JP2010060516A - Method of evaluating orientation of stretched film - Google Patents

Method of evaluating orientation of stretched film Download PDF

Info

Publication number
JP2010060516A
JP2010060516A JP2008228739A JP2008228739A JP2010060516A JP 2010060516 A JP2010060516 A JP 2010060516A JP 2008228739 A JP2008228739 A JP 2008228739A JP 2008228739 A JP2008228739 A JP 2008228739A JP 2010060516 A JP2010060516 A JP 2010060516A
Authority
JP
Japan
Prior art keywords
stretched film
orientation
film
orientation degree
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008228739A
Other languages
Japanese (ja)
Inventor
Susumu Hirama
進 平間
Takashi Miyai
孝 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008228739A priority Critical patent/JP2010060516A/en
Publication of JP2010060516A publication Critical patent/JP2010060516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating orientation of a film that does not generate double refraction anisotropy, though the orientation has not been accurately evaluated until now. <P>SOLUTION: In the method, the orientation of the stretched film is evaluated where in-plane phase difference Re to light of a wavelength of 589 nm is 5 nm or smaller, and thickness phase difference Rth to light of a wavelength of 589 nm is 10 nm or smaller. The orientation of the film is evaluated based on the in-plane orientation Dpl and thickness orientation Dth. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、延伸フィルムの評価方法に関する。特に、偏光子保護フィルムなど位相差を生じない延伸フィルムの配向度を評価する方法に関する。さらには積層された、或いは製品等に組み込まれた延伸フィルムを取り出すことなく直接評価する方法に関する。 The present invention relates to a method for evaluating a stretched film. In particular, it is related with the method of evaluating the orientation degree of the stretched film which does not produce phase difference, such as a polarizer protective film. Furthermore, the present invention relates to a method for directly evaluating a stretched film laminated or incorporated in a product or the like without taking it out.

液晶表示装置のように偏光を扱う表示装置に用いるプラスチックフィルムは、光学的に透明であり、かつ複屈折が小さい他に光学的な均質性が求められる。このため、高度に延伸したポリビニルアルコールからなる偏光子を保護するための偏光子保護フィルムや、ガラス基板を樹脂フィルムに代えたプラスチック液晶表示装置用のフィルム基板の場合、複屈折と厚みの積で表される位相差が小さいことが要求される。
現在、PMMAに代表されるアクリル系樹脂(アクリル系重合体)は光学的特性に優れていることが良く知られており、高い光透過率や低複屈折率、低位相差の光学材料として従来種々の用途に適用されている。しかしアクリル系樹脂は一般的に可撓性が低い。このため、縦横二軸延伸を施すことにより可撓性を向上させる方法が開示されている(特許文献1参照)。
しかし、フィルムの配向度を評価する方法としては特許文献2に開示されているように位相差を測定する方法があるが、分子差は配向していても異方性を持たないフィルムでは測定できないという欠点があった。また、特許文献3に開示されているように光弾性変調法によって微小複屈折位相差を測定する方法が開示されているが、1nm以下の領域で0.01nm程度の配向度差を評価するのは極めて実用性に劣る。
さらに、物質の配向度を測定する方法としてはX線を用いる方法があるが、非晶質のプラスチックフィルムには使用できない。また、偏光ATR法によって表面配向度を測定する方法が特許文献4に開示されているが、偏光ATR法は装置の特性上表面しか測定できない。このため積層された状態、コーティング層が塗布された状態、製品に組み込まれた状態などから、評価したい延伸フィルムを取り出す作業を行う必要がある上に、測定焦点が大きいため、フィルムの厚み方向の配向を評価することは不可能である。
すなわち、延伸しても複屈折異方性を発現しないフィルムが望まれているにもかかわらず、現状ではその配向評価が事実上不可能であった。
A plastic film used for a display device that handles polarized light, such as a liquid crystal display device, is optically transparent and has low birefringence and is required to have optical homogeneity. For this reason, in the case of a polarizer protective film for protecting a polarizer made of highly stretched polyvinyl alcohol or a film substrate for a plastic liquid crystal display device in which the glass substrate is replaced with a resin film, the product of birefringence and thickness The expressed phase difference is required to be small.
At present, it is well known that acrylic resins (acrylic polymers) represented by PMMA are excellent in optical characteristics, and various conventionally as optical materials having high light transmittance, low birefringence, and low retardation. It is applied to the use of. However, acrylic resins generally have low flexibility. For this reason, a method for improving flexibility by performing longitudinal and lateral biaxial stretching has been disclosed (see Patent Document 1).
However, as a method for evaluating the degree of orientation of a film, there is a method of measuring a phase difference as disclosed in Patent Document 2, but a molecular difference cannot be measured with a film that is oriented but has no anisotropy. There was a drawback. Further, as disclosed in Patent Document 3, a method of measuring a minute birefringence phase difference by a photoelastic modulation method is disclosed, but an orientation degree difference of about 0.01 nm is evaluated in a region of 1 nm or less. Is extremely infeasible.
Furthermore, as a method for measuring the degree of orientation of a substance, there is a method using X-rays, but it cannot be used for an amorphous plastic film. Further, Patent Document 4 discloses a method for measuring the degree of surface orientation by the polarized ATR method, but the polarized ATR method can measure only the surface due to the characteristics of the apparatus. Therefore, it is necessary to take out the stretched film to be evaluated from the laminated state, the state where the coating layer is applied, the state where it is incorporated into the product, etc. It is impossible to evaluate the orientation.
That is, although a film that does not exhibit birefringence anisotropy even when stretched is desired, it has been practically impossible to evaluate its orientation at present.

