JP2010067489A - Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell - Google Patents

Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell Download PDF

Info

Publication number
JP2010067489A
JP2010067489A JP2008233259A JP2008233259A JP2010067489A JP 2010067489 A JP2010067489 A JP 2010067489A JP 2008233259 A JP2008233259 A JP 2008233259A JP 2008233259 A JP2008233259 A JP 2008233259A JP 2010067489 A JP2010067489 A JP 2010067489A
Authority
JP
Japan
Prior art keywords
membrane
polymer electrolyte
fuel cell
hydrocarbon
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008233259A
Other languages
Japanese (ja)
Inventor
Yasuhiro Akita
靖浩 秋田
Masanori Aitake
将典 相武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008233259A priority Critical patent/JP2010067489A/en
Publication of JP2010067489A publication Critical patent/JP2010067489A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte membrane solving both problems of a fluorine-based and hydrocarbon-based one at the same time. <P>SOLUTION: Hydrocarbon-based polymer electrolyte membrane solution is coated on the surface of a fluorine-based polymer electrolyte film at a masking rate of 50 to 80% and is dried to obtain a hybrid membrane for a solid polymer fuel cell with a hydrocarbon-based polymer electrolyte coated on the surface of the fluorine-based polymer electrolyte membrane at a coating rate of 50 to 80%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用ハイブリッド膜、その製造方法、固体高分子形燃料電池に使用される膜−電極接合体、及びそれを有する固体高分子形燃料電池に関する。   The present invention relates to a hybrid membrane for a polymer electrolyte fuel cell, a production method thereof, a membrane-electrode assembly used for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell having the same.

固体高分子電解質は、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有している。特に、パーフルオロスルホン酸膜に代表されるフッ素系電解質膜は、化学的安定性が非常に高いことから、過酷な条件下で使用される燃料電池用イオン交換膜として使用されている。   The solid polymer electrolyte has a property of binding firmly to a specific ion or selectively transmitting a cation or an anion. In particular, a fluorine-based electrolyte membrane represented by a perfluorosulfonic acid membrane is used as a fuel cell ion exchange membrane used under severe conditions because of its very high chemical stability.

しかしながら、フッ素系電解質膜は、電気的特性や化学安定性に優れる一方、水素ガス透過性が炭化水素系電解質膜に劣っている。特に電池性能を向上するため、薄膜化や低EW化を実施した場合、水素ガス透過性が高くなり、水素燃料の消費が早くなったり、酸化剤極への水素あるいは燃料極への酸素クロスオーバーにより、電解質を化学劣化させるラジカル種の生成による電解質の分解が懸念される。   However, while the fluorine-based electrolyte membrane is excellent in electric characteristics and chemical stability, the hydrogen gas permeability is inferior to the hydrocarbon-based electrolyte membrane. In particular, in order to improve battery performance, when thinning or low EW is implemented, hydrogen gas permeability increases, hydrogen fuel consumption increases, hydrogen to the oxidizer electrode or oxygen crossover to the fuel electrode Therefore, there is a concern about the decomposition of the electrolyte due to the generation of radical species that chemically degrade the electrolyte.

これに対して、炭化水素系膜は、高耐熱性、高耐酸化性、高強度を有し、室温でのプロトン伝導も良好であるものもあるが、その分子構造による剛直さ、硬さ等からくる脆い材料でもあり、電極接合化やセル組立時のハンドリングもフッ素系電解質膜に比べ難しい。   In contrast, hydrocarbon membranes have high heat resistance, high oxidation resistance, high strength, and good proton conduction at room temperature, but the rigidity, hardness, etc. due to their molecular structure It is also a brittle material that comes from, and it is difficult to handle electrodes when assembling electrodes or assembling cells compared to fluorine-based electrolyte membranes.

プロトン導電性・燃料ガス透過性とハンドリング性を両立するために、多孔質を基材とし、その細孔にプロトン伝導性を有する電解質を充填するハイブリッド材料が、下記特許文献1に開示されている。平均細孔径が0.05〜1μmと極めて微細な直管内に電解質を減圧しながら充填して得られるため、減圧装置等が必要である。   In order to achieve both proton conductivity / fuel gas permeability and handling properties, a hybrid material in which a porous base material is filled with an electrolyte having proton conductivity in its pores is disclosed in Patent Document 1 below. . Since an average pore diameter of 0.05 to 1 μm is obtained by filling the electrolyte in a very fine straight tube while reducing the pressure, a pressure reducing device or the like is required.

