃の耐欠損性と切削抵抗のバランスが最も良く、また、耐欠損性を損なうことなく10%以上の切削抵抗の低減が可能である。但し、H2値は、切刃の耐欠損性や切削抵抗増大に配慮して、0.1〜0.5mmの範囲内で設定することが好ましい。こうすることで、H1値を最下点付近の切屑厚みT1よりも約30%広い幅としても、ネガホーニング幅の中で切削している範囲が少ない為、10%以上の切削抵抗の低減が可能である。   In the insert of the present invention, first, the H1 value (mm) of the main cutting edge must be 0.03 ≦ H1 ≦ 0.1. The reason for this is that when the fz value at the time of machining and the chip thickness near the lowest point 8 are determined, and the H1 value is set based on that value, the fracture resistance is significantly reduced if the H1 value is less than 0.03 mm. Because. This is because the cutting edge strength is insufficient, so that the chipping occurs due to the impact when the lowermost point of the insert comes into contact with the work material during cutting rather than the influence of the chip thickness. On the other hand, if the H1 value exceeds 0.1 mm, the cutting resistance increases, which is inconvenient. Next, after setting the H1 value, the H2 value (mm) needs to be set such that the ratio between the H1 value and the H2 value, and the H1 / H2 value is 0.15 to 0.5. By doing so, the balance between the fracture resistance of the main cutting edge and the cutting resistance is the best, and the cutting resistance can be reduced by 10% or more without impairing the fracture resistance. However, the H2 value is preferably set within a range of 0.1 to 0.5 mm in consideration of chipping resistance and cutting resistance increase. By doing this, even if the H1 value is about 30% wider than the chip thickness T1 near the lowest point, the cutting range is less in the negative honing width, so the cutting resistance is reduced by 10% or more. Is possible.

次に、本願発明のインサートにおいて、主切刃のF1値(mm)は、0.03≦F1≦0.1とする必要がある。その理由は、F1値が0.03mm未満では切刃強度の強化に有効ではなくなり耐欠損性が低下するからである。刃先強度が不足すると、切削時にインサートの最下点と被削材が接触するときの衝撃で欠損が発生する。一方、F1値が0.1mmを超えて大きいと切削抵抗が増大する不都合が生じる。次に、F2値(mm)は、F1値を設定の後、F1/F2値が0.15〜0.5となるように設定する必要がある。こうすることで、主切刃のすくい面における摩耗の進行を遅延させることに効果的となる。F2値が広い程、すくい面の特にコーナー刃近傍の外周側における摩耗を遅延させる効果があり、耐欠損性が向上するのである。但し、F2値は、切刃の耐欠損性や切削抵抗増大に配慮して、0.1〜0.5mmの範囲内で設定することが好ましい。F2値が過度に広い場合は、切屑の排出性が損なわれて切削抵抗が増大する。切屑をブレーカ溝へと誘導する流れが阻害される不都合が生じるためである。   Next, in the insert of the present invention, the F1 value (mm) of the main cutting edge needs to be 0.03 ≦ F1 ≦ 0.1. The reason is that if the F1 value is less than 0.03 mm, it is not effective in strengthening the cutting edge strength and the fracture resistance is lowered. If the strength of the cutting edge is insufficient, a chipping occurs due to an impact when the lowermost point of the insert comes into contact with the work material during cutting. On the other hand, if the F1 value is larger than 0.1 mm, there is a disadvantage that the cutting resistance increases. Next, after setting the F1 value, the F2 value (mm) needs to be set so that the F1 / F2 value is 0.15 to 0.5. This is effective in delaying the progress of wear on the rake face of the main cutting edge. A wider F2 value has an effect of delaying wear on the rake face, particularly on the outer peripheral side in the vicinity of the corner blade, and the fracture resistance is improved. However, it is preferable to set the F2 value within a range of 0.1 to 0.5 mm in consideration of chipping resistance and cutting resistance increase. When the F2 value is excessively wide, the chip discharge performance is impaired and the cutting resistance increases. This is because the flow of guiding the chips into the breaker groove is hindered.

