JP2010060493A - Method of evaluating shape of aspheric lens - Google Patents

Method of evaluating shape of aspheric lens Download PDF

Info

Publication number
JP2010060493A
JP2010060493A JP2008228157A JP2008228157A JP2010060493A JP 2010060493 A JP2010060493 A JP 2010060493A JP 2008228157 A JP2008228157 A JP 2008228157A JP 2008228157 A JP2008228157 A JP 2008228157A JP 2010060493 A JP2010060493 A JP 2010060493A
Authority
JP
Japan
Prior art keywords
lens
shape
aspheric
aspherical
null
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008228157A
Other languages
Japanese (ja)
Other versions
JP5356757B2 (en
Inventor
Yasutaka Terajima
保貴 寺嶋
Tsutomu Kobayashi
努 小林
Teruo Yamashita
照夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008228157A priority Critical patent/JP5356757B2/en
Publication of JP2010060493A publication Critical patent/JP2010060493A/en
Application granted granted Critical
Publication of JP5356757B2 publication Critical patent/JP5356757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating the shape of an aspheric lens for accurately evaluating the aspheric shape in a short time without complicating an interferometer and without increasing cost. <P>SOLUTION: A system S for evaluating the shape of the aspheric lens irradiates a reference plane 5a with the optical component of a part of parallel measuring light, and irradiates an aspheric plane 7a to be inspected of the aspheric lens 7 with the remaining optical component via a null lens 6. An interference fringe is formed by making return measuring light that is reflected on the aspheric plane 7a to be inspected and returned via the null lens 6 interfere with return reference light that is reflected on the reference plane 5a and returned. The shape of the aspheric plane 7a to be inspected is evaluated based on the interference fringe. The null lens 6 is formed of a single lens, the first lens plane 6a has an aspheric shape substantially similar to a standard aspheric shape of the aspheric plane 7a to be inspected, and the second lens plane 6b is a flat plane perpendicular to the lens optical axis 6c of the null lens. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射型のヌルレンズを備えた干渉計を用いて非球面レンズの非球面形状の合否を判断する非球面レンズの形状評価方法に関する。   The present invention relates to a method for evaluating the shape of an aspherical lens that determines whether or not the aspherical shape of an aspherical lens is acceptable using an interferometer having a reflective null lens.

デジタルカメラなどの撮像光学系に用いられる撮像レンズ系は光学性能の向上と共に小型・コンパクト化の要望が高く、このような要望を満たすために近年においては撮像レンズ系に非球面レンズが多用されている。非球面レンズとしてはガラス素材からなるモールドプレスレンズが知られている。非球面レンズの非球面の形状誤差が大きいと撮像レンズ系全体として所望の収差特性などを得ることができない。したがって、製造後の非球面レンズの非球面形状の測定を精度良く行ない、形状誤差が大きいものを取り除く必要がある。   Imaging lens systems used in imaging optical systems such as digital cameras are highly demanded for miniaturization and compactness along with improvement in optical performance. In recent years, aspheric lenses have been frequently used in imaging lens systems in order to satisfy such demands. Yes. A mold press lens made of a glass material is known as an aspheric lens. When the shape error of the aspherical surface of the aspherical lens is large, it is impossible to obtain desired aberration characteristics as the entire imaging lens system. Therefore, it is necessary to accurately measure the aspherical shape of the aspherical lens after manufacture, and to remove the one having a large shape error.

従来においては、非球面レンズの非球面形状の測定には、非球面レンズに接触子を接触させて非球面の形状を測定する接触式の測定装置(例えば、テーラーホブソン社製のフォーム・タリサーフや松下電器産業株式会社製のUA3P)が用いられている。このような表面形状測定装置を用いた形状測定は非球面の全体についての形状測定に時間を要するという問題点がある。そこで、球面レンズの形状測定に多用されているフィゾー干渉計などの干渉計を用いて非球面の形状測定を行なうことが考えられる。   Conventionally, for measuring the aspherical shape of an aspherical lens, a contact-type measuring device that measures the shape of the aspherical surface by bringing a contactor into contact with the aspherical lens (for example, a form-talissurf manufactured by Taylor Hobson, Inc. Matsushita Electric Industrial Co., Ltd. UA3P) is used. The shape measurement using such a surface shape measuring apparatus has a problem that it takes time to measure the shape of the entire aspheric surface. Therefore, it is conceivable to measure the shape of the aspherical surface using an interferometer such as a Fizeau interferometer that is frequently used for measuring the shape of the spherical lens.

干渉計を用いて非球面の形状測定を行なう測定方法は、特許文献1、2に開示されている。特許文献1に開示の非球面形状の測定方法は、光源からの一部の光を参照面で反射させ、他の一部の光を非球面波発生手段を介して被検非球面で反射させ、被検非球面で反射した測定光を非球面波発生手段に戻し、参照面で反射した参照光と非球面波発生手段からの測定光とを干渉させて干渉縞を形成し、干渉縞を観察することによって被検非球面の形状を測定する非球面形状の測定方法に関するものであり、非球面波発生手段と被検非球面とを当接させることを特徴としている。非球面波発生手段としてヌルレンズが使用されており、当該文献1の図6に開示されているように、ヌルレンズ系として、両凸レンズおよび両凹レンズの貼り合わせレンズと両凸レンズとから構成された組レンズが用いられている。ヌルレンズを被検非球面に当接させることにより、ヌルレンズと被検非球面の光軸方向の位置を正確に決めることが可能となっている。   A measuring method for measuring the shape of an aspheric surface using an interferometer is disclosed in Patent Documents 1 and 2. In the method of measuring an aspherical shape disclosed in Patent Document 1, a part of light from a light source is reflected by a reference surface, and another part of light is reflected by a test aspherical surface via an aspherical wave generating means. The measurement light reflected by the test aspheric surface is returned to the aspherical wave generation means, and the interference light is formed by causing the reference light reflected by the reference surface to interfere with the measurement light from the aspherical wave generation means. The present invention relates to an aspheric shape measuring method for measuring the shape of a test aspheric surface by observing, and is characterized in that the aspheric wave generating means and the test aspheric surface are brought into contact with each other. A null lens is used as the aspherical wave generating means, and as shown in FIG. 6 of the document 1, a combined lens composed of a biconvex lens, a cemented lens of a biconcave lens, and a biconvex lens as a null lens system. Is used. By bringing the null lens into contact with the test aspheric surface, it is possible to accurately determine the positions of the null lens and the test aspheric surface in the optical axis direction.