また、貫通孔を作製する方法として、下記特許文献2に開示されている方法は、炭酸ガスレーザやエキシマレーザ等の熱を利用しており、貫通孔の中心間隔は約50μm〜100μmと比較的大きくなり、開口率も約10%程度であり、大きなプロトン伝導性は得られない。   In addition, as a method for producing a through hole, the method disclosed in Patent Document 2 below uses heat of a carbon dioxide laser, an excimer laser, or the like, and the center interval between the through holes is relatively large, about 50 μm to 100 μm. Therefore, the aperture ratio is about 10%, and a large proton conductivity cannot be obtained.

そこで、フッ素系電解質膜のプロトン伝導性を維持し、水素ガス透過を低減する方法が求められている。   Therefore, there is a demand for a method for maintaining the proton conductivity of the fluorine-based electrolyte membrane and reducing hydrogen gas permeation.

さらに、下記特許文献3、下記特許文献4、下記特許文献5にフッ素系電解質膜と炭化水素系電解質膜とで構成された電解質膜が開示されているが、電解質膜電極接合体を作製する方法として、炭化水素系電解質膜に対し、電極にフッ素系電解質を使用しており、拡散層側へ電極を作製したり、電膜に直接ペーストを塗工したり、開示していなかったりと炭化水素系電解質とフッ素系電解質の異種材料の接合の悪さを伺わせる。   Furthermore, the following patent document 3, the following patent document 4, and the following patent document 5 disclose an electrolyte membrane composed of a fluorine-based electrolyte membrane and a hydrocarbon-based electrolyte membrane, and a method for producing an electrolyte membrane electrode assembly. In contrast to hydrocarbon-based electrolyte membranes, fluorine-based electrolytes are used for the electrodes, and electrodes are prepared on the diffusion layer side, pastes are applied directly to the electrode membranes, and hydrocarbons are not disclosed. This indicates the poor bonding of dissimilar materials such as electrolytes and fluorine electrolytes.

なお、炭化水素系電解質膜として、例えば、下記特許文献6には、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成される、スルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE)膜が提案されている。また、前述したスルホン酸型ポリスチレン−グラフト−ETFE膜に類似のスルホン酸型ポリスチレングラフト樹脂膜に架橋を導入することにより、酸化劣化時の低分子量成分の脱離を抑制し、燃料電池用の電解質膜としての耐久性を向上させる試みがなされている。   As a hydrocarbon electrolyte membrane, for example, in Patent Document 6 below, a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a hydrocarbon side chain having a sulfonic acid group A sulfonic acid type polystyrene-graft-ethylene-tetrafluoroethylene copolymer (ETFE) membrane composed of: In addition, by introducing a crosslink into a sulfonic acid type polystyrene graft resin membrane similar to the sulfonic acid type polystyrene-graft-ETFE membrane described above, desorption of low molecular weight components during oxidative degradation is suppressed, and an electrolyte for a fuel cell Attempts have been made to improve the durability of the membrane.

また、下記特許文献7及び8には、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた膜に、α,β,β−トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入して固体高分子電解質膜とした、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE膜が提案されている。これは、前記のスルホン酸基を導入したポリスチレン側鎖部の化学的安定性が十分ではないとの認識を前提に、スチレンの代わりに、スチレンをフッ素化したα,β,β-トリフルオロスチレンを用いたものである。   Further, in Patent Documents 7 and 8 below, α, β, β-trifluorostyrene is graft-polymerized on a film made by copolymerization of a fluorine-based vinyl monomer and a hydrocarbon-based vinyl monomer, and a sulfonic acid group is added thereto. A sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane has been proposed in which a solid polymer electrolyte membrane is introduced. This is based on the recognition that the chemical stability of the polystyrene side chain introduced with the sulfonic acid group is not sufficient, instead of styrene, α, β, β-trifluorostyrene obtained by fluorinating styrene. Is used.