特開2005−162835号公報JP 2005-162835 A 特開平8−201277号公報JP-A-8-2012277 特開2005−283552号公報JP 2005-283552 A 特開2005−350615号公報JP-A-2005-350615

本発明は上記の問題点に鑑みてなされたものであって、延伸しても位相差の発現しないフィルムの配向度を評価する方法を提供することを目的とする。   This invention is made | formed in view of said problem, Comprising: It aims at providing the method of evaluating the orientation degree of the film which does not express a phase difference even if it extends | stretches.

本発明者らは上記事情に鑑み、延伸しても位相差の発現しないフィルムの配向度を評価する方法を見出した。
(1)波長589nmの光に対する面内位相差Reが5nm以下、波長589nmの光に対する厚み位相差Rthが10nm以下である延伸フィルムの配向度を評価する方法であって、偏向ラマンスペクトル測定にて得られる面内配向度Dpl、および厚み配向度Dthから延伸フィルムの配向度を評価する方法。
(2)延伸フィルムを含む積層フィルムから、該延伸フィルムを取り出すことなく評価する、(1)に記載の延伸フィルムの配向度の評価方法。
(3)コーティングが施された延伸フィルムから、コーティング層を除去することなく評価する、(1)に記載の延伸フィルムの配向度の評価方法。
(4)偏光板に組み込まれた延伸フィルムから、前記延伸フィルムを取り出すことなく評価する、(1)に記載の延伸フィルムの配向度の評価方法。
(5)液晶表示装置に組み込まれた延伸フィルムから、前記延伸フィルムを取り出すことなく評価する、(1)に記載の延伸フィルムの配向度の評価方法。
(6)前記延伸フィルムが、非晶性の熱可塑性樹脂を主成分とすることを特徴とする、(1)から(5)のいずれかに記載の延伸フィルムの配向度の評価方法。
In view of the above circumstances, the present inventors have found a method for evaluating the degree of orientation of a film that does not exhibit retardation even when stretched.
(1) A method for evaluating the degree of orientation of a stretched film having an in-plane retardation Re for light with a wavelength of 589 nm of 5 nm or less and a thickness retardation Rth for light with a wavelength of 589 nm of 10 nm or less. A method for evaluating the orientation degree of a stretched film from the obtained in-plane orientation degree Dpl and thickness orientation degree Dth.
(2) The evaluation method of the orientation degree of the stretched film according to (1), wherein the evaluation is performed without taking out the stretched film from the laminated film including the stretched film.
(3) The evaluation method of the orientation degree of the stretched film according to (1), wherein the evaluation is performed without removing the coating layer from the stretched film on which the coating has been applied.
(4) The evaluation method of the orientation degree of the stretched film according to (1), wherein the stretched film is evaluated without taking out the stretched film from the stretched film incorporated in the polarizing plate.
(5) The evaluation method of the orientation degree of the stretched film according to (1), wherein the stretched film is evaluated without taking out the stretched film from the stretched film incorporated in the liquid crystal display device.
(6) The evaluation method of the orientation degree of the stretched film according to any one of (1) to (5), wherein the stretched film contains an amorphous thermoplastic resin as a main component.

本発明によれば、延伸しても位相差の発現しないフィルムの配向度を評価できる。 According to the present invention, the degree of orientation of a film that does not develop a retardation even when stretched can be evaluated.

以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。 Hereinafter, the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention.

本発明の評価方法は測定にラマンスペクトルを用いる。このため、評価したい延伸フィルムがピントを合わせることができる位置にあれば直接評価できる。つまり、偏向IR法や偏向ATR法とは異なり、評価したい延伸フィルムを取り出す、或いは切り出して表面に露出させる必要がない。このため、積層された状態、コーティング層が塗布された状態、製品に組み込まれた状態などから、評価したい延伸フィルムを取り出す作業を行うことなく評価できる。   The evaluation method of the present invention uses a Raman spectrum for measurement. For this reason, if the stretched film to be evaluated is at a position where focus can be achieved, direct evaluation can be made. That is, unlike the deflection IR method and the deflection ATR method, it is not necessary to take out or cut out the stretched film to be evaluated and expose it to the surface. For this reason, it can evaluate, without performing the operation | work which takes out the stretched film to evaluate from the state laminated | stacked, the state by which the coating layer was apply | coated, the state integrated in the product, etc.