特許文献2に開示の非球面形状測定方法は電子モアレ法を採用した方法であり、被測定ワークの非球面で反射してヌルレンズを再度通って戻った被検光と、参照光との干渉による干渉縞画像が二次元画像検出装置で検出され、ヌルレンズが有する誤差が予め評価され、その誤差に応じたパターンが参照画像データに変換されて参照画像メモリに予め書き込まれており、この参照画像メモリの参照画像データに基づき、得られた干渉縞画像の画像演算を行ない、テレビモニタ上に表示される縞パターンが純粋な被測定ワークの非球面が有する形状誤差を表わすようになっている。これにより、ヌルレンズの設計、制作誤差に起因する被測定ワークの良否の判断の精度の低下を回避している。ヌルレンズとして、当該文献の図1などに記載されているように複数枚のレンズから構成される組レンズが用いられている。
特開平09−329427号公報 特開平10−132531号公報
The aspherical shape measurement method disclosed in Patent Document 2 is a method that employs an electronic moire method, and is based on interference between the test light reflected by the aspherical surface of the workpiece to be measured and returned again through the null lens and the reference light. The interference fringe image is detected by the two-dimensional image detection device, the error of the null lens is evaluated in advance, and a pattern corresponding to the error is converted into reference image data and written in the reference image memory in advance. The obtained interference fringe image is subjected to image calculation based on the reference image data, and the fringe pattern displayed on the television monitor represents the shape error of the aspherical surface of the pure workpiece to be measured. This avoids a decrease in accuracy in determining whether the workpiece to be measured is good or bad due to null lens design and production errors. As the null lens, a combined lens composed of a plurality of lenses is used as described in FIG.
JP 09-329427 A JP 10-132531 A

ヌルレンズを用いた干渉計による非球面レンズの非球面の形状測定方法では、ヌルレンズによって非球面レンズの被検非球面に一致する非球面波を発生させるために、ヌルレンズの設計、制作を波長オーダ以下で行なうことが必要である。したがって、ヌルレンズの設計、制作は簡単ではなく、コストも高い。また、ヌルレンズが完全でないと、検査作業者は、ヌルレンズの誤差に起因して歪んだ干渉縞の縞パターンを見て被検非球面の良否を判断することになり、精度の高い形状評価が不可能になってしまう。   In the method of measuring the aspherical shape of an aspherical lens using an interferometer that uses a null lens, the null lens is designed and produced at a wavelength order or less in order to generate an aspherical wave that matches the aspherical surface of the aspherical lens by the null lens. It is necessary to do in. Therefore, the design and production of a null lens is not easy and the cost is high. In addition, if the null lens is not perfect, the inspection operator will judge the quality of the aspheric surface to be examined by looking at the fringe pattern of the interference fringes distorted due to the error of the null lens, and accurate shape evaluation will not be possible. It will be possible.

従来において、干渉計により非球面形状を測定するために用いられている非球面波発生素子としてのヌルレンズは、複数枚のレンズからなる組レンズである。組レンズの場合には、ヌルレンズの構成レンズのそれぞれを精度良く製作する必要があるのでコストが高くなるという問題点がある。また、各構成レンズを精度良く製作したとしても、各構成レンズを精度良く組み付けることができないと、被検非球面形状の良否を精度良く評価することができない。したがって、各構成レンズの光軸方向に精度良く位置決めし、また、それらに偏芯(軸ズレ、チルト)の無い状態で組み付ける必要がある。   Conventionally, a null lens as an aspherical wave generating element used for measuring an aspherical shape by an interferometer is a combined lens composed of a plurality of lenses. In the case of a combination lens, there is a problem that the cost increases because it is necessary to manufacture each of the constituent lenses of the null lens with high accuracy. Further, even if each constituent lens is manufactured with high accuracy, if each constituent lens cannot be assembled with high accuracy, the quality of the test aspherical shape cannot be evaluated with high accuracy. Therefore, it is necessary to accurately position each constituent lens in the optical axis direction and to assemble them in a state where there is no eccentricity (axial deviation, tilt).

特許文献1に開示の測定方法では、ヌルレンズと被検非球面を当接させるようにしているので、ヌルレンズと被検非球面の光軸方向の位置精度を高めることができる。しかし、複数枚のレンズからヌルレンズが構成されているので、各構成レンズを精度良く製作する必要があり、また、各構成レンズの軸間距離のズレ、偏芯(軸ズレ、チルト)が無い状態で組み付けることが困難である。したがって、構成レンズの製作誤差、組み付け誤差に起因して干渉縞の縞パターンに歪みが現れてしまい、被検非球面の良否を精度良く判定できないおそれがある。   In the measurement method disclosed in Patent Document 1, since the null lens and the test aspheric surface are brought into contact with each other, the positional accuracy of the null lens and the test aspheric surface in the optical axis direction can be improved. However, since a null lens is composed of multiple lenses, it is necessary to manufacture each component lens with high accuracy, and there is no deviation in the distance between the axes of each component lens, and no eccentricity (axial deviation, tilt). It is difficult to assemble with. Therefore, distortion appears in the fringe pattern of the interference fringes due to the manufacturing error and assembly error of the constituent lenses, and there is a possibility that the quality of the test aspheric surface cannot be accurately determined.

