JP2010065673A - Multistage compression self-ignition internal combustion engine - Google Patents

Multistage compression self-ignition internal combustion engine Download PDF

Info

Publication number
JP2010065673A
JP2010065673A JP2008262263A JP2008262263A JP2010065673A JP 2010065673 A JP2010065673 A JP 2010065673A JP 2008262263 A JP2008262263 A JP 2008262263A JP 2008262263 A JP2008262263 A JP 2008262263A JP 2010065673 A JP2010065673 A JP 2010065673A
Authority
JP
Japan
Prior art keywords
ignition
compression
combustion chamber
pressure
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262263A
Other languages
Japanese (ja)
Inventor
Masato Kino
正人 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008262263A priority Critical patent/JP2010065673A/en
Publication of JP2010065673A publication Critical patent/JP2010065673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To expand the operation output band of a compression self-ignition internal combustion engine and facilitate change over to other operation modes. <P>SOLUTION: In a four-cycle compression self-ignition internal combustion engine using gasoline as fuel, an auxiliary chamber 103 is provided and a communication part to a main combustion chamber 106 is partitioned by a communication valve 105. A spark plug 104 and an intake valve for supplying air fuel mixture are provided in the auxiliary chamber. The communication valve is opened in an intake process, an intake valve 102 of the auxiliary chamber is opened at a later half of the process, rich air fuel mixture for plug ignition is supplied to the auxiliary chamber, and the communication valve is closed near CA corresponding to compression ratio 9. Compression further progresses in the main combustion chamber and front flame reaction starts. However, compression ratio is set to pressure before self ignition. Ignition is done by the spark plug of the auxiliary chamber near a top dead center. When pressure of the auxiliary chamber exceeds pressure of the main combustion chamber, the communication valve is opened, gas after combustion flows in the main combustion chamber, and air fuel mixture in the main combustion chamber is compressed again. Since front flame reaction progresses, ignition occurs in a short period of time and pressure rises, and the communication valve is closed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

予混合圧縮自着火内燃機関の着火制御方法及び、運転方法に関する。  The present invention relates to an ignition control method and an operation method of a premixed compression self-ignition internal combustion engine.

現在、排気をECUで適量循環させるEGRや、燃焼室にプラズマを噴射するプラズマジェット、やパルスジェット方式などがある。更に、発明者の下記出願のごとく、回転位相が異なる低圧縮比の気筒で点火プラグにより着火した燃焼後ガスを燃焼室に開放して着火点手前まで圧縮された予混合気に圧縮着火させる方法が示されている。  Currently, there are EGR for circulating an appropriate amount of exhaust gas in an ECU, a plasma jet for injecting plasma into a combustion chamber, and a pulse jet method. Further, as described in the following application by the inventor, there is a method in which after-combustion gas ignited by a spark plug in a low compression ratio cylinder having a different rotational phase is released to a combustion chamber and compressed and ignited to a premixed gas compressed to the point before the ignition point It is shown.

特願2006−111596Japanese Patent Application No. 2006-111596

現在エネルギー効率が良く、しかもクリーンであるということから、均一に混合された混合気を圧縮により自着火させる予混合圧縮自着火(HCCI)内燃機関が注目されている。しかし、負荷の変動や回転数などの運転条件の変化により着火条件が変化するため、確実な着火が困難であり、また、パワー出力帯域が狭いため自動車などに応用するためには、プラグ点火やディーゼル着火方式と併用する必要がある。しかし、HCCIの運転に最適な圧縮比と他の着火方式での圧縮比が異なるため、運転の切り替えが困難であった。  At present, premixed compression self-ignition (HCCI) internal combustion engines that are self-ignited by compression due to compression are attracting attention because they are currently energy efficient and clean. However, because the ignition conditions change due to load fluctuations and changes in operating conditions such as the number of revolutions, it is difficult to reliably ignite, and since the power output band is narrow, plug ignition or It is necessary to use together with the diesel ignition system. However, since the compression ratio optimum for the operation of HCCI and the compression ratio in other ignition systems are different, switching of operation is difficult.

HCCIの着火方式では、現在主流になっているEGR方式は、圧力や温度センサとマイコンによって次のサイクルの排ガス還流量を制御している。しかし、本方式では急激な出力や回転数の変化には対応が困難であり、特に出力帯域が狭いため期待するほど省エネ効果は高くない。更に、プラズマジェットやパルスジェットなどの熱や化学変化による着火トリガー方式においても、出力帯域が多少広がるが、運転モード切替時の問題は未解決のままである。また、前記特許文献では、点火プラグで着火した混合気がHCCI気筒の燃焼室への移動時、及び、着火後のHCCI気筒のガスが点火プラグ側気筒に逆流時に、連通口表面との摩擦で圧力損失が発生する。そのため本方式においては圧力損失を低減する方法が求められる。  In the HCCI ignition method, the EGR method, which is currently mainstream, controls the exhaust gas recirculation amount in the next cycle by a pressure and temperature sensor and a microcomputer. However, this method is difficult to cope with a sudden change in output and rotation speed, and the energy saving effect is not so high as expected because the output band is particularly narrow. Furthermore, even in the ignition trigger method by heat or chemical change such as plasma jet or pulse jet, the output band is somewhat widened, but the problem at the time of operation mode switching remains unsolved. Further, in the above-mentioned patent document, when the air-fuel mixture ignited by the spark plug moves to the combustion chamber of the HCCI cylinder, and when the gas of the HCCI cylinder after ignition flows back to the ignition plug side cylinder, the friction with the communication port surface Pressure loss occurs. Therefore, in this method, a method for reducing the pressure loss is required.