本願発明の切削工具は、高送り加工において切削時に生成される切屑が主切刃に対して略直交する方向に排出される。そこで図3に示すように、インサートのすくい面の、少なくともコーナー刃近傍の外周側には、略円弧状の主切刃の接線に対して略直交する方向に縦長に形成された複数のU字溝16を設けることが好ましい。U字溝どうしの間にはすくい面18を有する。切屑がこのすくい面18に沿って通過し、すくい面と切屑との接触面積が減少して摩擦力が減少し、また摩擦による温度上昇も緩和される。このことによって、低抵抗化を図り、摩耗の進行も遅延させることが可能となり好ましい。特に主切刃におけるコーナー刃近傍の外周側には、ネガホーニング幅、フラットランド幅を共に幅広く設定して切削抵抗は高くなる傾向にあることから、このすくい面の部位にU字溝を設けることは好ましい。ここで隣り合うU字溝の間に設けたすくい面部分の断面形状は、緩やかな丘形状をなしており、この丘形状部分が切屑と接触する面となる。主切刃にかかる負荷は、工具外周側となる繋ぎ部近傍になる程大きくなることから、先の改善では、H2値をH1値よりも大きく設定して切刃強度を改善した。ここで、繋ぎ部近傍とは、主切刃と該線分の垂直2等分線との該交点10から該繋ぎ部9までの範囲のことである。切刃強度を改善では、切削抵抗の低減化対策は施されなかったが、ここでU字溝の配置により低減化対策を施すことができるため、好ましい。工具外周側のすくい面にU字溝を設けて、切削抵抗の低減化を図ることができる。これは、切屑とすくい面との接触面積を少なくできるからである。特に工具突き出し量が200mmを超えるような長い場合における高送り加工に好適なインサートは、切削抵抗の低抵抗化を図ることが好ましいのである。
また、図8は図4に示すインサートにおけるホーニング部のC−C線の断面図を示す。図8に示すように、繋ぎ部近傍におけるU字溝の横幅(mm)をUW、該U字溝どうしの間の該すくい面の幅(mm)をRWとしたとき、0.3≦RW≦0.35、1.5≦RW/UW≦2.0、であることが好ましい。繋ぎ部近傍の工具外周側のすくい面におけるUW値、RW値を上記の範囲に設定することにより、工具外周側のすくい面摩耗の進行に悪影響を及ぼさない範囲で切削抵抗の低抵抗化を図ることができる。RW値が0.3未満、或いはRW/UW値が1.5未満では、切屑との接触面積が減少して切削抵抗の低減化をもたらすが、その反面、すくい面の摩耗の進行が顕著となり、切刃の耐欠損性を劣化させることになる。一方、RW値が0.35を超えて長く、或いはRW/UW値が2.0を超えて大きいときは、すくい面の摩耗の進行が抑制され、切刃の耐欠損性を維持することができるが、切屑との接触面積の低減化が不十分のため切削抵抗の低減化を得ることができない。
U字溝のUH値は、UH≧1であることが好ましい。この理由は、UH値が1未満ではU字溝が短すぎて切屑接触面積の低減が十分でないため、切削抵抗の低抵抗化に有効とはならないからである。ここでUH値の上限値はすくい面の形態によって決定されるため、特に定めない。
UL値は、0.45≦UL≦0.8であることが好ましい。この理由は、切屑がすくい面と接触する領域を配慮し、U字溝がすくい面摩耗の進行に悪影響を及ぼさない範囲で切削抵抗の低抵抗化を図ることができるからである。UL値が0.45未満では、U字溝の開始位置が切刃に近すぎるため、すくい面の摩耗進行が早くなり、耐欠損性を劣化させてしまう。一方、ULが0.8を超えて長いときは、切削抵抗の低抵抗化に有効とはならないのである。
また、U字溝のピッチ(mm)をUPとしたとき、UP値が回転工具最下点から繋ぎ部に向かって漸次増加するように変化させることによって、切削時の低抵抗化と耐欠損性とのバランスが好適となる。しかも、UP値が回転工具最下点から繋ぎ部に向かって漸次増加するように変化すれば、工具外周側のU字溝数を工具最下点と比較して少なくすることになり、工具外周側のすくい面摩耗の進行を遅延させることにも有効であり、切削抵抗の低減化と切刃の耐欠損性のバランスがとれるのである。逆に、繋ぎ部近傍のUP値を比較的幅狭く設定すると、U字溝の存在密度が大きくなってすくい面の面積が減少する。すると切屑との接触面積がより小さくなり切削抵抗の低減化が図れるものの、すくい面の摩耗が進行してしまい、切刃の耐欠損性を損なうことになってしまう。一方、すくい面における回転工具最下点近傍のUP値を小さく設定することは、U字溝の存在密度を大きくして更に切削抵抗の低減化に有効となる。最下点近傍では切屑厚さも薄く、すくい面の摩耗の進行が遅いため、UP値を小さく設定することの方が有効である。
また、U字溝の深さをdとしたとき、d値は1mmより深くなるとインサートの強度が不足し、特に高送り加工に於いては切刃に大きな負荷がかかり破損し易くなる為、d値は1mm以下に設定するのが好ましい。また、刃先強度を維持するため、d値は最下点から繋ぎ部に向かって漸次減少することが好ましい。また、本願発明の第2の形態として、図9に略3角形をした3箇所の主切刃を設けたものを示す。これらについても、本願発明と同様な効果を得ることができる。
In the cutting tool of the present invention, chips generated during cutting in high-feed machining are discharged in a direction substantially orthogonal to the main cutting edge. Therefore, as shown in FIG. 3, at least on the outer peripheral side of the rake face of the insert, in the vicinity of the corner blade, a plurality of U-shapes that are vertically formed in a direction substantially perpendicular to the tangent to the substantially arc-shaped main cutting blade It is preferable to provide the groove 16. A rake face 18 is provided between the U-shaped grooves. Chips pass along the rake face 18, the contact area between the rake face and the chips is reduced, the frictional force is reduced, and the temperature rise due to friction is also alleviated. This is preferable because the resistance can be lowered and the progress of wear can be delayed. In particular, on the outer peripheral side of the main cutting edge near the corner blade, both negative honing width and flat land width are set widely, and cutting resistance tends to increase. Is preferred. Here, the cross-sectional shape of the rake face portion provided between the adjacent U-shaped grooves forms a gentle hill shape, and this hill shape portion is a surface in contact with the chips. Since the load applied to the main cutting edge increases as it approaches the joint portion on the outer peripheral side of the tool, in the previous improvement, the H2 value was set larger than the H1 value to improve the cutting edge strength. Here, the vicinity of the connecting portion is a range from the intersection 10 between the main cutting edge and the perpendicular bisector of the line segment to the connecting portion 9. In improving the cutting edge strength, measures for reducing the cutting resistance were not taken, but it is preferable because the measures for reducing the cutting force can be taken here by arranging the U-shaped grooves. A U-shaped groove can be provided on the rake face on the outer peripheral side of the tool to reduce cutting resistance. This is because the contact area between the chips and the rake face can be reduced. In particular, an insert suitable for high-feed machining when the tool protrusion exceeds 200 mm is preferably reduced in cutting resistance.
Moreover, FIG. 8 shows sectional drawing of CC line of the honing part in the insert shown in FIG. As shown in FIG. 8, when the width (mm) of the U-shaped groove in the vicinity of the joint is UW and the width (mm) of the rake face between the U-shaped grooves is RW, 0.3 ≦ RW ≦ It is preferable that 0.35 and 1.5 ≦ RW / UW ≦ 2.0. By setting the UW value and RW value on the rake face on the tool outer peripheral side in the vicinity of the joint to the above ranges, the cutting resistance is reduced in a range that does not adversely affect the progress of rake face wear on the tool outer peripheral side. be able to. If the RW value is less than 0.3 or the RW / UW value is less than 1.5, the contact area with the chips is reduced and cutting resistance is reduced, but on the other hand, the wear of the rake face becomes remarkable. This will deteriorate the chipping resistance of the cutting blade. On the other hand, when the RW value is longer than 0.35 or the RW / UW value is larger than 2.0, the progress of wear on the rake face is suppressed, and the chipping resistance of the cutting edge can be maintained. However, since the reduction of the contact area with the chips is insufficient, the cutting resistance cannot be reduced.
The UH value of the U-shaped groove is preferably UH ≧ 1. The reason is that if the UH value is less than 1, the U-shaped groove is too short and the chip contact area is not sufficiently reduced, so that it is not effective in reducing the cutting resistance. Here, since the upper limit value of the UH value is determined by the form of the rake face, it is not particularly defined.
The UL value is preferably 0.45 ≦ UL ≦ 0.8. This is because the cutting resistance can be reduced within a range in which the U-shaped groove does not adversely affect the progress of wear of the rake face in consideration of the region where the chips come into contact with the rake face. If the UL value is less than 0.45, the starting position of the U-shaped groove is too close to the cutting edge, so that the wear of the rake face is accelerated and the fracture resistance is deteriorated. On the other hand, when UL exceeds 0.8, it is not effective for reducing the cutting resistance.
In addition, when the U-groove pitch (mm) is UP, the UP value is changed so as to gradually increase from the lowest point of the rotary tool toward the joint, thereby reducing resistance and fracture resistance during cutting. And the balance is suitable. In addition, if the UP value changes so as to gradually increase from the lowest point of the rotary tool toward the connecting portion, the number of U-shaped grooves on the outer periphery side of the tool will be reduced compared to the lowest point of the tool, It is also effective in delaying the progress of wear on the side of the rake face, and it is possible to balance the reduction in cutting resistance and the fracture resistance of the cutting edge. On the contrary, if the UP value in the vicinity of the joint portion is set to be relatively narrow, the existence density of the U-shaped grooves increases and the area of the rake face decreases. Then, although the contact area with the chip becomes smaller and the cutting resistance can be reduced, the wear of the rake face proceeds and the chipping resistance of the cutting edge is impaired. On the other hand, setting a small UP value in the vicinity of the lowest point of the rotary tool on the rake face is effective for increasing the existence density of U-shaped grooves and further reducing the cutting resistance. In the vicinity of the lowest point, the chip thickness is also thin and the progress of wear on the rake face is slow, so it is more effective to set the UP value small.
Further, when the depth of the U-shaped groove is d, if the d value is deeper than 1 mm, the strength of the insert is insufficient, and particularly in high-feed machining, a large load is applied to the cutting blade, and it is easy to break. The value is preferably set to 1 mm or less. In order to maintain the cutting edge strength, it is preferable that the d value gradually decreases from the lowest point toward the joint. Further, as a second embodiment of the present invention, FIG. 9 shows a configuration in which three main cutting edges each having a substantially triangular shape are provided. Also in these cases, effects similar to those of the present invention can be obtained.