特許文献2に開示の測定方法では、ヌルレンズの誤差に起因する干渉縞の縞パターンの歪みを画像処理によって除去するようにしている。このためには、ヌルレンズが有する誤差を予め評価して、その誤差に応じたパターンを参照画像データに変換して参照画像メモリに記憶しておく必要があり、誤差を除去するための画像演算が必要である。したがって、装置構成が複雑化し、コストが高くなるという問題点がある。   In the measurement method disclosed in Patent Document 2, the distortion of the fringe pattern of the interference fringes caused by the error of the null lens is removed by image processing. For this purpose, it is necessary to evaluate the error of the null lens in advance, convert the pattern according to the error into reference image data and store it in the reference image memory, and image calculation for removing the error is required. is necessary. Therefore, there is a problem that the device configuration becomes complicated and the cost becomes high.

本発明の課題は、干渉計の複雑化、コスト高を招くことなく、短時間で非球面形状の評価を精度良く行うことのできる非球面レンズの形状評価方法を提案することにある。   An object of the present invention is to propose a shape evaluation method for an aspheric lens that can accurately evaluate an aspheric shape in a short time without complicating the interferometer and increasing the cost.

上記の課題を解決するために、本発明は、測定光の一部を参照面に照射し、前記測定光の他の一部を非球面波発生素子を介して測定対象の非球面レンズの被検非球面に照射し、前記被検非球面で反射して前記非球面波発生素子を介して戻る前記測定光の戻り測定光と、前記参照面で反射して戻る前記測定光の戻り参照光とを干渉させて干渉縞を形成し、前記干渉縞に基づき前記被検非球面の形状を評価する非球面レンズの形状評価方法において、前記非球面波発生素子は単レンズからなるヌルレンズであり、前記ヌルレンズの一方の第1レンズ面は前記被検非球面の設計非球面と略相似な形状を有する非球面であり、前記ヌルレンズの他方の第2レンズ面は当該ヌルレンズのレンズ光軸に垂直な平面であることを特徴としている。前記測定光としては平行光を用いることが望ましい。   In order to solve the above-described problems, the present invention irradiates a part of measurement light onto a reference surface, and applies another part of the measurement light to an aspherical lens to be measured via an aspherical wave generating element. The measurement light return measurement light that irradiates the test aspheric surface, reflects off the test aspheric surface, and returns via the aspheric wave generating element, and returns the measurement light return reference light reflected on the reference surface. In the shape evaluation method of the aspheric lens that evaluates the shape of the test aspheric surface based on the interference fringe, the aspheric wave generating element is a null lens made of a single lens, One first lens surface of the null lens is an aspheric surface having a shape substantially similar to the design aspheric surface of the test aspheric surface, and the other second lens surface of the null lens is perpendicular to the lens optical axis of the null lens. It is a flat surface. It is desirable to use parallel light as the measurement light.

本発明の非球面レンズの形状評価方法では、非球面波発生素子として単レンズからなる反射型のヌルレンズ系を用いている。したがって、複数枚のレンズから構成される組レンズからなるヌルレンズの場合とは異なり、単一のヌルレンズを精度良く製作すればよいので、複数枚のレンズからヌルレンズを構成する場合に比べて、ヌルレンズを廉価に製作でき、構成レンズの製造誤差に起因する干渉縞の縞パターンへの影響を低減できる。   In the aspherical lens shape evaluation method of the present invention, a reflective null lens system comprising a single lens is used as the aspherical wave generating element. Therefore, unlike a null lens composed of a plurality of lenses, a single null lens need only be manufactured with high precision. It can be manufactured at low cost, and the influence on the fringe pattern of interference fringes due to manufacturing errors of the constituent lenses can be reduced.

また、複数枚の構成レンズを組み付ける際に生ずる軸間距離のズレ、偏芯などの組み付け誤差が発生しないので、ヌルレンズの組み付け誤差に起因する干渉縞の縞パターンへの影響を低減できる。   Further, since there are no assembly errors such as misalignment of the distance between the axes and eccentricity that occur when assembling a plurality of constituent lenses, the influence on the fringe pattern of the interference fringes caused by the assembly error of the null lens can be reduced.

さらに、単レンズからなるヌルレンズの一方のレンズ面が非球面であり、他方のレンズ面がレンズ光軸に垂直な平面となっているので、平面レンズ面を基準としてヌルレンズを精度良く干渉計に実装することができるので、これによっても、ヌルレンズの組み付け誤差を抑制できる。   In addition, since one lens surface of a null lens consisting of a single lens is aspherical and the other lens surface is a plane perpendicular to the lens optical axis, the null lens can be mounted on the interferometer with high accuracy using the plane lens surface as a reference. As a result, it is possible to suppress the assembling error of the null lens.

したがって、本発明の非球面レンズの評価方法によれば、干渉縞を画像表示し、画像表示された干渉縞の平行状態を目視により確認して、非球面レンズの被検非球面の適否を精度良く判定することが可能である。   Therefore, according to the aspherical lens evaluation method of the present invention, the interference fringes are displayed as images, the parallel state of the displayed interference fringes is visually confirmed, and the suitability of the aspherical lens to be tested is accurately determined. It is possible to judge well.

ここで、本発明の非球面レンズの形状評価方法は、前記干渉縞を解析して、前記戻り測定光の波面収差のP−V値(被検非球面内における形状誤差の最大値と最小値の差)を算出し、算出した前記P−V値を予め定めた選別基準値と比較して、前記非球面レンズの前記被検非球面の適否を判断することを特徴としている。   Here, in the method for evaluating the shape of the aspheric lens according to the present invention, the interference fringes are analyzed, and the PV value of the wavefront aberration of the return measurement light (the maximum value and the minimum value of the shape error in the test aspheric surface). And the calculated PV value is compared with a predetermined selection reference value to determine the suitability of the aspherical lens to be tested.