運転モードの切り替えでは、ガソリンを用いた機関で、弁制御で負のオーバーラップ期間を設けて排気を気筒内に残留させることで低い圧縮比での自着火を可能にしてプラグ点火モードとの切り替えを機械的圧縮比の変更なしで実現する方法があるが、本方式では、圧縮比が低く抑えられるため、効率があまり高くない。そこで、効率を下げることなく、よりいっそうのHCCIモードの運転可能出力帯域の拡大とより確実な着火方式とより簡便で確実な切り替え方式が求められる。  In operation mode switching, a gasoline engine is used to switch to the plug ignition mode by providing a negative overlap period by valve control and allowing exhaust to remain in the cylinder to enable self-ignition at a low compression ratio. Can be realized without changing the mechanical compression ratio, but the efficiency is not so high in this method because the compression ratio can be kept low. Therefore, there is a need for a further expansion of the operable output band of the HCCI mode, a more reliable ignition method, and a simpler and more reliable switching method without reducing the efficiency.

第一の手段は、圧縮着火内燃機関において、圧縮自着火圧力近傍の圧縮比ではあるが、圧縮自着火圧力未満の圧縮比の燃焼室であり、この燃焼室に連通して他の多段圧縮手段を設け、気筒が上死点付近に在る時に該多段圧縮手段で燃焼室の容積を減少させ、混合気を圧縮自着火させることを特徴とする。  In the compression ignition internal combustion engine, the first means is a combustion chamber having a compression ratio near the compression auto-ignition pressure, but a compression ratio less than the compression auto-ignition pressure, and communicates with the combustion chamber to other multistage compression means. The multi-stage compression means reduces the volume of the combustion chamber when the cylinder is near the top dead center, and the mixture is compressed and ignited.

第二の手段は、圧縮着火モードと、点火プラグで着火させるプラグ点火モードとを運転中に切り替えて運転する内燃機関において、圧縮着火モード時、圧縮自着火圧力近傍の圧縮比ではあるが、該自着火圧力よりも低い圧縮比に設定した主気筒のピストン位置が上死点近傍時で、該ピストン以外の手段で再度圧縮し、着火させる多段圧縮着火機関であり、該多段圧縮手段により主気筒の燃焼室の容積を圧縮着火運転に必要な圧縮比と、プラグ点火モードに必要な圧縮比相当の容積に変更可能としたことを特徴とする。  The second means is an internal combustion engine that is operated by switching between a compression ignition mode and a plug ignition mode that is ignited by a spark plug during operation, but in the compression ignition mode, the compression ratio is close to the compression auto-ignition pressure. When the piston position of the main cylinder set to a compression ratio lower than the self-ignition pressure is near top dead center, it is a multistage compression ignition engine that is compressed again by means other than the piston and ignited. The volume of the combustion chamber can be changed to a compression ratio necessary for the compression ignition operation and a volume corresponding to the compression ratio necessary for the plug ignition mode.

第三の手段は、比較的均一な混合気を圧縮自着火する圧縮自着火モードと、高圧中に燃料噴射して着火させるディーゼル着火モードとを運転中に切り替えて運転する内燃機関において、圧縮自着火モード時、圧縮自着火圧力近傍の圧縮比ではあるが、該自着火圧力よりも低い圧縮比に設定した主気筒のピストン位置が上死点近傍時で、該ピストン以外の手段で再度圧縮し、着火させる多段圧縮着火機関であり、該多段圧縮手段により主気筒の燃焼室の容積を圧縮自着火運転に必要な圧縮比と、ディーゼル着火モードに必要な圧縮比相当の容積に変更可能としたことを特徴とする。  The third means is an internal combustion engine that is operated by switching between a compression ignition mode for compressing and igniting a relatively uniform air-fuel mixture and a diesel ignition mode for injecting and igniting fuel during high pressure during operation. In the ignition mode, the compression ratio is close to the compression auto-ignition pressure, but when the piston position of the main cylinder set to a compression ratio lower than the self-ignition pressure is near top dead center, it is compressed again by means other than the piston. The multi-stage compression ignition engine to be ignited, and the multi-stage compression means makes it possible to change the volume of the combustion chamber of the main cylinder to a compression ratio required for the compression ignition operation and a volume corresponding to the compression ratio required for the diesel ignition mode. It is characterized by that.

第四の手段は、前記多段圧縮手段が、前記気筒の燃焼室に連通した他の気筒で構成したことを特徴とする。  The fourth means is characterized in that the multistage compression means is constituted by another cylinder communicating with the combustion chamber of the cylinder.