本願発明による切削抵抗低減と耐欠損性の効果を確認するため、以下に示す切削の試験条件により評価を行った。本発明例1のインサートは、粉末冶金の技術を用いて作成したWC基超硬合金製のインサートを使用した。インサートのサイズは、内接円の直径が14mm、厚みが5.56mm、主切刃の半径R値が15mmとした。本発明例1のインサートにおけるネガホーニング付与、該U字溝の付与は、プレス金型の形状設定時に行ない、金型プレス機でインサートの成形体を作成した。他の本発明例2〜17、比較例18〜22及び従来例23についても、成形用金型の形状設定の変更によってネガホーニング幅、フラットランド幅やU字溝の形状を変化させたが、それ以外は本発明例1と同様な方法で作成した。このとき、本発明例1〜17と比較例19から22のH2値は全て0.2mm、F2値は全て0.2mmで同じ値に設定した。また何れも、ネガホーニングの角度α(度)は20度、ブレーカ溝のすくい角β(度)は12度、d値は1mm以下とした。但し、従来例23のインサートは、主切刃全体に渡ってネガホーニング幅が0.2mmで一定幅のものを使用した。上記の値であれば、刃先強度は十分確保されていると考えたからである。
本発明例1のインサートを工具径63mmの切削工具本体に1個装着した1枚刃で切削抵抗測定の評価を行った。切削抵抗の評価は、被削材として平坦な加工面のS50C材を使用して10分間の切削を行ない、切削抵抗値が従来例23と比較して10%以上低下したものを、効果ありと判断した。
次に、被削材として、図10に示す径6mmの孔が多数形成されたS50C材を使用し、強断続切削による高送りの平面削り加工を60分間行ない、耐欠損性の評価を行なった。この耐欠損性の評価試験では、インサートを5個用い、切削工具本体に1個装着した1枚刃で60分間の切削を5回行なって評価した。評価は、60分間の切削において切刃の欠損の有無を評価した。本発明例2から17、比較例18から22、従来例23のインサートについても本発明例1と同様に評価した。結果は、60分間の切削で5個中全てが欠損すること無く加工が可能であったものは○印、5個中1個でも欠損が発生したものは×印で示した。本発明例1から17、比較例18から22、従来例23のH1値、H1/H2値、F1値、F1/F2値、すくい面のU字溝の条件、評価結果を表1に示す。
(試験条件)
加工方法:平面削り、乾式切削加工
切削速度Vc:120m/分
回転数n:606min−1
1刃当りの送り量fz:1.5mm/刃
軸方向切込み量ap:1.5mm
径方向切込み量ae:40mm
工具突出し長さ:250mm
In order to confirm the effects of cutting resistance reduction and fracture resistance according to the present invention, evaluation was performed under the following cutting test conditions. As the insert of Example 1 of the present invention, an insert made of WC-based cemented carbide prepared by using powder metallurgy technology was used. As for the size of the insert, the diameter of the inscribed circle was 14 mm, the thickness was 5.56 mm, and the radius R value of the main cutting edge was 15 mm. The application of negative honing and the U-shaped groove in the insert of Example 1 of the present invention were performed at the time of setting the shape of the press mold, and a molded body of the insert was created with a mold press machine. For other Invention Examples 2-17, Comparative Examples 18-22 and Conventional Example 23, the shape of the negative honing width, flat land width and U-shaped groove was changed by changing the shape setting of the molding die. Other than that was created in the same manner as in Example 1 of the present invention. At this time, the H2 values of Invention Examples 1 to 17 and Comparative Examples 19 to 22 were all set to 0.2 mm, and the F2 values were all set to the same value of 0.2 mm. In all cases, the negative honing angle α (degree) was 20 degrees, the rake angle β (degree) of the breaker groove was 12 degrees, and the d value was 1 mm or less. However, the insert of Conventional Example 23 used a negative honing width of 0.2 mm and a constant width over the entire main cutting edge. This is because it is considered that the blade edge strength is sufficiently secured with the above values.
The cutting resistance measurement was evaluated with a single blade in which one insert according to Invention Example 1 was mounted on a cutting tool body having a tool diameter of 63 mm. The evaluation of the cutting resistance is effective when cutting is performed for 10 minutes using an S50C material having a flat work surface as the work material, and the cutting resistance value is reduced by 10% or more compared to the conventional example 23. It was judged.
Next, as a work material, an S50C material having a large number of holes with a diameter of 6 mm shown in FIG. 10 was used, and high-feed surface cutting by strong interrupted cutting was performed for 60 minutes to evaluate fracture resistance. . In this fracture resistance evaluation test, five inserts were used, and a 60-minute cut was performed five times with a single blade mounted on the cutting tool body for evaluation. In the evaluation, the presence / absence of a cutting edge defect was evaluated after cutting for 60 minutes. The inserts of Invention Examples 2 to 17, Comparative Examples 18 to 22, and Conventional Example 23 were also evaluated in the same manner as Invention Example 1. The results were indicated by a mark “◯” for those that could be processed without loss of all 5 pieces after cutting for 60 minutes, and a mark “×” for cases where even 1 out of 5 pieces was broken. Table 1 shows the H1 value, H1 / H2 value, F1 value, F1 / F2 value, U-groove condition of the rake face, and evaluation results of Invention Examples 1 to 17, Comparative Examples 18 to 22, and Conventional Example 23.
(Test conditions)
Processing method: Planing, dry cutting Cutting speed Vc: 120 m / min Rotational speed n: 606 min −1
Feed rate per tooth fz: 1.5 mm / tooth Axial cutting depth ap: 1.5 mm
Radial cutting depth ae: 40 mm
Tool overhang length: 250 mm