このようにすれば、目視により縞パターンの曲がり具合を判断する場合に比べて、適否の判断基準を常に一定に保持することができ、また、迅速に合否を判断できる。   In this way, as compared with the case where the degree of bending of the fringe pattern is determined by visual observation, the determination criterion for suitability can always be kept constant, and the acceptability can be determined quickly.

また、本発明の非球面レンズの形状評価方法は、表面形状測定装置により前記非球面レンズの前記被検非球面を測定した場合に得られる測定値に基づいて算出した非球面誤差値(非球面設計値と実形状との差分)と、前記被検非球面から得られる前記戻り測定光の波面収差のP−V値との相関を求め、前記相関に基づき、前記被検非球面の適否を判断するための前記選別基準値を予め設定しておくことを特徴としている。   The method for evaluating the shape of an aspherical lens according to the present invention provides an aspherical error value (aspherical surface) calculated based on a measurement value obtained when the aspherical surface of the aspherical lens is measured by a surface shape measuring device. The difference between the design value and the actual shape) and the PV value of the wavefront aberration of the return measurement light obtained from the test aspheric surface is obtained. Based on the correlation, the suitability of the test aspheric surface is determined. The selection reference value for determination is preset.

本発明の発明者等の測定によれば、表面形状測定装置による非球面の測定値に基づいて算出した非球面誤差値と、干渉計を用いて得られる戻り測定光の波面収差のP−V値との間には有意の相関があることが確認された。したがって、この相関に基づき選別基準値を設定すれば、表面形状測定装置による形状測定による非球面の良否判定と同様な精度で、ヌルレンズを用いた干渉計によって非球面形状の合否を評価することができる。   According to the measurement by the inventors of the present invention, the aspheric error value calculated based on the measured value of the aspheric surface by the surface shape measuring device, and the PV of the wavefront aberration of the return measurement light obtained using the interferometer. It was confirmed that there was a significant correlation between the values. Therefore, if the selection reference value is set based on this correlation, the pass / fail of the aspheric shape can be evaluated by the interferometer using the null lens with the same accuracy as the quality determination of the aspheric surface by the shape measurement by the surface shape measuring device. it can.

次に、本発明の非球面レンズの形状評価方法は、モールドプレス成形された非球面モールドレンズの非球面形状を評価するために用いることができる。モールドプレスレンズの非球面には、モールドプレス型からの離型時、モールドプレス時の冷却に伴うレンズ素材の収縮などに起因して、非球面には細かな傷など、タリサーフなどによる接触型の形状測定装置では検出できない形状不良が発生することがある。このような形状不良は、干渉計による干渉縞の縞パターンに忠実に現れる。例えば細かな傷は干渉縞の欠落部分として現れる。また、成形型の加工やモールドプレス成形に起因する微小うねり、粗さ状態、研削痕の有無などの面情報も干渉縞の縞パターンに現れる。したがって、本発明の評価方法は非球面モールドプレスレンズの評価に用いるのに適している。   Next, the method for evaluating the shape of an aspheric lens according to the present invention can be used to evaluate the aspheric shape of an aspheric mold lens that has been press-molded. The aspherical surface of the mold press lens is a contact type due to Tarisurf, etc. due to the lens surface shrinking due to the cooling of the mold press when releasing from the mold press mold, etc. A shape defect that cannot be detected by the shape measuring apparatus may occur. Such a shape defect faithfully appears in the fringe pattern of the interference fringes by the interferometer. For example, fine flaws appear as missing portions of interference fringes. In addition, surface information such as micro waviness, roughness, and presence / absence of grinding traces resulting from processing of the mold and mold press molding also appears in the fringe pattern of the interference fringes. Therefore, the evaluation method of the present invention is suitable for use in the evaluation of an aspheric mold press lens.

本発明の非球面レンズの形状評価方法では、非球面波発生素子として単レンズからなる反射型のヌルレンズを用いた干渉計によって非球面の干渉縞を発生させるようにしている。また、ヌルレンズを構成している単レンズの一方のレンズ面を非球面とし、他方のレンズ面をレンズ光軸に垂直な平面としてある。本発明によれば、従来の複数枚の構成レンズからなるヌルレンズを非球面波発生素子として用いて非球面の形状評価を行なう場合に比べて、干渉計の複雑化、コスト高を招くことなく、表面形状測定装置による形状測定と同程度の精度で非球面形状を評価することが可能になる。   In the shape evaluation method of an aspheric lens according to the present invention, an aspheric interference fringe is generated by an interferometer using a reflective null lens composed of a single lens as an aspheric wave generating element. One lens surface of the single lens constituting the null lens is an aspheric surface, and the other lens surface is a plane perpendicular to the lens optical axis. According to the present invention, compared to the conventional case where an aspherical surface shape evaluation is performed using a null lens composed of a plurality of constituent lenses as an aspherical wave generating element, the interferometer is not complicated and incurs high costs. It becomes possible to evaluate the aspherical shape with the same accuracy as the shape measurement by the surface shape measuring device.

以下に、図面を参照して、本発明の方法を適用した非球面レンズの非球面評価システムの実施の形態を説明する。   Embodiments of an aspheric evaluation system for an aspheric lens to which the method of the present invention is applied will be described below with reference to the drawings.

図1は本実施の形態に係る非球面形状評価システムの光学系を中心に示す概略構成図である。非球面形状評価システムSの光学系は、干渉性の高いコヒーレントな光を射出する光源1を備えており、光源1から射出したレーザー光は対物レンズ2によって発散光L1とされ、コリメータレンズ3を介して平行測定光となり、光路分離光学素子、例えば、プリズムを貼り合せた構成のビームスプリッタ4に入射する。   FIG. 1 is a schematic configuration diagram mainly showing an optical system of an aspherical shape evaluation system according to the present embodiment. The optical system of the aspherical surface shape evaluation system S includes a light source 1 that emits coherent light with high coherence. The laser light emitted from the light source 1 is converted into divergent light L1 by the objective lens 2, and the collimator lens 3 is Then, it becomes parallel measurement light and enters the beam splitter 4 having a configuration in which an optical path separating optical element, for example, a prism is bonded.