第五の手段は、前記多段圧縮手段が、前記気筒の燃焼室に副燃焼室を設け、該副燃焼室に点火手段と燃焼室との境界に弁を設け、圧縮自着火モードでは副燃焼室で独立に燃焼させ、開弁して 燃焼後ガスで主燃焼室の混合気を圧縮着火し、運転モード切り替え時に該弁を開閉して圧縮比を変更することを特徴とする。  A fifth means is that the multi-stage compression means is provided with a sub-combustion chamber in the combustion chamber of the cylinder, a valve is provided at the boundary between the ignition means and the combustion chamber in the sub-combustion chamber, and in the compression auto-ignition mode, the sub-combustion chamber is provided. In this case, the combustion is independently performed, the valve is opened, the air-fuel mixture in the main combustion chamber is compressed and ignited with the gas after combustion, and the compression ratio is changed by opening and closing the valve when the operation mode is switched.

第六の手段は、前期多段圧縮手段が、圧縮自着荷気筒の燃焼室に副燃焼室を設け、該副燃焼室に点火プラグを設け、主燃焼室と副燃焼室の境界に弁を設け、圧縮工程途中でプラグ点火モードに適した圧縮比まで圧縮した時点で、該弁を閉弁し、副燃焼室に点火プラグで点火して、副燃焼室の圧力が主燃焼室の圧力よりも高くなった時点で開弁して、燃焼後ガスで主燃焼室の混合気を圧縮着火し、プラグ点火モードへの切り替え時には弁を開放して圧縮比を低減させることを特徴とする。  Sixth means, the first stage multistage compression means, provided a sub-combustion chamber in the combustion chamber of the compression self-loading cylinder, provided a spark plug in the sub-combustion chamber, provided a valve at the boundary between the main combustion chamber and the sub-combustion chamber, When compression is performed to the compression ratio suitable for the plug ignition mode in the middle of the compression process, the valve is closed and the auxiliary combustion chamber is ignited by the ignition plug, so that the pressure in the auxiliary combustion chamber is higher than the pressure in the main combustion chamber. At that time, the valve is opened, and the air-fuel mixture in the main combustion chamber is compressed and ignited with the post-combustion gas, and when switching to the plug ignition mode, the valve is opened to reduce the compression ratio.

第七の手段は、前記圧縮自着火圧力近傍の圧縮比が、温度上昇で燃料成分が分解及び酸化反応を起こす前炎反応を開始する圧力以上に相当する圧縮比であることを特徴とする。  The seventh means is characterized in that the compression ratio in the vicinity of the compression auto-ignition pressure is equal to or higher than the pressure at which the pre-flame reaction that causes the fuel component to decompose and oxidize when the temperature rises.

従来のHCCIエンジンでは、着火前の圧縮による圧力の最大点が上死点付近であったため、大幅な着火遅角を行うことが困難であり、高負荷時や比較的に濃い混合気に対応することが困難であった。また、同様の理由で従来は低濃度の混合気での着火も困難であった。本発明では、任意の時期に再圧縮ができるため上死点以降での圧縮も可能で、大幅な遅角が可能となり空燃比の濃い側への運転域を大幅に拡大することができる。更に実効圧縮比を自由に変更することが可能なため、高い実効圧縮比で低濃度の混合気を自着火させることが可能となる。更に、燃焼室に連通して設けた多段圧縮手段の空間容積を利用することで、他の運転モードの圧縮比に変更することができるため、複数の圧縮比での運転モードを切り替えすることが容易にできる。  In the conventional HCCI engine, since the maximum point of pressure due to compression before ignition is near top dead center, it is difficult to perform a large ignition delay, and it corresponds to a heavy mixture at high load or a relatively dense mixture It was difficult. For the same reason, it has been difficult to ignite with a low-concentration gas mixture. In the present invention, since recompression can be performed at an arbitrary time, compression after top dead center is also possible, so that a large retardation can be achieved, and the operating range to the rich side of the air-fuel ratio can be greatly expanded. Furthermore, since the effective compression ratio can be freely changed, a low-concentration air-fuel mixture can be self-ignited with a high effective compression ratio. Furthermore, since the compression ratio of another operation mode can be changed by using the space volume of the multistage compression means provided in communication with the combustion chamber, it is possible to switch the operation mode with a plurality of compression ratios. Easy to do.

本発明では、多段圧縮で比較的に均一に混合された混合気を任意の時期に、比較的広い調整圧力幅で再圧縮して自着火させることができる4サイクル内燃機関を下記実施例で説明する。  In the present invention, a four-cycle internal combustion engine capable of self-igniting by recompressing an air-fuel mixture mixed relatively uniformly by multistage compression at an arbitrary timing with a relatively wide adjustment pressure range will be described in the following embodiments. To do.

本実施例は、本発明の一例を示すものである。図1は、本発明の一例を説明するための側面断面図である。101はシリンダヘッド、102は副燃焼室吸気弁、103は副燃焼室、104は点火プラグ、105は連通弁、106は主燃焼室、107はピストンである。  This example shows an example of the present invention. FIG. 1 is a side sectional view for explaining an example of the present invention. 101 is a cylinder head, 102 is a sub-combustion chamber intake valve, 103 is a sub-combustion chamber, 104 is a spark plug, 105 is a communication valve, 106 is a main combustion chamber, and 107 is a piston.