Figure 2010069578
Figure 2010069578

表1に示す評価結果より、まず切削抵抗測定の試験では従来例23のインサートを用いてfz値が1.5mm/刃の高送り加工を行った場合、ネガホーニング幅を0.2mmに一定にした従来例23の10分間の切削を行なった時点での切削抵抗値は3777Nであった。この値を基準にして、10%以上の切削抵抗低減化の有効性について、本発明例1から17、比較例18から22を評価した。その結果、本発明例1から17、比較例18から20は、目標である10%以上の切削抵抗の低減化を達成した。本発明例1から17は、工具突出し長さが250mmと長い条件であるにも拘らず、ビビリ振動の発生も無く加工出来た。切削抵抗が低減出来たことにより工作機械への負担が軽減され、切削送り量を更に上げて加工することが可能となった。特に、H1値は工具最下点付近の切屑厚み以下にすることが好ましい。
また、本発明例1から17の中で比較すると、本発明例1、2、4から17はすくい面に複数のU字溝を設けたため、16.6%以上の切削抵抗低減を達成できた。しかし本発明例3は、U字溝を設けなかったため、切削抵抗低減率は14%に留まった。U字溝を設けることは、切削抵抗低減にとって有効であった。本発明例1、4から6の4種を用いて、RW値の比較をした。本発明例4はRW値が0.25のため切削抵抗低減率は20.6%と最も良好であったが、すくい面の観察において4種の中でも、摩耗進行が最も進んでいた。本発明例6はRW値が0.4のため摩耗進行は少なかったが、切削抵抗低減率は17.9%に留まった。本発明例1、5はRW値が0.3から0.35のため、摩耗進行が抑えられつつ高い切削抵抗低減率が得られ、両者のバランスが良好であった。本発明例1、7から9の4種を用いて、RW/UW値の比較をした。本発明例7はRW/UW値が1.0のため切削抵抗低減率は20.3%となったが、すくい面の摩耗進行が観察された。本発明例9はRW/UW値が2.5のため摩耗進行は少なかったが、切削抵抗低減率は16.6%に留まった。本発明例1、8はRW/UW値が1.5から2のため、摩耗進行が抑えられつつ高い切削抵抗低減率が得られ、両者のバランスが良好であった。本発明例1、10から12の4種を用いて、UH値の比較をした。本発明例10はUH値が0.5のため切削抵抗低減率は18.3%に留まったが、本発明例1、11、12はUH値が1.0以上であったため切削抵抗低減率は19.1%以上となり、優れていた。本発明例1、13から15の4種を用いて、UL値の比較をした。4種とも、同一の切削抵抗の低減率を示したが、本発明例13から本発明例1、14、15へとUL値の小さい順により大きなすくい面の摩耗進行が観察された。本発明例1、16、17の3種を用いて、H1値、H1/H2値を同じ条件のとして、F1値、F1/F2値を変化させたときの切削抵抗を比較した。フラットランド幅が広くなるに従って切削抵抗は増大した。特に、本発明例1、16との差は25Nであった。また、本発明例2、16を用いて、F1値、F1/F2値を同じ条件のとして、H1値、H1/H2値を変化させたときの切削抵抗を比較すると、両者の差は30Nであった。従って、切削抵抗の低減化には、ネガホーニング幅の影響の方が大きいと考えられる。
一方、比較例21、22は、夫々H1/H2値が0.6、0.75、F1/F2値が0.6、0.75と大きく、工具の最下点近傍ではネガホーニング幅の中で切削している範囲が長い為、目標とした切削抵抗10%低減は達成出来なかった。更に、比較例21、22は切削中にビビリ振動が発生した。特に、工具突出し長さが250mmと長い条件の場合にはビビリ振動の発生が顕著となり、主切刃に欠損を誘発した。更に機械の主軸を傷めてしまう為、試験に使用した主軸出力が15kWのBT50主軸の工作機械では、高能率な高送り加工が出来なかった。
次に、主切刃の耐欠損性の評価では、切削時間60分まで加工するまでの間、夫々の欠損の有無を確認した。試験の結果を表1に併記した。表1より、本発明例1から17と比較例21、22は、60分間の切削で5個中全てが欠損すること無く加工することが可能であったたため○印で示した。しかし、比較例18は5個中5個全てが60分間加工出来ずに折損が発生した。各インサートの切削時間は、37分、40分、50分、43分、49分であった。同様に、比較例19は5個中4個が、また比較例20は5個中2個が60分間加工出来ずに欠損が発生した。5個中1個でも欠損が発生したものは、×印で示した。試験後に切刃の観察を行なった所、欠損が発生した場所は、主切刃の最下点付近であったことから、欠損の原因は、最下点のネガホーニング幅、フラットランド幅が共に小さいことにより、刃先強度が不足している為であると考えた。このことより、耐欠損性を維持するためには、H1値、F1値は0.03mm以上が必要である。特に、最下点付近の切屑厚みは約0.06mmとなることから、H1値は切屑厚みの約半分以上あれば耐欠損性が確保出来る。以上の試験結果により、切削抵抗と耐欠損性との2項目の総合評価において本発明例1から17は良好な結果を示し、耐欠損性を損なうこと無く切削抵抗の低減化を可能した。
From the evaluation results shown in Table 1, first, in the test of cutting resistance measurement, when high feed processing with fz value of 1.5 mm / blade was performed using the insert of Conventional Example 23, the negative honing width was kept constant at 0.2 mm. The cutting resistance value at the time of performing the cutting for 10 minutes of the conventional example 23 was 3777N. Based on this value, Invention Examples 1 to 17 and Comparative Examples 18 to 22 were evaluated for the effectiveness of reducing the cutting resistance by 10% or more. As a result, Examples 1 to 17 of the present invention and Comparative Examples 18 to 20 achieved a target reduction in cutting resistance of 10% or more. Inventive examples 1 to 17 were able to be processed without chatter vibration despite the long tool protrusion length of 250 mm. By reducing the cutting resistance, the load on the machine tool was reduced, and it became possible to further increase the cutting feed amount. In particular, the H1 value is preferably less than the chip thickness near the tool lowest point.
Further, when compared with Examples 1 to 17 of the present invention, Examples 1, 2, 4 to 17 of the present invention provided a plurality of U-shaped grooves on the rake face, and thus achieved a cutting resistance reduction of 16.6% or more. . However, in Example 3 of the present invention, the U-shaped groove was not provided, so the cutting resistance reduction rate was only 14%. Providing the U-shaped groove was effective for cutting resistance reduction. The RW values were compared using the four types of Invention Examples 1, 4 to 6. In Invention Example 4, since the RW value was 0.25, the cutting resistance reduction rate was 20.6%, which was the best, but in the rake face observation, the progress of wear was the most advanced among the four types. In Invention Example 6, since the RW value was 0.4, the progress of wear was small, but the cutting resistance reduction rate remained at 17.9%. In Invention Examples 1 and 5, since the RW value was 0.3 to 0.35, a high cutting resistance reduction rate was obtained while the progress of wear was suppressed, and the balance between the two was good. The RW / UW values were compared using the inventive