ビームスプリッタ4に入射した平行測定光L2は透過して、参照面5aを有する基準板5に直角に入射する。一部の光は参照面5aによって反射されて、残りの光は透過する。基準板5を透過した透過光成分はヌルレンズ6に入射し、ここを透過して、不図示の治具によって保持されている検査対象の非球面レンズ7の被検非球面7aを照射する。   The parallel measurement light L2 incident on the beam splitter 4 is transmitted and incident on the reference plate 5 having the reference surface 5a at a right angle. Some of the light is reflected by the reference surface 5a and the remaining light is transmitted. The transmitted light component that has passed through the reference plate 5 is incident on the null lens 6 and is transmitted therethrough to irradiate the test aspheric surface 7a of the aspheric lens 7 to be inspected held by a jig (not shown).

基準板5に入射した光は当該基準板5の参照面5aによって反射されて、戻り参照光L3となって同一の光路を経由してビームスプリッタ4に戻り、ビームスプリッタ4により結像光学系8を介してCCDなどの撮像素子9の受光面に導かれる。   The light incident on the reference plate 5 is reflected by the reference surface 5a of the reference plate 5 to return to the beam splitter 4 via the same optical path as the return reference light L3. To the light receiving surface of the image sensor 9 such as a CCD.

一方、非球面レンズ7の被検非球面7aに入射した透過光成分の一部は、当該被検非球面7aで反射されて、戻り測定光L4となって同一の光路を経由してビームスプリッタ4に戻り、その一部がビームスプリッタ4において直角に反射されて、戻り参照光L3と同一の光路を経由して結像光学系8を介して撮像素子9の受光面に入射し、当該受光面に被検非球面7aの像を結ぶ。撮像素子9の受光面には、このようにして、戻り測定光L4と戻り参照光L3が入射する。これらの光の干渉によって干渉縞が形成される。   On the other hand, a part of the transmitted light component incident on the test aspheric surface 7a of the aspheric lens 7 is reflected by the test aspheric surface 7a and becomes the return measurement light L4 via the same optical path. 4 is reflected at right angles by the beam splitter 4 and enters the light receiving surface of the image sensor 9 via the imaging optical system 8 via the same optical path as the return reference light L3. An image of the test aspheric surface 7a is formed on the surface. In this way, the return measurement light L4 and the return reference light L3 enter the light receiving surface of the image sensor 9. Interference fringes are formed by the interference of these lights.

撮像素子9の受光面に形成された干渉縞は、撮像素子9の光電信号が入力される画像処理装置10においてデジタル画像情報に変換される。画像処理装置10はコンピュータを中心に構成されており、コンピュータには公知の干渉縞解析ソフトがインストールされている。当該干渉縞解析ソフトによって干渉縞画像がモニター画面11上に画像表示され、また、干渉縞の波面解析などが行われる。   The interference fringes formed on the light receiving surface of the image sensor 9 are converted into digital image information in the image processing apparatus 10 to which the photoelectric signal of the image sensor 9 is input. The image processing apparatus 10 is mainly configured by a computer, and known interference fringe analysis software is installed in the computer. The interference fringe image is displayed on the monitor screen 11 by the interference fringe analysis software, and wavefront analysis of the interference fringes is performed.

ここで、反射型のヌルレンズ6は、非球面レンズ7の被検非球面7aの規格非球面形状と略相似の非球面形状をしており、当該被検被球面7aに対応した非球面波を発生する非球面波発生素子である。また、ヌルレンズ6は単レンズからなり、平行測定光入射側の第1レンズ面6aは被検非球面7aの規格非球面と略相似の非球面であり、他方の第2レンズ面6bは当該ヌルレンズのレンズ光軸6cに垂直な平面となっている。ヌルレンズ6と非球面レンズ7との軸間距離は、被検非球面レンズ7の被検非球面7aに対して測定光が垂直に入射する位置となるように設定されている。   Here, the reflection-type null lens 6 has an aspherical shape substantially similar to the standard aspherical shape of the aspherical surface 7a to be tested of the aspherical lens 7, and an aspherical wave corresponding to the to-be-tested spherical surface 7a. This is an aspherical wave generating element. The null lens 6 is a single lens, the first lens surface 6a on the parallel measurement light incident side is an aspheric surface that is substantially similar to the standard aspheric surface of the test aspheric surface 7a, and the other second lens surface 6b is the null lens. It is a plane perpendicular to the lens optical axis 6c. The distance between the axes of the null lens 6 and the aspheric lens 7 is set so that the measurement light is perpendicularly incident on the test aspheric surface 7 a of the test aspheric lens 7.

ヌルレンズ6を透過した測定光は被検非球面7aで反射された後に、再び、ヌルレンズ6に戻り、当該ヌルレンズ6を透過する。測定光は、被検非球面7aで反射されて波面収差が発生するが、ヌルレンズ6を2度透過することにより収差が取り除かれて撮像素子9に向かう。したがって、被検被球面7aが規格非球面形状の場合には、戻り測定光と戻り参照光の干渉によって形成される干渉縞は平行な縦縞になり、被検非球面7aの形状誤差は干渉縞の曲がりとなって現れる。   The measurement light that has passed through the null lens 6 is reflected by the test aspheric surface 7 a, returns to the null lens 6 again, and passes through the null lens 6. The measurement light is reflected by the test aspheric surface 7a and generates wavefront aberration. However, when the measurement light is transmitted through the null lens 6 twice, the aberration is removed and the measurement light is directed to the image sensor 9. Therefore, when the test spherical surface 7a has a standard aspherical shape, the interference fringes formed by the interference between the return measurement light and the return reference light are parallel vertical stripes, and the shape error of the test aspherical surface 7a is an interference fringe. Appears as a bend.