また、評価したい延伸フィルムの厚みも評価したい延伸フィルムにピントを合わせることができればよいので、測定焦点の大きさから2μm以上であれば問題なく評価できる。さらに、評価したい延伸フィルムが積層体である場合、各層の厚みが2μm以上であれば、任意の層の配向度を測定することができる。
本発明の延伸フィルムの配向度の評価方法は、以下の手順に従って測定、算出される面内配向度Dpl、及び厚み配向度Dthをもって評価を行う。
〔1〕延伸フィルムのラマンスペクトルを偏光フィルタを用いずに測定し、フィルムを構成する樹脂の主鎖に対して平行、或いは垂直な方向を向く置換基に帰属されるピークを1つ選択する(Pとする。)。同じく主鎖に対して向きを特定できない置換基に帰属されるピークを1つ選択する(Pとする)。
〔2〕フィルムの流れ方向をX方向、フィルムの幅方向をY方向、フィルムの厚み方向をZ方向とし、XY平面のX方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXY)とPに対応するピークの強度(SXY)の比(SXY/SXY)を算出し、SXYXとする。なお、流れ方向と幅方向が明確ではないカットフィルムであれば、適宜X方向とY方向を定める。
〔3〕同様にXY平面のY方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXY)とPに対応するピークの強度(SXY)の比(SXY/SXY)を算出し、SXYYとする。
〔4〕(SXYX/SXYY)を面内配向度Dplとする。
〔5〕XZ平面のX方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXZ)とPに対応するピークの強度(SXZ)の比(SXZ/SXZ)を算出し、SXZXとする。
〔6〕XZ平面のZ方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXZ)とPに対応するピークの強度(SXZ)の比(SXZ/SXZ)を算出し、SXZZとする。
〔6〕YZ平面のY方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SYZ)とPに対応するピークの強度(SYZ)の比(SYZ/SYZ)を算出し、SYZYとする。
〔7〕YZ平面のZ方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SYZ)とPに対応するピークの強度(SYZ)の比(SYZ/SYZ)を算出し、SYZZとする。
〔8〕{(SXZX×SYZY)1/2}/{(SXZZ×SYZZ)1/2}を厚み配向度Dthとする。
<面内配向度Dplの評価方法>
延伸フィルムを構成する樹脂の配向度がX方向、Y方向で等しい場合、面内配向度Dplは1となる。
面内配向度Dplが1よりも小さい場合、Pを樹脂の主鎖に対して平行な方向を向く置換基に帰属されるピークとするとY方向に配向しており、逆に垂直な方向を向く置換基に帰属されるピークとするとX方向に配向している。また、面内配向度Dplが1よりも大きい場合、Pを樹脂の主鎖に対して平行な方向を向く置換基に帰属されるピークとするとX方向に配向しており、逆に垂直な方向を向く置換基に帰属されるピークとするとはY方向に配向している。なお、面内配向度Dplは0より大きい値となる。
<厚み配向度Dthの評価方法>
延伸フィルムを構成する樹脂が配向していない、或いは樹脂の配向度がX方向、Y方向、Z方向で等しい場合、或いはX方向とY方向の樹脂の配向度の平均とZ方向の配向度が等しい場合、厚み配向度Dthは1となる。
厚み配向度Dthが1よりも小さい場合、Pを樹脂の主鎖に対して平行な方向を向く置換基に帰属されるピークとするとZ方向に配向しており、逆に垂直な方向を向く置換基に帰属されるピークとするとXY平面方向の延伸倍率(面倍率)が高い。また、厚み配向度Dthが1よりも大きい場合、Pを樹脂の主鎖に対して平行な方向を向く置換基に帰属されるピークとするとXY平面方向の延伸倍率(面倍率)が高く、逆に垂直な方向を向く置換基に帰属されるピークとするとZ方向に配向している。なお、厚み配向度Dthも0より大きい値となる。
Moreover, since it should just be able to focus on the stretched film which also wants to evaluate the thickness of the stretched film to evaluate, if it is 2 micrometers or more from the magnitude | size of a measurement focus, it can evaluate without a problem. Furthermore, when the stretched film to be evaluated is a laminate, the degree of orientation of any layer can be measured as long as the thickness of each layer is 2 μm or more.
The evaluation method of the orientation degree of the stretched film of the present invention is evaluated using the in-plane orientation degree Dpl and the thickness orientation degree Dth measured and calculated according to the following procedure.
[1] The Raman spectrum of the stretched film is measured without using a polarizing filter, and one peak attributed to a substituent oriented in a direction parallel or perpendicular to the main chain of the resin constituting the film is selected ( Let P P. ). Also selects one peak attributed to a substituent that can not identify the orientation relative to the main chain (and P S).
[2] the flow direction X direction of the film, the width direction of the film Y direction, the thickness direction of the film as the Z direction to measure the X-direction of the polarized Raman spectra of the XY plane, the intensity of the peak corresponding to P P ( S XY X P) and to calculate the ratio (S XY X P / S XY X S) of the intensity of the peak corresponding to P S (S XY X S) , and S XY X. In addition, if it is a cut film whose flow direction and width direction are not clear, a X direction and a Y direction are determined suitably.
[3] Similarly to measure the polarized Raman spectra of the XY plane Y-direction, the ratio of the intensity of the peak corresponding to P P (S XY Y P) and the intensity of the peak corresponding to P S (S XY Y S) ( calculating the S XY Y P / S XY Y S), and S XY Y.
[4] Let (S XY X / S XY Y) be the in-plane orientation degree Dpl.
[5] polarized Raman spectra of X-direction in the XZ plane is measured, the ratio (S XZ intensity peaks corresponding to P P (S XZ X P) and the intensity of the peak corresponding to P S (S XZ X S) X P / S XZ X S ) is calculated and set as S XZ X.
[6] polarized Raman spectrum of Z-direction in the XZ plane is measured, the ratio (S XZ intensity peaks corresponding to P P (S XZ Z P) and the intensity of the peak corresponding to P S (S XZ Z S) Z P / S XZ Z S ) is calculated and set as S XZ Z.
[6] polarized Raman spectra of Y direction YZ plane was measured, the ratio (S YZ intensity peaks corresponding to P P (S YZ Y P) and the intensity of the peak corresponding to P S (S YZ Y S) Y P / S YZ Y S ) is calculated and set as S YZ Y.
[7] polarized Raman spectrum of Z-direction of the YZ plane was measured, the ratio (S YZ intensity peaks corresponding to P P (S YZ Z P) and the intensity of the peak corresponding to P S (S YZ Z S) Z P / S YZ Z S ) is calculated and set as S YZ Z.
[8] Let {(S XZ X × S YZ Y) 1/2 } / {(S XZ Z × S YZ Z) 1/2 } be the thickness orientation degree Dth.
<Evaluation method of in-plane orientation degree Dpl>
When the orientation degree of the resin constituting the stretched film is equal in the X direction and the Y direction, the in-plane orientation degree Dpl is 1.
If in-plane orientation degree Dpl is less than 1, if the peak attributable to the substituents oriented direction parallel to P P to the main chain of the resin are oriented in the Y direction, the direction perpendicular to the opposite When the peak is attributed to the facing substituent, it is oriented in the X direction. Also, if the in-plane orientation degree Dpl is greater than 1, are oriented in the X direction when the peak attributable to the substituents oriented direction parallel to the main chain of the resin P P, perpendicular to the opposite The peak attributed to the substituent that faces the direction is oriented in the Y direction. Note that the in-plane orientation degree Dpl is a value larger than zero.
<Evaluation method of thickness orientation degree Dth>
When the resin constituting the stretched film is not oriented, or the orientation degree of the resin is equal in the X direction, Y direction, and Z direction, or the average orientation degree of the resin in the X direction and the Y direction and the orientation degree in the Z direction are When equal, the thickness orientation degree Dth is 1.
If the thickness orientation Dth is less than 1, are oriented in the Z direction when the peak attributable to the substituents oriented direction parallel to P P to the main chain of the resin, toward the direction perpendicular to the opposite When the peak is attributed to a substituent, the draw ratio (surface ratio) in the XY plane direction is high. Further, if the thickness orientation Dth is greater than 1, P P and high when the peak attributed to the substituents oriented direction parallel to the main chain of the resin stretching ratio in the XY plane direction (plane ratio) is, Conversely, if the peak is attributed to a substituent that faces in the vertical direction, it is oriented in the Z direction. Note that the thickness orientation degree Dth is also greater than zero.

