JP2010063328A - Parallel redundant system of power converter - Google Patents

Parallel redundant system of power converter Download PDF

Info

Publication number
JP2010063328A
JP2010063328A JP2008229240A JP2008229240A JP2010063328A JP 2010063328 A JP2010063328 A JP 2010063328A JP 2008229240 A JP2008229240 A JP 2008229240A JP 2008229240 A JP2008229240 A JP 2008229240A JP 2010063328 A JP2010063328 A JP 2010063328A
Authority
JP
Japan
Prior art keywords
phase
zero
current
output
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229240A
Other languages
Japanese (ja)
Other versions
JP5211952B2 (en
Inventor
Koya Yoshioka
康哉 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008229240A priority Critical patent/JP5211952B2/en
Publication of JP2010063328A publication Critical patent/JP2010063328A/en
Application granted granted Critical
Publication of JP5211952B2 publication Critical patent/JP5211952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: three arms of an inverse conversion circuit are controlled and interfere with each other using one output voltage command for a zero-phase component when voltage control for a zero-phase current is executed by an inverse conversion circuit because the zero-phase current is included in a current supplied to a load in a parallel redundant system of three-phase four-line non-insulated power converter. <P>SOLUTION: Even if a load to which a zero-phase current is applied is connected, an N-phase arm and an inverse conversion circuit execute output voltage zero-phase component correction control and output voltage normal component correction control, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、交流入力を電圧または周波数の異なる別の交流に変換して出力し、安定した電力を負荷に供給する電力変換装置を複数台並列接続し、並列運転する時の制御に関し、特に交流入出力が三相4線式の場合の並列運転制御に関する。   The present invention relates to a control when parallel operation is performed by connecting a plurality of power converters that convert an AC input into another AC of different voltage or frequency and output it, and supply stable power to a load, and in particular, AC. The present invention relates to parallel operation control when the input / output is a three-phase four-wire system.

図6に、従来の技術を用いた三相4線式非絶縁型電力変換装置の回路構成を示す。この構成は、特許文献1〜3に記載された回路構成である。本回路は、絶縁トランスを用いずに負荷に電力を供給することができる電力変換装置であり、交流−直流変換を行う順変換回路と、直流−交流変換を行う逆変換回路とで構成され、順変換回路と逆変換回路の共通部分である直流回路の正極と負極との間に、ダイオードが逆並列接続された半導体スイッチング素子(IGBT)を2個直列接続したN相アームを接続し、順変換回路の交流入力側と逆変換回路の交流出力側に接続されたフィルタコンデンサの接続方法をスター結線とし、その中性点とN相アームの直列接続点とをリアクトル(以下、中性点出力リアクトルと呼ぶ)を介して接続している。   FIG. 6 shows a circuit configuration of a three-phase four-wire non-insulated power converter using a conventional technique. This configuration is a circuit configuration described in Patent Documents 1 to 3. This circuit is a power conversion device that can supply power to a load without using an insulating transformer, and includes a forward conversion circuit that performs AC-DC conversion and an inverse conversion circuit that performs DC-AC conversion. An N-phase arm in which two semiconductor switching elements (IGBTs) having diodes connected in reverse parallel are connected in series between the positive and negative electrodes of a DC circuit, which is a common part of the forward conversion circuit and the reverse conversion circuit. The connection method of the filter capacitor connected to the AC input side of the conversion circuit and the AC output side of the inverse conversion circuit is a star connection, and the neutral point and the series connection point of the N-phase arm are connected to the reactor (hereinafter, neutral point output). It is connected via a reactor).

図6において、1は三相交流電源、2は接地点、17は中性点接地された三相負荷、3は三相4線式非絶縁型電力変換装置である。三相4線式非絶縁型電力変換装置3は、入力リアクトル4、入力フィルタコンデンサ5、入力フィルタリアクトル6、順変換回路7、直流コンデンサ8、N相アーム9、中性点出力リアクトル10、逆変換回路11、出力フィルタリアクトル12、出力フィルタコンデンサ13、出力リアクトル14で構成されている。   In FIG. 6, 1 is a three-phase AC power source, 2 is a grounding point, 17 is a neutral-grounded three-phase load, and 3 is a three-phase four-wire non-insulated power converter. The three-phase four-wire non-insulated power converter 3 includes an input reactor 4, an input filter capacitor 5, an input filter reactor 6, a forward conversion circuit 7, a DC capacitor 8, an N-phase arm 9, a neutral point output reactor 10, and a reverse A conversion circuit 11, an output filter reactor 12, an output filter capacitor 13, and an output reactor 14 are included.

電力変換装置においては、負荷への安定した電力供給の信頼性向上のために、複数台の電力変換装置を並列接続する並列冗長方式が採用されている。図5に図6に示した電力変換回路を2台並列接続した場合の並列冗長システムを示す。
並列冗長システムにおいては、各電力変換装置の出力電流と負荷に供給される電流を比較し、並列接続した各電力変換装置の出力電流を均等にする制御が各電力変換装置で行われる。例えば、特許文献4では、複数台の電力変換装置の平均出力電流を計算し、平均出力電流と各電力変換装置の出力電流との差から装置間を流れる循環電流を求め、各電力変換装置の出力電圧を補正し、各電力変換装置の出力電流を均等にする方法が提案されている。
In power converters, a parallel redundancy system in which a plurality of power converters are connected in parallel is employed to improve the reliability of stable power supply to a load. FIG. 5 shows a parallel redundancy system when two power conversion circuits shown in FIG. 6 are connected in parallel.
In the parallel redundant system, the output current of each power conversion device is compared with the current supplied to the load, and control for equalizing the output current of each power conversion device connected in parallel is performed in each power conversion device. For example, in Patent Document 4, the average output current of a plurality of power conversion devices is calculated, the circulating current flowing between the devices is determined from the difference between the average output current and the output current of each power conversion device, and each power conversion device A method of correcting the output voltage and equalizing the output current of each power converter has been proposed.

また、複数台の電力変換装置を並列運転すると、装置間を零相電流が循環する。例えば、特許文献5では、電力変換装置の出力電流から零相電流を分離抽出し、零相電流に抑制するように電圧に補正を加える手段を設けている。特許文献6では、電力変換装置のスイッチング動作を制御するパルス幅制御に用いるキャリア信号をすべての電力変換装置で同期させることにより、零相電流を抑制している。
特開2000−224862号公報 特開2007−274825号公報 特開2007−259688号公報 特開2000−60137号公報 特許第3732772号公報 特開2004−320964号公報
Further, when a plurality of power conversion devices are operated in parallel, a zero-phase current circulates between the devices. For example, Patent Document 5 provides means for separating and extracting a zero-phase current from the output current of the power converter and correcting the voltage so as to suppress it to the zero-phase current. In patent document 6, the zero phase current is suppressed by synchronizing the carrier signal used for the pulse width control which controls the switching operation of a power converter device with all the power converter devices.
JP 2000-224862 A JP 2007-274825 A JP 2007-259688 A JP 2000-60137 A Japanese Patent No. 3732772 JP 2004-320964 A

上述の特許文献4〜6は、三相3線式の電力変換装置に対する制御方法である。三相3線式の場合には、出力電圧の三相和が零でなくても、負荷へ流れる電流の三相和は零となる。これに対し、零相電流は装置間を循環する電流となり、各電力変換装置の出力電流を不均等にする。そこで、三相3線式電力変換装置では上記のように零相電流を積極的に抑制する方式が取られる。   The above-mentioned patent documents 4 to 6 are control methods for a three-phase three-wire power converter. In the case of the three-phase three-wire system, even if the three-phase sum of the output voltage is not zero, the three-phase sum of the current flowing to the load is zero. On the other hand, the zero-phase current becomes a current that circulates between the devices, and makes the output current of each power conversion device uneven. Therefore, the three-phase three-wire power converter employs a method of positively suppressing the zero-phase current as described above.

一方、三相4線式非絶縁型電力変換装置では、図5に示す負荷17は、三相出力リアクトル14A、14Bのいずれか一相の出力端と出力フィルタコンデンサ13A、13Bの中性点との間に接続される場合がある。この場合には、電力変換装置は三相和が零の電圧を出力していても、零相電流を出力することになる。このため、図5に示す三相4線式非絶縁型電力変換装置の並列冗長システムでは、零相電流が各電力変換装置で均等に出力されるように電圧制御する必要がある。   On the other hand, in the three-phase four-wire non-insulated power converter, the load 17 shown in FIG. 5 includes one-phase output terminals of the three-phase output reactors 14A and 14B and the neutral points of the output filter capacitors 13A and 13B. May be connected between. In this case, the power conversion device outputs a zero-phase current even if the three-phase sum outputs a voltage of zero. Therefore, in the parallel redundant system of the three-phase four-wire non-insulated power converter shown in FIG. 5, it is necessary to control the voltage so that the zero-phase current is evenly output by each power converter.

出力電流を零相成分と三相和零となるノーマル成分とに分離して、各成分に対応した出力電圧指令を生成してから、零相成分とノーマル成分が混在した三相出力電圧指令を生成する方式は、特許文献5において提案されている。しかし、零相成分とノーマル成分が混在した三相出力電圧指令で逆変換回路の三相出力電圧を制御する場合、零相成分に対しては逆変換回路の3つのアームが同一指令で制御されることになり、制御性能のばらつきにより三相アームの電圧制御が干渉を起こす問題が生じる。三相4線式非絶縁型電力変換装置の場合、N相アーム9A、9Bを逆変換回路に従属するように制御することで、この干渉の影響を補うようにN相アーム9A、9Bを機能させることが出来る。しかし、三相4線式非絶縁型電力変換装置の場合でも、零相成分に対する逆変換回路の三相アーム電圧制御の干渉自体は回避できない。   The output current is separated into a zero-phase component and a normal component that is a three-phase sum zero, and an output voltage command corresponding to each component is generated, and then a three-phase output voltage command that contains both a zero-phase component and a normal component is generated. A generation method is proposed in Patent Document 5. However, when the three-phase output voltage of the reverse conversion circuit is controlled by a three-phase output voltage command in which a zero-phase component and a normal component are mixed, the three arms of the reverse conversion circuit are controlled by the same command for the zero-phase component. As a result, there arises a problem that voltage control of the three-phase arm interferes due to variations in control performance. In the case of a three-phase four-wire non-insulated power converter, the N-phase arms 9A and 9B function so as to compensate for the influence of this interference by controlling the N-phase arms 9A and 9B to be subordinate to the inverse conversion circuit. It can be made. However, even in the case of a three-phase four-wire non-insulated power converter, the interference itself of the three-phase arm voltage control of the inverse converter circuit with respect to the zero-phase component cannot be avoided.

また、装置間を循環する零相電流を抑制するために各電力変換装置のキャリア信号を同期させることは、電力変換装置の並列台数が増加する場合には、電力変換装置間に共有する信号線を設置することになり、信頼性が低下する。また、信頼性を高めるための並列冗長システムでは電力変換装置の制御装置が個々に独立であり、他の電力変換装置の詳細な情報が得られない場合がある。この場合には、キャリア信号を同期させることは不可能となる。   Moreover, in order to suppress the zero-phase current circulating between the devices, synchronizing the carrier signal of each power conversion device is a signal line shared between the power conversion devices when the number of parallel power conversion devices increases. The reliability will be reduced. Moreover, in the parallel redundant system for improving reliability, the control apparatus of a power converter device is each independent, and the detailed information of another power converter device may not be obtained. In this case, it becomes impossible to synchronize the carrier signal.

以上のように、三相4線式非絶縁型電力変換装置の並列冗長システムでは、負荷に供給する電流に零相電流が含まれ、この零相電流を各電力変換装置が均等に負担するように出力電圧を制御する必要がある。また、零相電流に対する電圧制御を逆変換回路で行った場合には、零相成分に対しては同一の出力電圧指令で逆変換回路の3つのアームが制御され干渉する。さらに、電力変換装置の並列冗長システムでは、零相電流循環を抑制するためのキャリア信号同期方式は、電力変換装置間に共有する信号線を設置することになり、信頼性が低下する。   As described above, in the parallel redundant system of the three-phase four-wire non-insulated power converter, the zero-phase current is included in the current supplied to the load, and each power converter is equally burdened with the zero-phase current. It is necessary to control the output voltage. Further, when the voltage control for the zero-phase current is performed by the reverse conversion circuit, the three arms of the reverse conversion circuit are controlled and interfered with the zero-phase component by the same output voltage command. Furthermore, in the parallel redundant system of the power converters, the carrier signal synchronization method for suppressing the zero-phase current circulation installs a signal line shared between the power converters, and the reliability decreases.

この発明は、上記のような課題を解決するためになされたもので、複数台電力変換装置の各出力電流を均等にし、安定した電力を負荷に供給する信頼性の高い三相4線式非絶縁型電力変換装置の並列冗長システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a highly reliable three-phase four-wire non-uniformity that equalizes each output current of a plurality of power converters and supplies stable power to a load. An object of the present invention is to provide a parallel redundant system for an insulated power converter.

上述の課題を解決するために、第1の発明においては、三相交流電源に接続され、半導体スイッチング素子の高周波スイッチング動作により交流−直流変換を行う順変換器と、順変換器の直流回路の直流端子間に接続され、半導体スイッチング素子の高周波スイッチング動作により直流−交流変換を行い、三相交流電圧を出力する逆変換器と、ダイオードを逆並列接続した半導体スイッチング素子2個の直列回路からなり前記直流回路の直流端子間に接続されるN相アームと、から構成され、前記順変換器交流入力側のフィルタコンデンサおよび前記逆変換器交流出力側のフィルタコンデンサの接続方法を、各々スター結線とし、その中性点と前記N相アームの直列接続点とをリアクトルを介して接続してなる三相4線式非絶縁型電力変換装置が、複数台並列に接続されて運転される並列冗長システムにおいて、前記電力変換装置が運転中か停止中かを示す情報を各電力変換装置間で共有する手段と、運転状態にある各電力変換装置が負荷に供給する電流を均等分担するように各電力変換装置の出力電流指令を決定する手段と、出力電流指令と実際に電力変換装置が出力している電流との差分を負荷に供給されずに他の電力変換装置との間で循環する横流として算出する手段と、前記横流をさらに零相成分と三相和零のノーマル成分とに分離する手段と、横流の各成分が零となるように、横流零相成分に従って零相電圧制御に補正を加える出力電圧零相成分補正制御を前記N相アームで行う手段と、横流ノーマル成分に従って三相出力電圧指令およびノーマル成分電圧制御に補正を加える出力電圧ノーマル成分補正制御を逆変換回路で行う手段と、を備える。   In order to solve the above-described problem, in the first invention, a forward converter connected to a three-phase AC power source and performing AC-DC conversion by a high-frequency switching operation of a semiconductor switching element, and a DC circuit of the forward converter It consists of a series circuit of two semiconductor switching elements that are connected between DC terminals, perform DC-AC conversion by high-frequency switching operation of the semiconductor switching element, and output a three-phase AC voltage, and diodes connected in reverse parallel. An N-phase arm connected between the DC terminals of the DC circuit, and the connecting method of the filter capacitor on the forward converter AC input side and the filter capacitor on the inverse converter AC output side is a star connection, respectively. A three-phase four-wire non-insulated power conversion device in which a neutral point and a series connection point of the N-phase arm are connected via a reactor. In a parallel redundant system that is connected and operated in parallel, means for sharing information indicating whether the power converter is operating or stopped between the power converters, and each power converter in an operating state Means for determining the output current command of each power converter so that the current supplied to the load is equally shared, and the difference between the output current command and the current actually output by the power converter is not supplied to the load Means for calculating as a cross current circulating between other power converters, means for further separating the cross current into a zero-phase component and a normal component of three-phase sum zero, so that each component of the cross-current becomes zero Means for correcting the zero-phase voltage control according to the cross-flow zero-phase component with the N-phase arm, and correcting the three-phase output voltage command and the normal component voltage control according to the cross-flow normal component And means for performing output voltage normal component correction control in the inverse transform circuit.

第2の発明においては、前記横流を零相成分と三相和零のノーマル成分とに分離する手段は、出力電流指令と電力変換装置が出力している電流との差分を横流として算出し、前記横流の三相分の和を1/3倍したものを横流零相成分とし、出力電流指令と電力変換装置が出力している電流との差分から前記横流零相成分を減算したものを横流ノーマル成分とする。   In the second invention, the means for separating the cross current into a zero-phase component and a three-phase sum zero normal component calculates the difference between the output current command and the current output by the power converter as a cross current, The cross current zero phase component is obtained by multiplying the sum of the three phases of the cross current by 1/3, and the cross current zero phase component is subtracted from the difference between the output current command and the current output by the power converter. Normal component.

本発明では、三相4線式非絶縁電力変換装置の並列冗長システムにおいて、電力変換装置が運転中か停止中かを示す情報を各電力変換装置間で共有する手段と、運転状態にある各電力変換装置が負荷に供給する電流を均等分担するように各電力変換装置の出力電流指令を決定する手段と、出力電流指令と実際に電力変換装置が出力している電流との差分を負荷に供給されずに他の電力変換装置との間で循環する横流として算出する手段と、前記横流をさらに零相成分と三相和零のノーマル成分とに分離する手段と、横流の各成分が零となるように、横流零相成分に従って零相電圧制御に補正を加える出力電圧零相成分補正制御を前記N相アームで行う手段と、横流ノーマル成分に従って三相出力電圧指令およびノーマル成分電圧制御に補正を加える出力電圧ノーマル成分補正制御を逆変換回路で行う手段と、を備える。   In the present invention, in a parallel redundant system of a three-phase four-wire non-insulated power conversion device, means for sharing information indicating whether the power conversion device is operating or stopped, and each power conversion device, Means for determining the output current command of each power converter so that the current supplied to the load by the power converter is equally shared, and the difference between the output current command and the current actually output by the power converter to the load Means for calculating a cross current that circulates between other power converters without being supplied; means for further separating the cross current into a zero-phase component and a three-phase sum zero normal component; and each component of the cross current is zero So that the output voltage zero-phase component correction control for correcting the zero-phase voltage control according to the cross-flow zero-phase component is performed by the N-phase arm, and the three-phase output voltage command and the normal component voltage control according to the cross-current normal component. Correction And means for performing obtaining output voltage normal component correction control in the inverse transform circuit.

その結果、零相電流が流れる負荷が接続された場合でも、N相アームで出力電圧零相成分補正制御を、逆変換回路で出力電圧ノーマル成分補正制御を、各々行い、また、電力変換装置間で運転状態の情報を共有するだけで、負荷に供給する電流を各電力変換装置が均等分担し、安定した電力を負荷に供給することが可能となる。   As a result, even when a load through which zero-phase current flows is connected, the output voltage zero-phase component correction control is performed by the N-phase arm, and the output voltage normal component correction control is performed by the inverse conversion circuit. By simply sharing information on the operation state, each power conversion device can equally share the current supplied to the load and supply stable power to the load.

本発明の要点は、零相アームを備えた電力変換装置において、出力電流指令と電力変換装置の出力電流との差分を横流として算出し、前記横流を零相成分とノーマル成分とに分離し、横流の各成分が零となるように、横流零相成分に従って零相電圧制御に補正を加える出力電圧零相成分補正制御を前記N相アームで行い、横流ノーマル成分に従って三相出力電圧指令およびノーマル成分電圧制御に補正を加える出力電圧ノーマル成分補正制御を逆変換回路で行うことである。   The main point of the present invention is to calculate the difference between the output current command and the output current of the power converter as a cross current in a power converter having a zero phase arm, and separate the cross current into a zero phase component and a normal component, The N-phase arm performs output voltage zero-phase component correction control for correcting the zero-phase voltage control according to the cross-flow zero-phase component so that each component of the cross-flow becomes zero, and the three-phase output voltage command and normal according to the cross-current normal component The output voltage normal component correction control for correcting the component voltage control is performed by the inverse conversion circuit.

図1に、本発明の第1の実施例を示す。逆変換回路のU相、V相、W相の各アームを制御する電圧制御ブロックとN相アームを制御する電圧制御ブロックとを示している。
制御対象の出力電圧は、三相4線式非絶縁電力変換装置のスター結線された出力フィルタコンデンサ13の中性点を基準にした出力フィルタコンデンサの三相各電圧である。検出した三相電圧Vu、Vv、Vwは図2に示すように、ノーマル成分と零相成分に分離する。まず、三相和を加算器44で求め、加算器44の出力を比例ゲイン45で三分の一にして出力電圧零相成分Vzを抽出する。次に、減算器43u、43wを用いて各相電圧検出より出力電圧零相成分を除去して、各相のノーマル成分Vnu、Vnwを求める。ノーマル成分は三相和零であり、三相のうち一相は二相に従属であることから、V相電圧ノーマル成分は用いない。
FIG. 1 shows a first embodiment of the present invention. A voltage control block for controlling the U-phase, V-phase, and W-phase arms of the inverse conversion circuit and a voltage control block for controlling the N-phase arm are shown.
The output voltage to be controlled is the three-phase voltages of the output filter capacitor with reference to the neutral point of the star-connected output filter capacitor 13 of the three-phase four-wire non-insulated power converter. The detected three-phase voltages Vu, Vv, Vw are separated into a normal component and a zero-phase component as shown in FIG. First, the three-phase sum is obtained by the adder 44, and the output voltage zero-phase component Vz is extracted by making the output of the adder 44 one third by the proportional gain 45. Next, the subtractors 43u and 43w are used to remove the output voltage zero-phase component from each phase voltage detection to obtain the normal components Vnu and Vnw of each phase. Since the normal component is a three-phase sum zero and one of the three phases is subordinate to the two phases, the V-phase voltage normal component is not used.

負荷に供給されずに他の電力変換装置とで循環する三相横流は、検出した負荷電流と電力変換装置の出力電流とから図3に示すような制御ブロックで算出し、さらに、三相横流ノーマル成分と横流零相成分に分離する。まず、図5の電流検出器16で検出した負荷に供給される電流を比例ゲイン18u、18v、18wに各々入力し、運転状態にある電力変換装置で負荷に供給する電流を均等分担するように各電力変換装置の出力電流指令を生成する。電流検出器16を設置できない場合は、負荷に供給される電流は、各電力変換装置の検出器15で検出した出力電流の総和から算出することもできる。   The three-phase cross current that circulates between other power conversion devices without being supplied to the load is calculated by the control block as shown in FIG. 3 from the detected load current and the output current of the power conversion device. Separated into normal component and crossflow zero-phase component. First, the current supplied to the load detected by the current detector 16 in FIG. 5 is input to the proportional gains 18u, 18v, 18w, respectively, and the current supplied to the load is equally shared by the power converter in the operating state. An output current command for each power converter is generated. When the current detector 16 cannot be installed, the current supplied to the load can be calculated from the sum of the output currents detected by the detector 15 of each power converter.

比例ゲイン18u、18v、18wは運転状態の電力変換装置台数に反比例する。例えば、運転状態にある電力変換装置が2台の場合には、比例ゲイン18u、18v、18wは0.5となる。また、運転状態にある電力変換装置が3台の場合には、0.3となる。電力変換装置が運転中か停止中かの情報は各電力変換装置間で共有されており、電力変換装置の運転状態に従って比例ゲインは比例ゲイン演算器46で変更され、出力電流指令となる。   The proportional gains 18u, 18v, 18w are inversely proportional to the number of power conversion devices in the operating state. For example, when there are two power conversion devices in the operating state, the proportional gains 18u, 18v, and 18w are 0.5. Moreover, when there are three power converters in the operating state, the value is 0.3. Information on whether the power converter is in operation or is stopped is shared between the power converters, and the proportional gain is changed by the proportional gain calculator 46 according to the operation state of the power converter, and becomes an output current command.

次に、出力電流指令と検出器15A、15Bで検出した電力変換装置が実際に出力している電流との差を減算器19u、19v、19wにより求め、負荷に供給されずに他の電力変換装置とで循環する三相横流を求める。続いて、減算器19u、19v、19wが出力する三相横流の三相和を加算器21で求め、加算器21の出力を比例ゲイン22で三分の一にして、横流零相分を抽出する。さらに、減算器20u、20v、20wを用いて、減算器19u、19v、19wが出力する三相横流より横流零相成分Iczを除去して、各相の横流ノーマル成分Icu、Icv、Icwを求める。   Next, the difference between the output current command and the current actually output by the power conversion device detected by the detectors 15A and 15B is obtained by the subtractors 19u, 19v, and 19w, and other power conversion is performed without being supplied to the load. Find the three-phase cross current circulating with the device. Subsequently, the three-phase sum of the three-phase cross currents output from the subtractors 19u, 19v, and 19w is obtained by the adder 21, and the output of the adder 21 is set to one third by the proportional gain 22 to extract the zero cross-phase component. To do. Further, by using the subtractors 20u, 20v, and 20w, the crossflow zero-phase component Icz is removed from the three-phase crossflow output from the subtractors 19u, 19v, and 19w, and the crossflow normal components Icu, Icv, and Icw of each phase are obtained. .

逆変換回路の三相出力電圧指令の周波数と振幅に対して、上記で求めた三相横流ノーマル成分に従って、図4のように補正が加えられる。まず、三相横流ノーマル成分を式1の変換を行う三相二相変換26により、α成分Icαとβ成分Icβの二相に変換する。同様にして、逆変換回路の三相出力電圧指令を式2の変換を行う三相二相変換27により、α成分Vα*とβ成分Vβ*の二相に変換する。
(式1)
The frequency and amplitude of the three-phase output voltage command of the inverse conversion circuit are corrected as shown in FIG. 4 according to the three-phase cross current normal component obtained above. First, a three-phase crossflow normal component is converted into two phases of an α component Icα and a β component Icβ by a three-phase two-phase conversion 26 that performs the conversion of Equation 1. Similarly, the three-phase output voltage command of the inverse conversion circuit is converted into two phases of an α component Vα * and a β component Vβ * by a three-phase two-phase conversion 27 that performs the conversion of Equation 2.
(Formula 1)



(式2)


(Formula 2)



次に、二相出力電圧指令を基準にした式3の回転座標変換25により、二相出力電圧指令に対する横流ノーマル成分の有効分Icdと無効分Icqを求める。
(式3)
Next, the effective component Icd and the invalid component Icq of the normal component of the cross current with respect to the two-phase output voltage command are obtained by the rotational coordinate conversion 25 of Equation 3 based on the two-phase output voltage command.
(Formula 3)



回転座標変換25で得られた横流ノーマル成分の有効分Icdと無効分Icqをそれぞれ補償器23、24に入力する。補償器23の出力は、加算器29を用いて三相出力電圧指令の基準周波数f*に加算される。補償器24の出力は、加算器30を用いて三相出力電圧指令の基準電圧振幅|V|*に加算される。
補正された周波数指令fと振幅指令|V|を用いて、式4の演算を行う三相出力電圧指令生成器28により三相出力電圧指令Vu*、Vv*、Vw*が生成される。
(式4)
The effective component Icd and the invalid component Icq of the cross current normal component obtained by the rotational coordinate conversion 25 are input to the compensators 23 and 24, respectively. The output of the compensator 23 is added to the reference frequency f * of the three-phase output voltage command using the adder 29. The output of the compensator 24 is added to the reference voltage amplitude | V | * of the three-phase output voltage command using the adder 30.
Three-phase output voltage commands Vu *, Vv *, and Vw * are generated by the three-phase output voltage command generator 28 that performs the calculation of Expression 4 using the corrected frequency command f and amplitude command | V |.
(Formula 4)



ただし、

However,

三相出力電圧指令生成器28で生成した三相出力電圧指令Vu*、Vv*、Vw*に対し、図1の逆変換回路の電圧制御ブロックは、以下のような制御を行う。
まず、三相横流ノーマル成分Icu、Icwに比例した電圧補正分を比例ゲイン31u、31w、で求め、その電圧補正分を加算器33u、33wで各相の出力電圧指令Vu*、Vw*に加算する。この部分が出力電圧ノーマル成分補正制御に相当する。次に加算器33u、33wの出力と検出した出力電圧のノーマル成分Vnu、Vnwとの差を減算器34u、34wにより求め、補償器32u、32wに入力する。続いて、加算器35u、35wにより補償器32u、32wの出力を出力電圧指令Vu*、Vw*に加算し、加算器35u、35wの出力をU相、W相アーム電圧指令Viu*、Viw*としている。
The voltage control block of the inverse conversion circuit in FIG. 1 performs the following control on the three-phase output voltage commands Vu *, Vv *, and Vw * generated by the three-phase output voltage command generator 28.
First, voltage corrections proportional to the three-phase cross current normal components Icu and Icw are obtained by proportional gains 31u and 31w, and the voltage corrections are added to the output voltage commands Vu * and Vw * of each phase by the adders 33u and 33w. To do. This portion corresponds to output voltage normal component correction control. Next, the difference between the outputs of the adders 33u and 33w and the detected normal components Vnu and Vnw of the output voltage is obtained by the subtractors 34u and 34w and input to the compensators 32u and 32w. Subsequently, the outputs of the compensators 32u and 32w are added to the output voltage commands Vu * and Vw * by the adders 35u and 35w, and the outputs of the adders 35u and 35w are added to the U-phase and W-phase arm voltage commands Viu * and Viw *. It is said.

ただし、ノーマル成分は三相和零であり、三相のうち一相は二相に従属であることから、V相アーム電圧指令Viv*は、減算器36により他の二相の補償器32u、32wの出力をV相出力電圧指令Vv*から減算することにより求めている。各相アーム電圧指令Viu*、Viv*、Viw*は、逆変換回路のスイッチング動作を制御するパルス幅制御の電圧指令信号となる。   However, since the normal component is a three-phase sum zero and one of the three phases is subordinate to two, the V-phase arm voltage command Viv * is subtracted by the subtractor 36 from the other two-phase compensators 32u, This is obtained by subtracting the 32w output from the V-phase output voltage command Vv *. Each phase arm voltage command Viu *, Viv *, Viw * is a voltage command signal for pulse width control that controls the switching operation of the inverse conversion circuit.

一方、N相アームの電圧制御ブロックでは、まず、三相横流零相成分に比例した補正分を比例ゲイン37で求め、その補正分を加算器40で出力電圧零相成分指令Vz*に加算する。この部分が出力電圧零相成分補正制御に相当する。次に加算器40の出力と出力電圧の零相成分Vzの差を減算器41により求め、減算器41の出力を補償器38に入力する。続いて、加算器42により補償器38の出力を出力電圧零相成分指令Vz*に加算し、さらに比例ゲイン39で極性を反転し、N相アーム電圧指令Vo*としている。N相アーム電圧指令Vo*は、N相アームのスイッチング動作を制御するパルス幅制御の電圧指令信号となる。   On the other hand, in the voltage control block of the N-phase arm, first, a correction proportional to the three-phase crossflow zero-phase component is obtained by the proportional gain 37, and the correction is added to the output voltage zero-phase component command Vz * by the adder 40. . This part corresponds to output voltage zero phase component correction control. Next, the difference between the output of the adder 40 and the zero-phase component Vz of the output voltage is obtained by the subtractor 41, and the output of the subtractor 41 is input to the compensator 38. Subsequently, the output of the compensator 38 is added to the output voltage zero-phase component command Vz * by the adder 42, and the polarity is inverted by the proportional gain 39 to obtain the N-phase arm voltage command Vo *. The N-phase arm voltage command Vo * is a pulse width control voltage command signal for controlling the switching operation of the N-phase arm.

尚、上記実施例では、U相とW相の出力電圧ノーマル成分に横流ノーマル成分で補正を加えて電圧指令を求め、V相は三総和が零となる関係を用いて電圧指令を求める例を示したが、横流ノーマル成分で補正を加える相はいずれか二つの相であれば良く、V相とW相或いはW相とU相の出力電圧ノーマル成分に横流ノーマル成分で補正を加えても実現可能である。   In the above-described embodiment, the voltage command is obtained by correcting the U-phase and W-phase output voltage normal components with the cross current normal component, and the V phase is obtained using the relationship that the three sums are zero. As shown, the phase to be corrected with the normal component of the cross current may be any two phases, and it can be realized by correcting the normal component of the output voltage of the V phase and the W phase or the W phase and the U phase with the normal component of the cross current. Is possible.

本発明は、三相4線式交流電源が適用される無停電電源装置や交流電源装置などへの適用が可能である。   The present invention can be applied to an uninterruptible power supply apparatus or an AC power supply apparatus to which a three-phase four-wire AC power supply is applied.

本発明の実施例を示す電圧制御ブロック図を示す。The voltage control block diagram which shows the Example of this invention is shown. 本発明の実施例の三相出力電圧をノーマル成分と零相成分に分離するブロック図を示す。The block diagram which isolate | separates the three-phase output voltage of the Example of this invention into a normal component and a zero phase component is shown. 本発明の実施例の三相横流をノーマル成分と零相成分に分離するブロック図を示す。The block diagram which isolate | separates the three-phase cross current of the Example of this invention into a normal component and a zero phase component is shown. 本発明の実施例の三相横流ノーマル成分に従い三相電圧指令の周波数と振幅を補正するブロック図を示す。The block diagram which correct | amends the frequency and amplitude of a three-phase voltage command according to the three-phase crossflow normal component of the Example of this invention is shown. 三相4線式非絶縁型電力変換装置の並列冗長システムの構成図を示す。The block diagram of the parallel redundant system of a three-phase four-wire type non-insulated power converter is shown. 三相4線式非絶縁型電力変換装置の構成図を示す。The block diagram of a three-phase four-wire type non-insulated power converter is shown.

符号の説明Explanation of symbols

1・・・三相交流電源 2・・・接地点
3、3A、3B・・・三相4線式非絶縁型電力変換装置
4、4A、4B・・・入力リアクトル
5、5A、5B・・・入力フィルタコンデンサ
6、6A、6B・・・入力フィルタリアクトル
7、7A、7B・・・順変換回路
8、8A、8B・・・直流コンデンサ 9、9A、9B・・・N相アーム
10、10A、10B・・・中性点出力リアクトル
11、11A、11B・・・逆変換回路
12、12A、12B・・・出力フィルタリアクトル
13、13A、13B・・・出力フィルタコンデンサ
14、14A、14B・・・出力リアクトル
15A、15B、16・・・電流検出器 17・・・三相負荷
18u、18v、18w・・・比例ゲイン
22、31u、31w、37、39、45・・・比例ゲイン
19u、19v、19w、20u、20v、20w、43u、43w・・・減算器
34u、34w、41・・・減算器
36・・・減算器
29、30、33u、33w、35u、35w、40、42・・・加算器
21、44・・・加算器
23、24、32u、32w、38・・・補償器 25・・・回転座標変換
26、27・・・三相二相変換 28・・・三相出力電圧指令生成器
46・・・比例ゲイン演算器
1 ... Three-phase AC power supply 2 ... Grounding point
3, 3A, 3B ... three-phase four-wire non-insulated power converter 4, 4A, 4B ... input reactor
5, 5A, 5B: Input filter capacitors 6, 6A, 6B: Input filter reactors 7, 7A, 7B: Forward conversion circuit 8, 8A, 8B: DC capacitors 9, 9A, 9B ...・ N-phase arm 10, 10A, 10B ... Neutral point output reactor 11, 11A, 11B ... Inverse conversion circuit
12, 12A, 12B ... Output filter reactor 13, 13A, 13B ... Output filter capacitor 14, 14A, 14B ... Output reactor 15A, 15B, 16 ... Current detector 17 ... Three-phase load 18u, 18v, 18w ... proportional gain 22, 31u, 31w, 37, 39, 45 ... proportional gain 19u, 19v, 19w, 20u, 20v, 20w, 43u, 43w ... subtractor 34u, 34w, 41 ... Subtractor 36 ... Subtractor 29, 30, 33u, 33w, 35u, 35w, 40, 42 ... Adder 21, 44 ... Adder
23, 24, 32u, 32w, 38 ... compensator 25 ... rotational coordinate conversion 26, 27 ... three-phase two-phase conversion 28 ... three-phase output voltage command generator 46 ... proportional gain calculation vessel

Claims (2)

三相交流電源に接続され、半導体スイッチング素子の高周波スイッチング動作により交流−直流変換を行う順変換器と、順変換器の直流回路の直流端子間に接続され、半導体スイッチング素子の高周波スイッチング動作により直流−交流変換を行い、三相交流電圧を出力する逆変換器と、ダイオードを逆並列接続した半導体スイッチング素子2個の直列回路からなり前記直流回路の直流端子間に接続されるN相アームと、から構成され、前記順変換器交流入力側のフィルタコンデンサおよび前記逆変換器交流出力側のフィルタコンデンサの接続方法を、各々スター結線とし、その中性点と前記N相アームの直列接続点とをリアクトルを介して接続してなる三相4線式非絶縁型電力変換装置が、複数台並列に接続されて運転される並列冗長システムにおいて、
前記電力変換装置が運転中か停止中かを示す情報を各電力変換装置間で共有する手段と、運転状態にある各電力変換装置が負荷に供給する電流を均等分担するように各電力変換装置の出力電流指令を決定する手段と、出力電流指令と実際に電力変換装置が出力している電流との差分を負荷に供給されずに他の電力変換装置との間で循環する横流として算出する手段と、前記横流をさらに零相成分と三相和零のノーマル成分とに分離する手段と、横流の各成分が零となるように、横流零相成分に従って零相電圧制御に補正を加える出力電圧零相成分補正制御を前記N相アームで行う手段と、横流ノーマル成分に従って三相出力電圧指令およびノーマル成分電圧制御に補正を加える出力電圧ノーマル成分補正制御を逆変換回路で行う手段と、を備えることを特徴とする三相4線式非絶縁型電力変換装置の並列冗長システム。
A forward converter connected to a three-phase AC power source, which performs AC-DC conversion by high-frequency switching operation of the semiconductor switching element, and a DC terminal of the DC circuit of the forward converter, and DC by the high-frequency switching operation of the semiconductor switching element An inverter for performing AC conversion and outputting a three-phase AC voltage; an N-phase arm composed of a series circuit of two semiconductor switching elements connected in reverse parallel to each other and connected between DC terminals of the DC circuit; The connection method of the filter capacitor on the forward converter AC input side and the filter capacitor on the reverse converter AC output side is a star connection, and the neutral point and the series connection point of the N-phase arm are Parallel redundant system in which multiple three-phase four-wire non-insulated power converters connected via reactors are connected in parallel In,
Means for sharing information indicating whether the power converter is operating or stopped between the power converters, and each power converter so as to equally share the current supplied to the load by each power converter in the operating state And calculating the difference between the output current command and the current actually output by the power converter as a cross current that circulates between other power converters without being supplied to the load. Means for further separating the cross current into a zero-phase component and a three-phase sum zero normal component, and an output for correcting the zero-phase voltage control according to the cross-flow zero-phase component so that each component of the cross-flow becomes zero Means for performing voltage zero-phase component correction control with the N-phase arm, and means for performing output voltage normal component correction control with an inverse conversion circuit for correcting the three-phase output voltage command and normal component voltage control in accordance with the transverse normal component. Preparation Parallel redundant system of a three-phase four-wire non-isolated power conversion apparatus according to claim Rukoto.
前記横流を零相成分と三相和零のノーマル成分とに分離する手段は、出力電流指令と電力変換装置が出力している電流との差分を横流として算出し、前記横流の三相分の和を1/3倍したものを横流零相成分とし、出力電流指令と電力変換装置が出力している電流との差分から前記横流零相成分を減算したものを横流ノーマル成分とすることを特徴とする請求項1に記載の三相4線式非絶縁型電力変換装置の並列冗長システム。
The means for separating the cross current into a zero-phase component and a three-phase sum zero normal component calculates the difference between the output current command and the current output by the power converter as a cross current, and The cross current zero phase component is obtained by multiplying the sum by 1/3, and the cross current normal component is obtained by subtracting the cross current zero phase component from the difference between the output current command and the current output by the power converter. The parallel redundant system of the three-phase four-wire non-insulated power converter according to claim 1.
JP2008229240A 2008-09-08 2008-09-08 Parallel redundancy system for power converter Active JP5211952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229240A JP5211952B2 (en) 2008-09-08 2008-09-08 Parallel redundancy system for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229240A JP5211952B2 (en) 2008-09-08 2008-09-08 Parallel redundancy system for power converter

Publications (2)

Publication Number Publication Date
JP2010063328A true JP2010063328A (en) 2010-03-18
JP5211952B2 JP5211952B2 (en) 2013-06-12

Family

ID=42189511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229240A Active JP5211952B2 (en) 2008-09-08 2008-09-08 Parallel redundancy system for power converter

Country Status (1)

Country Link
JP (1) JP5211952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131403B1 (en) * 2012-04-26 2013-01-30 富士電機株式会社 Uninterruptible power supply system
JP2019165538A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Power conversion apparatus
CN114221564A (en) * 2021-11-24 2022-03-22 西北工业大学 Hybrid MMC topological structure device based on bridge arm time-sharing multiplexing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116936A (en) * 1984-11-07 1986-06-04 日本電気精器株式会社 Parallel redundancy operation system inverter device
JPH05260793A (en) * 1992-03-06 1993-10-08 Mitsubishi Electric Corp Speed controlling device of elevator
JPH0919062A (en) * 1995-06-29 1997-01-17 Nippon Hoso Kyokai <Nhk> Active filter
JP2000060137A (en) * 1998-08-07 2000-02-25 Hitachi Ltd Power converting equipment
JP2000224862A (en) * 1999-01-29 2000-08-11 Fuji Electric Co Ltd Power conversion apparatus
JP2003134833A (en) * 2001-10-22 2003-05-09 Hitachi Ltd Power converter
JP2004320964A (en) * 2003-04-21 2004-11-11 Hitachi Ltd Power conversion system
JP2007159276A (en) * 2005-12-06 2007-06-21 Fuji Electric Systems Co Ltd Three-phase four-wire ac-ac conversion device
JP2007259688A (en) * 2006-02-24 2007-10-04 Fuji Electric Holdings Co Ltd Three phase ac-ac conversion apparatus
JP2007274825A (en) * 2006-03-31 2007-10-18 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
JP2008199874A (en) * 2007-01-18 2008-08-28 Nissin Electric Co Ltd Parallel operation control unit of inverter
JP2010011613A (en) * 2008-06-26 2010-01-14 Fuji Electric Systems Co Ltd Pwm converter device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116936A (en) * 1984-11-07 1986-06-04 日本電気精器株式会社 Parallel redundancy operation system inverter device
JPH05260793A (en) * 1992-03-06 1993-10-08 Mitsubishi Electric Corp Speed controlling device of elevator
JPH0919062A (en) * 1995-06-29 1997-01-17 Nippon Hoso Kyokai <Nhk> Active filter
JP2000060137A (en) * 1998-08-07 2000-02-25 Hitachi Ltd Power converting equipment
JP2000224862A (en) * 1999-01-29 2000-08-11 Fuji Electric Co Ltd Power conversion apparatus
JP2003134833A (en) * 2001-10-22 2003-05-09 Hitachi Ltd Power converter
JP2004320964A (en) * 2003-04-21 2004-11-11 Hitachi Ltd Power conversion system
JP2007159276A (en) * 2005-12-06 2007-06-21 Fuji Electric Systems Co Ltd Three-phase four-wire ac-ac conversion device
JP2007259688A (en) * 2006-02-24 2007-10-04 Fuji Electric Holdings Co Ltd Three phase ac-ac conversion apparatus
JP2007274825A (en) * 2006-03-31 2007-10-18 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
JP2008199874A (en) * 2007-01-18 2008-08-28 Nissin Electric Co Ltd Parallel operation control unit of inverter
JP2010011613A (en) * 2008-06-26 2010-01-14 Fuji Electric Systems Co Ltd Pwm converter device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131403B1 (en) * 2012-04-26 2013-01-30 富士電機株式会社 Uninterruptible power supply system
JP2019165538A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Power conversion apparatus
CN114221564A (en) * 2021-11-24 2022-03-22 西北工业大学 Hybrid MMC topological structure device based on bridge arm time-sharing multiplexing
CN114221564B (en) * 2021-11-24 2024-02-02 西北工业大学 Mixed MMC topological structure device based on bridge arm time-sharing multiplexing

Also Published As

Publication number Publication date
JP5211952B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP6038289B2 (en) Power converter
JP5040287B2 (en) Three-phase AC-AC converter
JP4448855B2 (en) Power converter
JP5465652B2 (en) Uninterruptible power system
EP2903147A1 (en) Method for controlling power conversion apparatus
WO2017221339A1 (en) Power conversion device
CN111357186B (en) Power conversion system
JP4766005B2 (en) Harmonic current compensator
JP2009219263A (en) Single-phase voltage type ac-dc converter
JP6730946B2 (en) Power converter controller
JP2018029465A (en) Inverter substrate, and method of determining connection order
KR102525603B1 (en) Method for controlling fault using switching technique of three phase four wire interlinking converter
JP2008289211A (en) System-cooperative inverter
TWI227590B (en) Pulse width modulation method and device thereof, power conversion method and power converter
JP5211952B2 (en) Parallel redundancy system for power converter
JP2009022094A (en) Three-phase ac-ac converter
JP5147624B2 (en) Inverter device
JP2006191743A (en) Three-level pwm power converter
JP5270272B2 (en) Inverter control circuit, grid-connected inverter system provided with this inverter control circuit, program for realizing this inverter control circuit, and recording medium recording this program
JP4844180B2 (en) Power converter and control method thereof
JP2002335632A (en) System linkage inverter
JP5211953B2 (en) Power converter
JP2010011613A (en) Pwm converter device
JP2010041744A (en) Uninterruptible power supply device, and method of manufacturing the same
JP5169396B2 (en) Power converter control circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250