(表面形状測定装置による測定と干渉縞の形との相関)
本発明者等は、上記構成の非球面形状評価システムSを用いて、タリサーフなどの表面形状測定装置による測定値と干渉縞との相関を調べた。この結果、双方の間には有意の相関があり、干渉縞の形を観察することによって精度良く非球面レンズの非球面形状の合否を判断できることが確認された。本発明者等が行なった測定結果の一例を以下に説明する。
(Correlation between measurement by surface shape measuring device and interference fringe shape)
The present inventors investigated the correlation between the measured value by the surface shape measuring device such as Talysurf and the interference fringes using the aspherical shape evaluation system S having the above configuration. As a result, it was confirmed that there is a significant correlation between the two, and it is possible to accurately determine whether or not the aspheric shape of the aspheric lens is acceptable by observing the shape of the interference fringes. An example of the measurement results performed by the present inventors will be described below.

まず、検査対象の非球面レンズの非球面を表面形状測定装置(タリサーフ)によって測定した。表1にはタリサーフ測定結果に基づいて算出した非球面誤差値(F’データ)の一例を示してある。   First, the aspherical surface of the aspherical lens to be inspected was measured by a surface shape measuring device (Tarisurf). Table 1 shows an example of the aspheric error value (F ′ data) calculated based on the Talysurf measurement result.

上記の非球面形状評価システムSを用いて、同一の非球面レンズの非球面から得られる干渉縞を観察した。図2(a)〜(c)には、「OK品」、「限度NG品」および「NG品」について得られた干渉縞の画像を示してある。「OK品」では、干渉縞がまっすぐであった。「限度NG品」では、干渉縞の中心部分を直線にした状態で周辺部が曲がる。「NG品」では、干渉縞の中心部分を直線にした状態でも全体が曲がる。したがって、干渉縞画像を目視して、その形が全体的に直線状である場合には非球面形状誤差が許容範囲内の合格品であると判断でき、周辺部のみに曲がりが生じている場合には非球面形状誤差が許容範囲の限度近辺にあると判断でき、形が全体的に曲がっている場合には非球面形状誤差が許容範囲を越えている不合格品であると判断できる。よって、許容範囲の限界近辺にある場合を除き、短時間で簡単に非球面形状の合否判断を行なうことが可能なことが分かる。   Using the above aspheric shape evaluation system S, interference fringes obtained from aspheric surfaces of the same aspheric lens were observed. FIGS. 2A to 2C show images of interference fringes obtained for “OK product”, “limit NG product”, and “NG product”. In the “OK product”, the interference fringes were straight. In the “limit NG product”, the peripheral portion bends with the central portion of the interference fringes straight. In the “NG product”, the whole bends even when the central portion of the interference fringes is straight. Therefore, when the interference fringe image is visually observed and the shape is entirely linear, it can be determined that the aspherical shape error is a acceptable product within the allowable range, and only the peripheral portion is bent. It can be determined that the aspherical shape error is in the vicinity of the limit of the allowable range, and if the shape is entirely bent, it can be determined that the aspherical shape error exceeds the allowable range. Therefore, it can be seen that the pass / fail judgment of the aspherical shape can be easily performed in a short time except in the vicinity of the limit of the allowable range.

(表面形状測定に基づく測定値F’と干渉縞全面P−V値の相関)
上記のように、干渉縞画像を目視した場合には、その非球面形状が許容誤差近辺にある場合には合否の判断が付かない場合が予想される。そこで、本発明者等は、市販の干渉縞解析ソフトを用いて、非球面から得られる干渉縞の全面P−V値(λ)(干渉計)とF’(μm)(タリサーフ)との関係を調べた。図3は、この結果を示すグラフであり、縦軸に全面P−V(λ)、横軸にF’(μm)を取り、各測定値をプロットしたものである。このグラフにはシミュレーションによる理想直線Lを一点鎖線で描いてある。
(Correlation between measured value F ′ based on surface shape measurement and entire interference fringe PV value)
As described above, when the interference fringe image is visually observed, it is expected that a pass / fail judgment cannot be made if the aspherical shape is in the vicinity of the allowable error. Therefore, the inventors of the present invention use commercially available interference fringe analysis software, and the relationship between the entire PV value (λ) (interferometer) and F ′ (μm) (Tarisurf) of the interference fringe obtained from the aspheric surface I investigated. FIG. 3 is a graph showing the results, in which the vertical axis represents the entire surface PV (λ) and the horizontal axis represents F ′ (μm), and each measured value is plotted. In this graph, an ideal straight line L by simulation is drawn with a one-dot chain line.

このグラフから分かるように、「OK判定」を表す四角のドットはグラフの左下に集まり、「NG判定」を表す丸のドットはグラフの右上に集まり、「OK判定」および「NG判定」のいずれかに明確に判別できない「グレー判定」を表す三角のドットは、それらの中間に集まり、タリサーフ測定値F’と干渉縞全高P−V値の関係は、全体としてほぼ直線になっている。シミュレーションからの理想直線Lとは僅かに傾きに差があるが、全面P−V値とF’との間には高い相関があることが判る。なお、理想直線Lとの差は形状誤差成分以外の誤差成分によるものと思われる。   As can be seen from this graph, the square dot representing “OK judgment” gathers at the lower left of the graph, and the round dot representing “NG judgment” gathers at the upper right of the graph, and either “OK judgment” or “NG judgment” Triangular dots representing “gray determination” that cannot be clearly discriminated gather in the middle of them, and the relationship between the Talysurf measurement value F ′ and the interference fringe total height PV value is almost linear as a whole. Although the slope is slightly different from the ideal straight line L from the simulation, it can be seen that there is a high correlation between the overall PV value and F ′. The difference from the ideal straight line L is considered to be due to an error component other than the shape error component.

したがって、画像処理装置10において、干渉縞解析ソフトによって干渉縞の全面P−V値(λ)を算出し、算出値を予め設定しておいた選別基準値と比較し、算出値が選別基準値よりも小さい場合にOK判定を行うようにすることができる。すなわち、タリサーフ測定値F’の選別規格が例えば「0.155μm」であった場合には、図3に示す相関から、この値に対応する全面P−V値(λ)を求め、この値を選別基準値として画像処理装置10に記憶保持しておき、この選別基準値に基づき、非球面レンズ7の被検非球面7aの合否判定を精度良く行なうことが可能である。   Therefore, in the image processing apparatus 10, the entire interference fringe PV value (λ) is calculated by the interference fringe analysis software, and the calculated value is compared with a preset sorting reference value. If it is smaller than that, the OK determination can be performed. That is, when the selection standard of the Talysurf measurement value F ′ is “0.155 μm”, for example, the entire surface PV value (λ) corresponding to this value is obtained from the correlation shown in FIG. It is possible to store in the image processing apparatus 10 as a selection reference value, and to perform pass / fail determination of the aspheric surface 7a of the aspheric lens 7 with high accuracy based on the selection reference value.

(その他の実施の形態)
上記の例は、被検レンズが凸の被検非球面7aであり、ヌルレンズ6も凸の非球面を備えた場合のものである。図4に示すように、被検レンズ7Aの被検非球面7Bが凹の場合には、凸の非球面6Bを備えたヌルレンズ6Aを測定光の焦点位置BFよりも後側に配置して、被検非球面7Bに対して測定光を垂直に入射させるようにすればよい。
(Other embodiments)
In the above example, the test lens is a convex test aspheric surface 7a, and the null lens 6 is also provided with a convex aspheric surface. As shown in FIG. 4, when the test aspheric surface 7B of the test lens 7A is concave, the null lens 6A provided with the convex aspheric surface 6B is arranged behind the focal position BF of the measurement light, What is necessary is just to make it make a measurement light inject perpendicularly with respect to the to-be-tested aspherical surface 7B.

本発明の実施の形態に係る非球面形状評価システムの光学系を中心に示す概略構成図である。It is a schematic block diagram mainly showing the optical system of the aspherical shape evaluation system according to the embodiment of the present invention. 干渉縞の3例を示す画像である。It is an image which shows three examples of an interference fringe. 干渉縞の全面P―V値と表面形状測定に基づく測定値F’との相関を示すグラフである。It is a graph which shows the correlation with the measurement value F 'based on the whole surface PV value of an interference fringe, and surface shape measurement. 被検非球面が凹である場合のヌルレンズの位置を示す説明図である。It is explanatory drawing which shows the position of the null lens in case a test aspherical surface is concave.

符号の説明Explanation of symbols

S 非球面形状評価システム
1 光源
2 対物レンズ
3 コリメータレンズ
4 ビームスプリッタ
5 基準板
5a 参照面
6 ヌルレンズ
6a 第1レンズ面(非球面)
6b 第2レンズ面(平面)
6c レンズ光軸
7 非球面レンズ
7a 被検非球面
8 結像光学系
9 撮像素子
10 画像処理装置
11 モニター画面
S aspherical shape evaluation system 1 light source 2 objective lens 3 collimator lens 4 beam splitter 5 reference plate 5a reference surface 6 null lens 6a first lens surface (aspherical surface)
6b Second lens surface (plane)
6c Lens optical axis 7 Aspheric lens 7a Aspheric surface to be tested 8 Imaging optical system 9 Imaging element 10 Image processing device 11 Monitor screen

Claims (6)

