JP2010059466A - Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material - Google Patents
Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material Download PDFInfo
- Publication number
- JP2010059466A JP2010059466A JP2008225674A JP2008225674A JP2010059466A JP 2010059466 A JP2010059466 A JP 2010059466A JP 2008225674 A JP2008225674 A JP 2008225674A JP 2008225674 A JP2008225674 A JP 2008225674A JP 2010059466 A JP2010059466 A JP 2010059466A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- hard particles
- coating film
- metal substrate
- metallic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、塗装膜の密着性や表面平滑性に優れた金属材料、及びその製造方法に関する。 The present invention relates to a metal material excellent in adhesion and surface smoothness of a coating film, and a method for producing the same.
マグネシウム合金、アルミニウム合金等の金属材料は、携帯電話やノートパソコンといった携帯用電子機器類の筐体や自動車部品などの部材の材料に利用されてきている。これらの材料は一般に、防食や美感向上を目的として、表面に透明樹脂等の塗装膜を設けて使用される。 Metal materials such as magnesium alloys and aluminum alloys have been used as materials for casings of portable electronic devices such as mobile phones and notebook personal computers and members of automobile parts. These materials are generally used by providing a coating film such as a transparent resin on the surface for the purpose of preventing corrosion and improving aesthetics.
表面に塗装膜を設けた金属材料において、長期にわたってその美観や防食性を維持するためには、金属材料と塗装膜との密着強度を向上することが課題となる。特許文献1には、密着強度を上げるために、ショットブラスト処理によって表面を粗面化し、所定の表面粗さとした表面処理マグネシウム材が開示されている。
ショットブラスト処理とは、細かい砂や鋼鉄、アルミナ等の粒子(ブラスト粒子)を金属の表面に吹きつけたり打ち当てたりして金属の表面を削り取り表面に凹凸をつける加工法である。このような方法では表面粗さの制御が難しく、表面粗さが大きい箇所では、基材の金属質感(金属光沢)が損なわれたり塗装膜の表面に凹凸がついたりすることで美観を損ねる可能性がある。 Shot blasting is a processing method in which fine particles of sand, steel, alumina, or the like (blast particles) are blown or hit against the surface of the metal to scrape the surface of the metal and make the surface uneven. With this method, it is difficult to control the surface roughness, and in places where the surface roughness is large, the metallic texture (metallic luster) of the base material may be impaired or the surface of the coating film may be uneven, which may impair the aesthetic appearance. There is sex.
また、金属基材としてマグネシウムやマグネシウム合金を使用した場合、削り取られたマグネシウム粉末が発火するおそれがある。さらに、加工後のブラスト粒子中にマグネシウム粉末が混入するため、ブラスト粒子の再利用が困難になるという問題もある。 In addition, when magnesium or a magnesium alloy is used as the metal base, the scraped magnesium powder may ignite. Furthermore, since magnesium powder is mixed in the blast particles after processing, there is a problem that it is difficult to reuse the blast particles.
本発明はこのような問題に鑑み、塗装膜との密着性を向上できると共に、基材の金属質感を維持できる金属材料、その製造方法、及びこれを用いた金属複合材料、電子機器用筐体を提供することを課題とする。 In view of such problems, the present invention can improve the adhesion to the coating film and maintain the metal texture of the base material, a manufacturing method thereof, a metal composite material using the metal material, and an electronic device casing It is an issue to provide.
本発明者は、上記の問題について鋭意検討した結果、基材金属よりも硬度の高い、平均粒径が1μm以上40μm以下の硬質粒子を下地金属基材の表面に吹き付けて、表面に埋め込むことによって、上記の要求特性を満たす金属材料が得られることを見出し、本発明を完成した。 As a result of earnestly examining the above problems, the present inventor sprayed hard particles having an average particle diameter of 1 μm or more and 40 μm or less higher in hardness than the base metal on the surface of the base metal base material and embedded in the surface. The inventors have found that a metal material satisfying the above required characteristics can be obtained, and completed the present invention.
本発明は、マグネシウム、マグネシウム合金、アルミニウム、及びアルミニウム合金からなる群より選択される金属基材、及び該金属基材の表面に埋め込まれた、該金属基材よりも硬度の高い、平均粒径が1μm以上40μm以下の硬質粒子を有する金属材料である(請求項1)。 The present invention relates to a metal substrate selected from the group consisting of magnesium, magnesium alloy, aluminum, and aluminum alloy, and an average particle diameter embedded in the surface of the metal substrate and having a hardness higher than that of the metal substrate. Is a metal material having hard particles of 1 μm or more and 40 μm or less (Claim 1).
表面に埋め込まれた硬質粒子のアンカー効果によって、金属基材と塗装膜との密着力を向上することができる。また硬質粒子の平均粒径を1μm以上40μm以下の範囲にすることで、金属光沢を損ねることなく密着力を向上することができる。 Due to the anchor effect of the hard particles embedded in the surface, the adhesion between the metal substrate and the coating film can be improved. Moreover, adhesive force can be improved, without impairing metallic luster by making the average particle diameter of a hard particle into the range of 1 micrometer or more and 40 micrometers or less.
前記硬質粒子は、Al2O3、SiO2、ZnO、ZrO2、及びTiO2からなる群より選択される1種以上とすると好ましい。これらの材料からなる硬質粒子はマグネシウムやアルミニウムとメカノケミカル反応を生じ、機械的に埋め込まれるのみでなく化学的にも結合し、埋め込み強度が向上するため、塗装膜と金属基材との密着強度をより向上することができる。 It said hard particles, Al 2 O 3, SiO 2 , ZnO, preferably the ZrO 2, and one or more selected from the group consisting of TiO 2. Hard particles made of these materials cause a mechanochemical reaction with magnesium and aluminum, not only mechanically embedded but also chemically bonded, improving the embedding strength, so the adhesion strength between the coating film and the metal substrate Can be further improved.
また本発明は、これらの金属材料の表面に塗装膜を有する金属複合材料を提供する(請求項3)。このような金属複合材料は防食性、塗膜密着性が優れている。特に、塗装膜の屈折率に近い屈折率を有する硬質粒子を用いることで、硬質粒子を殆ど見えなくすることができるため、金属光沢を損ねることなく密着性を向上することができる。 Moreover, this invention provides the metal composite material which has a coating film on the surface of these metal materials (Claim 3). Such a metal composite material is excellent in corrosion resistance and coating film adhesion. In particular, by using hard particles having a refractive index close to the refractive index of the coating film, the hard particles can be made almost invisible, so that the adhesion can be improved without impairing the metallic luster.
本発明は、さらに、金属基材を準備する工程、該金属基材よりも硬度の高い、平均粒径が1μm以上40μm以下の硬質粒子を該金属基材の表面に吹き付けて金属基材の表面に埋め込む工程、を有する金属材料の製造方法を提供する(請求項4)。金属基材の表面に硬質粒子を吹き付けることで、金属基材の表面に効率良く硬質粒子を埋め込むことが可能となる。 The present invention further includes a step of preparing a metal substrate, and spraying hard particles having an average particle diameter of 1 μm or more and 40 μm or less higher than the metal substrate on the surface of the metal substrate. A method for producing a metal material having a step of embedding in a metal is provided. By spraying hard particles on the surface of the metal substrate, the hard particles can be efficiently embedded in the surface of the metal substrate.
硬質粒子を金属基材の表面に吹き付けて埋め込む工程は、エアロゾルデポジション法により行うことが好ましい(請求項5)。エアロゾルデポジション法とは、微粒子をガスと混合してエアロゾル化し、ノズルを通して基板に噴射して被膜を形成する技術である。エアロゾル化された原料微粒子は、微小開口のノズルを通すことで超音速(数百m/s)までに加速される。加速された原料微粒子は基材表面に衝突し、衝突時に機械的に金属基材に埋め込まれる。更に、硬質粒子が金属基材とメカノケミカル反応を生じる場合は、化学的にも結合するため、埋め込み強度を向上させることができる。このような方法を用いることで、金属基材と硬質粒子とをより強固に結合させることができる。 The step of spraying and embedding the hard particles on the surface of the metal substrate is preferably performed by an aerosol deposition method. The aerosol deposition method is a technique in which fine particles are mixed with a gas to form an aerosol, and sprayed onto a substrate through a nozzle to form a coating. The aerosolized raw material fine particles are accelerated to a supersonic speed (several hundred m / s) by passing through a nozzle having a minute opening. The accelerated raw material fine particles collide with the substrate surface, and are mechanically embedded in the metal substrate at the time of the collision. Further, when the hard particles cause a mechanochemical reaction with the metal substrate, they are also chemically bonded, so that the embedding strength can be improved. By using such a method, a metal base material and a hard particle can be combined more firmly.
さらに本発明は、上記の金属材料を用いた電子機器用筐体を提供する(請求項6)。このような電子機器用筐体は、基材の金属光沢を維持できると共に塗装膜の密着性に優れており、商品価値を高められる。電子機器としては携帯電話等の携帯機器、パソコン等が例示できる。 Furthermore, the present invention provides an electronic device casing using the above metal material. Such a casing for electronic equipment can maintain the metallic luster of the base material and is excellent in the adhesion of the coating film, thereby increasing the commercial value. Examples of the electronic device include a mobile device such as a mobile phone and a personal computer.
本発明の金属材料は、塗装膜との密着性を向上できると共に、基材の金属質感を維持できる。 The metal material of the present invention can improve the adhesion to the coating film and can maintain the metal texture of the substrate.
本発明に使用する金属基材は、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金から選択する。なかでもマグネシウム及びマグネシウム合金は比重が小さいため、材料の軽量化を行うことができ、好ましい。特に、マグネシウム合金は強度に優れると共に反応性が高いので、硬質粒子との結合性が高く好ましい。金属基材はそのまま使用しても良いが、金属光沢を出すために鏡面研磨加工、ヘアライン加工、ダイヤカット加工等の表面処理をしておくと好ましい。 The metal substrate used in the present invention is selected from aluminum, aluminum alloy, magnesium, and magnesium alloy. Among these, magnesium and a magnesium alloy are preferable because they have a low specific gravity and can reduce the weight of the material. In particular, a magnesium alloy is preferable because it has excellent strength and high reactivity, and thus has high bonding properties with hard particles. The metal substrate may be used as it is, but it is preferable to perform a surface treatment such as mirror polishing, hairline processing, diamond cut processing in order to obtain a metallic luster.
本発明に使用する硬質粒子としては前記基材よりも硬度が高いものであれば種々の粒子を使用できる。金属基材とメカノケミカル反応を生じる硬質粒子を使用すると好ましい。例えばマグネシウム合金に対しては、Al2O3、SiO2、ZnO、ZrO2、及びTiO2からなる群より選択される1種以上とすると好ましい。硬質粒子の平均粒径は1μm以上40μm以下とする。平均粒径が1μm未満の場合はアンカー効果が得られにくく、塗膜の密着強度が低くなる。また40μmを超えると、表面粗さが大きくなり、塗装膜表面に凹凸が生じやすくなる。なお平均粒径はレーザー回折散乱法により測定することができる。 As the hard particles used in the present invention, various particles can be used as long as the hardness is higher than that of the substrate. It is preferable to use hard particles that cause a mechanochemical reaction with the metal substrate. For example, for a magnesium alloy, it is preferable to use at least one selected from the group consisting of Al 2 O 3 , SiO 2 , ZnO, ZrO 2 , and TiO 2 . The average particle diameter of the hard particles is 1 μm or more and 40 μm or less. When the average particle size is less than 1 μm, the anchor effect is difficult to obtain, and the adhesion strength of the coating film is lowered. On the other hand, if it exceeds 40 μm, the surface roughness becomes large and irregularities are likely to occur on the coating film surface. The average particle diameter can be measured by a laser diffraction scattering method.
硬質粒子の形状は、球状、針状、ウィスカ状等種々の物が使用できるが、径と長さの比(アスペクト比)が5以上のウィスカ状の硬質粒子を用いるとアンカー効果をより発揮でき、密着力を向上することができる。 Various shapes such as spherical, needle-like, whisker-like, etc. can be used as the shape of the hard particles, but if the whisker-like hard particles having a diameter to length ratio (aspect ratio) of 5 or more can be used, the anchor effect can be further exhibited. , Adhesion can be improved.
硬質粒子は、金属基材の表面に分散された状態で埋め込まれる。硬質粒子の量を金属基材の表面積全体に対して10%〜90%とすると、金属光沢を損なうことなく密着力を向上でき、好ましい。エアロゾルデポジション法によって硬質粒子を吹き付けて固定する場合は、エアロゾル濃度を調整することで、硬質粒子の量を調整できる。 The hard particles are embedded in a dispersed state on the surface of the metal substrate. When the amount of the hard particles is 10% to 90% with respect to the entire surface area of the metal substrate, the adhesion can be improved without impairing the metallic luster, which is preferable. When fixing by spraying hard particles by the aerosol deposition method, the amount of hard particles can be adjusted by adjusting the aerosol concentration.
塗装膜としては、透明のアクリル樹脂などを用いた公知の塗料を利用することができ、湿式法(浸漬法、スプレー塗装、電着塗装など)、乾式法(PVD法、CVD法など)の方法で金属材料の表面に塗装膜を形成できる。塗装膜は有色、半透明、透明いずれでも良いが、透明であると基材の金属質感を維持することができ、好ましい。なお透明とは、基材が目視にて確認できる程度を言う。また、硬質粒子の屈折率との差が0.1以内の屈折率を持つ塗装膜を用いると、塗装膜の外側から観察した場合に硬質粒子がほとんど見えなくなるため、下地の金属光沢による金属質感をより維持することができる。 As the coating film, a known paint using a transparent acrylic resin or the like can be used, and a wet method (immersion method, spray coating, electrodeposition coating, etc.), a dry method (PVD method, CVD method, etc.) A paint film can be formed on the surface of a metal material. The coating film may be colored, translucent, or transparent, but it is preferable that the coating film is transparent because the metallic texture of the substrate can be maintained. The term “transparent” refers to the extent that the substrate can be visually confirmed. In addition, if a coating film having a refractive index within 0.1 of the refractive index of the hard particles is used, the hard particles are almost invisible when observed from the outside of the coating film. Can be more maintained.
図1及び図2は本発明の金属複合材料を模式的に示す断面図である。金属基材1の表面に硬質粒子2(図2では硬質粒子4)が埋め込まれている。硬質粒子の一部は金属基材の表面に埋め込まれており、一部は露出している。この表面に塗装膜3が形成される。このような構成となることで金属基材1と塗装膜3との密着性が向上する。また図2に示すように、ウィスカ状の硬質粒子4は、その形状から、金属基材1の表面に埋め込まれやすく、また塗装膜3の中にもより深く入り込むことができるためアンカー効果をより発揮でき、金属基材1と塗装膜3との密着力を向上できる。
1 and 2 are cross-sectional views schematically showing the metal composite material of the present invention. Hard particles 2 (hard particles 4 in FIG. 2) are embedded in the surface of the
次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。 Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.
(実施例1〜4)
金属基材としてマグネシウム合金を用いる。AZ91合金相当の組成を有する、双ロール連続鋳造法により得られた圧延板を準備する。圧延は、加工対象(圧延対象)の加熱温度を200〜400℃、圧延ロールの加熱温度150〜250℃、1パスあたりの圧下率を10〜50%の条件で複数パス行い、厚さが0.5mmの圧延板を作製する。得られた圧延材にレベラー加工、研磨加工を順に施し、所望の大きさに切断した切断片に温間プレス加工(プレス温度200〜400℃)を施して、マグネシウム合金筐体を得る。得られたマグネシウム合金筐体に金属光沢を出すため、表面に鏡面研磨加工を施す。
(Examples 1-4)
A magnesium alloy is used as the metal substrate. A rolled sheet obtained by a twin roll continuous casting method having a composition corresponding to AZ91 alloy is prepared. Rolling is performed in multiple passes under the conditions of 200 to 400 ° C for the heating temperature of the object to be processed (rolling object), 150 to 250 ° C for the heating temperature of the rolling roll, and 10 to 50% of the rolling reduction per pass. A 5 mm rolled plate is produced. The obtained rolled material is subjected to leveler processing and polishing processing in this order, and a hot press processing (press temperature 200 to 400 ° C.) is applied to the cut piece cut into a desired size to obtain a magnesium alloy casing. In order to give a metallic luster to the obtained magnesium alloy casing, the surface is subjected to mirror polishing.
(エアロゾルデポジション法による硬質粒子の埋め込み)
1kPa以下に減圧された真空チャンバ内に設置されたマグネシウム合金基材に対して、1mm以下の微小開口ノズルから、表1に記載の硬質粒子とヘリウムガスからなるエアロゾルを亜音速(流速数百m/sec)で噴射し、硬質粒子をマグネシウム合金基材の表面に埋め込む。
(Embedded hard particles by aerosol deposition method)
An aerosol composed of hard particles and helium gas shown in Table 1 is subsonic (flow velocity of several hundred m) from a fine opening nozzle of 1 mm or less to a magnesium alloy substrate set in a vacuum chamber depressurized to 1 kPa or less. / Sec) to embed the hard particles in the surface of the magnesium alloy substrate.
(塗装膜の形成)
得られた金属材料の表面に、無色透明なアクリル樹脂塗料をスプレー塗布し、150℃10分焼き付けて塗装膜を形成した後、以下の評価を行う。
(Formation of paint film)
A colorless and transparent acrylic resin paint is spray-coated on the surface of the obtained metal material and baked at 150 ° C. for 10 minutes to form a coating film, and then the following evaluation is performed.
(透明性評価)
得られた金属酸化物皮膜の透明性を目視により評価する。白濁等が全く無く透明である場合を◎、白濁等が殆ど無く透明である場合を○、白濁等があり透明性が悪い場合を×とする。
(Transparency evaluation)
The transparency of the obtained metal oxide film is visually evaluated. The case where there is no white turbidity or the like is transparent, ◎, the case where there is almost no white turbidity or the like is transparent, ◯, the case where there is white turbidity or the like and the transparency is poor is indicated as ×
(表面状態:表面の平滑性)
塗装膜表面に凹凸が生じているかどうかを目視により評価する。凹凸が無い場合を○、凹凸があり表面状態が悪い場合を×とする。
(Surface condition: surface smoothness)
It is visually evaluated whether the coating film surface is uneven. The case where there is no unevenness is indicated by ○, and the case where there is unevenness and the surface state is poor is indicated by ×.
(表面状態:金属光沢)
塗装膜を塗布した状態において、下地である金属基材の金属光沢が確認できるかどうかを目視により評価する。金属光沢が確認できる場合を○、金属光沢が無くなり、表面状態が悪い場合を×とする。
(Surface condition: metallic luster)
Whether or not the metallic luster of the base metal substrate can be confirmed in a state where the coating film is applied is visually evaluated. The case where the metallic luster can be confirmed is marked with ◯, and the case where the metallic luster is lost and the surface condition is poor is marked with X.
(塗装膜の密着性評価)
JISK5600−5−6に準じて、クロスカット法により塗装膜の密着性を評価する。すなわち、塗装膜に1mm間隔で縦横に11本ずつ切り込みを入れ、その上に粘着テープを貼り付けて剥離し、マグネシウム合金表面から剥離した塗装膜の個数を数える。100個全てが剥離しないものを◎、剥離する数が10個以下の物を○、11個以上剥離する物を×とする。
(Evaluation of paint film adhesion)
In accordance with JISK5600-5-6, the adhesion of the coating film is evaluated by a cross-cut method. That is, 11 coatings are cut into the coating film at intervals of 1 mm vertically and horizontally, and an adhesive tape is pasted on the coating film and peeled off, and the number of coating films peeled off from the magnesium alloy surface is counted. The case where all 100 pieces are not peeled is denoted by ◎, the number of peeled pieces of 10 or less is indicated by ○, and the case where 11 pieces or more are peeled is indicated by ×.
(比較例1)
表面に鏡面研磨加工を施したマグネシウム合金基材に対して、アルミナ粒子を用いてショットブラスト処理を施す。さらに、脱脂→酸エッチング→脱スマット→表面調整という手順で下地処理を行った後、化成処理を行う。その後、実施例1〜4と同様に塗装膜を形成し、一連の評価を行う。
(比較例2、3)
表2に示す硬質粒子を用いること以外は実施例1〜5と同様にして、マグネシウム合金表面への硬質粒子の埋め込み及び塗装膜の形成を行い、一連の評価を行う。以上の結果を表1及び表2に示す。
(Comparative Example 1)
A shot blasting process is performed using alumina particles on a magnesium alloy substrate whose surface is mirror-polished. Further, after the base treatment is performed in the order of degreasing → acid etching → desmutting → surface adjustment, chemical conversion treatment is performed. Thereafter, a coating film is formed in the same manner as in Examples 1 to 4, and a series of evaluations is performed.
(Comparative Examples 2 and 3)
A series of evaluations is performed by embedding the hard particles in the surface of the magnesium alloy and forming a coating film in the same manner as in Examples 1 to 5 except that the hard particles shown in Table 2 are used. The above results are shown in Tables 1 and 2.
平均粒径が1μm〜40μmの硬質粒子を用いた実施例1〜5では塗装膜の密着性が良く、また透明性、塗装膜の平滑性、金属光沢も優れている。硬質粒子としてSiO2を用いた実施例2では、透明性が特に優れている。これは、SiO2の屈折率(1.5)がアクリル塗装膜の屈折率(1.5)に近いためと思われる。またウィスカ状の粒子を用いた実施例3では密着性に優れており、ウィスカ状の粒子は特にアンカー効果が高いことがわかる。 In Examples 1 to 5 using hard particles having an average particle diameter of 1 μm to 40 μm, the adhesion of the coating film is good, and the transparency, the smoothness of the coating film, and the metallic luster are also excellent. In Example 2 using SiO 2 as the hard particles, the transparency is particularly excellent. This seems to be because the refractive index (1.5) of SiO 2 is close to the refractive index (1.5) of the acrylic coating film. In Example 3 using whisker-like particles, the adhesion is excellent, and it can be seen that the whisker-like particles have a particularly high anchor effect.
ブラスト処理を行った比較例1は透明性は良好であったが、塗装膜の平滑性、金属光沢、密着性共に要求特性を満たさない結果となった。また平均粒径が小さい硬質粒子を用いた比較例2では、密着性が悪く、逆に平均粒径が大きい硬質粒子を用いた比較例3では、密着性は良好であったが塗装膜の表面に凹凸が生じる結果となった。 Comparative Example 1 subjected to the blast treatment had good transparency, but the smoothness, metallic luster and adhesion of the coating film did not satisfy the required characteristics. In Comparative Example 2 using hard particles having a small average particle diameter, the adhesion was poor. Conversely, in Comparative Example 3 using hard particles having a large average particle diameter, the adhesion was good, but the surface of the coating film The result was uneven.
1 金属基材
2 硬質粒子
3 塗装膜
4 硬質粒子(ウィスカ状)
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008225674A JP2010059466A (en) | 2008-09-03 | 2008-09-03 | Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008225674A JP2010059466A (en) | 2008-09-03 | 2008-09-03 | Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010059466A true JP2010059466A (en) | 2010-03-18 |
Family
ID=42186595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008225674A Pending JP2010059466A (en) | 2008-09-03 | 2008-09-03 | Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010059466A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011212684A (en) * | 2010-03-31 | 2011-10-27 | Hitachi Ltd | Metal bonding member and fabrication method of the same |
CN103255410A (en) * | 2013-04-24 | 2013-08-21 | 中国航空工业集团公司北京航空材料研究院 | Preparation method of magnesium alloy corrosion resistant prevention coating |
JP2021070226A (en) * | 2019-10-31 | 2021-05-06 | 株式会社豊田中央研究所 | Metal-resin joint body and method for manufacturing the same |
WO2024014380A1 (en) * | 2022-07-11 | 2024-01-18 | 京セラ株式会社 | Metal film and electronic component |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06136562A (en) * | 1992-09-10 | 1994-05-17 | Toshiba Corp | Metallic composite member |
JPH10331970A (en) * | 1997-06-04 | 1998-12-15 | Nissan Motor Co Ltd | Piston and piston ring groove surface improving method |
JPH11189882A (en) * | 1997-12-25 | 1999-07-13 | Sky Alum Co Ltd | Aluminum material for phosphating and its production |
-
2008
- 2008-09-03 JP JP2008225674A patent/JP2010059466A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06136562A (en) * | 1992-09-10 | 1994-05-17 | Toshiba Corp | Metallic composite member |
JPH10331970A (en) * | 1997-06-04 | 1998-12-15 | Nissan Motor Co Ltd | Piston and piston ring groove surface improving method |
JPH11189882A (en) * | 1997-12-25 | 1999-07-13 | Sky Alum Co Ltd | Aluminum material for phosphating and its production |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011212684A (en) * | 2010-03-31 | 2011-10-27 | Hitachi Ltd | Metal bonding member and fabrication method of the same |
CN103255410A (en) * | 2013-04-24 | 2013-08-21 | 中国航空工业集团公司北京航空材料研究院 | Preparation method of magnesium alloy corrosion resistant prevention coating |
JP2021070226A (en) * | 2019-10-31 | 2021-05-06 | 株式会社豊田中央研究所 | Metal-resin joint body and method for manufacturing the same |
WO2024014380A1 (en) * | 2022-07-11 | 2024-01-18 | 京セラ株式会社 | Metal film and electronic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Correlation between Al2O3 particles and interface of Al–Al2O3 coatings by cold spray | |
TW564266B (en) | Zinc plated steel sheet and method for producing the same, and method for producing press-formed product | |
WO2012128046A1 (en) | Metal member and method for manufacturing same | |
Kumar et al. | Deposition characteristics of copper particles on roughened substrates through kinetic spraying | |
WO2011030869A1 (en) | Magnesium-lithium alloy, rolled material, molded article, and process for producing same | |
WO2007148414A1 (en) | Delivery roll, and hearth roll for continuous annealing furnace | |
JPH0737674B2 (en) | Steel article with double protective coating and method of making same | |
JP2010059466A (en) | Metallic material and manufacturing method thereof, and case for electronic equipment using the metallic material | |
JP2008031519A (en) | Hot-dip galvanizing method and galvanized article | |
JPWO2018230716A1 (en) | Plating steel | |
JP2003239083A (en) | Surface treatment method for ornament, ornament and watch | |
Mouli et al. | Cold-Sprayed Cu-Zn-Al2O3 Coating on Magnesium Alloy: Enhanced Microhardness and Corrosion Behavior | |
JP2009221507A (en) | Magnesium alloy molding and its manufacturing method | |
JP2007146266A (en) | Corrosion protection-covered steel material and its production method | |
JP2014156651A (en) | Sprayed coating and metallic member with coating | |
JP2011021234A (en) | Colored titanium product which makes fingerprint hardly conspicuous and is superior in scratch resistance | |
WO2017150655A1 (en) | Steel wire material and method for manufacturing same, and method for manufacturing steel wire | |
JP5007424B2 (en) | Projection material for mechanical plating and highly corrosion-resistant coating | |
JP2010144224A (en) | Modification treatment method for metal film, and aluminum base alloy laminated body | |
JP2011149038A (en) | High gloss aluminum coating material for casing and method of manufacturing the same | |
Gül et al. | Improving the wear resistance of the magnesium alloy WE43 by cold sprayed Ni–Al2O3 and Ni–Zn–Al2O3 coatings | |
JP5783419B2 (en) | Magnesium-based coated member | |
JP2009215574A (en) | Method for producing laminate | |
CN112077144A (en) | Method for manufacturing aluminum alloy coating composite foil based on laser texturing method | |
JP2007146268A (en) | Corrosion protection-coated steel material and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130117 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130123 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20130521 Free format text: JAPANESE INTERMEDIATE CODE: A02 |