JP2010059589A - Conjugated conductive fiber - Google Patents

Conjugated conductive fiber Download PDF

Info

Publication number
JP2010059589A
JP2010059589A JP2008229326A JP2008229326A JP2010059589A JP 2010059589 A JP2010059589 A JP 2010059589A JP 2008229326 A JP2008229326 A JP 2008229326A JP 2008229326 A JP2008229326 A JP 2008229326A JP 2010059589 A JP2010059589 A JP 2010059589A
Authority
JP
Japan
Prior art keywords
conductive
conductive layer
fiber
acrylic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229326A
Other languages
Japanese (ja)
Other versions
JP5254715B2 (en
Inventor
Toshihiro Ikuro
敏裕 伊黒
Shinji Yoshida
伸治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2008229326A priority Critical patent/JP5254715B2/en
Publication of JP2010059589A publication Critical patent/JP2010059589A/en
Application granted granted Critical
Publication of JP5254715B2 publication Critical patent/JP5254715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester-based conjugated conductive fiber which is rich in antistaticity, is easily handleable, can be dyed at the atmospheric pressure, is good in a color developing property, after dyed, and is especially suitable for blending with acrylic raw materials. <P>SOLUTION: In the conjugated conductive fiber comprising a non-conductive layer A and a conductive layer B, the non-conductive layer occupies at least 70% of the fiber surface; the non-conductive layer is a polyester prepared by copolymerizing a metal sulfonate group-containing isophthalic acid with a polyalkylene glycol; and the conductive layer is a thermoplastic polymer containing titanium dioxide particles having conductive coating films. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、静電気の発生が抑制された複合導電性繊維に関する。   The present invention relates to a composite conductive fiber in which generation of static electricity is suppressed.

アクリル繊維からなるセーターやフリースなどは、着用後に脱ぐ場合の静電気の発生が免
れない。この静電気の発生を防ぐ為に、アクリル繊維に混用できる導電糸が要望されてい
る。
本要望に対応する為には、導電性を付与したアクリル繊維を混用することが考えられ、従
来いくつか提案されている(特許文献1、2参照)。
Sweaters and fleeces made of acrylic fibers are subject to static electricity when you take them off after wearing them. In order to prevent the generation of static electricity, there is a demand for conductive yarns that can be mixed with acrylic fibers.
In order to meet this demand, it is conceivable to mix acrylic fibers with conductivity, and some have been proposed in the past (see Patent Documents 1 and 2).

特公昭61−15167号公報Japanese Patent Publication No. 61-15167 特開平9−31747号公報JP-A-9-31747

しかしながら、アクリル導電糸の製造は非常に問題が多い。アクリル導電糸の製造方法は
、導電性粒子をアクリル樹脂に添加する方法、例えば、アクリル重合体と導電性酸化チタ
ン等の導電性粒子とを有機溶剤に溶解して紡糸原液を作成し、凝固液中へ吐出して半乾式
方法で紡糸し、後処理をして溶剤を抜くという煩雑な方法が挙げられる。この溶剤を抜く
時点で、アクリル繊維自体にはボイドが発生し、導電性に悪影響を及ぼす。
そこで考えられるのが、他素材の導電糸である。しかしながら、他素材の導電糸をアクリ
ル繊維に混用すると、アクリル繊維の染色と他素材の染色の2回の工程が必要となる。
本発明が解決しようとする課題は、導電化する上での問題点が少なく、アクリル繊維と同
一条件にての染色が可能な複合導電性繊維を提供することである。
However, the production of acrylic conductive yarn is very problematic. A method for producing an acrylic conductive yarn is a method in which conductive particles are added to an acrylic resin, for example, a spinning stock solution is prepared by dissolving an acrylic polymer and conductive particles such as conductive titanium oxide in an organic solvent. There is a complicated method of discharging into the inside and spinning by a semi-dry method, and after-treatment to remove the solvent. When this solvent is removed, voids are generated in the acrylic fiber itself, which adversely affects the conductivity.
What can be considered there is a conductive yarn of another material. However, if conductive yarns of other materials are mixed with acrylic fibers, two steps of dyeing acrylic fibers and dyeing other materials are required.
The problem to be solved by the present invention is to provide a composite conductive fiber that has few problems in making it conductive and can be dyed under the same conditions as the acrylic fiber.

本発明は、非導電層と導電層とからなる複合導電性繊維であって、非導電層が繊維表面を
少なくとも70%占めてなり、非導電層が、金属スルホネート基含有イソフタル酸とポリ
アルキレングリコールとを共重合したポリエステルであり、導電層が、導電性被膜を有す
る酸化チタン粒子を含む熱可塑性重合体である複合導電性繊維であり、このように構成す
ることにより上記課題を解決した。
The present invention relates to a composite conductive fiber comprising a non-conductive layer and a conductive layer, wherein the non-conductive layer occupies at least 70% of the fiber surface, and the non-conductive layer includes a metal sulfonate group-containing isophthalic acid and a polyalkylene glycol. And the conductive layer is a composite conductive fiber that is a thermoplastic polymer containing titanium oxide particles having a conductive coating, and the above-described problems have been solved by constituting in this way.

すなわち、本発明者等は、導電糸について鋭意検討した結果、アクリル繊維と同染色が可
能であり、製造上の問題点も少ない導電性繊維を得るために、溶融紡糸による複合導電性
繊維に着目し、複合導電性繊維表面の非導電層のポリマーをアクリルと同条件にて染色可
能、即ち常圧カチオン染色が可能なるポリマーとすることにより本発明に到達した。
That is, as a result of intensive studies on conductive yarns, the present inventors focused on composite conductive fibers by melt spinning in order to obtain conductive fibers that can be dyed in the same way as acrylic fibers and have few manufacturing problems. The present invention has been achieved by making the polymer of the non-conductive layer on the surface of the composite conductive fiber into a polymer that can be dyed under the same conditions as acrylic, i.e., capable of atmospheric pressure cationic dyeing.

本発明の複合導電性繊維は、工業的に容易に且つ安価に製造することが出来、常圧染色が
可能で発色性が良好であり、よって、アクリル素材に混用したとき、製品の静電気の発生
を抑え且つアクリル繊維と同条件にて染色が可能である。
The composite conductive fiber of the present invention can be easily and inexpensively produced industrially, can be dyed at normal pressure, and has good color development. Therefore, when mixed with an acrylic material, it generates static electricity in the product. And can be dyed under the same conditions as the acrylic fiber.

本発明の複合導電性繊維の非導電層は、金属スルホネート基含有イソフタル酸とポリアル
キレングリコールとを共重合したポリエステルである。
金属スルホネート基含有イソフタル酸(以下SIPと称する)は、非導電層のポリエステ
ル中に含有される酸成分に対し、0.5〜10モル%であることが好ましい。SIPが0
.5モル%未満であると、カチオン可染性が低下し、アクリルと同条件の染色とならず、
混用して染色した場合、導電性繊維が斑となって見える傾向にある。また、SIPが10
モル%を超えると、重合度が進まず、ポリマーの分子量が上がらず、紡糸をしても糸とな
らない傾向にある。
SIPは、例えば、5−金属スルホイソフタル酸ジメチル(以下SIPMと称する)又は
ジメチル基をエチレングリコールでエステル化させた化合物(以下SIPEと称する)が
挙げられる。SIPMを多量にスラリー槽へ投入するとスラリー物性を悪化させることが
あるのでSIPEを採用するのが好ましい。
また、SIP中金属はナトリウム、カリウム、リチウムなどが挙げられるが、最も好まし
いのはナトリウムである。
The nonconductive layer of the composite conductive fiber of the present invention is a polyester obtained by copolymerizing a metal sulfonate group-containing isophthalic acid and a polyalkylene glycol.
The metal sulfonate group-containing isophthalic acid (hereinafter referred to as SIP) is preferably 0.5 to 10 mol% with respect to the acid component contained in the polyester of the nonconductive layer. SIP is 0
. When the amount is less than 5 mol%, the cation dyeability is lowered, and the dyeing is not performed under the same conditions as acrylic.
When mixed and dyed, the conductive fibers tend to appear as spots. In addition, SIP is 10
When it exceeds mol%, the degree of polymerization does not progress, the molecular weight of the polymer does not increase, and even when spun, there is a tendency that it does not become a yarn.
Examples of SIP include dimethyl 5-metal sulfoisophthalate (hereinafter referred to as SIPM) or a compound obtained by esterifying a dimethyl group with ethylene glycol (hereinafter referred to as SIPE). It is preferable to employ SIPE because if a large amount of SIPM is added to the slurry tank, the physical properties of the slurry may be deteriorated.
Further, examples of the metal in SIP include sodium, potassium, lithium and the like, and most preferred is sodium.

また、ポリアルキレングリコールは、非導電層のポリエステルに対し、1.5〜6重量
%であることが好ましい。ポリアルキレングリコールが1.5重量%未満であると、常圧
による染色性が劣り、高圧染色をしなければならず、アクリルに混用して同条件での常圧
染色をすると、導電糸の染色濃度が低く、斑に見える傾向にある。また、ポリアルキレン
グリコールが6重量%を超えると、重合度が進まず、分子量が上がらず、紡糸をしても糸
とならない傾向にある。
Moreover, it is preferable that polyalkylene glycol is 1.5 to 6 weight% with respect to polyester of a nonelectroconductive layer. If the polyalkylene glycol is less than 1.5% by weight, the dyeability under normal pressure is inferior, and high-pressure dyeing is required. If mixed with acrylic and dyed at normal pressure under the same conditions, conductive yarn is dyed. Concentration is low and tends to look like spots. On the other hand, if the polyalkylene glycol exceeds 6% by weight, the degree of polymerization does not progress, the molecular weight does not increase, and there is a tendency that even when spinning, the yarn does not become a yarn.

また、ポリアルキレングリコールの平均分子量は、150から1000であることが好ま
しい。
ポリアルキレングリコールの平均分子量が上記範囲内であれば、常圧100℃付近での染
色効果を発揮させ、かつポリアルキレングリコールが可塑効果を発揮する為にスルホネー
ト基に起因する増粘作用を低減させることが出来る為、ポリマーの重合度を上げることが
可能である。
上記ポリアルキレングリコールは、一般式HO(CnH2nO)mH(但し、n,mは正
の整数)で表されるもので、n=2のポリエチレングリコールが汎用的で最も好ましい。
The average molecular weight of the polyalkylene glycol is preferably 150 to 1000.
If the average molecular weight of the polyalkylene glycol is within the above range, the dyeing effect at about 100 ° C. under normal pressure is exhibited, and the thickening action due to the sulfonate group is reduced because the polyalkylene glycol exhibits a plastic effect. Therefore, it is possible to increase the degree of polymerization of the polymer.
The polyalkylene glycol is represented by the general formula HO (CnH2nO) mH (where n and m are positive integers), and polyethylene glycol of n = 2 is general-purpose and most preferred.

上記ポリエステルとは、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリエチレンナフタレート等、繊維形成能のあるポリエステルポリマーを示す
。また、このポリエステルは酸化チタンを含有していてもよい。
Specifically, the polyester refers to a polyester polymer having fiber forming ability, such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Further, this polyester may contain titanium oxide.

また、本発明に用いる共重合ポリエステル中にはジエチレングリコール(以下DEGと称
する)が4.5〜6.0モル%含まれることが望ましい。このDEGは重合中の副反応に
より生成する。4.5モル%未満であれば、常圧カチオン可染性能が劣る。また、6.0
モル%を超えると、ポリマーの耐熱性、耐酸化性が劣り、溶融紡糸時の操業性が著しく悪
くなる。
また、ポリマーの末端カルボキシル基濃度を20〜30当量/トンにすることが好ましい
。末端カルボキシル基濃度が20当量/トン未満の場合、重合槽から押し出されるポリマ
ーのカラーが悪く、30当量/トンを超える場合、紡糸工程や後工程での耐熱性が悪くな
る。
The copolymer polyester used in the present invention preferably contains 4.5 to 6.0 mol% of diethylene glycol (hereinafter referred to as DEG). This DEG is generated by a side reaction during polymerization. If it is less than 4.5 mol%, the atmospheric pressure cationic dyeability is inferior. Also, 6.0
When it exceeds mol%, the heat resistance and oxidation resistance of the polymer are inferior, and the operability during melt spinning is remarkably deteriorated.
The terminal carboxyl group concentration of the polymer is preferably 20 to 30 equivalent / ton. When the terminal carboxyl group concentration is less than 20 equivalents / ton, the color of the polymer extruded from the polymerization tank is poor, and when it exceeds 30 equivalents / ton, the heat resistance in the spinning process and the subsequent process is deteriorated.

本発明に用いるポリエステルの極限粘度は、極限粘度の最大値[η]maxと最小値[η]m
inの比が 1.0≦[η]max/[η]min≦1.02 である。[η]max/[η]minが
上記範囲から外れると、溶融紡糸時の糸切れが多発し、紡糸濾過性が悪い為紡糸口金寿命
が短くなる等、操業性に劣る傾向にある。
The intrinsic viscosity of the polyester used in the present invention is the maximum value [η] max and the minimum value [η] m of the intrinsic viscosity.
The ratio of in is 1.0 ≦ [η] max / [η] min ≦ 1.02. When [η] max / [η] min is out of the above range, thread breakage frequently occurs during melt spinning, and the spinneret life tends to be shortened due to poor spinning filterability.

導電層において、導電性被膜を有する酸化チタン粒子を含有する。これによって、複合導
電性繊維は導電性能があり、アクリル繊維と混用して衣服を作成して着用したとき、静電
気が発生しない。
The conductive layer contains titanium oxide particles having a conductive film. As a result, the composite conductive fiber has a conductive performance, and static electricity is not generated when it is mixed with acrylic fiber to create and wear clothes.

導電性被膜としては、例えば、酸化銅、酸化銀、酸化亜鉛、酸化カドミウム、酸化錫、酸
化鉛、酸化マンガンなどが挙げられる。
導電性被膜には第2成分を添加しても良い。第2成分としては、異種金属の酸化物、同種
又は異種金属等が挙げられる。例えば、酸化銅/銅、酸化亜鉛/酸化アルミニウム、酸化
錫/酸化アンチモン、酸化亜鉛/亜鉛、酸化アルミニウム/アルミニウム、酸化錫/錫、
酸化アンチモン/アンチモン及びそれらの酸化物の一部が還元されたものを含有するもの
等が好適である。
Examples of the conductive coating include copper oxide, silver oxide, zinc oxide, cadmium oxide, tin oxide, lead oxide, and manganese oxide.
A second component may be added to the conductive coating. Examples of the second component include oxides of different metals, the same type or different types of metals. For example, copper oxide / copper, zinc oxide / aluminum oxide, tin oxide / antimony oxide, zinc oxide / zinc, aluminum oxide / aluminum, tin oxide / tin,
Antimony oxide / antimony and those containing a part of their oxides reduced are preferred.

導電性被膜を有する酸化チタン粒子は、粉末状での比抵抗が10Ω・cm(オーダー
)以下、特に10Ω・cm(オーダー)以下が好ましい。
The titanium oxide particles having a conductive coating preferably have a powder specific resistance of 10 4 Ω · cm (order) or less, particularly 10 2 Ω · cm (order) or less.

上記粒子の比抵抗は、直径1cmの円筒に10gの試料を詰め上部からピストンによっ
て200kgの圧力を加えて直流(0.1〜100V)を印加して測定する。
The specific resistance of the particles is measured by filling a cylinder with a diameter of 1 cm with a sample of 10 g, applying 200 kg of pressure from the top with a piston and applying direct current (0.1 to 100 V).

導電性被膜を有する酸化チタン粒子の粒径は、小さいものが可紡性及び導電性の見地か
ら望ましい。例えば、平均粒径1μm以下、特に0.7μm以下、最も好ましくは0.5
〜0.01μmのものが使用される。粒径が小さいほどポリマーと混合したとき、ポリマ
ー中における分散性に優れ、また混合物の導電性が優れる。
A small particle size of the titanium oxide particles having a conductive coating is desirable from the viewpoint of spinnability and conductivity. For example, an average particle size of 1 μm or less, particularly 0.7 μm or less, most preferably 0.5
Those having a diameter of ~ 0.01 μm are used. The smaller the particle size, the better the dispersibility in the polymer and the better the conductivity of the mixture when mixed with the polymer.

導電性被膜は、例えば、真空蒸着法や金属化合物(例えば、有機酸塩)を付着させ、焼
成して酸化物にすることや、それを部分還元することで形成することができる。
The conductive film can be formed, for example, by depositing a vacuum deposition method or a metal compound (for example, an organic acid salt) and baking it to make an oxide, or partially reducing it.

導電性被膜を有する酸化チタンと混合し導電層を形成するポリマーとしては、公知のあら
ゆる熱可塑性重合体を使用することが出来る。例えば、ポリアミド、ポリエステル、ポリ
オレフィン、ポリカーボネートなどが挙げられる。溶融紡糸したとき繊維形状になる熱可
塑性樹脂であればよい。
Any known thermoplastic polymer can be used as the polymer that forms a conductive layer by mixing with titanium oxide having a conductive film. For example, polyamide, polyester, polyolefin, polycarbonate and the like can be mentioned. Any thermoplastic resin may be used as long as it is fiber-shaped when melt-spun.

導電層における導電性被膜を有する酸化チタンの混合率は、30〜85重量%であること
が好ましい。
導電性被膜を有する酸化チタンの混合率が上記範囲内であれば、導電性能良好である。
The mixing ratio of titanium oxide having a conductive film in the conductive layer is preferably 30 to 85% by weight.
When the mixing ratio of titanium oxide having a conductive film is within the above range, the conductive performance is good.

本発明の複合導電性繊維は、非導電層が繊維表面を少なくとも70%占めていることが
必要であり、例えば、図1〜図4に示すような断面形状の複合繊維とすることが好適であ
る。
染色の均一性を考えると、図1〜図4に示すような、非導電層が繊維表面全体を占めて
いる繊維とすることが好適である。
The composite conductive fiber of the present invention requires that the non-conductive layer occupies at least 70% of the fiber surface. For example, a composite fiber having a cross-sectional shape as shown in FIGS. is there.
Considering the uniformity of dyeing, it is preferable to use fibers in which the non-conductive layer occupies the entire fiber surface as shown in FIGS.

導電層と非導電層の比率は、繊維横断面積比率で1:30〜2:1であることが好ましい

導電層比率が2:1より大きいと、強度が下がり、紡糸巻き取りが不可能となる傾向にあ
る。また、導電層比率が1:30より小さいと導電性不足となり、制電性能を発揮できな
くなる傾向にある。
The ratio of the conductive layer to the non-conductive layer is preferably 1:30 to 2: 1 in terms of the fiber cross-sectional area ratio.
When the conductive layer ratio is greater than 2: 1, the strength tends to decrease, and spinning winding tends to be impossible. On the other hand, when the conductive layer ratio is less than 1:30, the conductivity is insufficient, and the antistatic performance tends not to be exhibited.

複合導電性繊維の導電層に使用するポリマーと導電性被膜を有する酸化チタンとを混合す
る方法は特に規定されず、2軸混練など公知の方法にて混合する。得られた導電性樹脂を
用いて、複合導電性繊維の製造は、例えば、導電性樹脂と非導電層用のポリエステルとを
それぞれ溶融して、例えば、図1に示す断面形状となるように紡糸口金より吐出する。
The method for mixing the polymer used for the conductive layer of the composite conductive fiber and the titanium oxide having a conductive film is not particularly defined, and the mixing is performed by a known method such as biaxial kneading. Using the obtained conductive resin, composite conductive fibers can be produced, for example, by melting the conductive resin and the polyester for the non-conductive layer, respectively, and spinning into the cross-sectional shape shown in FIG. Discharge from the base.

吐出した複合糸を冷風により冷却した後、油剤を付与して公知の巻き取り機にて巻き取り
、マルチフィラメントもしくはモノフィラメントを得る。巻き取り速度は導電層、非導電
層の組み合わせ、比率に適したスピードであれば良いが、糸質及び巻き取り易さなどから
、600m/min〜1600m/minが望ましい。
After the discharged composite yarn is cooled with cold air, an oil agent is applied and wound with a known winder to obtain a multifilament or monofilament. The winding speed may be any speed suitable for the combination and ratio of the conductive layer and the non-conductive layer, but is preferably 600 m / min to 1600 m / min from the viewpoint of yarn quality and ease of winding.

得られた未延伸糸を80〜120℃の熱をかけながら延伸をして、複合導電性繊維を得
る。
延伸糸の単糸繊度は、アクリル繊維と混用の場合、単糸繊度は1.5〜5.0dtexが
望ましい。
The obtained undrawn yarn is drawn while applying heat at 80 to 120 ° C. to obtain a composite conductive fiber.
The single yarn fineness of the drawn yarn is preferably 1.5 to 5.0 dtex when mixed with acrylic fiber.

次に、本発明の複合導電性繊維の利用方法を示す。得られた複合導電性繊維を束ねて、
例えば、30万dtex程度となるように収束して、棟とする。棟にした導電糸に公知の
方法にてクリンプを掛ける。クリンプを掛けた後、紡糸油剤を除去し、アクリルに混用す
べくアフターオイルを添加して乾燥する。乾燥後、5mm以下にカットし綿状とし、別途
常法にて製造したアクリル綿に1〜数十重量%混合する。混合の割合は、最終製品の要求
される制電性能にあう割合であればよい。混合した後に公知の方法にて棟とする。得られ
た複合導電性繊維混アクリル棟を更に非導電性アクリルの棟と合わせて更に棟とし紡績糸
としてチーズ状に巻き取る。
得られたアクリル糸のチーズをチーズ染色としてカチオン染料にて98℃にて45分〜6
0分染色する。染色された複合導電性繊維混アクリル糸を公知の方法にて編み込み、起毛
加工して、フリースなどの衣服にする。
本発明の複合導電性繊維は、アクリル繊維と同一条件にて染色ができ斑とならず、本発明
の複合導電性繊維を混用したアクリル製衣服は静電気の発生も抑えられる画期的なもので
ある。
Next, the utilization method of the composite conductive fiber of this invention is shown. Bundle the resulting composite conductive fibers,
For example, it converges so that it may become about 300,000 dtex, and it is set as a ridge. Crimp the conductive thread in the ridge by a known method. After crimping, the spinning oil is removed, and after-oil is added to the acrylic and dried. After drying, it is cut to 5 mm or less to form cotton, and 1 to several tens of weight percent is mixed with acrylic cotton separately produced by a conventional method. The mixing ratio may be a ratio that meets the required antistatic performance of the final product. After mixing, the building is constructed by a known method. The obtained composite conductive fiber-mixed acrylic ridge is further combined with a non-conductive acrylic ridge to form a ridge and wound into a cheese shape as a spun yarn.
The resulting acrylic yarn cheese is dyed with cheese as a cationic dye at 98 ° C. for 45 minutes to 6 minutes.
Stain for 0 minutes. The dyed composite conductive fiber-mixed acrylic yarn is knitted by a known method, and raised to make a garment such as a fleece.
The composite conductive fiber of the present invention can be dyed under the same conditions as the acrylic fiber and does not become a spot. is there.

以下実施例により本発明を具体的に説明するが、本発明はこれによって限定されるもので
はない。尚、各評価は下記のようにして行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Each evaluation was performed as follows.

(1)制電性
制電性は本発明品及び比較対象品をアクリルに混用して衣服まで作成し、着用試験をした
。着用後衣服を脱ぐときにパチパチとなる静電気の発生が無ければ○、静電気の発生があ
れば×とした。
(1) Antistatic property The antistatic property was prepared by mixing the product of the present invention and the product to be compared with acrylic to make clothes, and subjected to a wearing test. When there was no generation of static electricity that would cause crackling when clothes were taken off after wearing, it was marked with ○ when there was generation of static electricity.

(2)染色性
染色性は本発明品及び比較対象品をアクリルに混用したものをKyacryl Red
GL 2omfと酢酸0.2cc/l浴比1:50にて常圧染色を行い、その結果を目
視で判断して、複合導電糸の斑が見えなければ○、斑が見えれば×とした。
(2) Dyeability As for dyeability, Kyaacryl Red is obtained by mixing the product of the present invention and the comparative product with acrylic.
Normal pressure dyeing was performed at a GL 2 omf and acetic acid 0.2 cc / l bath ratio 1:50, and the result was judged by visual observation.

(実施例1)
酸化アンチモンをドーピングした酸化錫をコーティングした酸化チタン粒子を、ポリエチ
レンに75重量%含有せしめたポリマーを導電層とした。ポリエステル中に含有する酸成
分に対し、2.5モル%のSIPEを含有し、平均分子量200のポリエチレングリコー
ルをポリマー中に5.0重量%含有した繊維形成性ポリエステルを非導電層とした。尚、
非導電層の繊維形成性ポリエステルにおいて、グリコール成分に対するジエチレングリコ
ール含有量は、5.9モル%であり、末端カルボキシル基濃度は、25当量/トンであり
、極限粘度比[η]max/[η]minは、1.005であった。
上記導電層と非導電層を、図1のような断面となるように、275℃、直径0.25mm
のオリフィスから紡出し、冷却・オイリングして1200m/minの速度で巻き取り、
100℃の熱をかけながら延伸して80dtex/24fの延伸糸を得た。
得られた延伸糸を詳細説明の通り短繊維綿にして、アクリル綿に10重量%含有させ、棟
とした。得られた棟を非導電のアクリルの棟19本と合わせて合計含有量0.5wt%と
なるようにして紡績糸を得た。本紡績糸のチーズ巻きのものをKyacryl Red
GL 2omfと酢酸0.2cc/l浴比1:50にて98℃×60分の染色を実施した
。その後編みたてを行い、起毛処理を行いフリースを作成した。
得られたフリースは、染色斑は見られず、着用試験による静電気の発生も見られなかった
Example 1
The conductive layer was a polymer in which 75% by weight of titanium oxide particles coated with tin oxide doped with antimony oxide were contained in polyethylene. A non-conductive layer was a fiber-forming polyester containing 2.5 mol% of SIPE with respect to the acid component contained in the polyester and containing 5.0% by weight of polyethylene glycol having an average molecular weight of 200 in the polymer. still,
In the fiber-forming polyester of the non-conductive layer, the diethylene glycol content relative to the glycol component is 5.9 mol%, the terminal carboxyl group concentration is 25 equivalents / ton, and the intrinsic viscosity ratio [η] max / [η] min was 1.005.
The conductive layer and the non-conductive layer are 275 ° C. and a diameter of 0.25 mm so as to have a cross section as shown in FIG.
Spinning from the orifice, cooling and oiling, winding at a speed of 1200 m / min,
Drawing was performed while applying heat at 100 ° C. to obtain a drawn yarn of 80 dtex / 24f.
The obtained drawn yarn was made into short fiber cotton as described in detail, and 10% by weight was contained in acrylic cotton to form a ridge. The obtained ridge was combined with 19 non-conductive acrylic ridges to obtain a spun yarn with a total content of 0.5 wt%. Kyacryl Red
Staining was performed at 98 ° C. for 60 minutes in a GL 2 omf and acetic acid 0.2 cc / l bath ratio 1:50. After that, it was knitted and brushed to create a fleece.
The obtained fleece showed no stained spots, and no static electricity was generated by a wearing test.

本発明の複合導電性繊維は、常圧染色が可能で発色性が良好であり、静電気発生も少なく
できる複合導電性繊維であり、アクリル繊維と混用するに好適である。
The composite conductive fiber of the present invention is a composite conductive fiber that can be dyed at normal pressure, has good color developability, can reduce the generation of static electricity, and is suitable for mixing with acrylic fiber.

本発明のポリエステル系複合導電性繊維の横断面の一実施態様を示す図である。It is a figure which shows one embodiment of the cross section of the polyester-type composite conductive fiber of this invention.

本発明のポリエステル系複合導電性繊維の横断面の一実施態様を示す図である。It is a figure which shows one embodiment of the cross section of the polyester-type composite conductive fiber of this invention.

本発明のポリエステル系複合導電性繊維の横断面の一実施態様を示す図である。It is a figure which shows one embodiment of the cross section of the polyester-type composite conductive fiber of this invention.

本発明のポリエステル系複合導電性繊維の横断面の一実施態様を示す図である。It is a figure which shows one embodiment of the cross section of the polyester-type composite conductive fiber of this invention.

符号の説明Explanation of symbols

A:非導電層
B:導電層
A: Non-conductive layer B: Conductive layer

Claims (3)

非導電層と導電層とからなる複合導電性繊維であって、非導電層が繊維表面の少なくとも
70%を占めてなり、非導電層が、金属スルホネート基含有イソフタル酸とポリアルキレ
ングリコールとを共重合したポリエステルであり、導電層が、導電性皮膜を有する酸化チ
タン粒子を含む熱可塑性重合体である複合導電性繊維。
A composite conductive fiber comprising a non-conductive layer and a conductive layer, wherein the non-conductive layer occupies at least 70% of the fiber surface, and the non-conductive layer includes a metal sulfonate group-containing isophthalic acid and a polyalkylene glycol. A composite conductive fiber which is a polymerized polyester and whose conductive layer is a thermoplastic polymer containing titanium oxide particles having a conductive film.
導電層における導電性被覆を有する酸化チタン粒子の混合率が30〜85重量%である請
求項1記載の複合導電性繊維。
The composite conductive fiber according to claim 1, wherein a mixing ratio of titanium oxide particles having a conductive coating in the conductive layer is 30 to 85% by weight.
導電層と非導電層の比率が面積比率で1:30〜2:1である請求項1記載の複合導電性
繊維。
The composite conductive fiber according to claim 1, wherein the ratio of the conductive layer to the non-conductive layer is 1:30 to 2: 1 in terms of area ratio.
JP2008229326A 2008-09-08 2008-09-08 Composite conductive fiber Active JP5254715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229326A JP5254715B2 (en) 2008-09-08 2008-09-08 Composite conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229326A JP5254715B2 (en) 2008-09-08 2008-09-08 Composite conductive fiber

Publications (2)

Publication Number Publication Date
JP2010059589A true JP2010059589A (en) 2010-03-18
JP5254715B2 JP5254715B2 (en) 2013-08-07

Family

ID=42186684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229326A Active JP5254715B2 (en) 2008-09-08 2008-09-08 Composite conductive fiber

Country Status (1)

Country Link
JP (1) JP5254715B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135625A (en) * 2017-02-20 2018-08-30 正仁 櫨田 Method of manufacturing a woolen yarn and sweater not generating static electricity using fiber not generating static electricity
WO2020261914A1 (en) 2019-06-27 2020-12-30 株式会社クラレ Electroconductive composite fibers and fiber structure using same
CN112410959A (en) * 2020-11-12 2021-02-26 湖州欣缘纺织有限公司 Preparation method of anti-static polyester core-spun yarn
US11078608B2 (en) 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113824A (en) * 1984-11-02 1986-05-31 Kanebo Ltd Electrically conductive composite fiber
JPH08199454A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Polyester-based stretchable knitted or woven fabric having high color developing and antistatic property and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113824A (en) * 1984-11-02 1986-05-31 Kanebo Ltd Electrically conductive composite fiber
JPH08199454A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Polyester-based stretchable knitted or woven fabric having high color developing and antistatic property and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078608B2 (en) 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product
JP2018135625A (en) * 2017-02-20 2018-08-30 正仁 櫨田 Method of manufacturing a woolen yarn and sweater not generating static electricity using fiber not generating static electricity
WO2020261914A1 (en) 2019-06-27 2020-12-30 株式会社クラレ Electroconductive composite fibers and fiber structure using same
CN114008254A (en) * 2019-06-27 2022-02-01 株式会社可乐丽 Conductive composite fiber and fiber structure using same
CN112410959A (en) * 2020-11-12 2021-02-26 湖州欣缘纺织有限公司 Preparation method of anti-static polyester core-spun yarn

Also Published As

Publication number Publication date
JP5254715B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US6710242B1 (en) Core-sheath composite conductive fiber
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
CN101724265B (en) Denier/superfine denier nylon master granule, preoriented yarn (POY) and draw textured yarn (DTY) stretch yarn and preparation method thereof
JP5254715B2 (en) Composite conductive fiber
US5213892A (en) Antistatic core-sheath filament
US20220112630A1 (en) Electroconductive composite fibers and fiber structure using same
JP2015148032A (en) sea-island type composite fiber
JP5504048B2 (en) Conductive composite fiber
JP2013155454A (en) Recycled polyamide crimped yarn and method for producing the same
US20120237766A1 (en) Conductive conjugate fiber
JP2010059588A (en) Conjugated fiber
JP6192581B2 (en) False twisted yarn
JP2020111847A (en) Fiber dispersion
JP2005194650A (en) Conductive conjugate fiber
CN112796005A (en) Sheath-core type two-component anti-static anti-ultraviolet fiber and preparation method thereof
JP2008013868A (en) Antistatic polyester fiber and method for producing the same
JP3635152B2 (en) Conductive composite fiber
TWI835925B (en) Ultrafine fibers, manufacturing methods of fiber products and fiber dispersions
JP4332775B2 (en) Minimal metal composite fiber and method for producing the same
JP7044119B2 (en) Extrafine fibers and fiber dispersion
JP2009019288A (en) Antistatic hollow polyester fiber and method for producing the same
JP6752757B2 (en) Side-by-side split type composite fiber and method of manufacturing fabric using it
JP2004131862A (en) Recycled polyester conjugated fiber
JP2023152810A (en) Copolymerization polyester composition
KR19980050087A (en) Manufacturing method of polyester islands-in-the-sea composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3