examples 1 and 7 to 9. In Example 7 of the present invention, the RW / UW value was 1.0, and the cutting resistance reduction rate was 20.3%, but the wear progress of the rake face was observed. In Invention Example 9, since the RW / UW value was 2.5, the progress of wear was small, but the cutting resistance reduction rate was only 16.6%. In Invention Examples 1 and 8, since the RW / UW value was 1.5 to 2, a high cutting resistance reduction rate was obtained while the progress of wear was suppressed, and the balance between them was good. Using four types of Invention Examples 1, 10 to 12, the UH values were compared. Invention Example 10 had a UH value of 0.5, so the cutting resistance reduction rate remained at 18.3%, but Invention Examples 1, 11, and 12 had UH values of 1.0 or more, so the cutting resistance reduction rate. Was 19.1% or more and was excellent. The UL values were compared using the four types of Invention Examples 1 and 13 to 15. All four types showed the same cutting force reduction rate, but a larger rake face wear progression was observed from Example 13 of the present invention to Examples 1, 14, and 15 of the present invention in ascending order of the UL value. Using the three types of Invention Examples 1, 16, and 17, the H1 value and the H1 / H2 value were the same, and the cutting resistance when the F1 value and the F1 / F2 value were changed was compared. The cutting force increased as the flat land width increased. In particular, the difference from Examples 1 and 16 of the present invention was 25N. Further, when the cutting resistance when the H1 value and the H1 / H2 value were changed using the present invention examples 2 and 16 under the same conditions of the F1 value and the F1 / F2 value, the difference between them was 30N. there were. Therefore, it is considered that the negative honing width has a greater influence on the reduction of the cutting resistance.
On the other hand, Comparative Examples 21 and 22 have large H1 / H2 values of 0.6 and 0.75 and F1 / F2 values of 0.6 and 0.75, respectively, and have a negative honing width in the vicinity of the lowest point of the tool. Since the cutting range was long, the targeted cutting resistance could not be reduced by 10%. Further, in Comparative Examples 21 and 22, chatter vibration occurred during cutting. In particular, when the tool protrusion length was as long as 250 mm, chatter vibrations were prominent, and a defect was induced in the main cutting edge. Furthermore, since the spindle of the machine is damaged, the machine tool of the BT50 spindle having a spindle output of 15 kW used in the test cannot perform high-efficiency high-feed machining.
Next, in the evaluation of chipping resistance of the main cutting edge, the presence or absence of each chipping was confirmed until the cutting time was processed up to 60 minutes. The test results are also shown in Table 1. From Table 1, Examples 1 to 17 of the present invention and Comparative Examples 21 and 22 were indicated by ◯ because they could be processed without loss of all 5 pieces after cutting for 60 minutes. However, in Comparative Example 18, all 5 out of 5 pieces could not be processed for 60 minutes, and breakage occurred. The cutting time of each insert was 37 minutes, 40 minutes, 50 minutes, 43 minutes, and 49 minutes. Similarly, in Comparative Example 19, 4 out of 5 pieces, and in Comparative Example 20, 2 out of 5 pieces could not be processed for 60 minutes, and defects occurred. Those in which a defect occurred even in one of the five was indicated by a cross. Since the cutting edge was observed after the test and the location where the defect occurred was near the lowest point of the main cutting edge, the cause of the defect was both the negative honing width and the flat land width at the lowest point. It was thought that it was because the edge strength was insufficient due to the small size. Therefore, in order to maintain the fracture resistance, the H1 value and the F1 value need to be 0.03 mm or more. In particular, since the chip thickness near the lowest point is about 0.06 mm, the chipping resistance can be secured if the H1 value is about half or more of the chip thickness. From the above test results, Examples 1 to 17 of the present invention showed good results in the comprehensive evaluation of the two items of cutting resistance and fracture resistance, and the cutting resistance could be reduced without impairing fracture resistance.