本実施例は、ガソリンを燃料としたHCCIとプラグ点火運転を切り替え可能な自動車用多気筒エンジンである。シリンダヘッド(101)には副燃焼室(103)が設けられ、該副燃焼室(103)と主燃焼室(106)は連通弁(105)で連通/閉鎖可能に仕切られている。シリンダヘッド(101)には主燃焼室への吸気弁(図示せず)、排気弁(図示せず)、が設けられ、更に各気筒の吸気ポートに燃料を噴射する電子燃料噴射装置(図示せず)が設けられている。副燃焼室(103)には点火プラグ(104)と副燃焼室用吸気ポート(102)が設けられている。  The present embodiment is an automobile multi-cylinder engine that can switch between HCCI using gasoline as fuel and plug ignition operation. The cylinder head (101) is provided with a sub-combustion chamber (103), and the sub-combustion chamber (103) and the main combustion chamber (106) are partitioned by a communication valve (105) so as to be able to communicate / close. The cylinder head (101) is provided with an intake valve (not shown) and an exhaust valve (not shown) for the main combustion chamber, and an electronic fuel injection device (not shown) for injecting fuel into the intake port of each cylinder. Z). The auxiliary combustion chamber (103) is provided with an ignition plug (104) and an auxiliary combustion chamber intake port (102).

吸気工程時は主燃焼室の吸気弁(図示せず)と連通弁(105)を開く。副燃焼室用吸気弁(102)は吸気工程中ピストン(107)が下死点に着くまでの期間に副室(103)を充填するのに必要な混合気を確保できる時間だけ開弁する。副室用吸気ポート(102)には別途副燃焼室用に混合されたリッチな混合気が供給される。圧縮工程では、ピストン(107)が上昇し、圧縮比が9付近で連通弁(105)を閉弁し、主燃焼室(106)と隔離する。ピストン(107)は更に上昇し、主燃焼室(106)は自着火圧縮比位置の90%まで圧縮される。通常の圧縮自着火では、断熱圧縮の温度上昇によって燃料が化学変化を起こして分解及び酸化反応(前炎反応)が進行して冷炎形成、その後、熱炎が形成され着火に至るが、本実施例では、圧縮比が自着火に至らないように設定されているため、前炎反応の化学変化は起こるが、そのままでは熱炎形成にまで至らない。本主燃焼室中(106)の混合気では前炎反応によって着火準備が整った状態にあり、上死点付近で副室(103)内の点火プラグ(104)で副室内混合気に点火し、火炎伝播で副燃焼室(103)内の圧力が上昇して、圧縮された主燃焼室(106)内の混合気圧力よりも大きくなると連通弁(105)が開き、副燃焼室(103)内の燃焼後ガスが主燃焼室(106)に流入して主燃焼室(106)内の前炎反応が進行している混合気を圧縮し、自着火温度を超えるため短時間で着火する。着火後は主燃焼室(106)内の圧力が副燃焼室(103)内の圧力を上回るため、連通弁(105)が閉弁し主燃焼室(106)内の圧力損失を最小限にする。排気工程では、連通弁(105)を開弁して主燃焼室(106)の排気ポートから排気する。圧縮自着火を点火プラグ(104)の点火時期と混合気濃度及び連通弁の開く時期を変えることで制御することができる。低負荷で空燃比の大きな領域では副燃焼室(103)内の燃料濃度を上げて、二段圧縮時の圧力を上昇させることで運転出力領域を下側に広げることが可能となる。更に、副燃焼室内のプラグ点火時期を遅角させることで高出力側に広げることができる。  During the intake process, the intake valve (not shown) and the communication valve (105) in the main combustion chamber are opened. The intake valve (102) for the auxiliary combustion chamber is opened for a period of time during which the air-fuel mixture necessary for filling the auxiliary chamber (103) can be secured during the period until the piston (107) reaches bottom dead center during the intake stroke. A rich air-fuel mixture mixed separately for the auxiliary combustion chamber is supplied to the auxiliary chamber intake port (102). In the compression process, the piston (107) rises, and when the compression ratio is around 9, the communication valve (105) is closed and isolated from the main combustion chamber (106). The piston (107) is further raised, and the main combustion chamber (106) is compressed to 90% of the self-ignition compression ratio position. In normal compression auto-ignition, the fuel undergoes a chemical change due to an increase in the temperature of adiabatic compression, and the decomposition and oxidation reaction (pre-flame reaction) proceeds to form a cool flame, and then a hot flame is formed, leading to ignition. In the example, since the compression ratio is set so as not to lead to self-ignition, a chemical change of the pre-flame reaction occurs, but it does not lead to formation of a hot flame as it is. The air-fuel mixture in the main combustion chamber (106) is ready for ignition by the pre-flame reaction, and the sub-chamber air-fuel mixture is ignited by the ignition plug (104) in the sub-chamber (103) near the top dead center. When the pressure in the auxiliary combustion chamber (103) rises due to flame propagation and becomes larger than the compressed air-fuel mixture pressure in the compressed main combustion chamber (106), the communication valve (105) opens and the auxiliary combustion chamber (103) The after-combustion gas flows into the main combustion chamber (106), compresses the air-fuel mixture in which the pre-flame reaction is proceeding in the main combustion chamber (106), and ignites in a short time because it exceeds the self-ignition temperature. After ignition, since the pressure in the main combustion chamber (106) exceeds the pressure in the sub-combustion chamber (103), the communication valve (105) is closed to minimize the pressure loss in the main combustion chamber (106). . In the exhaust process, the communication valve (105) is opened to exhaust from the exhaust port of the main combustion chamber (106). The compression ignition can be controlled by changing the ignition timing of the ignition plug (104), the mixture concentration, and the timing of opening the communication valve. In a low load and large air-fuel ratio region, it is possible to expand the operation output region downward by increasing the fuel concentration in the sub-combustion chamber (103) and increasing the pressure during two-stage compression. Furthermore, the plug ignition timing in the sub-combustion chamber can be extended to the high output side by retarding.

また、ストイキ付近からリッチ側では、連通弁(105)を常時開いた状態とすることで、副燃焼室(103)容積も含めた燃焼室容積となり、圧縮比が低下し、点火プラグによる火炎伝播燃焼が可能となる。  Further, on the rich side from near the stoichiometric state, the communication valve (105) is always opened, so that the combustion chamber volume including the auxiliary combustion chamber (103) volume is obtained, the compression ratio is reduced, and the flame is propagated by the spark plug. Combustion is possible.

本実施例は、本発明の一例を示すものである。図2は、本発明の一例を説明するための上面断面図である。201は燃焼室、202はエンジン・シリンダ、203は連通窓、204は加減圧シリンダ、205は加減圧ピストン、206は摺動方向を示す矢印である。  This example shows an example of the present invention. FIG. 2 is a top cross-sectional view for explaining an example of the present invention. 201 is a combustion chamber, 202 is an engine cylinder, 203 is a communication window, 204 is a pressure-reducing cylinder, 205 is a pressure-reducing piston, and 206 is an arrow indicating a sliding direction.

本実施例は、ガソリンを燃料としたHCCIとプラグ点火運転を切り替え可能な自動車用多気筒エンジンである。図2は、シリンダを上部から見た燃焼室を横に切った断面図である。シリンダ(202)には燃焼室(201)に連通するように多段圧縮用の加減圧シリンダ(204)が設けられている。該加減圧シリンダ(204)には連通用の窓(203)が設けられ燃焼室(201)に連通している。加減圧ピストン(205)が連通窓(203)の50%位置で自着火圧縮比位置の95%となるような両シリンダ(202、204)の容積関係となっている。エンジン・シリンダ(202)が上死点付近になった時点で、加減圧ピストン(205)はシャフトとカムで作動する高圧油圧ポンプ(図示せず)とコモンレール(図示せず)からなる油圧装置(図示せず)で圧縮され、燃焼室(201)に押し込まれる。燃焼室容積が減少して自着火圧力を超えて着火する。押し込み時期と押し込み量を加減することで着火制御が可能で、可変容積率を大きくすることができれば自着火運転出力帯域を拡大できる。また、点火プラグ着火モードと併用する時は、加減圧ピストン(205)を最大限引き抜いた状態で運転することで圧縮比を下げることができ、運転モードを切り替えることが可能となる。ディーゼルモードと併用する場合は、加減圧ピストン(205)を全て押し込んだ状態で運転することでより高圧縮比での運転が可能となる。  The present embodiment is an automobile multi-cylinder engine that can switch between HCCI using gasoline as fuel and plug ignition operation. FIG. 2 is a cross-sectional view of the cylinder as viewed from above and cut across the combustion chamber. The cylinder (202) is provided with a pressure-reducing cylinder (204) for multistage compression so as to communicate with the combustion chamber (201). The pressure increasing / decreasing cylinder (204) is provided with a communication window (203) and communicates with the combustion chamber (201). The two cylinders (202, 204) have a volume relationship such that the pressure-reducing piston (205) is 95% of the self-ignition compression ratio position at the 50% position of the communication window (203). When the engine / cylinder (202) is near the top dead center, the pressure-reducing piston (205) is a hydraulic device (not shown) composed of a high-pressure hydraulic pump (not shown) and a common rail (not shown). (Not shown) and compressed into the combustion chamber (201). The combustion chamber volume is reduced and the ignition exceeds the auto-ignition pressure. Ignition control is possible by adjusting the push-in timing and push-in amount, and if the variable volume ratio can be increased, the self-ignition operation output band can be expanded. Further, when used in combination with the spark plug ignition mode, the compression ratio can be lowered by operating the pressurizing and depressurizing piston (205) in the fully pulled out state, and the operation mode can be switched. When used in combination with the diesel mode, operation at a higher compression ratio is possible by operating with the pressurizing and depressurizing piston (205) fully depressed.

本実施例は、本発明の一例を示すものである。図3は、本発明の一例を説明するための斜視説明図である。301は連通開口部、302はHCCI気筒、303はHCCIピストン、304はSI気筒、305はSIピストンである。  This example shows an example of the present invention. FIG. 3 is a perspective explanatory view for explaining an example of the present invention. Reference numeral 301 denotes a communication opening, 302 denotes an HCCI cylinder, 303 denotes an HCCI piston, 304 denotes an SI cylinder, and 305 denotes an SI piston.

本実施例は、ガソリンを燃料としたHCCIとプラグ点火運転を切り替え可能な自動車用多気筒エンジンである。HCCI気筒(302)には、点火用の小型エンジン、SI気筒(304)が連通開口部(301)を通してHCCI気筒の燃焼室に連通している。SI気筒(304)には吸気弁(図示せず)、排気弁(図示せず)、点火プラグ(図示せず)が設けられ、膨張行程でSIピストン(305)がクランク角ATDC30度位置で連通開口部(301)が設けられている。連通前のHCCI気筒(302)の圧縮比は、圧縮自着火圧縮比の80%となる圧縮比である。両気筒(302、304)の容積比は20対1とし、SIピストン(305)はHCCIとは別のシャフトを用いて二軸で伝達し、車輪駆動に用いられている。SI気筒(304)には吸気弁からプラグ点火に適した濃度と同様の圧縮比で圧縮された圧力の混合気が供給されており、HCCIピストン(303)位置が上死点付近で、SI気筒(304)の点火プラグで点火してSIピストン(305)が30度CAで連通開口部(301)を通してHCCI気筒(302)の燃焼室に流入して混合気を二次圧縮し、着火温度を超えて着火する。  The present embodiment is an automobile multi-cylinder engine that can switch between HCCI using gasoline as fuel and plug ignition operation. The HCCI cylinder (302) is connected with a small ignition engine, the SI cylinder (304), through the communication opening (301) to the combustion chamber of the HCCI cylinder. The SI cylinder (304) is provided with an intake valve (not shown), an exhaust valve (not shown), and a spark plug (not shown), and the SI piston (305) communicates at a crank angle ATDC of 30 degrees during the expansion stroke. An opening (301) is provided. The compression ratio of the HCCI cylinder (302) before communication is a compression ratio that is 80% of the compression auto-ignition compression ratio. The volume ratio of both cylinders (302, 304) is 20 to 1, and the SI piston (305) is transmitted biaxially using a shaft different from HCCI, and is used for wheel driving. The SI cylinder (304) is supplied with an air-fuel mixture compressed at a compression ratio similar to the concentration suitable for plug ignition from the intake valve, and the HCCI piston (303) is located near the top dead center. (304) is ignited by the spark plug, and the SI piston (305) flows into the combustion chamber of the HCCI cylinder (302) through the communication opening (301) at 30 degrees CA to secondarily compress the air-fuel mixture, and the ignition temperature is reduced. Ignite beyond.

着火用プラグ点火エンジンの気筒(304)に供給する混合気濃度と量及び該気筒の点火プラグでの点火時期の調整で、該混合気をリッチにすることでHCCI気筒(303)内の予混合気が希薄であっても着火が容易になる。更に、プラグ点火時期を遅角させることでHCCI側の濃い混合気でもノッキングを回避することができ、運転可能領域を拡大することができる。前炎反応生起圧力以上の範囲で、できるかぎり圧縮比を下げて自着火圧力との差を大きくすることで、HCCI運転領域の拡大を図ることができる。しかし、SI気筒(304)側の出力を上げすぎると、内部ガスの移動量が大きくなり、圧力損失が増大する。そこで、着火用プラグ点火エンジンの気筒(304)容積をHCCI気筒の20分の1にすることで内部のガスの移動を最小限にして、連通壁等との摩擦等で発生する圧力損失を低減することができる。  Premixing in the HCCI cylinder (303) by adjusting the concentration and amount of the air-fuel mixture supplied to the cylinder (304) of the ignition plug ignition engine and the ignition timing at the ignition plug of the cylinder to make the air-fuel mixture rich Ignition is easy even if I'm sparse. Further, by retarding the plug ignition timing, knocking can be avoided even in a rich mixture on the HCCI side, and the operable range can be expanded. By reducing the compression ratio as much as possible and increasing the difference from the auto-ignition pressure within a range equal to or higher than the pre-flame reaction occurrence pressure, the HCCI operation range can be expanded. However, if the output on the SI cylinder (304) side is increased too much, the amount of movement of the internal gas increases and the pressure loss increases. Therefore, by reducing the cylinder (304) volume of the ignition plug ignition engine to 1/20 of that of the HCCI cylinder, the movement of the internal gas is minimized and the pressure loss caused by friction with the communication wall is reduced. can do.

圧縮自着火内燃機関。自動車用、船舶、発電等の動力用のガソリン、ディーゼル、ガス、アルコール、エーテルやその他バイオ燃料等のエンジンに利用される。  Compression self-ignition internal combustion engine. It is used for engines such as gasoline, diesel, gas, alcohol, ether and other biofuels for power for automobiles, ships, and power generation.

本発明の一例で、実施例1の内燃機関を説明するための側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view for explaining an internal combustion engine of a first embodiment as an example of the present invention. 本発明の一例で、実施例2の内燃機関を説明するための上面断面図である。FIG. 6 is a top cross-sectional view for explaining an internal combustion engine according to a second embodiment as an example of the present invention. 本発明の一例で、実施例3の内燃機関を説明するための斜視説明図である。FIG. 5 is a perspective explanatory view for explaining an internal combustion engine of a third embodiment as an example of the present invention.

符号の説明Explanation of symbols

101 シリンダヘッド
102 副燃焼室吸気弁
103 副燃焼室
104 点火プラグ
105 連通弁
106 主燃焼室
107 ピストン
201 燃焼室
202 エンジン・シリンダ
203 連通窓
204 加減圧シリンダ
205 加減圧ピストン
206 摺動方向を示す矢印
301 連通開口部
302 HCCI気筒
303 HCCIピストン
304 SI気筒
305 SIピストン
DESCRIPTION OF SYMBOLS 101 Cylinder head 102 Subcombustion chamber intake valve 103 Subcombustion chamber 104 Spark plug 105 Communication valve 106 Main combustion chamber 107 Piston 201 Combustion chamber 202 Engine cylinder 203 Communication window 204 Pressurization cylinder 205 Pressurization piston 206 Arrow which shows sliding direction 301 Communication opening 302 HCCI cylinder 303 HCCI piston 304 SI cylinder 305 SI piston

Claims (7)

圧縮着火内燃機関において、圧縮自着火圧力近傍の圧縮比ではあるが、圧縮自着火圧力未満の圧縮比の燃焼室であり、この燃焼室に連通して他の多段圧縮手段を設け、気筒が上死点付近に在る時に該多段圧縮手段で燃焼室の容積を減少させ、混合気を圧縮自着火させることを特徴とした多段圧縮自着火可能な内燃機関。  In a compression ignition internal combustion engine, it is a combustion chamber having a compression ratio near the compression autoignition pressure, but less than the compression autoignition pressure, and another multistage compression means is provided in communication with the combustion chamber so that the cylinder is An internal combustion engine capable of multistage compression self-ignition characterized by reducing the volume of a combustion chamber with the multistage compression means when in the vicinity of a dead center and causing the mixture to undergo compression autoignition. 圧縮着火モードと、点火プラグで着火させるプラグ点火モードとを運転中に切り替えて運転する内燃機関において、圧縮着火モード時、圧縮自着火圧力近傍の圧縮比ではあるが、該自着火圧力よりも低い圧縮比に設定した主気筒のピストン位置が上死点近傍時で、該ピストン以外の手段で再度圧縮し、着火させる多段圧縮着火機関であり、該多段圧縮手段により主気筒の燃焼室の容積を圧縮着火運転に必要な圧縮比と、プラグ点火モードに必要な圧縮比相当の容積に変更可能としたことを特徴とする多段圧縮着火可能な内燃機関。  In an internal combustion engine that is operated by switching between a compression ignition mode and a plug ignition mode that is ignited by a spark plug during operation, in the compression ignition mode, the compression ratio is close to the compression ignition pressure, but lower than the ignition pressure. When the piston position of the main cylinder set to the compression ratio is near top dead center, it is a multistage compression ignition engine that is compressed again by means other than the piston and ignited, and the volume of the combustion chamber of the main cylinder is reduced by the multistage compression means. An internal combustion engine capable of multi-stage compression ignition, wherein the compression ratio required for the compression ignition operation and the volume corresponding to the compression ratio required for the plug ignition mode can be changed. 比較的均一な混合気を圧縮自着火する圧縮自着火モードと、高圧中に燃料噴射して着火させるディーゼル着火モードとを運転中に切り替えて運転する内燃機関において、圧縮自着火モード時、圧縮自着火圧力近傍の圧縮比ではあるが、該自着火圧力よりも低い圧縮比に設定した主気筒のピストン位置が上死点近傍時で、該ピストン以外の手段で再度圧縮し、着火させる多段圧縮着火機関であり、該多段圧縮手段により主気筒の燃焼室の容積を圧縮自着火運転に必要な圧縮比と、ディーゼル着火モードに必要な圧縮比相当の容積に変更可能としたことを特徴とする多段圧縮着火可能な内燃機関。  In an internal combustion engine operated by switching between a compression ignition mode for compressing and igniting a relatively uniform air-fuel mixture and a diesel ignition mode for injecting and igniting fuel during high pressure during operation, Although the compression ratio is close to the ignition pressure, when the main cylinder piston position set to a compression ratio lower than the self-ignition pressure is near top dead center, compression is performed again by means other than the piston and ignition is performed. A multistage engine characterized in that the multistage compression means can change the volume of the combustion chamber of the main cylinder to a compression ratio necessary for compression auto-ignition operation and a volume corresponding to the compression ratio necessary for the diesel ignition mode. An internal combustion engine capable of compression ignition. 前記多段圧縮手段が、前記気筒の燃焼室に連通した他の気筒で構成したことを特徴とする請求項1、2または3に記載の多段圧縮着火可能な内燃機関。  The internal combustion engine capable of multi-stage compression ignition according to claim 1, wherein the multi-stage compression means is constituted by another cylinder communicating with a combustion chamber of the cylinder. 前記多段圧縮手段が、前記気筒の燃焼室に副燃焼室を設け、該副燃焼室に点火手段と燃焼室との境界に弁を設け、圧縮自着火モードでは副燃焼室で独立に燃焼させ、開弁して 燃焼後ガスで主燃焼室の混合気を圧縮着火し、運転モード切替時に該弁を開閉して圧縮比を変更することを特徴とする請求項2または3に記載の多段圧縮着火可能な内燃機関。  The multi-stage compression means is provided with a sub-combustion chamber in the combustion chamber of the cylinder, a valve is provided at the boundary between the ignition means and the combustion chamber in the sub-combustion chamber, and in the self-combustion mode, it is burned independently in the sub-combustion chamber, 4. The multistage compression ignition according to claim 2, wherein the gas mixture in the main combustion chamber is compressed and ignited with the gas after combustion, and the compression ratio is changed by opening and closing the valve when the operation mode is switched. Possible internal combustion engine. 前期多段圧縮手段が、圧縮自着荷気筒の燃焼室に副燃焼室を設け、該副燃焼室に点火プラグを設け、主燃焼室と副燃焼室の境界に弁を設け、圧縮工程途中でプラグ点火モードに適した圧縮比まで圧縮した時点で、該弁を閉弁し、副燃焼室に点火プラグで点火して、副燃焼室の圧力が主燃焼室の圧力よりも高くなった時点で開弁して、燃焼後ガスで主燃焼室の混合気を圧縮着火し、プラグ点火モードへの切り替え時には弁を開放して圧縮比を低減させることを特徴とする請求項2に記載の多段圧縮着火可能な内燃機関。  The first-stage multi-stage compression means is provided with a secondary combustion chamber in the combustion chamber of the compression self-loading cylinder, an ignition plug is provided in the secondary combustion chamber, a valve is provided at the boundary between the main combustion chamber and the secondary combustion chamber, and plug ignition is performed during the compression process. When the compression ratio is suitable for the mode, the valve is closed, the auxiliary combustion chamber is ignited with a spark plug, and the valve is opened when the pressure in the auxiliary combustion chamber becomes higher than the pressure in the main combustion chamber. 3. The multistage compression ignition according to claim 2, wherein the air-fuel mixture in the main combustion chamber is compressed and ignited with the post-combustion gas, and the compression ratio is reduced by opening the valve when switching to the plug ignition mode. Internal combustion engine. 前記圧縮自着火圧力近傍の圧縮比が、温度上昇で燃料成分が分解及び酸化反応を起こす前炎反応を開始する圧力以上に相当する圧縮比であることを特徴とする請求項1、2、3、4、5及び6に記載の多段圧縮着火可能な内燃機関。  The compression ratio in the vicinity of the compression auto-ignition pressure is a compression ratio corresponding to a pressure higher than a pressure at which a pre-flame reaction that causes a decomposition and oxidation reaction of a fuel component with a temperature rise is achieved. An internal combustion engine capable of multistage compression ignition according to 4, 5, and 6.
JP2008262263A 2008-09-08 2008-09-08 Multistage compression self-ignition internal combustion engine Pending JP2010065673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262263A JP2010065673A (en) 2008-09-08 2008-09-08 Multistage compression self-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262263A JP2010065673A (en) 2008-09-08 2008-09-08 Multistage compression self-ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010065673A true JP2010065673A (en) 2010-03-25

Family

ID=42191454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262263A Pending JP2010065673A (en) 2008-09-08 2008-09-08 Multistage compression self-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010065673A (en)

Similar Documents

Publication Publication Date Title
US7464688B2 (en) Active radical initiator for internal combustion engines
KR101137743B1 (en) Control device for premix compression self-igniting engine
KR101022305B1 (en) Homogenous charge compression ignition engine and controlling method of the engine
US20090277404A1 (en) Active-threshold-control type self-cooling engine
EP1925802B1 (en) Quick restart HCCI internal combustion engine
JP2008202545A (en) Dual fuel engine
JP2007113485A (en) Method and device for controlling internal combustion engine
JP6414152B2 (en) Control device for internal combustion engine
JP2013510261A (en) Two-stroke internal combustion engine with variable compression ratio and exhaust port shutter and method of operating such an engine
WO2014076995A1 (en) Diesel engine control device, diesel engine, and diesel engine control method
US4050420A (en) Constant pressure-temperature delayed combustion high compression ratio engine and method
JP5922830B1 (en) Gas engine
JP2021102962A (en) Low-load operation method for operating reciprocating piston internal combustion engine, computer program product, and reciprocating piston internal combustion engine
US11578684B2 (en) Method for operating an engine
JP2004360683A (en) Method for increasing load range of premixed compression ignition, and system and method for realizing heavy load two-stroke hcci engine cycle in internal combustion engine which usually operates in four-stroke hcci engine cycle
JP4254504B2 (en) Internal combustion engine
JP4180995B2 (en) Control device for compression ignition internal combustion engine
EP3818260B1 (en) Method of increasing load in a four stoke internal combustion engine
JP4073315B2 (en) Sub-chamber engine
JP4274063B2 (en) Control device for internal combustion engine
JP5866813B2 (en) Internal combustion engine
Zhang et al. 2-stroke CAI operation on a poppet valve DI engine fuelled with gasoline and its blends with ethanol
WO2012114482A1 (en) Internal combustion engine control system
JP2010065673A (en) Multistage compression self-ignition internal combustion engine
JP2004278428A (en) Diesel engine and its operation method