この他、炭化水素系イオン交換膜としては、スルホン化ポリエーテルエーテルケトン(下記特許文献9など)、スルホン化ポリエーテルスルホン(下記特許文献10など)、スルホン化ポリスルホン(下記特許文献11など)、スルホン化ポリフェニレンサルファイド(下記特許文献12など)やスルホン化ポリイミド(下記特許文献13など)などの耐熱芳香族高分子のスルホン化物、また、SEBS(スチレン−(エチレン−ブチレン)−スチレンの略)のスルホン化物(下記特許文献14など)、プロトン伝導性付与剤と有機高分子化合物の複合材料からなるプロトン伝導性膜(下記特許文献15など)なども提案されている。   In addition, as the hydrocarbon-based ion exchange membrane, sulfonated polyether ether ketone (such as Patent Document 9 below), sulfonated polyether sulfone (such as Patent Document 10 below), sulfonated polysulfone (such as Patent Document 11 below), Sulfonated heat-resistant aromatic polymers such as sulfonated polyphenylene sulfide (such as Patent Document 12 below) and sulfonated polyimide (such as Patent Document 13 below), and SEBS (styrene- (ethylene-butylene) -styrene). Proton conductive membranes (such as Patent Document 15 below) composed of a sulfonated material (such as Patent Document 14 below) and a composite material of a proton conductivity imparting agent and an organic polymer compound have also been proposed.

特開2005−158293号公報JP 2005-158293 A 特開2005−108661号公報JP 2005-108661 A 特開2005−276602号公報JP 2005-276602 A 特開2006−73235号公報JP 2006-73235 A 特開2005−135681号公報Japanese Patent Laid-Open No. 2005-135681 特開平9−102322号公報JP-A-9-102322 米国特許第4,012,303号US Pat. No. 4,012,303 米国特許第4,605,685号US Pat. No. 4,605,685 特開平6−93114号公報JP-A-6-93114 特開平10―45913号公報Japanese Patent Laid-Open No. 10-45913 特開平9−245818号公報JP-A-9-245818 特表平11−510198号公報Japanese National Patent Publication No. 11-510198 特表2000−510511号公報JP 2000-510511 A 特表平10−503788号公報Japanese National Patent Publication No. 10-503788 特開2000−90946号公報JP 2000-90946 A

本発明は、フッ素系高分子電解質膜と炭化水素系高分子電解質膜の問題の両者を同時に解決する高分子電解質膜を提供することを目的とする。   An object of the present invention is to provide a polymer electrolyte membrane that simultaneously solves both the problems of a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane.

本発明者は、炭化水素系高分子電解質膜とフッ素系高分子電解質膜の両者の長所である、炭化水素系高分子電解質膜はガス遮断性に優れ、フッ素系高分子電解質膜は電機特性や安定性に優れることに着目し、両者を組み合わせることで、上記の問題を同時に解決する優れた電解質膜が得られることを見出し、本発明に到達した。即ち、本発明では、フッ素系電解質表面に水素ガス透過性の低い炭化水素を含有する電解質(プロトン輸送能を有するもの)を成形することで、触媒層からプロトン伝導を保持したまま、フッ素系電解質膜のガス透過面積を低減し、さらには、熱圧転写法で電解質膜と電極とを強固に接合させた複合電解質膜電極接合体を提供する。   The inventor of the present invention has the advantages of both hydrocarbon-based polymer electrolyte membranes and fluorine-based polymer electrolyte membranes. Hydrocarbon-based polymer electrolyte membranes have excellent gas barrier properties. Focusing on the fact that it is excellent in stability, it has been found that by combining the two, an excellent electrolyte membrane that solves the above-mentioned problems at the same time can be obtained, and the present invention has been achieved. That is, in the present invention, an electrolyte containing a hydrocarbon having a low hydrogen gas permeability (having proton transportability) is formed on the surface of the fluorine-based electrolyte, so that the fluorine-based electrolyte is maintained while maintaining proton conduction from the catalyst layer. Provided is a composite electrolyte membrane electrode assembly in which the gas permeation area of the membrane is reduced and furthermore, the electrolyte membrane and the electrode are firmly joined by a hot-pressure transfer method.

第1に、本発明は、固体高分子形燃料電池用ハイブリッド膜の発明であり、フッ素系高分子電解質膜の表面上に炭化水素系高分子電解質が被覆率50〜80%で被覆された固体高分子形燃料電池用ハイブリッド膜である。   First, the present invention is an invention of a hybrid membrane for a polymer electrolyte fuel cell, in which a hydrocarbon polymer electrolyte is coated on a surface of a fluorine polymer electrolyte membrane at a coverage of 50 to 80%. It is a hybrid membrane for polymer fuel cells.