図1は、本願発明の高送り用刃先交換式回転工具の斜視図を示す。FIG. 1 shows a perspective view of a high feed cutting edge exchangeable rotary tool of the present invention. 図2は、本願発明の高送り用刃先交換式回転工具の図を示す。FIG. 2 shows a view of the high feed cutting edge-replaceable rotary tool of the present invention. 図3は、図2のインサート部分の拡大図を示す。FIG. 3 shows an enlarged view of the insert portion of FIG. 図4は、本願発明におけるインサートの第1の実施形態を示す。FIG. 4 shows a first embodiment of the insert according to the present invention. 図5は、図4に示すA−A線の断面図を示す。FIG. 5 is a sectional view taken along line AA shown in FIG. 図6は、図4に示すB−B線の断面図を示す。6 shows a cross-sectional view taken along line BB shown in FIG. 図7は、本願発明の切削工具における主切刃部分の拡大図を示す。FIG. 7 shows an enlarged view of a main cutting edge portion in the cutting tool of the present invention. 図8は、図4に示すC−C線の断面図を示す。FIG. 8 is a cross-sectional view taken along line CC shown in FIG. 図9は、本願発明におけるインサートの第2の実施形態を示す。FIG. 9 shows a second embodiment of the insert in the present invention. 図10は、孔が多数形成された被削材を示す。FIG. 10 shows a work material in which many holes are formed.

符号の説明Explanation of symbols

1:回転工具本体
2:インサート
3:インサート取付け孔
4:クランプねじ
5:コーナー刃
6:主切刃
7:外周刃
8:主切刃の最下点
9:主切刃とコーナー刃との繋ぎ部
10:最下点8と繋ぎ部9とを結んだ線分の垂直2等分線と主切刃との交点
11:インサート底面
12:すくい面
13:逃げ面
14:切込み深さapにおける主切刃上の点
15:ネガホーニング
16:U字溝
17:フラットランド
18:U字溝どうしの間のすくい面
H1:ネガホーニング幅
H2:ネガホーニング幅
F1:フラットランド幅
F2:フラットランド幅
UP:U字溝のピッチ
UW:U字溝の横幅
UH:U字溝の縦方向長さ
UL:主切刃の稜線部からU字溝端までの長さ
RW:U字溝どうしの間のすくい面の幅
R:主切刃の半径
T1:切屑厚み
T2:切屑厚み
1: Rotating tool body 2: Insert 3: Insert mounting hole 4: Clamp screw 5: Corner blade 6: Main cutting blade 7: Outer peripheral blade 8: Bottom point of main cutting blade 9: Connection between main cutting blade and corner blade Part 10: Intersection of the perpendicular bisector of the line segment connecting the lowest point 8 and the connecting part 9 and the main cutting edge 11: Insert bottom 12: Rake face 13: Flank 14: Main at the cutting depth ap Point on cutting edge 15: Negative honing 16: U-shaped groove 17: Flat land 18: Rake face between U-shaped grooves H1: Negative honing width H2: Negative honing width F1: Flat land width F2: Flat land width UP : U-shaped groove pitch UW: U-shaped groove width UH: Vertical length of U-shaped groove UL: Length from the ridge line portion of the main cutting edge to the U-shaped groove end RW: Rake surface between U-shaped grooves Width R: Radius of the main cutting edge T1: Chip thickness T2: Chip thickness

Claims (3)

着脱可能なインサートを用いた高送り用刃先交換式回転工具において、該インサートはすくい面と逃げ面との稜線部を切刃とし、該切刃は、コーナー刃と該コーナー刃を挟んで主切刃と外周刃とを備え、該主切刃における回転工具最下点と該主切刃と該コーナー刃との繋ぎ部を結んだ線分が工具回転軸の垂線となす角度(度)をθとしたとき、5≦θ≦30であり、該主切刃は該線分に対して工具回転軸と垂直な方向に凸形状であり、該すくい面には該主切刃に対して略垂直な方向で内向きに該主切刃の稜線部からネガホーニング、フラットランド、ブレーカ溝を有し、該最下点における該ネガホーニングの幅(mm)をH1、該フラットランドの幅(mm)をF1、該繋ぎ部における該ネガホーニングの幅(mm)をH2、該フラットランドの幅(mm)をF2、としたとき、ネガホーニング幅とフラットランド幅とが該最下点から該繋ぎ部に向かって漸次増加し、0.03≦H1≦0.1、0.15≦H1/H2≦0.5、0.03≦F1≦0.1、0.15≦F1/F2≦0.5、であることを特徴とする高送り加工用刃先交換式回転工具。 In a high-feed-blade replaceable rotary tool using a detachable insert, the insert has a cutting edge at the ridge line between the rake face and the flank face, and the cutting edge is a main cutting part sandwiching the corner blade and the corner blade. An angle (degree) formed by a line segment connecting the lowest point of the rotary tool in the main cutting edge and the connecting portion between the main cutting edge and the corner blade with the perpendicular of the tool rotation axis 5 ≦ θ ≦ 30, the main cutting edge has a convex shape in a direction perpendicular to the tool rotation axis with respect to the line segment, and the rake face is substantially perpendicular to the main cutting edge. Inwardly in the direction of the main cutting edge from the ridge line of the main cutting edge has a negative honing, flat land, breaker groove, the negative honing width (mm) at the lowest point is H1, the flat land width (mm) F1, and the width (mm) of the negative honing at the joint is H2, the flat land When the width (mm) of F2 is F2, the negative honing width and the flat land width gradually increase from the lowest point toward the connecting portion, and 0.03 ≦ H1 ≦ 0.1, 0.15 ≦ H1 / H2 ≦ 0.5, 0.03 ≦ F1 ≦ 0.1, 0.15 ≦ F1 / F2 ≦ 0.5. 請求項1に記載の高送り用刃先交換式回転工具において、該ブレーカ溝には、該主切刃に対して略垂直な方向で内向き方向に縦長に形成された複数のU字溝を有し、該U字溝どうしの間にはすくい面を有することを特徴とする高送り加工用刃先交換式回転工具。 The high feed edge-changeable rotary tool according to claim 1, wherein the breaker groove has a plurality of U-shaped grooves formed in a longitudinal direction in an inward direction in a direction substantially perpendicular to the main cutting edge. And a cutting tool exchange-type rotary tool for high-feed machining, which has a rake face between the U-shaped grooves. 請求項2に記載の高送り用刃先交換式回転工具において、該繋ぎ部における該U字溝どうしの間の該すくい面の幅(mm)をRW、該U字溝の横幅(mm)をUW、縦方向長さ(mm)をUH、該主切刃の稜線部から該U字溝端までの長さ(mm)をUL、としたとき、0.3≦RW≦0.35、1.5≦RW/UW≦2.0、UH≧1、0.45≦UL≦0.80、であることを特徴とする高送り加工用刃先交換式回転工具。 3. The high feed edge-changeable rotary tool according to claim 2, wherein a width (mm) of the rake face between the U-shaped grooves in the joint portion is RW, and a lateral width (mm) of the U-shaped groove is UW. When the longitudinal length (mm) is UH and the length (mm) from the ridge line portion of the main cutting edge to the U-shaped groove end is UL, 0.3 ≦ RW ≦ 0.35, 1.5 ≦ RW / UW ≦ 2.0, UH ≧ 1, 0.45 ≦ UL ≦ 0.80.
JP2008240303A 2008-09-19 2008-09-19 Cutting tool exchangeable rotary tool for high-feed machining Active JP4919298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240303A JP4919298B2 (en) 2008-09-19 2008-09-19 Cutting tool exchangeable rotary tool for high-feed machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240303A JP4919298B2 (en) 2008-09-19 2008-09-19 Cutting tool exchangeable rotary tool for high-feed machining

Publications (2)

Publication Number Publication Date
JP2010069578A true JP2010069578A (en) 2010-04-02
JP4919298B2 JP4919298B2 (en) 2012-04-18

Family

ID=42201836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240303A Active JP4919298B2 (en) 2008-09-19 2008-09-19 Cutting tool exchangeable rotary tool for high-feed machining

Country Status (1)

Country Link
JP (1) JP4919298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045059A1 (en) * 2010-03-04 2013-02-21 Guehring Ohg Face miller and use thereof
WO2014156225A1 (en) * 2013-03-26 2014-10-02 住友電工ハードメタル株式会社 Cutting insert and face milling cutter using same
EP2412464B1 (en) 2009-03-24 2017-04-05 Mitsubishi Hitachi Tool Engineering, Ltd. Milling cutter
JP6338204B1 (en) * 2017-08-29 2018-06-06 株式会社タンガロイ Cutting insert and cutting tool
US10315258B2 (en) 2014-02-26 2019-06-11 Tungaloy Corporation Cutting insert and cutting tool
US11813678B2 (en) * 2017-11-02 2023-11-14 Moldino Tool Engineering, Ltd. Cutting insert and indexable cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629812A (en) * 1985-07-03 1987-01-17 サントレ−ド リミテイド Inserted blade for cutting
JPH11347826A (en) * 1998-06-10 1999-12-21 Toshiba Tungaloy Co Ltd Throwaway tip
JP2001287112A (en) * 2000-04-07 2001-10-16 Hitachi Tool Engineering Ltd High-feed throwaway type rotary tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629812A (en) * 1985-07-03 1987-01-17 サントレ−ド リミテイド Inserted blade for cutting
JPH11347826A (en) * 1998-06-10 1999-12-21 Toshiba Tungaloy Co Ltd Throwaway tip
JP2001287112A (en) * 2000-04-07 2001-10-16 Hitachi Tool Engineering Ltd High-feed throwaway type rotary tool

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412464B1 (en) 2009-03-24 2017-04-05 Mitsubishi Hitachi Tool Engineering, Ltd. Milling cutter
EP2412464B2 (en) 2009-03-24 2021-12-08 Mitsubishi Hitachi Tool Engineering, Ltd. Milling cutter
US20130045059A1 (en) * 2010-03-04 2013-02-21 Guehring Ohg Face miller and use thereof
US8979447B2 (en) * 2010-03-04 2015-03-17 Guehring Ohg Face miller and use thereof
WO2014156225A1 (en) * 2013-03-26 2014-10-02 住友電工ハードメタル株式会社 Cutting insert and face milling cutter using same
EP2979801A4 (en) * 2013-03-26 2016-03-30 Sumitomo Elec Hardmetal Corp Cutting insert and face milling cutter using same
JPWO2014156225A1 (en) * 2013-03-26 2017-02-16 住友電工ハードメタル株式会社 Cutting insert and front milling cutter using it
US9616506B2 (en) 2013-03-26 2017-04-11 Sumitomo Electric Hardmetal Corp. Cutting insert and face milling cutter using the same
US10315258B2 (en) 2014-02-26 2019-06-11 Tungaloy Corporation Cutting insert and cutting tool
JP6338204B1 (en) * 2017-08-29 2018-06-06 株式会社タンガロイ Cutting insert and cutting tool
JP2019042816A (en) * 2017-08-29 2019-03-22 株式会社タンガロイ Cutting insert and cutting tool
US11813678B2 (en) * 2017-11-02 2023-11-14 Moldino Tool Engineering, Ltd. Cutting insert and indexable cutting tool

Also Published As

Publication number Publication date
JP4919298B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4850301B2 (en) Inserts used for milling blade replacement type rotary tools
JP5201291B2 (en) Cutting inserts and cutting tools
JP5013435B2 (en) Ball end mill
KR101983487B1 (en) Drill
WO2015068824A1 (en) Radius end mill, and cutting method
JP4919298B2 (en) Cutting tool exchangeable rotary tool for high-feed machining
JPWO2010147157A1 (en) Cutting insert and face mill
EP3034215A1 (en) Cutting insert and drilling tool
KR20160147038A (en) Cutting insert and face milling cutter
WO2014157135A1 (en) Insert for drill and cutting blade replacement-type drill
WO2012017645A1 (en) Drill
JP5287426B2 (en) Cutting tools
US11654495B2 (en) Cutting insert for a shoulder milling tool
JP3337804B2 (en) End mill
JP2015193049A (en) Cutting insert, and tip replaceable rotary cutting tool
JP2022524345A (en) Cutting tools, methods for manufacturing cutting tools, and methods for machining workpieces
JP2005169511A (en) Cutting edge replaceable type rotating tool
JP4378307B2 (en) Axial feed edge replaceable tool
JP2010201565A (en) End mill
JP4142892B2 (en) Blade-replaceable rotary tool
JP2015077647A (en) Forward path and return path longitudinal feed insert, and cutting-edge replacement type rotary cutting tool mounting the insert
JP4060258B2 (en) Radius end mill for high feed cutting
JPH10263911A (en) Deep groove machining cutter
JP4992460B2 (en) End mill
JP2008290176A (en) Tip replaceable ball end mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

R150 Certificate of patent or registration of utility model

Ref document number: 4919298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350