[製造例1]
撹拌装置、温度センサー、冷却管、窒素導入管を付した1m2の反応釜に、204kgのメタクリル酸メチル(MMA)、51kgの2−(ヒドロキシメチル)アクリル酸メチル(MHMA)、249kgのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として281gのターシャリーアミルパーオキシイソノナノエート(アトフィナ吉富製、商品名:ルペロックス570)を添加すると同時に、561gの重合開始剤と5.4kgのトルエンからなる溶液を2時間かけて滴下しながら、還流下(約105〜110℃)で溶液重合を行い、さらに4時間かけて熟成を行った。
[Production Example 1]
A 1 m2 reaction kettle equipped with a stirrer, temperature sensor, cooling pipe, and nitrogen introduction pipe is charged with 204 kg of methyl methacrylate (MMA), 51 kg of methyl 2- (hydroxymethyl) acrylate (MHMA), and 249 kg of toluene. Then, while the temperature was raised to 105 ° C. while refluxing nitrogen and refluxed, 281 g of tertiary amyl peroxyisononanoate (manufactured by Atofina Yoshitomi, trade name: Luperox 570) was added as a polymerization initiator. While a solution comprising a polymerization initiator and 5.4 kg of toluene was added dropwise over 2 hours, solution polymerization was performed under reflux (about 105 to 110 ° C.), followed by further aging for 4 hours.

得られた重合体溶液に、255gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学製、商品名:Phoslex A−18)を加え、還流下(約90〜110℃)で5時間、環化縮合反応を行った。   To the obtained polymer solution, 255 g of stearyl phosphate / distearyl phosphate mixture (manufactured by Sakai Chemicals, trade name: Phoslex A-18) was added and cyclized under reflux (about 90 to 110 ° C.) for 5 hours. A condensation reaction was performed.

次いで、上記環化縮合反応で得られた重合体溶液を、バレル温度250℃、回転数150rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(Φ=42mm、L/D=42)に、樹脂量換算で15kg/時間の処理速度で導入し、該押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレットを得た。   Subsequently, the polymer solution obtained by the cyclization condensation reaction was subjected to a vent having a barrel temperature of 250 ° C., a rotation speed of 150 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent of 1 and a forevent of 4 It is introduced into a type screw twin screw extruder (Φ = 42 mm, L / D = 42) at a processing rate of 15 kg / hour in terms of the amount of resin, subjected to cyclization condensation reaction and devolatilization in the extruder, and then extruded. Thus, a transparent pellet was obtained.

次いでΦ50mm、多条フライト構造のミキシング部を有するフルフライト型スクリューからなるL/D=36の単軸押出し機を用い、耐熱アクリル樹脂ペレット90部、AS樹脂(旭化成ケミカルズ社製スタイラックAS783)10部および酢酸亜鉛0.04部をシリンダ設定温度270℃にて50kg/時間の処理速度で溶融押出しをおこない、樹脂ペレット(1A)を作成した。得られた樹脂ペレット(1A)の質量平均分子量は132000、ラクトン環含有割合は28.5%であり、ガラス転移温度は125℃であった。
(実施例1)
製造例1で得られた樹脂ペレット(1A)を、温度270℃で溶融押出して、厚み180μmの未延伸フィルムを成膜し、次いで、温度130℃まで加熱して縦方向に1.9倍に延伸を行った。さらにそのまま、フィルムの両端部から20mmの位置を2インチのクリップで掴みテンターへ供給し、145℃まで加熱して2.2倍の延伸を行い、平均膜厚45μmの延伸フィルム(1AF−1)を得た。
得られた延伸フィルム(1AF−1)の特性は次の通りであり、フィルムの裂け、厚み方向の剥がれのないフィルムであった。
面内位相差Re(nm) :1.6
厚み方向位相差Rth(nm) :0.9
折り曲げ試験 :○
得られた延伸フィルム(1AF−1)について、日本分光株式会社製Laser Raman Spectrophotometer JASCO NRS−3100を用いてラマンスペクトルを測定し、面内配向度Dpl、及び厚み配向度Dthを算出した。測定、算出は以下の手順で行った。
(1)フィルムの流れ方向をX方向、フィルムの幅方向をY方向、フィルムの厚み方向をZ方向とし、X方向、Y方向ともに10mmずつ正方形の測定サンプルを正確に切り出した。切り出したサンプルは、サンプルホルダーにXY平面を測定できるように軸をそろえてセットした。
(2)偏光フィルタを用いずにラマンスペクトル測定を行った。得られたラマンスペクトルのピークの帰属を行った。主鎖に対して垂直な方向を向く置換基に帰属されるピーク(P)として2960cm−1のピーク(C−H伸縮)、主鎖に対して向きを特定できない置換基に帰属されるピーク(P)として1460cm−1のピーク(CH変角)を選択した。
(3)XY平面のX方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXY)とPに対応するピークの強度(SXY)の比(SXYX)を算出したところ、5.64であった。なお、SXYX=SXY/SXYである。
(4)XY平面のY方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXY)とPに対応するピークの強度(SXY)の比(SXYY)を算出したところ、4.58であった。なお、SXYY=SXY/SXYである。
(5)面内配向度Dpl=(SXYX/SXYY)=1.23であった。
(6)サンプルホルダーに切り出したサンプルのXZ平面(切断面)を測定できるように軸をそろえてセットし、XZ平面のX方向の偏光ラマンスペクトルを測定した。Pに対応するピークの強度(SXZ)とPに対応するピークの強度(SXZ)の比(SXZX)を算出したところ、0.95であった。なお、SXZX=SXZ/SXZである。
(7)同じくXZ平面のZ方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SXZ)とPに対応するピークの強度(SXZ)の比(SXZZ)を算出したところ、6.10であった。なお、SXZZ=SXZ/SXZである。
(8)サンプルホルダーに切り出したサンプルのYZ平面(切断面)を測定できるように軸をそろえてセットし、YZ平面のY方向の偏光ラマンスペクトルを測定した。Pに対応するピークの強度(SYZ)とPに対応するピークの強度(SYZ)の比(SYZY)を算出したところ、0.93であった。なお、SYZY=SYZ/SYZである。
(9)同じくYZ平面のZ方向の偏光ラマンスペクトルを測定し、Pに対応するピークの強度(SYZ)とPに対応するピークの強度(SYZ)の比(SYZZ)を算出したところ、5.71であった。なお、SYZZ=SYZ/SYZである。
(10)厚み配向度Dth={(SXZX×SYZY)1/2}/{(SXZZ×SYZZ)1/2}=0.16であった。
Next, 90 parts of heat-resistant acrylic resin pellets, AS resin (Stylac AS783 manufactured by Asahi Kasei Chemicals Corporation) 10 using a single screw extruder of L / D = 36 consisting of a full flight type screw having a mixing part of Φ50 mm, multi-flight structure Part and 0.04 part of zinc acetate were melt-extruded at a cylinder set temperature of 270 ° C. at a processing rate of 50 kg / hour to prepare resin pellets (1A). The obtained resin pellet (1A) had a mass average molecular weight of 132,000, a lactone ring content of 28.5%, and a glass transition temperature of 125 ° C.
Example 1
The resin pellet (1A) obtained in Production Example 1 is melt-extruded at a temperature of 270 ° C. to form an unstretched film having a thickness of 180 μm, and then heated to a temperature of 130 ° C. to increase 1.9 times in the longitudinal direction. Stretching was performed. Further, as it is, 20 mm from both ends of the film is gripped with a 2 inch clip, supplied to a tenter, heated to 145 ° C., stretched 2.2 times, and stretched film having an average film thickness of 45 μm (1AF-1) Got.
The characteristics of the obtained stretched film (1AF-1) were as follows, and it was a film without tearing of the film and peeling in the thickness direction.
In-plane retardation Re (nm): 1.6
Thickness direction retardation Rth (nm): 0.9
Bending test: ○
About the obtained stretched film (1AF-1), the Raman spectrum was measured using Laser Raman Spectrophotometer JASCO NRS-3100 by JASCO Corporation, and in-plane orientation degree Dpl and thickness orientation degree Dth were computed. Measurement and calculation were performed according to the following procedure.
(1) The direction of film flow was the X direction, the width direction of the film was the Y direction, the thickness direction of the film was the Z direction, and a square measurement sample was accurately cut out by 10 mm in both the X and Y directions. The cut sample was set on the sample holder with the axes aligned so that the XY plane could be measured.
(2) Raman spectrum measurement was performed without using a polarizing filter. The peaks of the obtained Raman spectrum were assigned. 2960 cm −1 peak (C—H stretching) as a peak (P P ) attributed to a substituent oriented in a direction perpendicular to the main chain, a peak attributed to a substituent whose direction cannot be specified with respect to the main chain A peak (CH 2 variable angle) of 1460 cm −1 was selected as (P S ).
(3) in the X direction polarized Raman spectra of the XY plane is measured, the ratio (S XY intensity peaks corresponding to P P (S XY X P) and the intensity of the peak corresponding to P S (S XY X S) X) was calculated to be 5.64. It should be noted that S XY X = S XY XP / S XY X S.
(4) The polarized Raman spectra of the XY plane Y-direction were measured, the ratio (S XY intensity peaks corresponding to P P (S XY Y P) and the intensity of the peak corresponding to P S (S XY Y S) Y) was calculated to be 4.58. Note that it is S XY Y = S XY Y P / S XY Y S.
(5) Degree of in-plane orientation Dpl = (S XY X / S XY Y) = 1.23.
(6) The sample was cut into the sample holder and set so that the XZ plane (cut plane) of the sample could be measured, and the polarization Raman spectrum in the X direction of the XZ plane was measured. Was calculated the ratio of the intensity of the peak corresponding to P P (S XZ X P) and the intensity of the peak corresponding to P S (S XZ X S) (S XZ X), it was 0.95. Note that it is S XZ X = S XZ X P / S XZ X S.
(7) also measures the polarized Raman spectra of Z-direction in the XZ plane, the ratio of the intensity of the peak corresponding to P P (S XZ Z P) and the intensity of the peak corresponding to P S (S XZ Z S) (S XZ Z) was calculated to be 6.10. Note that S XZ Z = S XZ Z P / S XZ Z S.
(8) The sample was cut into the sample holder and set so that the YZ plane (cut plane) of the sample could be measured, and the polarization Raman spectrum in the Y direction of the YZ plane was measured. Was calculated the ratio of the intensity of the peak corresponding to P P (S YZ Y P) and the intensity of the peak corresponding to P S (S YZ Y S) (S YZ Y), it was 0.93. Note that S YZ Y = S YZ Y P / S YZ Y S.
(9) also measures the polarized Raman spectra in the Z direction of the YZ plane, the ratio of the intensity of the peak corresponding to P P (S YZ Z P) and the intensity of the peak corresponding to P S (S YZ Z S) (S YZ Z) was calculated to be 5.71. Note that S YZ Z = S YZ Z P / S YZ Z S.
(10) Thickness orientation degree Dth = {(S XZ X × S YZ Y) 1/2 } / {(S XZ Z × S YZ Z) 1/2 } = 0.16.

面内配向度Dpl :1.23
厚み配向度Dth :0.16
(実施例2)
テンターでの延伸条件を2.4倍に変更した以外は実施例1と同様の方法で延伸フィルム(1AF−2)を得た。得られた延伸フィルム(1AF−3)の特性は次の通りであり、Y方向に裂けやすいフィルムであった。
In-plane orientation degree Dpl: 1.23
Thickness orientation degree Dth: 0.16
(Example 2)
A stretched film (1AF-2) was obtained in the same manner as in Example 1 except that the stretching conditions in the tenter were changed to 2.4 times. The properties of the obtained stretched film (1AF-3) were as follows, and the film was easy to tear in the Y direction.

面内位相差Re(nm) :1.5
厚み方向位相差Rth(nm) :1.8
折り曲げ試験 :△
面内配向度Dpl :3.72
厚み配向度Dth :0.13
得られた延伸フィルム(1AF−2)は面内配向度Dplの値が大きかった。
(実施例3)
製造例1で得られた樹脂ペレット(1A)を、温度270℃で溶融押出して、厚み180μmの未延伸フィルムを成膜し、平均膜厚180μmの未延伸フィルムを得た。次に、得られた未延伸フィルムから、流れ方向(X方向)、幅方向(Y方向)ともに98mmの正方形の未延伸フィルムサンプルを正確に切り出した。
切り出した未延伸フィルムサンプルを二軸延伸装置(東洋精機製作所製TYPE EX4)により逐次二軸延伸して、平均膜厚60μmの延伸フィルム(1AF−2)を得た。なお、一段目の延伸はX方向に延伸温度150℃、延伸倍率3.5倍、延伸速度1000%/分で行い、二段目の延伸はY方向に延伸温度150℃、延伸倍率3.5倍、延伸速度1000%/分で行った。
得られた延伸フィルム(1AF−3)の特性は次の通りであり、厚み方向に剥がれやすいフィルムであった。
In-plane retardation Re (nm): 1.5
Thickness direction retardation Rth (nm): 1.8
Bending test: △
In-plane orientation degree Dpl: 3.72
Thickness orientation degree Dth: 0.13
The obtained stretched film (1AF-2) had a large in-plane orientation degree Dpl.
(Example 3)
The resin pellet (1A) obtained in Production Example 1 was melt extruded at a temperature of 270 ° C. to form an unstretched film having a thickness of 180 μm, and an unstretched film having an average film thickness of 180 μm was obtained. Next, from the obtained unstretched film, a square unstretched film sample of 98 mm in both the flow direction (X direction) and the width direction (Y direction) was accurately cut out.
The cut unstretched film sample was sequentially biaxially stretched with a biaxial stretching apparatus (TYPE EX4 manufactured by Toyo Seiki Seisakusho) to obtain a stretched film (1AF-2) having an average film thickness of 60 μm. The first stage stretching is performed in the X direction at a stretching temperature of 150 ° C., a stretching ratio of 3.5 times, and a stretching speed of 1000% / min. The second stage of stretching is performed in the Y direction at a stretching temperature of 150 ° C. and a stretching ratio of 3.5. The stretching speed was 1000% / min.
The characteristics of the obtained stretched film (1AF-3) were as follows, and the film was easily peeled off in the thickness direction.

面内位相差Re(nm) :1.9
厚み方向位相差Rth(nm) :1.6
折り曲げ試験 :○
面内配向度Dpl :1.11
厚み配向度Dth :0.09
得られた延伸フィルム(1AF−3)は厚み配向度Dthの値が小さかった。
(実施例4)
実施例1で得られた延伸フィルム(1AF−1)に、30μm厚の保護フィルム(トレテック7332、東レフィルム加工株式会社製)を貼付した状態で面内位相差Re、厚み方向位相差Rth、面内配向度Dpl、厚み配向度Dthを測定した。
In-plane retardation Re (nm): 1.9
Thickness direction retardation Rth (nm): 1.6
Bending test: ○
In-plane orientation degree Dpl: 1.11
Thickness orientation degree Dth: 0.09
The obtained stretched film (1AF-3) had a small thickness orientation degree Dth.
Example 4
In-plane retardation Re, thickness direction retardation Rth, surface with a 30 μm-thick protective film (Tretec 7332, manufactured by Toray Film Processing Co., Ltd.) attached to the stretched film (1AF-1) obtained in Example 1 The internal orientation degree Dpl and the thickness orientation degree Dth were measured.

面内位相差Re(nm) :14.7
厚み方向位相差Rth(nm) :24.5
面内配向度Dpl :1.23
厚み配向度Dth :0.16
実施例のデータを表1に纏めた。
In-plane retardation Re (nm): 14.7
Thickness direction retardation Rth (nm): 24.5
In-plane orientation degree Dpl: 1.23
Thickness orientation degree Dth: 0.16
The data of the examples are summarized in Table 1.

Figure 2010060516
Figure 2010060516

実施例1から3より、面内位相差Re、或いは厚み方向位相差Rthでは評価できない低複屈折フィルムであっても、面内配向度Dpl、および厚み配向度Dthから延伸フィルムの配向度とそれに伴う物性の評価を行うことができた。
また、実施例4から保護フィルムを貼号したままであっても面内配向度Dpl、および厚み配向度Dthから評価したい延伸フィルムのみの配向度を評価できた。
From Examples 1 to 3, even in the case of a low birefringence film that cannot be evaluated by the in-plane retardation Re or the thickness direction retardation Rth, the orientation degree of the stretched film and the orientation degree of the stretched film are determined from the in-plane orientation degree Dpl and the thickness orientation degree Dth. The accompanying physical properties could be evaluated.
Moreover, even if the protective film was stuck from Example 4, the orientation degree of only the stretched film to evaluate from the in-plane orientation degree Dpl and the thickness orientation degree Dth could be evaluated.

本発明の評価方法は、偏光子保護フィルムなど複屈折がほとんど発生しない延伸フィルムの配向度を評価に好適に用いることができる。   The evaluation method of the present invention can be suitably used for evaluating the degree of orientation of a stretched film that hardly generates birefringence, such as a polarizer protective film.

Claims (6)

波長589nmの光に対する面内位相差Reが5nm以下、波長589nmの光に対する厚み位相差Rthが10nm以下である延伸フィルムの配向度を評価する方法であって、偏向ラマンスペクトル測定にて得られる面内配向度Dpl、および厚み配向度Dthから延伸フィルムの配向度を評価する方法。 A method for evaluating the degree of orientation of a stretched film having an in-plane retardation Re for light having a wavelength of 589 nm of 5 nm or less and a thickness retardation Rth for light having a wavelength of 589 nm of 10 nm or less. A method for evaluating the orientation degree of a stretched film from the inner orientation degree Dpl and the thickness orientation degree Dth. 延伸フィルムを含む積層フィルムから、該延伸フィルムを取り出すことなく評価する、請求項1に記載の延伸フィルムの配向度の評価方法。 The evaluation method of the orientation degree of the stretched film of Claim 1 evaluated without taking out this stretched film from the laminated | multilayer film containing a stretched film. コーティングが施された延伸フィルムから、コーティング層を除去することなく評価する、請求項1に記載の延伸フィルムの配向度の評価方法。 The evaluation method of the orientation degree of the stretched film of Claim 1 evaluated without removing a coating layer from the stretched film with which coating was given. 偏光板に組み込まれた延伸フィルムから、延伸フィルムを取り出すことなく評価する、請求項1に記載の延伸フィルムの配向度の評価方法。 The evaluation method of the orientation degree of the stretched film of Claim 1 evaluated without taking out a stretched film from the stretched film incorporated in the polarizing plate. 液晶表示装置に組み込まれた延伸フィルムから、延伸フィルムを取り出すことなく評価する、請求項1に記載の延伸フィルムの配向度の評価方法。 The evaluation method of the orientation degree of the stretched film of Claim 1 evaluated without taking out a stretched film from the stretched film incorporated in the liquid crystal display device. 前記延伸フィルムが、非晶性の熱可塑性樹脂を主成分とすることを特徴とする、請求項1から5のいずれかに記載の延伸フィルムの配向度の評価方法。 The method for evaluating the degree of orientation of a stretched film according to any one of claims 1 to 5, wherein the stretched film contains an amorphous thermoplastic resin as a main component.
JP2008228739A 2008-09-05 2008-09-05 Method of evaluating orientation of stretched film Pending JP2010060516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228739A JP2010060516A (en) 2008-09-05 2008-09-05 Method of evaluating orientation of stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228739A JP2010060516A (en) 2008-09-05 2008-09-05 Method of evaluating orientation of stretched film

Publications (1)

Publication Number Publication Date
JP2010060516A true JP2010060516A (en) 2010-03-18

Family

ID=42187450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228739A Pending JP2010060516A (en) 2008-09-05 2008-09-05 Method of evaluating orientation of stretched film

Country Status (1)

Country Link
JP (1) JP2010060516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115799A1 (en) * 2015-12-28 2017-07-06 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing same, method for evaluating laminated polyolefin microporous membrane, roll, and polyolefin microporous membrane
JP2018176602A (en) * 2017-04-18 2018-11-15 住友ベークライト株式会社 Multilayer film and package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115799A1 (en) * 2015-12-28 2017-07-06 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing same, method for evaluating laminated polyolefin microporous membrane, roll, and polyolefin microporous membrane
JPWO2017115799A1 (en) * 2015-12-28 2018-10-25 東レ株式会社 Polyolefin microporous membrane and production method thereof, laminated polyolefin microporous membrane, roll and evaluation method of polyolefin microporous membrane
JP2018176602A (en) * 2017-04-18 2018-11-15 住友ベークライト株式会社 Multilayer film and package

Similar Documents

Publication Publication Date Title
JP5830949B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
KR101065200B1 (en) Optical film, protection film for polarizer, polarizing plate fabricated therefrom, and display device employing thereof
KR102086326B1 (en) (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
KR20140110773A (en) Optical film, polarizing plate, liquid crystal display device and stereoscopic display device
TW201035213A (en) Mixed cellulose ester films having +C plate and -A plate optical properties
WO2014157251A1 (en) Optical film, polarizing plate, image display device, and optical film fabrication method
JP2002341140A (en) Phase contrast film
JPWO2015152157A1 (en) Polarizing plate, image display device, and liquid crystal display device
JP2007047361A (en) Retardation film
JP2010060516A (en) Method of evaluating orientation of stretched film
JP5364365B2 (en) Optical member and image display device including the same
KR101606534B1 (en) Optical film having reverse wavelength dispersion and display device comprising same
JP2015055789A (en) Optical laminate, and image display device and touch panel using the same
JP2008122885A (en) Retardation film and polarizing plate
JP5831174B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
JP2005292229A (en) Film for polarizer supporting base and polarizing plate
TW202246818A (en) Circular polarizing plate and image display device using same
JP2007328052A (en) Retardation film and its manufacturing method
JP5029043B2 (en) Retardation film and method for producing retardation film
JP5982828B2 (en) Laminated film for optical compensation
JP4940851B2 (en) Method for producing retardation film
JP2008009345A (en) Phase difference film
JP6764150B2 (en) Manufacturing method of optical resin material
JP5664736B2 (en) Optical compensation film
WO2021085031A1 (en) Retardation film, production method therefor, and circular polarizer