第2に、本発明は、上記固体高分子形燃料電池用ハイブリッド膜の製造方法の発明であり、フッ素系高分子電解質膜の表面上に被覆率50〜80%でマスキングをし、炭化水素系高分子電解質膜溶液を塗布・乾燥することを特徴とする。   Second, the present invention is an invention of a method for producing a hybrid membrane for a polymer electrolyte fuel cell, wherein the surface of the fluorine-based polymer electrolyte membrane is masked at a coverage of 50 to 80%, A polymer electrolyte membrane solution is applied and dried.

第3に、本発明は、一対の電極触媒層と、電極触媒層に挟持された高分子電解質膜とからなる固体高分子形燃料電池用膜−電極接合体(MEA)の発明であって、前記高分子電解質膜は、フッ素系高分子電解質膜の表面上に炭化水素系高分子電解質が被覆率50〜80%で被覆された固体高分子形燃料電池用ハイブリッド膜であることを特徴とする。   Third, the present invention is an invention of a membrane-electrode assembly (MEA) for a polymer electrolyte fuel cell comprising a pair of electrode catalyst layers and a polymer electrolyte membrane sandwiched between the electrode catalyst layers, The polymer electrolyte membrane is a hybrid membrane for a polymer electrolyte fuel cell in which a hydrocarbon polymer electrolyte is coated on a surface of a fluorine polymer electrolyte membrane at a coverage of 50 to 80%. .

第4に、本発明は、上記膜−電極接合体を有する固体高分子形燃料電池である。   4thly, this invention is a polymer electrolyte fuel cell which has the said membrane-electrode assembly.

本発明では、フッ素系電解質表面に水素ガス透過性の低い炭化水素を含有する電解質(プロトン輸送能を有するもの)を成形することで、触媒層からプロトン伝導を保持したまま、フッ素系電解質膜のガス透過面積を低減し、さらには、熱圧転写法で電解質膜と電極とを強固に接合させた複合電解質膜電極接合体を得ることができる。   In the present invention, an electrolyte containing a hydrocarbon having a low hydrogen gas permeability (having proton transport ability) is formed on the surface of the fluorine-based electrolyte, so that proton conduction from the catalyst layer is maintained while maintaining the proton conduction. It is possible to obtain a composite electrolyte membrane electrode assembly in which the gas permeation area is reduced and furthermore, the electrolyte membrane and the electrode are firmly joined by a hot-pressure transfer method.

図1に、本発明の炭化水素系電解質を成形したフッ素系電解質膜の模式断面図を示す。炭化水素系電解質(水素ガス透過が低い)がフッ素系電解質膜を部分的に被覆している。   FIG. 1 shows a schematic cross-sectional view of a fluorine-based electrolyte membrane obtained by molding the hydrocarbon-based electrolyte of the present invention. A hydrocarbon-based electrolyte (low hydrogen gas permeation) partially covers the fluorine-based electrolyte membrane.

通常のフッ素系電解質膜が、1)水素ガス透過度(80℃、50%RH)が数十万(cc/m・24hr・atm)程度、2)プロトン伝導度(S/cm@25℃水中)が0.07程度であるのに対し、本発明の炭化水素系/フッ素系電解質膜が、1)水素ガス透過度(80℃、50%RH)が数万(cc/m・24hr・atm)程度、2)プロトン伝導度(S/cm@25℃水中)が0.07程度である。 Conventional fluorine-based electrolyte membranes are as follows: 1) Hydrogen gas permeability (80 ° C., 50% RH) is about several hundred thousand (cc / m 2 · 24 hr · atm) 2) Proton conductivity (S / cm @ 25 ° C.) The hydrous / fluorine electrolyte membrane of the present invention is 1) the hydrogen gas permeability (80 ° C., 50% RH) is tens of thousands (cc / m 2 · 24 hr).・ Atm) degree, 2) Proton conductivity (S / cm @ 25 ° C. water) is about 0.07.

本発明において炭化水素系高分子電解質は、分子鎖のいずれかにC−H結合を有し、かつイオン性基を導入することが可能なものを意味する。また、イオン性基とは、スルホン酸基、カルボン酸基等、プロトン伝導性を有する官能基をいう。   In the present invention, the hydrocarbon-based polymer electrolyte means one having a C—H bond in any of the molecular chains and capable of introducing an ionic group. The ionic group means a functional group having proton conductivity such as a sulfonic acid group or a carboxylic acid group.

炭化水素系高分子電解質の具体例としては、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹脂、架橋型フェノール−ホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2、3−ジフェニル−1、4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂、等が一例として挙げられる。   Specific examples of the hydrocarbon polymer electrolyte include polyethersulfone resin, polyetheretherketone resin, linear phenol-formaldehyde resin, cross-linked phenol-formaldehyde resin, linear polystyrene resin, cross-linked polystyrene resin, Chain-type poly (trifluorostyrene) resin, cross-linked (trifluorostyrene) resin, poly (2,3-diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (arylene ether sulfone) ) Resin, poly (phenylquinosanline) resin, poly (benzylsilane) resin, polystyrene-graft-ethylenetetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoroethylene resin, etc. And the like to.

以下、実施例及び比較例により本発明を更に具体的に説明する。
スルホン化剤とポリイミドアミド樹脂の反応は、下記反応式のように進行し、炭化水素系スルホン化樹脂を得た。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
The reaction between the sulfonating agent and the polyimide amide resin proceeded as shown in the following reaction formula to obtain a hydrocarbon-based sulfonated resin.

Figure 2010067489
Figure 2010067489

樹脂原料は、110℃、減圧下で5時間乾燥して用いた。樹脂1gに対し、5倍の硫酸を加え、さらにスルホン化剤を樹脂に対して1.0倍となるように加え、1昼夜(24時間)室温にて攪拌し、スルホン化を行った。   The resin material was used after being dried at 110 ° C. under reduced pressure for 5 hours. 5 times of sulfuric acid was added to 1 g of resin, and a sulfonating agent was further added to 1.0 times with respect to the resin, and the mixture was stirred for 1 day and night (24 hours) at room temperature for sulfonation.

得られた粘調な液体を攪拌を行いながら約10倍量の水に滴下し、水のpHがpH試験紙で7となるまで、洗浄・濾過を繰り返した(3回)。濾過後、得られた固形物を、80℃真空乾燥器中で5時間乾燥し、スルホン化樹脂を得た。   The obtained viscous liquid was dropped into about 10 times the amount of water while stirring, and washing and filtration were repeated until the pH of the water reached 7 with pH test paper (three times). After filtration, the obtained solid was dried in a vacuum dryer at 80 ° C. for 5 hours to obtain a sulfonated resin.

イオン交換当量重量の測定は、測定しようとするスルホン化ポリマーを密閉できるガラス容器に精秤(a(グラム))し、そこに過剰量の塩化カルシウム水溶液を添加して一晩攪拌した。系内に発生した塩化水素を0.05Nの水酸化ナトリウム水溶液(力価f)にて、指示薬にフェノールフタレインを用いて滴定(b(ml))した。以上の測定値からイオン交換当量重量(g/mol)を下記式(1)により求め、さらに下記式(2)を用いてイオン交換容量(meq/g)に換算した。
(イオン交換当量重量[g/mo1])=(1000/a)/(0.05×b×f)・・・・(式1)
(イオン交換容量[meq/g])=1/(イオン交換当量重量/1000)・・・・(式2)
ポリアミドイミド樹脂に対して同量のクロロ硫酸を加えることで、イオン交換容量はナフィオン同等の0.9[meq/g]であった。
To measure the ion exchange equivalent weight, a sulfonated polymer to be measured was precisely weighed (a (gram)) in a glass container capable of being sealed, and an excessive amount of calcium chloride aqueous solution was added thereto and stirred overnight. Hydrogen chloride generated in the system was titrated (b (ml)) with 0.05N sodium hydroxide aqueous solution (titer f) using phenolphthalein as an indicator. From the above measured values, the ion exchange equivalent weight (g / mol) was determined by the following formula (1), and further converted to the ion exchange capacity (meq / g) using the following formula (2).
(Ion exchange equivalent weight [g / mo1]) = (1000 / a) / (0.05 × b × f) (Formula 1)
(Ion exchange capacity [meq / g]) = 1 / (ion exchange equivalent weight / 1000) (Equation 2)
By adding the same amount of chlorosulfuric acid to the polyamideimide resin, the ion exchange capacity was 0.9 [meq / g] equivalent to Nafion.

得られた炭化水素系スルホン酸樹脂を水/エタノール=50/50(体積比)溶媒に5wt%となるように溶解させ、炭化水素系スルホン酸樹脂溶液を得た。   The obtained hydrocarbon-based sulfonic acid resin was dissolved in a water / ethanol = 50/50 (volume ratio) solvent so as to be 5 wt% to obtain a hydrocarbon-based sulfonic acid resin solution.

ナフィオン112(50μm)膜を収縮しないよう4辺を固定し、膜表面積が50%隠れるようパンチングメタルでマスキングしたもの(炭化水素系電解質面積=50%)、20%隠れるようマスキングしたもの(炭化水素系電解質面積=80%)、マスキングしないもの(炭化水素系電解質面積=100%)を準備した。この上から、炭化水素系スルホン酸樹脂溶液を通常のスプレー法により繰り返し塗工した。塗工後、80℃熱風乾燥機で10分間乾燥した。得られた膜の厚みは、55μmであった。   Nafion 112 (50 μm) Four sides are fixed so as not to shrink, and masked with punching metal so that the membrane surface area is hidden by 50% (hydrocarbon electrolyte area = 50%), masked to hide by 20% (hydrocarbon) System electrolyte area = 80%) and non-masking (hydrocarbon electrolyte area = 100%) were prepared. From this, the hydrocarbon-based sulfonic acid resin solution was repeatedly applied by a normal spray method. After coating, it was dried for 10 minutes with an 80 ° C. hot air dryer. The thickness of the obtained film was 55 μm.

[ガス透過試験]
JISK7126 A法(差圧法)に基づき、温度80℃、相対湿度50%の水素ガスについて、単位分圧差で単位時間に単位面積を透過する気体の体積を測定した。下記表1に水素ガス透過度の結果を示す。
[Gas permeation test]
Based on the JISK7126 A method (differential pressure method), the volume of gas that permeates the unit area per unit time was measured with a unit partial pressure difference for hydrogen gas at a temperature of 80 ° C. and a relative humidity of 50%. Table 1 below shows the results of hydrogen gas permeability.

Figure 2010067489
表1の結果から、炭化水素系電解質面積が高いほどガス透過度が低いことが分かる。
Figure 2010067489
From the results in Table 1, it can be seen that the higher the hydrocarbon electrolyte area, the lower the gas permeability.

[プロトン伝導度の測定]
試料を80℃熱水に一時間浸漬した後、Solartron社製インピーダンスアナライザー1260型を用いて25℃水中にて交流インピーダンスを測定し、そのコール・ロールプロットから抵抗値を読み取り、プロトン伝導度を算出した。下記表2にプロトン伝導度試験結果を示す。
[Measurement of proton conductivity]
After immersing the sample in hot water at 80 ° C. for 1 hour, the impedance is measured in 25 ° C. water using an impedance analyzer 1260 manufactured by Solartron, the resistance value is read from the Cole-Roll plot, and the proton conductivity is calculated. did. Table 2 below shows the proton conductivity test results.

Figure 2010067489
表2の結果から、炭化水素系電解質面積とプロトン伝導度に相関性は見られない。
Figure 2010067489
From the results in Table 2, there is no correlation between the hydrocarbon-based electrolyte area and the proton conductivity.

[剥離強度試験結果]
白金粒子をカーボンブラック(Ketjen EC(ケッチェンブラックインターナショナル社製)上に45wt%坦持させた触媒10gに対し、水50%、エタノール50g、ナフィオン溶液26g(DE2020CS、21wt%溶液、デュポン社製)を加え攪拌する。この攪拌溶液をホモジナイザーにより約1分間音波照射させ、発熱を伴うため5分間冷却する。この操作を10回程度繰り返した分散液を空気極用の触媒インクとした。
[Peel strength test results]
50 g of water, 50 g of ethanol, and 26 g of Nafion solution (DE2020CS, 21 wt% solution, manufactured by DuPont) with respect to 10 g of catalyst in which 45 wt% of platinum particles are supported on carbon black (Ketjen EC (manufactured by Ketjen Black International)) The stirred solution was irradiated with a sound wave for about 1 minute with a homogenizer, and cooled for 5 minutes because of heat generation, and a dispersion obtained by repeating this operation about 10 times was used as a catalyst ink for the air electrode.

この分散溶液をドクターブレード方式のアプリケターによりPTFE基材上に白金重量が0.1mg/cmになるように塗布し、100℃で乾燥した。これを電極とし、電解質膜に100℃、3MPa、4分の条件で熱圧転写し、複合電解質膜電極接合体を準備した。 This dispersion was applied onto a PTFE base material with a doctor blade type applicator so that the weight of platinum was 0.1 mg / cm 2 and dried at 100 ° C. This was used as an electrode, and was transferred to the electrolyte membrane under conditions of 100 ° C., 3 MPa, and 4 minutes to prepare a composite electrolyte membrane electrode assembly.

熱圧転写法により、電解質膜と電極とを接合させた複合電解質膜電極接合体の接着性は、電極面に貼ったテープ剥離による90°方向のピール強度試験によって評価した。
使用粘着テープ:3M−851A(3M社製)
テープ幅:15mm
ピール試験速度:10mm/分
ピール長さ:50mm
下記表3に剥離強度試験の結果を示す。
The adhesiveness of the composite electrolyte membrane electrode assembly in which the electrolyte membrane and the electrode were joined by the hot-pressure transfer method was evaluated by a peel strength test in the 90 ° direction by peeling off the tape attached to the electrode surface.
Used adhesive tape: 3M-851A (manufactured by 3M)
Tape width: 15mm
Peel test speed: 10 mm / min Peel length: 50 mm
Table 3 below shows the results of the peel strength test.

Figure 2010067489
Figure 2010067489

表3に示すととおり、炭化水素系電解質面積が、100%では、電極は全く接着していないが、フッ素系電解質膜面積を20%程度とすることで、電解質膜と触媒が十分密着している。   As shown in Table 3, when the hydrocarbon electrolyte area is 100%, the electrode is not bonded at all, but by setting the fluorine electrolyte membrane area to about 20%, the electrolyte membrane and the catalyst are sufficiently adhered to each other. Yes.

フッ素系電解質膜表面に水素ガス透過性の低い炭化水素を含有する電解質を各種成形することで、触媒層からのプロトン伝導度を保持したまま、フッ素系電解質膜の水素ガス透過面積を低減し、水素ガス透過を押さえたフッ素系電解質薄膜が提供され、さらには、熱圧転写法で電解質膜と電極とを強固に接合させた複合電解質膜電極接合体を提供することができ、固体高分子形燃料電池に有効である。   By forming various electrolytes containing hydrocarbons with low hydrogen gas permeability on the surface of the fluorine electrolyte membrane, the hydrogen gas permeation area of the fluorine electrolyte membrane is reduced while maintaining proton conductivity from the catalyst layer, Provided is a fluorine-based electrolyte thin film that suppresses hydrogen gas permeation, and further can provide a composite electrolyte membrane electrode assembly in which an electrolyte membrane and an electrode are firmly bonded by a hot-pressure transfer method. It is effective for fuel cells.

さらに、水素ガス透過性の低い炭化水素系の成形法は、スプレー法に限定されることは無く、コーティング法スクリーン印刷法、インクジェット法、ディスペンサ法、CVD法、スパッタ法などの微細パターニング成形法が適用できる。フッ素系電解質膜の水素ガス透過面積を低減させる形状もドット、市松、ストライプなどの幾何学模様やベタ、コイル状、傾斜状等いずれを用いても良い。   Furthermore, the hydrocarbon-based molding method with low hydrogen gas permeability is not limited to the spray method, and there are fine patterning molding methods such as a coating method, a screen printing method, an inkjet method, a dispenser method, a CVD method, and a sputtering method. Applicable. As the shape for reducing the hydrogen gas permeation area of the fluorine-based electrolyte membrane, any of geometric patterns such as dots, checkers, stripes, solid, coiled, and inclined shapes may be used.

また、炭化水素系電解質(プロトン輸送能を有するもの)の材質は、特に限定されることは無く、スルホン化されたポリフェニレンスルフィド、ポリベンズイミダゾーノレ、ポリエーテルエーテルケトン、ポリエーテルスルホンなどのポリマー、共重合体がいずれも適用される。加えて、そのポリマー溶液を作製する際も、炭化水素系電解質が溶解する溶液を用いればアルコールや水の他にN−メチル−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチノレスルホキシド(DMSO)等も併せて用いることができる。   The material of the hydrocarbon electrolyte (having proton transporting ability) is not particularly limited, and polymers such as sulfonated polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, etc. Any copolymer can be applied. In addition, when preparing the polymer solution, N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), dimethylol sulfoxide (DMSO) in addition to alcohol and water can be used if a solution in which the hydrocarbon electrolyte is dissolved is used. Etc. can be used together.

フッ素系電解質表面に水素ガス透過性の低い炭化水素を含有する電解質(プロトン輸送能を有するもの)を成形することで、触媒層からプロトン伝導を保持したまま、フッ素系電解質膜のガス透過面積を低減し、さらには、熱圧転写法で電解質膜と電極とを強固に接合させた複合電解質膜電極接合体を得ることができる。これにより、燃料電池の普及に貢献する。   By forming an electrolyte containing hydrocarbons with low hydrogen gas permeability on the surface of the fluorine electrolyte (having proton transport ability), the gas permeation area of the fluorine electrolyte membrane can be reduced while maintaining proton conduction from the catalyst layer. Further, it is possible to obtain a composite electrolyte membrane electrode assembly in which the electrolyte membrane and the electrode are firmly joined by a hot-pressure transfer method. This contributes to the spread of fuel cells.

本発明の炭化水素系電解質を成形したフッ素系電解質膜の模式断面図を示す。The schematic cross section of the fluorine-type electrolyte membrane which shape | molded the hydrocarbon type electrolyte of this invention is shown.

Claims (4)

フッ素系高分子電解質膜の表面上に炭化水素系高分子電解質が被覆率50〜80%で被覆された固体高分子形燃料電池用ハイブリッド膜。   A hybrid membrane for a polymer electrolyte fuel cell, in which a hydrocarbon polymer electrolyte is coated on a surface of a fluorine polymer electrolyte membrane at a coverage of 50 to 80%. フッ素系高分子電解質膜の表面上に被覆率50〜80%でマスキングをし、炭化水素系高分子電解質膜溶液を塗布・乾燥することを特徴とする固体高分子形燃料電池用ハイブリッド膜の製造方法。   Production of a hybrid membrane for a polymer electrolyte fuel cell, characterized by masking the surface of a fluorine-based polymer electrolyte membrane at a coverage of 50 to 80%, and applying and drying a hydrocarbon-based polymer electrolyte membrane solution Method. 一対の電極触媒層と、電極触媒層に挟持された高分子電解質膜とからなる固体高分子形燃料電池用膜−電極接合体(MEA)であって、前記高分子電解質膜は、フッ素系高分子電解質膜の表面上に炭化水素系高分子電解質が被覆率50〜80%で被覆された固体高分子形燃料電池用ハイブリッド膜であることを特徴とする固体高分子形燃料電池用膜−電極接合体。   A membrane-electrode assembly (MEA) for a polymer electrolyte fuel cell comprising a pair of electrode catalyst layers and a polymer electrolyte membrane sandwiched between the electrode catalyst layers, the polymer electrolyte membrane comprising A membrane electrode for a solid polymer fuel cell, characterized in that it is a hybrid membrane for a polymer electrolyte fuel cell in which a hydrocarbon polymer electrolyte is coated at a coverage of 50 to 80% on the surface of the molecular electrolyte membrane Joined body. 請求項3に記載の膜−電極接合体を有する固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 3.
JP2008233259A 2008-09-11 2008-09-11 Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell Pending JP2010067489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233259A JP2010067489A (en) 2008-09-11 2008-09-11 Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233259A JP2010067489A (en) 2008-09-11 2008-09-11 Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2010067489A true JP2010067489A (en) 2010-03-25

Family

ID=42192896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233259A Pending JP2010067489A (en) 2008-09-11 2008-09-11 Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2010067489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216064A (en) * 2018-06-14 2019-12-19 株式会社Ihi Polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216064A (en) * 2018-06-14 2019-12-19 株式会社Ihi Polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP3607862B2 (en) Fuel cell
KR100971640B1 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JP4808123B2 (en) Membrane-electrode assembly for fuel cell and manufacturing method thereof
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
TW200915645A (en) Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
KR20100018579A (en) Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
JP5358261B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and manufacturing method thereof
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2009021232A (en) Membrane-electrode assembly and manufacturing method thereof, and solid polymer fuel cell
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP2007031718A5 (en)
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
KR100970358B1 (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP3779171B2 (en) Polymer electrolyte fuel cell
JP5176261B2 (en) Direct methanol fuel cell
JP2002298855A (en) Solid macromolecule type fuel cell
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
JP2010067489A (en) Hybrid film for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, and solid polymer fuel cell
JP4720091B2 (en) Ion exchange membrane
KR20080039615A (en) Composite electrolyte membrane and fuel cell using the same
JP3651684B1 (en) Ion exchange membrane
JP2008108723A (en) Membrane electrode assembly and its manufacturing method
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell