JP2010060165A - Falling type ice-making machine - Google Patents

Falling type ice-making machine Download PDF

Info

Publication number
JP2010060165A
JP2010060165A JP2008224067A JP2008224067A JP2010060165A JP 2010060165 A JP2010060165 A JP 2010060165A JP 2008224067 A JP2008224067 A JP 2008224067A JP 2008224067 A JP2008224067 A JP 2008224067A JP 2010060165 A JP2010060165 A JP 2010060165A
Authority
JP
Japan
Prior art keywords
ice making
ice
water
separator
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224067A
Other languages
Japanese (ja)
Inventor
Tomohito Nomura
知仁 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008224067A priority Critical patent/JP2010060165A/en
Publication of JP2010060165A publication Critical patent/JP2010060165A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a falling type ice-making machine capable of controlling connection of ice cubes adjacent to each other at low costs. <P>SOLUTION: This falling type ice-making machine 10 comprises a separator 44 disposed at an opening side of ice-making small chambers 40 in an ice-making section 18 and oscillatably journaled at its upper section through a supporting section 48, and a sub-tank 46 disposed on the separator 44 in a state of extending to a side separating from the ice-making section 18 through the supporting section 48, and oscillating the separator 44 toward the ice-making section 18 by the stored ice-making water. The separator 44 comprises frame members 50 extending corresponding to edge sections 40c of wall sections 41 defining the ice-making small chambers 40, and through hole sections 50a respectively formed between the frame members 50 to guide the ice-making water to the ice-making chambers 40. The sub-tank 46 comprises a water hole 66 for guiding the stored ice-making water to the ice-making small chamber 40 of an uppermost stage through the through hole section 50a. Bottom surfaces 40d of the ice-making small chambers 40 are formed in a state of being inclined downward toward the opening side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、流下式製氷機に関し、更に詳細には、複数の製氷小室を備えた製氷部に製氷水を流下させて氷塊を製造する流下式製氷機に関するものである。   The present invention relates to a flow-down type ice maker, and more particularly to a flow-down type ice maker that manufactures ice blocks by letting ice-making water flow down into an ice-making unit having a plurality of ice-making chambers.

氷を連続的に製造する自動製氷機として、縦方向に設置した製氷部に製氷水を流下させて、該製氷部に氷塊を製造する流下式製氷機が知られている。このような流下式製氷機において、側方に開口する製氷小室を格子状に複数配置して製氷部が構成されたセル型の流下式製氷機が提供されている(特許文献1参照)。前記製氷小室は、複数の仕切部材を縦横方向に配設して構成され、各製氷小室の内部は角状の氷塊を製造するようになっている。また、前記製氷部における開口部とは反対側の外面には、冷凍系に接続する蒸発管が当接固定されている。製氷部の下方には、該製氷部から落下した氷塊を収容する貯氷庫が上面を開放させた状態で配設されている。   As an automatic ice maker that continuously manufactures ice, a flow-down type ice maker is known in which ice making water is caused to flow down to an ice making unit installed in a vertical direction to produce ice blocks in the ice making unit. In such a flow-down type ice maker, a cell-type flow-down type ice maker is provided in which an ice-making unit is configured by arranging a plurality of ice-making chambers opening laterally in a lattice shape (see Patent Document 1). The ice making chamber is configured by arranging a plurality of partition members in the vertical and horizontal directions, and the inside of each ice making chamber is configured to produce a square ice lump. Further, an evaporation pipe connected to the refrigeration system is fixed in contact with the outer surface of the ice making unit opposite to the opening. Below the ice making unit, an ice storage for storing ice blocks dropped from the ice making unit is disposed with the upper surface open.

製氷運転に際しては、製氷部の上方に設けた製氷水供給管から製氷水が供給され、製氷水が上側から下側の製氷小室を伝って流下するようになっている。また、冷凍系から前記蒸発管に冷媒が循環供給され、この冷媒により製氷部を冷却するようになっている。そして、製氷部を流下する間に次第に製氷水が冷却されて、製氷小室内で氷塊が形成され始める。製氷小室に所定サイズの氷塊が製造されると、製氷運転から除氷運転へ移行し、除氷水供給管から常温の水(除氷水)が製氷部の外面(蒸発管側の面)へ供給される。これと同時に、冷凍系よりホットガスが蒸発管に供給され、製氷部は除氷水およびホットガスの双方により加熱される。すると、製氷小室内の氷塊は次第に融解して製氷部との氷結が崩れ、やがて製氷部から氷塊が剥離するようになっている。製氷部から落下した氷塊は、下方の貯氷庫に収容されて貯留される。
特開昭59−49475号公報
During the ice making operation, ice making water is supplied from an ice making water supply pipe provided above the ice making unit, and the ice making water flows down from the upper side to the lower ice making chamber. Further, a refrigerant is circulated and supplied from the refrigeration system to the evaporation pipe, and the ice making unit is cooled by this refrigerant. Then, the ice making water is gradually cooled while flowing down the ice making part, and ice blocks begin to form in the ice making chamber. When ice blocks of a certain size are produced in the ice making chamber, the ice making operation is shifted to the deicing operation, and water at normal temperature (deicing water) is supplied from the deicing water supply pipe to the outer surface of the ice making part (surface on the evaporation pipe side). The At the same time, hot gas is supplied from the refrigeration system to the evaporation pipe, and the ice making unit is heated by both deicing water and hot gas. Then, the ice blocks in the ice making chamber are gradually melted and the ice formation with the ice making unit is broken, and eventually the ice blocks are separated from the ice making unit. Ice blocks that have fallen from the ice making unit are stored and stored in the ice storage below.
JP 59-49475

ところで、前記製氷部の製氷小室は、製氷運転の間、常に開放した状態にあるため、隣接する製氷小室の氷塊同士が所定厚みで氷結して強固に連結し、製氷部全体に1つの巨大な氷塊が製造されてしまうことがある。このように連結した氷塊は、除氷運転時に製氷部から剥離され難くなり、脱氷不良の原因となっていた。また、連結した氷塊は、除氷運転時に貯氷庫へ落下したときの衝撃で、ある程度バラバラとはなるが、一部の氷塊同士は連結状態が維持されてしまう問題があった。そこで、全ての氷塊を完全にバラバラにするには、貯氷庫を製氷部から大きく下方へ離間させて、落下時の衝撃を大きくすることが考えられるが、これでは衝撃により氷塊自体が損壊して、良質な氷塊が提供し得なくなる弊害がある。   By the way, since the ice making chambers of the ice making unit are always open during the ice making operation, the ice blocks of the adjacent ice making chambers freeze with a predetermined thickness and are firmly connected, and one huge ice making unit is formed throughout the ice making unit. Ice blocks may be produced. The ice blocks connected in this way are difficult to peel off from the ice making unit during the deicing operation, which causes deicing failure. In addition, the connected ice blocks vary to some extent due to the impact when they fall to the ice storage during the deicing operation, but there is a problem that the connected state of some ice blocks is maintained. Therefore, in order to completely separate all the ice blocks, it is conceivable to increase the shock at the time of dropping by separating the ice storage from the ice making part greatly downward, but this causes damage to the ice block itself. There is a harmful effect that high quality ice blocks cannot be provided.

また、いわゆる噴射式製氷機のように、アクチュエータによって作動されるセパレータ(水皿)を設け、製氷運転時にセパレータにより製氷小室を閉塞することで氷塊の連結を抑制することは可能である。ところが、この構成では、アクチュエータや、該アクチュエータの作動を制御するコントローラ等が別途必要となり、機構が複雑化して製品コストが増大し、メンテナンス等も必要となる問題があった。   In addition, as in a so-called jet ice making machine, it is possible to provide a separator (water tray) that is actuated by an actuator, and to block the ice blocks by closing the ice making chamber with the separator during ice making operation. However, in this configuration, an actuator, a controller for controlling the operation of the actuator, and the like are separately required, and there is a problem that the mechanism is complicated, the product cost is increased, and maintenance is required.

そこで、本発明は、従来技術に内在する前記問題に鑑み、こられを好適に解決するべく提案されたものであって、低廉なコストで隣り合う氷塊の連結状態を制御し得る流下式製氷機を提供することを目的とする。   Accordingly, the present invention has been proposed in order to suitably solve this problem in view of the above-mentioned problems inherent in the prior art, and is a flow-down type ice maker capable of controlling the connection state of adjacent ice blocks at a low cost. The purpose is to provide.

前述した課題を解決し、所期の目的を好適に達成するため、本発明に係る流下式製氷機は、
横向きに開口する製氷小室を複数有し、蒸発器により冷却または加熱される製氷部を備える流下式製氷機において、
前記製氷部における製氷小室の開口側に設けられ、支持部を介して上部側が揺動可能に軸支されたセパレータと、
前記支持部を挟んで製氷部から離間する側へ延出するよう前記セパレータに設けられ、貯留した製氷水によりセパレータを製氷部に向けて揺動するサブタンクとを備え、
前記セパレータは、
前記製氷小室を画成する壁部の端縁部に対応して延在するフレーム部材と、該フレーム部材の間に画成されて、製氷水を製氷小室へ導く通孔部とを備え、
前記サブタンクは、該タンクに貯留した製氷水を前記通孔部を介して最上段の製氷小室に導く通水孔を備え、
前記製氷小室は、底面が開口側へ向けて下方傾斜するよう形成されることを特徴とする。
請求項1の発明によれば、セパレータのフレーム部材が各製氷小室における壁部の端縁部に対応して延在するので、隣接する氷塊同士の連結状体を制御することが可能となる。従って、製氷小室の氷塊が強固に連結するのが防止され、バラバラの氷塊を提供し得る。また、セパレータは、サブタンクの製氷水や製氷小室から剥離した氷塊等の重量によって揺動するので、セパレータを作動するためのアクチュエータを別途設ける必要がなく、製品コストやメンテナンス費が高騰することはない。
In order to solve the above-mentioned problems and achieve the desired purpose suitably, the flow-down type ice making machine according to the present invention is:
In a flow-down ice making machine having a plurality of ice making chambers opened sideways and having an ice making part cooled or heated by an evaporator,
A separator provided on the opening side of the ice making chamber in the ice making unit, the upper side of which is pivotally supported via a support part;
Provided in the separator so as to extend to the side away from the ice making part across the support part, and includes a sub tank that swings the separator toward the ice making part by the stored ice making water,
The separator is
A frame member extending corresponding to an edge of the wall portion defining the ice making chamber, and a through hole portion defined between the frame members for guiding ice making water to the ice making chamber;
The sub tank includes a water passage hole that guides the ice making water stored in the tank to the uppermost ice making chamber through the hole portion.
The ice making chamber is characterized in that a bottom surface is inclined downward toward the opening side.
According to the invention of claim 1, since the frame member of the separator extends corresponding to the edge portion of the wall portion in each ice making chamber, it is possible to control the connected body of adjacent ice blocks. Accordingly, it is possible to prevent the ice blocks in the ice making chamber from being firmly connected, and to provide a separate ice block. Moreover, since the separator swings due to the weight of ice making water in the sub-tank and the ice block peeled off from the ice making chamber, it is not necessary to separately provide an actuator for operating the separator, and the product cost and maintenance cost do not increase. .

請求項2に係る流下式製氷機では、前記フレーム部材の内部に、除氷水が流通可能な除氷水路が形成されている。
請求項2の発明によれば、フレーム部材の内部に除氷水が流通する除氷水路を画成したので、氷塊の除氷を促進し得る。また、除氷水が除氷水路を流通することで除氷水が飛散することがないので、除氷水を無駄なく利用でき使用量を抑制し得る。
In the flow down type ice making machine according to claim 2, a deicing water channel through which the deicing water can flow is formed inside the frame member.
According to the invention of claim 2, since the deicing water channel in which the deicing water circulates inside the frame member, deicing of the ice block can be promoted. Further, since the deicing water does not scatter due to the deicing water flowing through the deicing water channel, the deicing water can be used without waste and the amount of use can be suppressed.

請求項3に係る流下式製氷機では、前記フレーム部材に、最上段の製氷小室の上部を画成する壁部の端縁部に当接する当接部を設け、前記通水孔および通孔部を流通する製氷水を該当接部を介して最上段の製氷小室へ送るようにした。
請求項3の発明によれば、当接部を介して製氷水を最上段の製氷小室へ送ることが可能となる。
In the flow-down type ice making machine according to claim 3, the frame member is provided with a contact portion that contacts an edge portion of a wall portion defining an upper portion of the uppermost ice making chamber, and the water passage hole and the through hole portion are provided. The ice-making water that circulates is sent to the uppermost ice-making chamber through the corresponding contact.
According to the invention of claim 3, it becomes possible to send the ice making water to the uppermost ice making chamber through the contact portion.

請求項4に係る流下式製氷機では、前記当接部を製氷部側へ突出するよう形成し、該当接部が製氷部に当接することで、フレーム部材と製氷小室の壁部とが離間して製氷水が流下可能な流路が形成される。
請求項4の発明によれば、当接部を製氷部側へ向けて突出させて流路を形成するようにしたので、製氷水がセパレータを伝って流下方向とは異なる方向へ迂回してしまうのを抑制し、製氷水を下方の製氷小室へスムーズに供給することができる。また、隣接する製氷小室の氷塊は、流路において連結するので、除氷時に全ての氷塊が連結した状態で同時に落下することとなる。従って、除氷効率を向上して、ランニングコストを低廉にし得る。更に、氷塊は当接部の厚みと略等しい寸法で連結するので、その連結力は弱く、製氷部から落下した際に確実にバラバラとなり得る。
In the flow-down type ice making machine according to claim 4, the abutting portion is formed so as to protrude toward the ice making portion, and the corresponding contact portion abuts on the ice making portion, whereby the frame member and the wall portion of the ice making chamber are separated from each other. Thus, a flow path through which ice-making water can flow is formed.
According to the fourth aspect of the present invention, since the abutment portion protrudes toward the ice making portion side to form the flow path, the ice making water travels through the separator and detours in a direction different from the flow-down direction. The ice making water can be smoothly supplied to the lower ice making chamber. Further, since the ice blocks in the adjacent ice making chambers are connected in the flow path, all the ice blocks are dropped simultaneously when deicing. Therefore, the deicing efficiency can be improved and the running cost can be reduced. Furthermore, since the ice blocks are connected with a dimension substantially equal to the thickness of the contact portion, the connecting force is weak and can be surely separated when dropped from the ice making portion.

請求項5係る流下式製氷機では、前記支持部は、前記サブタンクより上方に位置している。
請求項5発明によれば、支持部はサブタンクより上方に位置しているので、製氷水が支持部に付着し難く、製氷水中の不純物により支持部が固着してしまうのを抑制し得る。
In the flow-down type ice making machine according to a fifth aspect, the support portion is located above the sub tank.
According to the fifth aspect of the present invention, since the support portion is located above the sub tank, it is difficult for ice making water to adhere to the support portion, and it is possible to suppress the support portion from being fixed by impurities in the ice making water.

本発明に係る流下式製氷機によれば、低廉なコストで隣り合う氷塊の連結状態を制御することが可能となる。   According to the flow-down type ice making machine according to the present invention, it is possible to control the connection state of adjacent ice blocks at low cost.

次に、本発明に係る流下式製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。なお、以下の説明において、「前」、「後」、「左」、「右」、「上」、「下」とは、図1,図2に示す如く流下式製氷機を見た場合を基準として指称することとする。   Next, the flow-down type ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. In the following description, “front”, “rear”, “left”, “right”, “upper”, and “lower” refer to the case where the flow-down type ice maker is viewed as shown in FIGS. It shall be designated as a reference.

図1および図2は、実施例に係る流下式製氷機10の製氷機構12を示す縦断面図である。前記流下式製氷機10の製氷機構12は、製氷室14を画成する筐体16内に縦向き(上下方向)に設置された製氷部18と、セパレータ44およびサブタンク46から構成されるセパレータ機構20とから基本的に構成されている。また、前記製氷部18の下方には、内部に製氷水を貯留する製氷水タンク22が上方に開口した状態で設けられている。更に、製氷部18および製氷水タンク22の間に、製氷部18から落下した氷塊を製氷機構12の下方に配設した貯氷庫(図示しない)へ案内する氷案内板24が設けられている。氷案内板24には、製氷部18へ供給されて氷結に至らなかった製氷水(未氷結水)が通過するためのスリット24aが設けられ、該スリット24aを介して未氷結水が製氷水タンク22に回収されるようになっている。   1 and 2 are longitudinal sectional views showing an ice making mechanism 12 of a flow-down ice making machine 10 according to an embodiment. The ice making mechanism 12 of the flow-down type ice making machine 10 is a separator mechanism comprising an ice making unit 18 installed vertically (up and down) in a casing 16 that defines an ice making chamber 14, a separator 44, and a sub tank 46. 20 basically. An ice making water tank 22 for storing ice making water therein is provided below the ice making unit 18 so as to open upward. Further, an ice guide plate 24 is provided between the ice making unit 18 and the ice making water tank 22 to guide ice blocks falling from the ice making unit 18 to an ice storage (not shown) disposed below the ice making mechanism 12. The ice guide plate 24 is provided with a slit 24a through which ice-making water (non-freezing water) that has been supplied to the ice-making unit 18 and has not been frozen, passes through the slit 24a. 22 is collected.

前記製氷水タンク22には、製氷水を製氷部18へ送る供給パイプ26の一端が接続されている。供給パイプ26の他端は、図1に示すように、筐体16の上部に設けた第1凹部28を介して製氷室14内に臨む製氷水供給管32に接続している。また、供給パイプ26の途中に循環ポンプ34が介挿され、製氷運転時に循環ポンプ34が作動して、製氷水タンク22内の製氷水を吸上げるようになっている。更に、除氷運転時に常温の水(除氷水)を供給する除氷水供給管36が、筐体16に設けた第2凹部30を介して製氷室14の内部に臨んでいる。なお、除氷水供給管36は、図示しない外部水道源に連通接続しており、該水道源から除氷水供給管36へ除氷水が供給されるようになっている。   The ice making water tank 22 is connected to one end of a supply pipe 26 that sends ice making water to the ice making unit 18. As shown in FIG. 1, the other end of the supply pipe 26 is connected to an ice making water supply pipe 32 that faces the ice making chamber 14 through a first recess 28 provided in the upper part of the housing 16. Further, a circulation pump 34 is inserted in the middle of the supply pipe 26, and the circulation pump 34 is operated during the ice making operation to suck up ice making water in the ice making water tank 22. Furthermore, a deicing water supply pipe 36 that supplies water at normal temperature (deicing water) during the deicing operation faces the inside of the ice making chamber 14 through the second recess 30 provided in the housing 16. The deicing water supply pipe 36 is connected in communication with an external water source (not shown) so that deicing water is supplied from the water source to the deicing water supply pipe 36.

前記製氷部18は、熱伝導率の大きい金属板(壁部41)を折曲形成して構成された製氷小室40を複数備え、該製氷小室40は、縦横(図1では上下および前後方向)に整列して格子状に配設されている。また、各製氷小室40は、横向き(左方)に開口する矩形状の開口部40aを備えている。なお、実施例では、製氷小室40は、上下に3つ、前後に6つ設けられている(図1では、上下3つの製氷小室40のみを図示)。製氷小室40の外面には、図示しない冷凍系から導出する蒸発管(蒸発器)42が密着状態で固定され、該蒸発管42に供給される冷媒またはホットガスにより、製氷部18が冷却または加熱されるようになっている。各製氷小室40は、図1に示すように、底面40dがセパレータ機構20へ向けて下方傾斜する断面台形状に形成されている。上下に隣接する製氷小室40,40は連結しており、製氷水が上方の製氷小室40から下方の製氷小室40を順次伝って流下し得るようになっている。   The ice making section 18 includes a plurality of ice making chambers 40 formed by bending a metal plate (wall portion 41) having a high thermal conductivity. The ice making chambers 40 are vertically and horizontally (vertical and longitudinal directions in FIG. 1). Are arranged in a lattice pattern. Each ice making chamber 40 includes a rectangular opening 40a that opens sideways (to the left). In the embodiment, three ice making chambers 40 are provided on the top and bottom and six on the front and back (FIG. 1 shows only three ice making chambers 40 on the top and bottom). An evaporation pipe (evaporator) 42 led out from a refrigeration system (not shown) is fixed in close contact with the outer surface of the ice making chamber 40, and the ice making unit 18 is cooled or heated by a refrigerant or hot gas supplied to the evaporation pipe 42. It has come to be. As shown in FIG. 1, each ice making chamber 40 is formed in a trapezoidal shape with a bottom surface 40 d inclined downward toward the separator mechanism 20. The ice making chambers 40, 40 adjacent to each other are connected to each other so that ice making water can flow down from the upper ice making chamber 40 to the lower ice making chamber 40 sequentially.

前記セパレータ機構20は、図3〜図5に示すように、前記製氷部18における製氷小室40の開口側に設けられ、支持部48を介して上部側が揺動可能に軸支されたセパレータ44と、支持部48を挟んで製氷部18から離間する側へ延出するようセパレータ44に設けられ、貯留した製氷水によりセパレータ44を製氷部18に向けて揺動するサブタンク46とを備える。そして、後述のようにセパレータ機構20(セパレータ44)は、図1に示す整合位置から図2に示す非整合位置まで揺動可能となっている。   As shown in FIGS. 3 to 5, the separator mechanism 20 is provided on the opening side of the ice making chamber 40 in the ice making unit 18, and the separator 44 is pivotally supported via a support unit 48 so that the upper side is swingable. The separator 44 is provided so as to extend to the side away from the ice making unit 18 with the support 48 interposed therebetween, and includes a sub tank 46 that swings the separator 44 toward the ice making unit 18 by the stored ice making water. As described later, the separator mechanism 20 (separator 44) can swing from the alignment position shown in FIG. 1 to the non-alignment position shown in FIG.

セパレータ44は、製氷部18に比べて熱伝導率の小さい合成樹脂等で形成され、前記製氷小室40を画成する壁部41の端縁部40cに対応して延在する複数のフレーム部材50から構成される。すなわち、各フレーム部材50は、製氷小室40の端縁部40cに沿うよう縦横に組付けられており、該フレーム部材50の間に、左右に貫通する矩形状の通孔部50aが格子状に複数形成されている。そして、セパレータ44が整合位置となったときに、各フレーム部材50における製氷部18側の面(右端面50b)が、各製氷小室40における壁部41の端縁部40cの側方に臨んで、隣接する氷塊同士の連結状態を制御(連結の厚み寸法を制御)するようになっている。前記通孔部50aは、セパレータ44が整合位置となったときに前記製氷小室40の各開口部40aに整合するよう略同一寸法に形成され、セパレータ44を伝う製氷水を通孔部50aを介して製氷小室40側へ導くようになっている。なお、セパレータ44の通孔部50aは、製氷小室40と同様に、上下に3つ、前後に6つの計18個形成されている(図5参照)。各通孔部50aの開口寸法は、左方(製氷部18から離間する方向)へ向けて次第に狭小化するよう設定され、製氷小室40で形成された氷塊が通孔部50aを介してセパレータ44の左側から落下しないようになっている。   The separator 44 is formed of a synthetic resin or the like having a lower thermal conductivity than that of the ice making section 18, and a plurality of frame members 50 extending corresponding to the edge 40 c of the wall 41 defining the ice making chamber 40. Consists of That is, each frame member 50 is assembled vertically and horizontally along the edge 40c of the ice making chamber 40. Between the frame members 50, rectangular through holes 50a penetrating left and right are arranged in a lattice pattern. A plurality are formed. When the separator 44 is in the alignment position, the surface (right end surface 50b) of each frame member 50 facing the ice making section 18 faces the side edge 40c of the wall 41 in each ice making chamber 40. The connection state between adjacent ice blocks is controlled (the thickness dimension of the connection is controlled). The through holes 50a are formed in substantially the same size so as to be aligned with the openings 40a of the ice making chamber 40 when the separator 44 is in the alignment position, and the ice making water passing through the separator 44 is passed through the through holes 50a. To the ice making chamber 40 side. As in the ice making chamber 40, a total of 18 through-hole portions 50a of the separator 44 are formed in the top and bottom, and six in the front and rear (see FIG. 5). The opening size of each through hole 50a is set so as to gradually narrow toward the left (in the direction away from the ice making unit 18), and the ice blocks formed in the ice making chamber 40 are separated through the through hole 50a. It does not fall from the left side.

前記セパレータ44を構成するフレーム部材50は、外表面が滑らかに形成され、製氷運転時に製氷水がフレーム部材50を伝って流下し得るよう構成されている。前記セパレータ44の内部には、除氷水が流通可能な除氷水路52が形成されており、縦横(上下・前後)に交差するフレーム部材50の交差点で、互いに除氷水路52が連通している。すなわち、除氷運転時に前記除氷水供給管36から供給された除氷水は、除氷水路52を介してセパレータ44内の全体を流通するよう構成されている。最下段に位置するフレーム部材50の下面に排出口54が設けられ、除氷水路52を流通した除氷水を排出口54を介して下方(製氷水タンク22)へ排出するようになっている(図2参照)。   The frame member 50 constituting the separator 44 has a smooth outer surface so that ice making water can flow down through the frame member 50 during ice making operation. A deicing water channel 52 through which deicing water can flow is formed inside the separator 44, and the deicing water channels 52 communicate with each other at the intersections of the frame members 50 that intersect vertically and horizontally (up and down, front and rear). . That is, the deicing water supplied from the deicing water supply pipe 36 during the deicing operation is configured to circulate through the separator 44 through the deicing water channel 52. A discharge port 54 is provided on the lower surface of the frame member 50 located at the lowermost stage, and the deicing water flowing through the deicing water channel 52 is discharged downward (ice making water tank 22) through the discharge port 54 ( (See FIG. 2).

セパレータ44の上部には、除氷水供給管36から供給される除氷水を受容する受容部56が上部を開口させた状態で設けられている。前記受容部56は、前記サブタンク46と支持部48を挟んで反対側(製氷部18側)に設けられている。この受容部56は、フレーム部材50の除氷水路52に連通しており、受容部56に供給された除氷水は、自重で除氷水路52に流入するようになっている。そして、除氷時に供給され前記除氷水路52を流通する除氷水の重量により、前記支持部48を揺動軸として、セパレータ44は製氷部18から離間させる方向へシーソーの如く揺動する構成となっている。なお、前記除氷水供給管36の吐出口は、セパレータ44が整合位置にあって受容部56内に臨み(図1参照)、セパレータ44が非整合位置にあって受容部56から露出するようになっており、除氷水供給管36が揺動するセパレータ44に干渉しないよう図られている。   A receiving portion 56 that receives the deicing water supplied from the deicing water supply pipe 36 is provided in an upper part of the separator 44 with the upper part opened. The receiving part 56 is provided on the opposite side (ice making part 18 side) with the sub tank 46 and the support part 48 interposed therebetween. The receiving portion 56 communicates with the deicing water channel 52 of the frame member 50, and the deicing water supplied to the receiving unit 56 flows into the deicing water channel 52 by its own weight. The separator 44 swings like a seesaw in a direction away from the ice making unit 18 with the support portion 48 as a swing shaft by the weight of the deicing water supplied during deicing and flowing through the deicing water channel 52. It has become. The discharge port of the deicing water supply pipe 36 faces the receiving portion 56 with the separator 44 in the aligned position (see FIG. 1), and is exposed from the receiving portion 56 in the non-aligned position. The deicing water supply pipe 36 is designed not to interfere with the swinging separator 44.

前記フレーム部材50には、セパレータ44が整合位置となったときに該製氷部18における製氷小室40が形成された領域を囲うように当接する当接部58が設けられている(図5参照)。この当接部58は、図1に示すように、フレーム部材50の右端面50bから僅かに製氷部18側へ突出しており、セパレータ44が整合位置となったときに、当接部58が外側に位置する製氷小室40の外周端縁(以下、被当接部40bと云う)に当接するようになっている(図1,図2では、上下の被当接部40b,40bのみ図示)。そして、当接部58が被当接部40b,40bに当接した際に、当接部58が設けられていないフレーム部材50の製氷部18側の右端面50bと、対応する製氷小室40の壁部41の端縁部40cとが僅かに離間し、製氷水が流通可能な流路60が画成されるようになっている。   The frame member 50 is provided with an abutting portion 58 that abuts so as to surround the region where the ice making chamber 40 is formed in the ice making portion 18 when the separator 44 is in the alignment position (see FIG. 5). . As shown in FIG. 1, the contact portion 58 slightly protrudes from the right end surface 50 b of the frame member 50 toward the ice making portion 18, and when the separator 44 is in the alignment position, the contact portion 58 is outside. (See FIGS. 1 and 2 only the upper and lower contacted portions 40b and 40b are shown). When the abutting portion 58 abuts against the abutted portions 40b and 40b, the right end surface 50b on the ice making portion 18 side of the frame member 50 where the abutting portion 58 is not provided and the corresponding ice making chamber 40 The edge part 40c of the wall part 41 is spaced apart slightly, and the flow path 60 in which ice-making water can distribute | circulate is defined.

前記サブタンク46は、セパレータ44における支持部48を挟んで製氷部18とは反対側に一体的に形成され、その上部を上方に開放させている。サブタンク46の上部開口を介して製氷水供給管32がサブタンク46内に臨んでおり、製氷運転時に製氷水を貯留するようになっている。そして、サブタンク46に貯留された製氷水により、前記セパレータ44は、支持部48を軸として製氷部18へ近接する方向へ向けてシーソーの如く揺動するようになっている。図3に示すように、前記サブタンク46には、内部を左右に仕切る仕切壁62が設けられ、サブタンク46の内部は、仕切壁62を挟んで貯留部62aと整流部62bとに分けられている。前記貯留部62aの容積は、貯留した製氷水の重量によりセパレータ44を揺動させ得る寸法に設定される。また、前記仕切壁62には、サブタンク46の底部近傍に複数の通孔62cが設けられている。この通孔62cを介して貯留部62a内の製氷水を整流部62bへ送出することで、製氷部18へ供給する製氷水の流量を抑制している。   The sub tank 46 is integrally formed on the side opposite to the ice making unit 18 with the support portion 48 in the separator 44 interposed therebetween, and the upper portion thereof is opened upward. The ice-making water supply pipe 32 faces the sub-tank 46 through the upper opening of the sub-tank 46, and stores ice-making water during the ice making operation. The separator 44 is swung like a seesaw in the direction approaching the ice making unit 18 with the support portion 48 as an axis by the ice making water stored in the sub tank 46. As shown in FIG. 3, the sub-tank 46 is provided with a partition wall 62 that partitions the interior left and right, and the interior of the sub-tank 46 is divided into a storage part 62 a and a rectifying part 62 b with the partition wall 62 interposed therebetween. . The volume of the storage portion 62a is set to a size that can swing the separator 44 by the weight of the stored ice making water. The partition wall 62 is provided with a plurality of through holes 62 c near the bottom of the sub tank 46. The flow rate of the ice making water supplied to the ice making unit 18 is suppressed by sending the ice making water in the storage unit 62a to the rectifying unit 62b through the through hole 62c.

図4に示すように、前記整流部62bには、仕切壁62とセパレータ44の上部とを連結する補強片64が複数(実施例では3つ)設けられている。また、整流部62bの底面は、セパレータ44へ向けて下方傾斜しており、該底面におけるセパレータ44との境界部分に製氷水が流通可能な通水孔66が開口している。すなわち、通水孔66は、図1に示すように、最上段のフレーム部材50における下端面に向けて開口しており、サブタンク46に貯留された製氷水は、通水孔66を流通してセパレータ44に送られ、更に通孔部50aを経て最上段の製氷小室40へ供給されるようになっている。   As shown in FIG. 4, the rectifying unit 62 b is provided with a plurality (three in the embodiment) of reinforcing pieces 64 that connect the partition wall 62 and the upper portion of the separator 44. Further, the bottom surface of the rectifying unit 62b is inclined downward toward the separator 44, and a water passage hole 66 through which ice-making water can flow is opened at a boundary portion between the bottom surface and the separator 44. That is, as shown in FIG. 1, the water passage hole 66 opens toward the lower end surface of the uppermost frame member 50, and the ice making water stored in the sub tank 46 flows through the water passage hole 66. It is sent to the separator 44 and further supplied to the uppermost ice making chamber 40 through the through hole 50a.

前記サブタンク46の前後の壁面に上方へ延出する一対の延出片68,68が設けられ、前記支持部48が、各延出片68に外方へ向けて突出するよう設けられている。そして、両支持部48,48を筐体16の前後の壁面に設けた図示しない軸受部に支承することで、セパレータ44の上部側が揺動自在に支持される。支持部48,48は、図1に示すように、前記サブタンク46および受容部56よりも上方に位置しており、製氷水供給管32または除氷水供給管36から供給された製氷水・除氷水が支持部48に付着し難くなっている。   A pair of extending pieces 68, 68 extending upward are provided on the front and rear wall surfaces of the sub tank 46, and the support portion 48 is provided so as to protrude outward from each extending piece 68. And by supporting both the support parts 48 and 48 on the bearing part which is not shown provided in the wall surface before and behind the housing | casing 16, the upper side of the separator 44 is supported so that rocking | fluctuation is possible. As shown in FIG. 1, the support portions 48, 48 are located above the sub tank 46 and the receiving portion 56, and ice making water / deicing water supplied from the ice making water supply pipe 32 or the deicing water supply pipe 36. Is difficult to adhere to the support portion 48.

このように構成されたセパレータ機構20では、製氷運転時にサブタンク46内に製氷水が貯留されることで、セパレータ44が製氷部18に向けて揺動して、製氷運転の間、該セパレータ44は整合位置に保持される。この整合位置では、前記セパレータ44のフレーム部材50が対応する製氷小室40における壁部41の端縁部40cに近接した状態で臨み、隣接する製氷小室40,40の氷塊の氷結を抑制している。一方、除氷運転に際しては、セパレータ機構20は、製氷小室40から剥離した氷塊により該セパレータ44が製氷部18から離間する方向へ揺動され、セパレータ44が製氷部18を開放させた非整合位置となる(図2参照)。   In the separator mechanism 20 configured as described above, the ice making water is stored in the sub tank 46 during the ice making operation, so that the separator 44 swings toward the ice making unit 18 and the separator 44 is moved during the ice making operation. Held in the aligned position. In this alignment position, the frame member 50 of the separator 44 faces in a state close to the edge 40c of the wall 41 in the corresponding ice making chamber 40, and the ice blocks of the adjacent ice making chambers 40, 40 are prevented from freezing. . On the other hand, during the deicing operation, the separator mechanism 20 is swung in a direction in which the separator 44 is separated from the ice making unit 18 by the ice block separated from the ice making chamber 40, and the separator 44 opens the ice making unit 18. (See FIG. 2).

(実施例の作用)
次に、実施例に係る流下式製氷機10の作用について説明する。製氷運転が開始すると、循環ポンプ34が作動して製氷水タンク22から製氷水が吸上げられると共に、蒸発管42に冷媒が供給される。循環ポンプ34により吸上げられた製氷水は、供給パイプ26を介して製氷水供給管32へ送られ、該製氷水供給管32の吐出口からサブタンク46の貯留部62a内に供給される。ここで、製氷水供給管32からサブタンク46へ供給される製氷水は、前記通孔62cから送出される製氷水より多く、該サブタンク46内には所定量の製氷水が貯留される。すると、サブタンク46に貯留された製氷水により、セパレータ44は製氷部18へ向けて揺動して整合位置に保持される。このとき、前記当接部58は、被当接部40b,40bに対し所定圧で当接した状態となり、各フレーム部材50が、流路60の分だけ離間して対応する壁部41における端縁部40cの側方に位置する(図1参照)。
(Operation of Example)
Next, the operation of the flow-down ice making machine 10 according to the embodiment will be described. When the ice making operation is started, the circulation pump 34 is operated to suck up ice making water from the ice making water tank 22 and supply the refrigerant to the evaporation pipe 42. The ice making water sucked up by the circulation pump 34 is sent to the ice making water supply pipe 32 through the supply pipe 26, and is supplied from the discharge port of the ice making water supply pipe 32 into the storage portion 62 a of the sub tank 46. Here, the ice making water supplied from the ice making water supply pipe 32 to the sub tank 46 is larger than the ice making water sent from the through hole 62c, and a predetermined amount of ice making water is stored in the sub tank 46. Then, the separator 44 swings toward the ice making unit 18 by the ice making water stored in the sub tank 46 and is held at the alignment position. At this time, the contact portion 58 is in contact with the contacted portions 40b, 40b with a predetermined pressure, and the end portions of the corresponding wall portions 41 are separated from each other by the flow path 60. It is located on the side of the edge 40c (see FIG. 1).

前記サブタンク46内に供給された製氷水は、通孔62cを介して貯留部62aから整流部62bへ送られ、更に、通水孔66を介してセパレータ44側へ送出される。すると、製氷水は、図6に示すように、最上段の通孔部50aを介して製氷小室40へ送られ、該製氷小室40の上部内面を伝って流入する。このとき、前記当接部58と最上段における製氷小室40の被当接部40bとが接触しているので、製氷水はスムーズに製氷小室40内へ流入し得る。製氷水は、製氷小室40内を伝って流下した後、製氷小室40の底面40dによりセパレータ44側へ案内される。ここで、製氷運転の初期段階では氷塊が形成されていないので、前記流路60は開放しており、製氷水は流路60を介して下方の製氷小室40へ直接流入する(図6参照)。   The ice making water supplied into the sub tank 46 is sent from the storage part 62a to the rectifying part 62b through the through hole 62c, and further sent out to the separator 44 side through the water hole 66. Then, as shown in FIG. 6, the ice making water is sent to the ice making chamber 40 through the uppermost through hole 50 a and flows along the upper inner surface of the ice making chamber 40. At this time, since the contact portion 58 and the contacted portion 40b of the ice making chamber 40 at the uppermost stage are in contact, the ice making water can smoothly flow into the ice making chamber 40. The ice making water flows down through the ice making chamber 40 and then is guided to the separator 44 side by the bottom surface 40 d of the ice making chamber 40. Here, since ice blocks are not formed in the initial stage of the ice making operation, the flow path 60 is open, and the ice making water flows directly into the ice making chamber 40 below through the flow path 60 (see FIG. 6). .

同様にして、製氷水は中段の製氷小室40内を流下した後、流路60を介して最下段の製氷小室40内に流入する。そして、最下段の製氷小室40を流下した製氷水は、該製氷小室40の被当接部40bに当接する当接部58および通孔部50aを介して製氷小室40から流出し、最下段のフレーム部材50から未氷結水として落下する(図1参照)。このように、製氷運転の初期段階では、製氷水がセパレータ44および製氷部18の間に画成される流路60を介して流下するので、製氷水がフレーム部材50を前後方向に伝って迂回することなく、効率よく製氷小室40へ供給することができる。従って、製氷効率を向上でき、製氷時間の短縮を図り得る。なお、前記未氷結水は、前記氷案内板24のスリット24aを通過して下方の製氷水タンク22へ回収され、該タンク22に回収された製氷水は再循環に供される。   Similarly, the ice making water flows down into the middle ice making chamber 40 and then flows into the lowermost ice making chamber 40 through the flow path 60. Then, the ice making water flowing down the lowermost ice making chamber 40 flows out of the ice making chamber 40 through the contact portion 58 and the through hole portion 50a contacting the contacted portion 40b of the ice making chamber 40, and the lowermost step. It falls from the frame member 50 as unfreezing water (see FIG. 1). Thus, in the initial stage of the ice making operation, the ice making water flows down through the flow path 60 defined between the separator 44 and the ice making unit 18, so that the ice making water travels around the frame member 50 in the front-rear direction and detours. It is possible to efficiently supply the ice making chamber 40 without doing so. Therefore, the ice making efficiency can be improved and the ice making time can be shortened. The uniced water passes through the slit 24a of the ice guide plate 24 and is collected in the ice making water tank 22 below, and the ice making water collected in the tank 22 is used for recirculation.

製氷運転が進行して、製氷小室40の内面に薄膜状の氷塊が形成され始めると、図7に示すように、前記流路60は氷塊により閉塞されて製氷水が通過し得なくなる。すると、製氷水は、製氷小室40から一旦流出し、前記フレーム部材50の外面を周回した後、下側の製氷小室40へ流入するようになる。このとき、製氷小室40の内面に薄氷が形成されているので、フレーム部材50側へ流出した製氷水は、この薄氷の表面張力により製氷小室40へ案内され、製氷小室40内の全体を製氷水が行き渡る。すなわち、製氷水が製氷部18からセパレータ44側へ移っても、再度、製氷小室40へ導くことができ、製氷効率が低下することはない。しかも、前記流路60が氷結することにより、セパレータ44と製氷小室40の端縁部40cとの隙間がなくなって、殆ど全ての製氷水を製氷小室40へ送ることができる。これにより、製氷水が製氷部18の外部に漏れ出し、氷塊が製氷部18以外のところで製造されてしまうと云った異常を抑制し得る。   When the ice making operation progresses and a thin ice block begins to form on the inner surface of the ice making chamber 40, the flow path 60 is blocked by the ice block and the ice making water cannot pass as shown in FIG. Then, the ice making water once flows out from the ice making chamber 40, circulates around the outer surface of the frame member 50, and then flows into the lower ice making chamber 40. At this time, since thin ice is formed on the inner surface of the ice making chamber 40, the ice making water that has flowed out toward the frame member 50 is guided to the ice making chamber 40 by the surface tension of the thin ice, and the entire ice making chamber 40 is entirely made of ice making water. Go around. That is, even if ice making water moves from the ice making unit 18 to the separator 44 side, it can be guided again to the ice making chamber 40, and the ice making efficiency is not lowered. Moreover, since the flow path 60 freezes, there is no gap between the separator 44 and the edge 40c of the ice making chamber 40, and almost all ice making water can be sent to the ice making chamber 40. Thereby, it is possible to suppress the abnormality that the ice making water leaks to the outside of the ice making unit 18 and the ice block is manufactured at a place other than the ice making unit 18.

製氷運転が完了すると、製氷小室40内で製造された氷塊は、フレーム部材50と氷結してセパレータ44に付着する。更に、前記流路60での氷結により隣接する氷塊同士が連結するので、製氷部18全体に1つの連結した氷塊が形成される。但し、氷塊同士の連結状態は、整合位置となったセパレータ44のフレーム部材50によって制御される。すなわち、氷塊は、氷塊自身の大きさに比べ僅かな厚み(当接部58の突出寸法と略等しい厚み)で連結するに止まり、その連結力は非常に弱い。除氷運転では、循環ポンプ34が停止してサブタンク46への製氷水の供給が停止されると共に、前記除氷水供給管36から除氷水が前記受容部56に供給される。また、蒸発管42へホットガスが供給され、該ホットガスにより製氷部18を加熱する。   When the ice making operation is completed, the ice blocks produced in the ice making chamber 40 freeze with the frame member 50 and adhere to the separator 44. Further, since the adjacent ice blocks are connected by freezing in the flow path 60, one connected ice block is formed in the entire ice making unit 18. However, the connection state of the ice blocks is controlled by the frame member 50 of the separator 44 at the alignment position. That is, the ice blocks only connect with a small thickness (thickness approximately equal to the protruding dimension of the contact portion 58) compared to the size of the ice blocks themselves, and the connection force is very weak. In the deicing operation, the circulation pump 34 is stopped, the supply of ice-making water to the sub tank 46 is stopped, and the deicing water is supplied from the deicing water supply pipe 36 to the receiving unit 56. Further, hot gas is supplied to the evaporation pipe 42, and the ice making unit 18 is heated by the hot gas.

前記受容部56へ供給された除氷水は、フレーム部材50の除氷水路52を流通することで、セパレータ44内の全体に亘って除氷水が流通する。これにより、セパレータ44と氷塊との氷塊を融解させる。このとき、前記受容部56へ供給されて除氷水路52を流通する除氷水の重量により、セパレータ44は製氷部18から離間する方向へ揺動するよう付勢される。前記除氷水路52を流通した除氷水は、フレーム部材50の排出口54を介して排出され、下方の製氷水タンク22に回収される(図2参照)。このように、除氷水を除氷水路52に流通させることで、製氷機内で除氷水が飛散することがなく、除氷水の無駄を防止して使用量を抑制し得る。更に、除氷水路52を流通した除氷水は、殆ど全てを製氷水タンク22で回収して、次回の製氷運転に製氷水として用いることができ、除氷水を有効利用し得る。   The deicing water supplied to the receiving portion 56 flows through the deicing water channel 52 of the frame member 50, so that the deicing water flows throughout the separator 44. Thereby, the ice block of the separator 44 and the ice block is melted. At this time, the separator 44 is urged to swing in a direction away from the ice making unit 18 by the weight of the deicing water supplied to the receiving unit 56 and flowing through the deicing water channel 52. The deicing water that has flowed through the deicing water channel 52 is discharged through the discharge port 54 of the frame member 50 and is collected in the ice making water tank 22 below (see FIG. 2). In this way, by passing the deicing water through the deicing water channel 52, the deicing water does not scatter in the ice making machine, and the amount of deicing water can be prevented and the amount of use can be suppressed. Furthermore, almost all of the deicing water flowing through the deicing water channel 52 can be collected by the ice making water tank 22 and used as ice making water for the next ice making operation, and the deicing water can be used effectively.

ここで、セパレータ44は、熱伝導率の低い樹脂で形成されているので、氷塊は、始めに熱伝導率の高い製氷小室40側で融解が始まる。そして、製氷小室40との氷結がなくなると、氷塊は、セパレータ44に付着したまま製氷小室40の底面40dに沿って斜め下方へ滑落し始める。一方、蒸発管42から離れた位置の流路60では、この段階で完全に氷結が融解しておらず、氷塊は連結したままである。すると、連結した氷塊は一斉に製氷小室40から離脱しようとするので、仮に一部の製氷小室40において氷塊が完全に融解していないとしても、当該氷塊は強制的に除氷され、除氷効率を向上し得る。製氷部18からセパレータ44側へ滑落する氷塊により、セパレータ44は製氷部18から離間する方向へ付勢され、セパレータ機構20は支持部48を中心として揺動する。これにより、セパレータ44は、整合位置から非整合位置まで揺動し、該セパレータ44に氷塊が付着した状態で製氷部18を開放させる(図2参照)。   Here, since the separator 44 is formed of a resin having a low thermal conductivity, the ice block begins to melt on the ice making chamber 40 side having a high thermal conductivity. When freezing with the ice making chamber 40 disappears, the ice block begins to slide down obliquely downward along the bottom surface 40 d of the ice making chamber 40 while adhering to the separator 44. On the other hand, in the flow path 60 at a position away from the evaporation pipe 42, the ice is not completely melted at this stage, and the ice blocks remain connected. Then, since the connected ice blocks try to be separated from the ice making chamber 40 all at once, even if the ice blocks are not completely melted in some ice making chambers 40, the ice blocks are forcibly deiced, and the ice removing efficiency is reduced. Can improve. The separator 44 is urged in a direction away from the ice making unit 18 by the ice block sliding down from the ice making unit 18 to the separator 44 side, and the separator mechanism 20 swings around the support unit 48. Accordingly, the separator 44 swings from the alignment position to the non-alignment position, and the ice making unit 18 is opened in a state where the ice block is attached to the separator 44 (see FIG. 2).

セパレータ44が非整合位置となった状態で更に除氷運転が進行すると、氷塊とセパレータ44との氷結が融解する。すると、氷塊は相互に連結したままセパレータ44から一斉に落下し、氷案内板24で受け止められる。そして、氷案内板24上を氷塊が滑落して、下方の貯氷庫に貯留される。このとき、氷案内板24や貯氷庫へ落下したときの衝撃により氷塊同士の連結が崩れ、氷塊は、夫々バラバラに分解された状態で貯氷庫に貯留される。   When the deicing operation further proceeds in a state where the separator 44 is in the non-aligned position, the ice formation between the ice block and the separator 44 is melted. Then, the ice blocks fall simultaneously from the separator 44 while being connected to each other, and are received by the ice guide plate 24. Then, ice blocks slide on the ice guide plate 24 and are stored in the ice storage below. At this time, the connection between the ice blocks is broken by the impact when the ice guide plate 24 or the ice storage is dropped, and the ice blocks are stored in the ice store in a state of being disassembled apart.

以上に説明したように、実施例に係る流下式製氷機10によれば、セパレータ44が整合位置となった際にフレーム部材50が対応の製氷小室40における壁部41の端縁部40cに臨むので、隣接する氷塊同士の連結状態を制御することが可能となる。従って、氷塊が強固に連結するのを防止して、バラバラの氷塊を提供し選る。また、セパレータ44は、製氷水や氷塊の重みによって揺動し得るので、セパレータ44を作動させるアクチュエータを設ける必要がなく、製品コストやメンテナンス費の高騰を回避し得る。更に、セパレータ機構20を支持する支持部48は、サブタンク46より上方に位置しているので、製氷水が支持部48に付着し難く、製氷水中の不純物により支持部48が固着してしまうのを抑制し得る。   As described above, according to the flow-down ice making machine 10 according to the embodiment, the frame member 50 faces the edge 40c of the wall 41 in the corresponding ice making chamber 40 when the separator 44 is in the alignment position. Therefore, it becomes possible to control the connection state of adjacent ice blocks. Accordingly, the ice blocks are prevented from being strongly connected, and the ice pieces are provided and selected. Further, since the separator 44 can be swung by the weight of ice making water or ice blocks, it is not necessary to provide an actuator for operating the separator 44, and an increase in product cost and maintenance cost can be avoided. Further, since the support portion 48 that supports the separator mechanism 20 is located above the sub tank 46, the ice making water is difficult to adhere to the support portion 48, and the support portion 48 is fixed due to impurities in the ice making water. Can be suppressed.

なお、実施例では、セパレータ44およびサブタンク46を一体構成としたが、夫々を別体に構成してもよい。また、実施例では、当接部58を枠状に形成して、製氷部18における製氷小室40が形成された領域を囲うように当接する構成とした。しかしながら、前記流路60を形成し得る構成であれば、例えば、セパレータ44の前後方向(水平方向)に延在する直線状の当接部を設け、当接部が最上段の製氷小室40にのみ当接する構成としてもよい。   In the embodiment, the separator 44 and the sub tank 46 are integrally configured, but each may be configured separately. In the embodiment, the abutting portion 58 is formed in a frame shape and abuts so as to surround the region where the ice making chamber 40 is formed in the ice making portion 18. However, if the flow path 60 can be formed, for example, a linear contact portion extending in the front-rear direction (horizontal direction) of the separator 44 is provided, and the contact portion is provided in the uppermost ice making chamber 40. It is good also as a structure which contacts only.

実施例では、セパレータ44および製氷部18の間に流路60を画成したが、必ずしも流路60を設ける必要はない。すなわち、フレーム部材50が全ての製氷小室40の壁部41に当接する構成として、氷塊の連結を完全に防止する構成としてもよい。なお、製氷部18は必ずしも垂直に設置する必要はなく、僅かに傾斜した状態で設置してもよい。   In the embodiment, the flow path 60 is defined between the separator 44 and the ice making unit 18, but the flow path 60 is not necessarily provided. That is, the frame member 50 may be configured to abut against the wall portions 41 of all the ice making chambers 40 so that the ice blocks are completely prevented from being connected. The ice making unit 18 is not necessarily installed vertically, and may be installed in a slightly inclined state.

実施例に係る流下式製氷機の製氷機構を示す縦断面図であって、セパレータが整合位置にある場合を示す。It is a longitudinal cross-sectional view which shows the ice making mechanism of the flow-down type ice making machine based on an Example, Comprising: The case where a separator exists in an alignment position is shown. 実施例に係る流下式製氷機の製氷機構を示す縦断面図であって、セパレータが非整合位置にある場合を示す。It is a longitudinal cross-sectional view which shows the ice making mechanism of the flow-down type ice making machine based on an Example, Comprising: The case where a separator exists in a non-alignment position is shown. 実施例に係るセパレータ機構を一部破断して示す斜視図である。It is a perspective view which partially fractures and shows the separator mechanism which concerns on an Example. セパレータ機構の概略平面図である。It is a schematic plan view of a separator mechanism. セパレータを製氷部側から見た概略側面図である。It is the schematic side view which looked at the separator from the ice-making part side. 製氷運転の初期段階の製氷機構を示す拡大縦断面図である。It is an expanded longitudinal cross-sectional view which shows the ice making mechanism of the initial stage of ice making operation. 製氷小室内に氷塊が製造され始め流路が氷結した状態の製氷機構を示す拡大縦断面図である。It is an enlarged vertical sectional view showing an ice making mechanism in a state where ice blocks are started to be produced in the ice making chamber and the flow path is frozen.

符号の説明Explanation of symbols

18 製氷部,40 製氷小室40 開口部,40b 当接部(端縁部)
40c 端縁部(製氷小室),40d 底面,41 壁部,42 蒸発管(蒸発器)
44 セパレータ,46 サブタンク,48 支持部,50 フレーム部材
50a 通孔部,52 除氷水路,58 当接部,60 流路,66 通水孔
18 ice making part, 40 ice making chamber 40 opening part, 40b contact part (edge part)
40c Edge (ice chamber), 40d bottom, 41 wall, 42 Evaporator (evaporator)
44 Separator, 46 Subtank, 48 Supporting part, 50 Frame member 50a Through hole, 52 Deicing water channel, 58 Abutting part, 60 Flow channel, 66 Water through hole

Claims (5)

横向きに開口する製氷小室(40)を複数有し、蒸発器(42)により冷却または加熱される製氷部(18)を備える流下式製氷機において、
前記製氷部(18)における製氷小室(40)の開口側に設けられ、支持部(48)を介して上部側が揺動可能に軸支されたセパレータ(44)と、
前記支持部(48)を挟んで製氷部(18)から離間する側へ延出するよう前記セパレータ(44)に設けられ、貯留した製氷水によりセパレータ(44)を製氷部(18)に向けて揺動するサブタンク(46)とを備え、
前記セパレータ(44)は、
前記製氷小室(40)を画成する壁部(41)の端縁部(40c)に対応して延在するフレーム部材(50)と、該フレーム部材(50)の間に画成されて、製氷水を製氷小室(40)へ導く通孔部(50a)とを備え、
前記サブタンク(46)は、該タンク(46)に貯留した製氷水を前記通孔部(50a)を介して最上段の製氷小室(40)に導く通水孔(66)を備え、
前記製氷小室(40)は、底面(40d)が開口側へ向けて下方傾斜するよう形成される
ことを特徴とする流下式製氷機。
In a flow-down type ice maker having an ice making chamber (40) having a plurality of ice making chambers (40) opened sideways and having an ice making part (18) cooled or heated by an evaporator (42),
A separator (44) provided on the opening side of the ice making chamber (40) in the ice making part (18), and supported on the upper side by a support part (48) so as to be swingable;
The separator (44) is provided so as to extend to the side away from the ice making part (18) across the support part (48), and the separator (44) is directed toward the ice making part (18) by the stored ice making water. A swinging sub tank (46),
The separator (44)
A frame member (50) extending corresponding to the edge (40c) of the wall portion (41) defining the ice making chamber (40), and defined between the frame member (50), A through hole (50a) for guiding the ice making water to the ice making chamber (40),
The sub tank (46) includes a water passage hole (66) for guiding the ice making water stored in the tank (46) to the uppermost ice making chamber (40) through the hole portion (50a),
The ice making chamber (40) is a flow-down type ice making machine characterized in that the bottom surface (40d) is formed to be inclined downward toward the opening side.
前記フレーム部材(50)の内部に、除氷水が流通可能な除氷水路(52)が形成されている請求項1記載の流下式製氷機。   The flow-down type ice maker according to claim 1, wherein a deicing water channel (52) through which the deicing water can flow is formed in the frame member (50). 前記フレーム部材(50)に、最上段の製氷小室(40)の上部を画成する壁部(41)の端縁部(40b)に当接する当接部(58)を設け、前記通水孔(66)および通孔部(50a)を流通する製氷水を該当接部(58)を介して最上段の製氷小室(40)へ送るようにした請求項1または2記載の流下式製氷機。   The frame member (50) is provided with an abutting portion (58) that abuts an end edge portion (40b) of a wall portion (41) that defines an upper portion of the uppermost ice making chamber (40), and the water passage hole The falling ice maker according to claim 1 or 2, wherein ice making water flowing through the through hole (50a) is sent to the uppermost ice making chamber (40) through the corresponding contact portion (58). 前記当接部(58)を製氷部(18)側へ突出するよう形成し、該当接部(58)が製氷部(18)に当接することで、フレーム部材(50)と製氷小室(40)の壁部(41)とが離間して製氷水が流下可能な流路(60)が形成される請求項3記載の流下式製氷機。   The contact part (58) is formed so as to protrude toward the ice making part (18), and the corresponding contact part (58) contacts the ice making part (18), so that the frame member (50) and the ice making chamber (40) are formed. The flow-down type ice maker according to claim 3, wherein a flow path (60) through which ice-making water can flow is formed by being spaced apart from the wall portion (41). 前記支持部(48)は、前記サブタンク(46)より上方に位置している請求項1〜4の何れか一項に記載の流下式製氷機。   The flow-down type ice making machine according to any one of claims 1 to 4, wherein the support portion (48) is positioned above the sub tank (46).
JP2008224067A 2008-09-01 2008-09-01 Falling type ice-making machine Pending JP2010060165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224067A JP2010060165A (en) 2008-09-01 2008-09-01 Falling type ice-making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224067A JP2010060165A (en) 2008-09-01 2008-09-01 Falling type ice-making machine

Publications (1)

Publication Number Publication Date
JP2010060165A true JP2010060165A (en) 2010-03-18

Family

ID=42187164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224067A Pending JP2010060165A (en) 2008-09-01 2008-09-01 Falling type ice-making machine

Country Status (1)

Country Link
JP (1) JP2010060165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092147A (en) * 2014-10-06 2017-08-10 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
WO2018198177A1 (en) * 2017-04-25 2018-11-01 三菱電機株式会社 Ice dispenser and refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092147A (en) * 2014-10-06 2017-08-10 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
KR102421480B1 (en) 2014-10-06 2022-07-15 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
KR20220104068A (en) * 2014-10-06 2022-07-25 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
KR102491839B1 (en) 2014-10-06 2023-01-26 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
WO2018198177A1 (en) * 2017-04-25 2018-11-01 三菱電機株式会社 Ice dispenser and refrigerator
CN110546443A (en) * 2017-04-25 2019-12-06 三菱电机株式会社 ice dispenser and refrigerator
CN110546443B (en) * 2017-04-25 2021-06-01 三菱电机株式会社 Ice dispenser and refrigerator

Similar Documents

Publication Publication Date Title
EP2474798B1 (en) Refrigerator with an ice-making device
EP3372924B1 (en) Ice-making device for refrigerator
KR101437983B1 (en) Water funnel and ice maker for refrigerator having the same
US8677776B2 (en) Ice-making device for refrigerator
EP2407737B1 (en) Refrigerator
JP5052277B2 (en) Ice making water tank of automatic ice machine
US8572999B2 (en) Refrigerator
CN103185447A (en) Refrigerator
JP4994198B2 (en) Flowing ice machine
JPWO2008032368A1 (en) Flowing ice machine
KR20100020897A (en) Ice maker and refrigerator having the same
KR100797155B1 (en) Cooling air flow structure of refrigerator
JP2010060165A (en) Falling type ice-making machine
JP2011038706A (en) Ice-making unit for flow-down type ice making machine
JP2007101000A (en) Refrigerator
JP2013064518A (en) Storage tank for ice making machine
KR101639441B1 (en) Refrigerator
JP2008175440A (en) Operation method of jetting-ice making machine
TWI682136B (en) Ice making device
US20100000249A1 (en) Refrigerator
JP5755465B2 (en) Automatic ice machine
KR101596502B1 (en) Refrigerator
KR102184875B1 (en) Ice maker
JP5138944B2 (en) Injection type automatic ice maker
JP2010038451A (en) Water spray device for ice making machine