測定光の一部を参照面に照射し、前記測定光の他の一部を非球面波発生素子を介して測定対象の非球面レンズの被検非球面に照射し、
前記被検非球面で反射して再び前記非球面波発生素子を介して戻る前記測定光の戻り測定光と、前記参照面で反射して戻る前記測定光の戻り参照光とを干渉させて干渉縞を形成し、
前記干渉縞に基づき前記被検非球面の形状を評価する非球面レンズの形状評価方法において、
前記非球面波発生素子は単レンズからなるヌルレンズであり、
前記ヌルレンズの一方の第1レンズ面は前記被検非球面の規格非球面と略相似な形状を有する非球面であり、
前記ヌルレンズの他方の第2レンズ面は当該ヌルレンズのレンズ光軸に垂直な平面であることを特徴とする非球面レンズの形状評価方法。
Irradiating a part of the measurement light onto the reference surface, irradiating the other part of the measurement light onto the aspherical surface of the aspherical lens to be measured through the aspherical wave generating element,
Interference is caused by interfering between the return measurement light of the measurement light reflected by the aspheric surface to be tested and returned again through the aspherical wave generating element, and the return reference light of the measurement light reflected by the reference surface and returned. Forming stripes,
In the shape evaluation method of the aspheric lens that evaluates the shape of the test aspheric surface based on the interference fringes,
The aspherical wave generating element is a null lens composed of a single lens,
One first lens surface of the null lens is an aspheric surface having a shape substantially similar to a standard aspheric surface of the test aspheric surface,
2. The shape evaluation method for an aspheric lens, wherein the other second lens surface of the null lens is a plane perpendicular to the lens optical axis of the null lens.
請求項1に記載の非球面レンズの形状評価方法において、
前記測定光として平行測定光を用いることを特徴とする非球面レンズの形状評価方法。
The shape evaluation method for an aspheric lens according to claim 1,
A method for evaluating the shape of an aspherical lens, wherein parallel measurement light is used as the measurement light.
請求項1または2に記載の非球面レンズの形状評価方法において、
前記干渉縞を画像表示し、
画像表示された前記干渉縞の形を目視により確認して、前記非球面レンズの前記被検非球面形状の合否を判断することを特徴とする非球面レンズの形状評価方法。
In the shape evaluation method of the aspherical lens according to claim 1 or 2,
Image display of the interference fringes;
A method for evaluating the shape of an aspherical lens, wherein the shape of the interference fringe displayed on the image is visually confirmed to determine whether the aspherical shape of the aspherical lens is acceptable or not.
請求項1ないし3のうちのいずれかの項に記載の非球面レンズの形状評価方法において、
前記干渉縞を画像解析して、前記戻り測定光の波面収差のP−V値を算出し、
算出した前記P−V値を予め定めた選別基準値と比較して、前記非球面レンズの前記被検非球面形状の合否を判断することを特徴とする非球面レンズの形状評価方法。
In the shape evaluation method of the aspherical lens according to any one of claims 1 to 3,
Image analysis of the interference fringes to calculate a PV value of the wavefront aberration of the return measurement light,
A method for evaluating the shape of an aspheric lens, wherein the calculated PV value is compared with a predetermined selection reference value to determine whether the aspheric shape of the aspheric lens is acceptable or not.
請求項4に記載の非球面レンズの形状評価方法において、
表面形状測定装置により前記非球面レンズの前記被検非球面を測定した場合に得られる測定値に基づいて算出した非球面誤差値と、前記被検非球面から得られる前記戻り測定光の波面収差のP−V値との相関を求め、
前記相関に基づき、前記被検非球面形状の合否を判断するための前記選別基準値を予め設定しておくことを特徴とする非球面レンズの形状評価方法。
In the shape evaluation method of the aspherical lens according to claim 4,
An aspheric error value calculated based on a measurement value obtained when the test aspheric surface of the aspheric lens is measured by a surface shape measuring device, and a wavefront aberration of the return measurement light obtained from the test aspheric surface The correlation with the PV value of
A method for evaluating the shape of an aspheric lens, wherein the selection reference value for determining pass / fail of the test aspheric shape is preset based on the correlation.
請求項1ないし5のうちのいずれかの項に記載の非球面レンズの形状評価方法を用いて、モールドプレス成形された非球面モールドレンズの非球面形状を評価することを特徴とする非球面モールドレンズの形状評価方法。   An aspherical mold characterized by evaluating the aspherical shape of a molded aspherical molded lens using the method for evaluating the shape of an aspherical lens according to any one of claims 1 to 5. Lens shape evaluation method.
JP2008228157A 2008-09-05 2008-09-05 Aspherical lens shape evaluation method Expired - Fee Related JP5356757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228157A JP5356757B2 (en) 2008-09-05 2008-09-05 Aspherical lens shape evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228157A JP5356757B2 (en) 2008-09-05 2008-09-05 Aspherical lens shape evaluation method

Publications (2)

Publication Number Publication Date
JP2010060493A true JP2010060493A (en) 2010-03-18
JP5356757B2 JP5356757B2 (en) 2013-12-04

Family

ID=42187430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228157A Expired - Fee Related JP5356757B2 (en) 2008-09-05 2008-09-05 Aspherical lens shape evaluation method

Country Status (1)

Country Link
JP (1) JP5356757B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068050A (en) * 2010-09-21 2012-04-05 Canon Inc Shape measurement method and shape measurement device
CN109163663A (en) * 2018-09-11 2019-01-08 苏州如期光电科技有限公司 A kind of focal length measures greatly the manufacturing method of off axis paraboloid mirror off axis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163030A (en) * 1991-12-13 1993-06-29 Olympus Optical Co Ltd Method for forming optical element
JPH06109582A (en) * 1992-09-25 1994-04-19 Olympus Optical Co Ltd Integrated lens inspecting machine
JPH1089935A (en) * 1996-09-10 1998-04-10 Nikon Corp Device for measuring aspherical interference

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163030A (en) * 1991-12-13 1993-06-29 Olympus Optical Co Ltd Method for forming optical element
JPH06109582A (en) * 1992-09-25 1994-04-19 Olympus Optical Co Ltd Integrated lens inspecting machine
JPH1089935A (en) * 1996-09-10 1998-04-10 Nikon Corp Device for measuring aspherical interference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068050A (en) * 2010-09-21 2012-04-05 Canon Inc Shape measurement method and shape measurement device
CN109163663A (en) * 2018-09-11 2019-01-08 苏州如期光电科技有限公司 A kind of focal length measures greatly the manufacturing method of off axis paraboloid mirror off axis

Also Published As

Publication number Publication date
JP5356757B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US20130010286A1 (en) Method and device of differential confocal and interference measurement for multiple parameters of an element
JPH02170033A (en) Inspection method and apparatus for
JP6112909B2 (en) Shape measuring device and shape measuring method using Shack-Hartmann sensor
KR20110106823A (en) Aspheric object measuring method and apparatus
JP2009162539A (en) Light wave interferometer apparatus
CA2909770A1 (en) Surface roughness measurement device
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP5025106B2 (en) Eccentricity measuring method, eccentricity measuring device, and manufacturing method of aspherical single lens
JP2011017552A (en) Device for detecting multipoint displacement
KR20160102244A (en) Non-imaging coherent line scanner systems and methods for optical inspection
JP2007170888A (en) Optical element testing device
JP4340625B2 (en) Optical inspection method and apparatus
JP4427632B2 (en) High-precision 3D shape measuring device
JP5356757B2 (en) Aspherical lens shape evaluation method
KR20110065365A (en) Method and apparatus for measuring aspherical body
Baleani et al. Dimensional measurements in production line: A comparison between a custom-made telecentric optical profilometer and on-the-market measurement systems
JP2005201703A (en) Interference measuring method and system
CN101881607A (en) Planar error detection system
CN113203706B (en) Line scanning beam splitting white light interferometer
TW201631294A (en) System for measuring transparent object by fringe projection
CN113358030A (en) Dispersion confocal measurement system and error correction method thereof
JP5325481B2 (en) Measuring method of optical element and manufacturing method of optical element
CN113008133B (en) Cylindrical lens for detection
CN110375669B (en) Method and device for testing curvature of telephoto lens
TWI708040B (en) External reflection-type three dimensional surface profilometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees