JP2010059462A - Plating treatment method for separator - Google Patents

Plating treatment method for separator Download PDF

Info

Publication number
JP2010059462A
JP2010059462A JP2008225598A JP2008225598A JP2010059462A JP 2010059462 A JP2010059462 A JP 2010059462A JP 2008225598 A JP2008225598 A JP 2008225598A JP 2008225598 A JP2008225598 A JP 2008225598A JP 2010059462 A JP2010059462 A JP 2010059462A
Authority
JP
Japan
Prior art keywords
plating
separator
processed
electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225598A
Other languages
Japanese (ja)
Inventor
Masafumi Koizumi
雅史 小泉
Katsuhiro Mizuno
勝宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Toyota Motor Corp
Original Assignee
Aisin Takaoka Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd, Toyota Motor Corp filed Critical Aisin Takaoka Co Ltd
Priority to JP2008225598A priority Critical patent/JP2010059462A/en
Publication of JP2010059462A publication Critical patent/JP2010059462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating device which can efficiently form a plating film partially at a desired part in the surface of the material to be treated. <P>SOLUTION: Regarding the plating treatment method for a separator in which gold is electroplated to the surface 10a to be treated in a metallic separator 10 for a fuel cell, the separator 10 is dipped into a gold ion-containing plating liquid in such a manner that the surface 10a to be treated is confronted with the electrode 30, and gold is precipitated on the surface 10a to be treated so as to be a granular shape while flowing an electric current in a pulse waveform to a space between the surface 10a to be treated and the electrode 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用の金属製のセパレータにめっき処理を行う方法に係り、特に、貴金属を電気めっきするのに好適なセパレータのめっき処理方法に関する。   The present invention relates to a method for plating a metal separator for a fuel cell, and more particularly, to a method for plating a separator suitable for electroplating a noble metal.

電解質膜を用いた固体高分子型燃料電池は、低温における作動が可能であり、かつ、小型軽量化が可能であるため、自動車などの移動体への適用が検討されている。特に、固体高分子型燃料電池を搭載した燃料電池自動車はエコロジーカーとして社会的な関心が高まっている。   A polymer electrolyte fuel cell using an electrolyte membrane can be operated at a low temperature, and can be reduced in size and weight. Therefore, application to a moving body such as an automobile is being studied. In particular, fuel cell vehicles equipped with polymer electrolyte fuel cells are gaining social interest as ecological cars.

このような固体高分子型燃料電池は、図5に示すように、膜電極接合体(MEA)95を主要な構成要素とし、それを燃料(水素)ガス流路および空気ガス流路を備えたセパレータ96,96で挟持して、単セルと呼ばれる1つの燃料電池90を形成している。膜電極接合体95は、イオン交換膜である電解質膜91の一方側にアノード側の電極(アノード触媒層)93aを積層し、他方側にカソード側の電極(カソード触媒層)93bを積層した構造であり、アノード触媒層93aとカソード触媒層93bには、それぞれ拡散層94a,94bが配置されている。   As shown in FIG. 5, such a polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 95 as a main component, and includes a fuel (hydrogen) gas passage and an air gas passage. One fuel cell 90 called a single cell is formed by being sandwiched between separators 96 and 96. The membrane electrode assembly 95 has a structure in which an anode side electrode (anode catalyst layer) 93a is laminated on one side of an electrolyte membrane 91 which is an ion exchange membrane, and a cathode side electrode (cathode catalyst layer) 93b is laminated on the other side. The anode catalyst layer 93a and the cathode catalyst layer 93b are provided with diffusion layers 94a and 94b, respectively.

ところで、燃料電池のセパレータの素材として、チタン系材料や、ステンレス鋼などが用いられている。このような素材は、表層に不働態酸化膜を有しており、この酸化膜は、一般的な環境下において耐食性を有しているので、セパレータの素材としては好適である。しかし、燃料電池のセパレータは、燃料電池の発電時に通電されるが、この酸化膜の存在により、接触抵抗値が高くなり、セパレータへの導電性が阻害されるおそれがある。   By the way, titanium-based material, stainless steel, or the like is used as a material for a fuel cell separator. Such a material has a passive oxide film on the surface layer, and since this oxide film has corrosion resistance under a general environment, it is suitable as a material for the separator. However, although the separator of the fuel cell is energized when the fuel cell generates power, the presence of this oxide film increases the contact resistance value, which may impair the conductivity to the separator.

そこで、セパレータの表面に金メッキのような導電性の貴金属めっきを施すことによって、セパレータの導電性を確保している。貴金属のめっきを行う場合には、製造コストの削減、及び環境負荷の低減の観点から、めっき膜厚を極力薄くすることが望ましい。   Therefore, the conductivity of the separator is ensured by performing conductive noble metal plating such as gold plating on the surface of the separator. When plating noble metals, it is desirable to reduce the plating film thickness as much as possible from the viewpoints of reducing manufacturing costs and reducing environmental burden.

このような点から、貴金属のめっき処理方法として、一定電流を流すことにより、チタン材の表面に貴金属を粒子状に析出させて、電気めっき処理を行う方法が提案されている(例えば、特許文献1参照)。   From such a point, as a noble metal plating method, a method is proposed in which a noble metal is deposited in the form of particles on the surface of a titanium material by flowing a constant current (for example, patent literature). 1).

特開2007−146250号公報JP 2007-146250 A

しかし、図6(a)に示すように、特許文献1に記載の方法でめっき膜90を基材80に被覆した場合には、酸化膜81が露出する露出部81aが存在する。特に、めっき処理の低コスト化を図るべく、析出させる貴金属の量を制限した場合には、露出部81aの割合が増加する。   However, as shown in FIG. 6A, when the plating film 90 is coated on the substrate 80 by the method described in Patent Document 1, there is an exposed portion 81a where the oxide film 81 is exposed. In particular, when the amount of noble metal to be deposited is limited in order to reduce the cost of the plating process, the ratio of the exposed portion 81a increases.

ところで、燃料電池の発電環境下では、生成する水は酸性であり、ハロゲンを含む腐食環境下である。さらには、燃料電池の発電により電位が高くなる部分が発生し、セパレータの金属に対してさらに厳しい腐食環境下となる。   By the way, in the power generation environment of the fuel cell, the generated water is acidic and is in a corrosive environment containing halogen. Furthermore, a portion where the potential becomes higher is generated by the power generation of the fuel cell, and it becomes a more severe corrosive environment with respect to the metal of the separator.

このような腐食環境下において、前述しためっき処理材を燃料電池のセパレータに用いた場合には、図6(b)に示すように、露出部81aから母材82の腐食又は酸化が進行し、酸化膜81が厚さ方向に成長する(酸化膜の厚みTaがTbにまで厚くなる)場合がある。この酸化膜81の成長に伴い、貴金属めっきが析出している近傍にまで酸化が及ぶことがあり、これらの現象が前述した接触抵抗の上昇の起因となると考えられる。しかし、図6(a)に示す露出部81aを減らすように、貴金属のめっき処理を行う場合、めっき膜の厚みが増え、製造コストが増加する。   In such a corrosive environment, when the above-described plating material is used for a fuel cell separator, as shown in FIG. 6B, corrosion or oxidation of the base material 82 proceeds from the exposed portion 81a. In some cases, the oxide film 81 grows in the thickness direction (the thickness Ta of the oxide film is increased to Tb). As the oxide film 81 grows, oxidation may reach the vicinity where the noble metal plating is deposited, and these phenomena are considered to cause the above-described increase in contact resistance. However, when the noble metal plating process is performed so as to reduce the exposed portion 81a shown in FIG. 6A, the thickness of the plating film increases and the manufacturing cost increases.

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、貴金属のめっき膜の厚みを薄くすると共に、めっき被覆率を向上させ被処理表面の露出部を少なくすることにより、燃料電池の使用時に抵抗上昇を抑制することができるセパレータのめっき処理方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to reduce the thickness of the noble metal plating film, improve the plating coverage, and reduce the exposed portion of the surface to be processed. Accordingly, an object of the present invention is to provide a separator plating method that can suppress an increase in resistance when a fuel cell is used.

発明者らは鋭意検討した結果、膜厚の薄くかつめっき被覆率の高いめっき膜を、被処理表面に被覆するには、微細な粒子を被処理表面により多く析出させることが重要であると考え、電気めっき処理時に通電させる電流の波形にパルス波形を用いることにより、このような析出形態でめっき処理を行うことが可能であるとの新たな知見を得た。   As a result of intensive studies, the inventors considered that it is important to deposit more fine particles on the surface to be processed in order to coat the surface to be processed with a thin film thickness and a high plating coverage. Further, by using a pulse waveform as a waveform of current to be energized at the time of electroplating treatment, a new finding has been obtained that it is possible to perform the plating treatment in such a deposited form.

本発明は、このような新たな知見に基づくものであり、本発明に係るセパレータのめっき処理方法は、燃料電池用の金属製の被処理表面に貴金属を電気めっきするセパレータのめっき処理方法であって、前記被処理表面が電極に対向するように、前記セパレータを前記貴金属のイオンを含む溶液中に浸漬し、前記被処理表面と電極との間にパルス波形の電流を流しながら前記被処理表面に前記貴金属を粒子状に析出させることを特徴とする。   The present invention is based on such new knowledge, and the separator plating method according to the present invention is a separator plating method for electroplating a noble metal on a metal surface to be processed for a fuel cell. Then, the separator is immersed in a solution containing ions of the noble metal so that the surface to be processed is opposed to the electrode, and a current having a pulse waveform is passed between the surface to be processed and the electrode. The noble metal is precipitated in the form of particles.

本発明によれば、金属製のセパレータを、貴金属イオンを含むめっき液浴中に浸漬させ、セパレータのめっき処理を行うべき被処理表面を、電極に対向するように配置する。そして、セパレータと電極とに電源を接続し、被処理表面と電極との間にパルス波形の電流を通電し、被処理表面に貴金属を粒子状に析出させ、被処理表面に貴金属のめっき膜を被覆することができる。この場合、セパレータの被処理表面と電極との間にパルス波形の電流を通電することにより、直流電流を通電する場合に比べて、被処理表面にめっきを生成する核を増やすことができ、これによりセパレータの被処理表面には、粒子状の貴金属が直流電流を流した場合に比べてより多く析出することになる。このようにして、セパレータの被処理表面に、めっき被覆率が高く、かつ膜厚の薄いめっき膜を被覆することができる。   According to the present invention, a metallic separator is immersed in a plating solution bath containing noble metal ions, and the surface to be treated for plating the separator is disposed so as to face the electrode. Then, a power source is connected to the separator and the electrode, a current having a pulse waveform is passed between the surface to be processed and the electrode, the noble metal is deposited in the form of particles on the surface to be processed, and a plating film of the noble metal is formed on the surface to be processed. Can be coated. In this case, by supplying a current having a pulse waveform between the surface to be processed of the separator and the electrode, it is possible to increase the number of nuclei that generate plating on the surface to be processed as compared with the case of supplying a direct current. Thus, a larger amount of particulate noble metal precipitates on the surface to be treated of the separator than when a direct current flows. In this way, the surface to be treated of the separator can be coated with a thin plating film having a high plating coverage.

上述した電極と被処理表面との間に通電する電流のパルス波形は、矩形波形だけでなく、例えば、PR波形、単相全波波形、交直重畳波形、三角波波形などの波形を挙げることができ、通常のめっき時の直流波形の電流密度よりも、より大きいピークの電流密度を設定することができるのであれば、特にパルス波形の形状は限定されるものではない。   The pulse waveform of the current that flows between the electrode and the surface to be processed is not limited to a rectangular waveform, and examples thereof include a PR waveform, a single-phase full-wave waveform, an AC / DC superimposed waveform, and a triangular waveform. The shape of the pulse waveform is not particularly limited as long as the current density having a larger peak than the current density of the direct current waveform during plating can be set.

また、金属製のセパレータの素材は、チタン系材料又はステンレス鋼であることがより好ましい。チタン系材料又はステンレス鋼は、表面に不働態酸化膜を形成し、この不働態酸化膜は耐食性を有するので、セパレータの使用環境に好適である。また、本発明のめっき処理方法に用いる貴金属としては、Au,Ru,Rh,Pd,Os,Ir及びPtのうち、少なくとも一種以上の貴金属が選択されることがより好ましい。   Further, the material of the metallic separator is more preferably a titanium-based material or stainless steel. Titanium-based material or stainless steel forms a passive oxide film on the surface, and this passive oxide film has corrosion resistance, so it is suitable for the usage environment of the separator. Further, as the noble metal used in the plating method of the present invention, it is more preferable that at least one or more kinds of noble metals are selected from Au, Ru, Rh, Pd, Os, Ir and Pt.

本発明に係るセパレータのめっき処理方法は、前記被処理表面の表面積に対する前記貴金属のめっき被覆率が、73%以上となるまで電気めっきを行うことがより好ましい。本発明によれば、パルス波形の電流の平均電流密度、ピーク電流密度、及び処理時間等を調整して、被処理表面の表面積に対する前記貴金属のめっき被覆率が73%となるまで粒子状に貴金属を析出させて、被処理表面に電気めっきを行うことにより、めっき処理されたセパレータの耐食性を向上させるばかりでなく、腐食環境下においても低接触抵抗性を維持することができる。   In the separator plating method according to the present invention, it is more preferable to perform electroplating until the plating coverage of the noble metal with respect to the surface area of the surface to be processed is 73% or more. According to the present invention, the average current density, the peak current density, the processing time, etc. of the current of the pulse waveform are adjusted, and the noble metal is in the form of particles until the plating coverage of the noble metal with respect to the surface area of the surface to be processed is 73%. By depositing and electroplating the surface to be treated, not only the corrosion resistance of the plated separator can be improved, but also low contact resistance can be maintained even in a corrosive environment.

なお、本発明でいう「めっき被覆率」とは、被処理表面の面積に対して、被処理表面に析出した貴金属のめっき粒子の占める面積の割合をいう。   The “plating coverage” as used in the present invention refers to the ratio of the area occupied by the precious metal plating particles deposited on the surface to be treated to the area of the surface to be treated.

さらに、本発明に係るセパレータのめっき処理方法は、前記パルス波形電流の平均電流密度が、0.1〜0.8A/dmであり、かつ、前記パルス波形電流のピーク電流密度が、0.5〜8A/dmであることがより好ましい。 Further, in the separator plating method according to the present invention, the average current density of the pulse waveform current is 0.1 to 0.8 A / dm 2 , and the peak current density of the pulse waveform current is 0.00. more preferably 5~8A / dm 2.

本発明によれば、前記に示す範囲のパルス波形電流の平均電流密度及びピーク電流密度で、セパレータのめっき処理を行うことにより、より好適にめっき処理をすることができる。すなわち、平均電流密度が0.1A/dm未満の場合には、めっき処理速度が遅いため生産性の観点から好ましいとは言えず、平均電流密度が0.8A/dmを超えた場合には、貴金属の析出不良、焼付き、又はめっき膜の剥がれなどのめっき不良が発生することがある。さらに、ピーク電流密度が、0.5A/dm未満の場合には、めっきの核が生成され難く、めっき被覆率が低下することがあり、ピーク電流密度が8A/dmを超えた場合には、焼付き、又はめっき効率の低下等の不具合が、発生する場合がある。 According to the present invention, the plating process can be more suitably performed by performing the plating process on the separator at the average current density and the peak current density of the pulse waveform current in the range shown above. That is, when the average current density is less than 0.1 A / dm 2 , it is not preferable from the viewpoint of productivity because the plating process speed is slow, and when the average current density exceeds 0.8 A / dm 2. May cause plating defects such as deposition failure of precious metals, seizure, or peeling of the plating film. Furthermore, when the peak current density is less than 0.5 A / dm 2 , plating nuclei are hardly generated, and the plating coverage may be reduced. When the peak current density exceeds 8 A / dm 2 In some cases, defects such as seizure or reduction in plating efficiency may occur.

本発明によれば、セパレータの被処理表面にめっき処理されためっき膜の厚みを薄くすると共に、めっき被覆率を向上させることができる。これにより、発電時における抵抗上昇を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing the thickness of the plating film plated on the to-be-processed surface of a separator, a plating coverage rate can be improved. Thereby, an increase in resistance during power generation can be suppressed.

以下に、図面を参照して、本発明に係るセパレータのめっき処理方法を実施形態に基づいて説明する。   Below, with reference to drawings, the plating treatment method of the separator concerning the present invention is explained based on an embodiment.

図1は、本実施形態に係るセパレータのめっき処理方法を行うためのめっき処理装置の全体構成図であり、図2は、図1に示すめっき処理装置を用いて被処理表面にめっき処理を行ったセパレータの部分断面図である。   FIG. 1 is an overall configuration diagram of a plating apparatus for performing a separator plating method according to the present embodiment, and FIG. 2 performs a plating process on a surface to be processed using the plating apparatus shown in FIG. It is a fragmentary sectional view of a separator.

図1に示すように、めっき処理装置100は、めっき用の電極30と、通電用の電源部40と、めっき液収容槽50とを備えている。めっき液収容槽50内には、チタンを白金で被覆した電極30が配置されており、電源部40のプラス極に接続されている。また、めっき液収容槽50内には、金属製のセパレータ10が配置されており、電源部40のマイナス極に接続されている。電源部40は、電極30と被処理材であるセパレータ10との間に電流を通電するための電流供給源であり、所望のパルス波形の電流が通電可能なように電流を調製する電流調整部(図示せず)を備えている。   As shown in FIG. 1, the plating apparatus 100 includes an electrode 30 for plating, a power supply unit 40 for energization, and a plating solution storage tank 50. An electrode 30 in which titanium is covered with platinum is disposed in the plating solution storage tank 50 and is connected to the positive electrode of the power supply unit 40. A metal separator 10 is disposed in the plating solution storage tank 50 and is connected to the negative electrode of the power supply unit 40. The power supply unit 40 is a current supply source for supplying a current between the electrode 30 and the separator 10 that is a material to be processed, and a current adjusting unit that adjusts the current so that a current having a desired pulse waveform can be supplied. (Not shown).

このようなめっき処理装置100を用いて、以下に示すようにして、セパレータ10の被処理表面10aに対して電気めっき処理を行う。まず、めっき液収容槽50内に金イオンを含むめっき液Lを投入する。次に、少なくとも被処理表面10aに対してアルカリ脱脂を行ったセパレータ10を準備する。   Using such a plating apparatus 100, electroplating is performed on the surface 10a to be processed of the separator 10 as described below. First, the plating solution L containing gold ions is put into the plating solution storage tank 50. Next, a separator 10 that has been subjected to alkaline degreasing on at least the surface to be treated 10a is prepared.

セパレータ10の素材は、チタン系材料(例えばJIS規格1種相当チタン板)又はステンレス鋼(例えばJIS規格:430)等が好ましい。このような材料は、図2に示すように、母材12に不働態酸化膜11が形成されているので、セパレータのような腐食環境下で使用される部材には好適である。   The material of the separator 10 is preferably a titanium-based material (for example, a JIS standard type 1 equivalent titanium plate) or stainless steel (for example, JIS standard: 430). As shown in FIG. 2, such a material is suitable for a member used in a corrosive environment such as a separator because a passive oxide film 11 is formed on a base material 12.

次に、セパレータ10の少なくとも被処理表面10aが、めっき液Lに浸漬されるように、めっき液収容槽50内に配置する。このとき、セパレータ10の被処理表面10aを、電極30に対向するように配置する。この姿勢を維持し、電極30に電源部40の正極を、セパレータ10に電源部40の負極を接続する。   Next, it arrange | positions in the plating solution storage tank 50 so that the to-be-processed surface 10a of the separator 10 may be immersed in the plating solution L. FIG. At this time, the treated surface 10 a of the separator 10 is disposed so as to face the electrode 30. This posture is maintained, and the positive electrode of the power supply unit 40 is connected to the electrode 30 and the negative electrode of the power supply unit 40 is connected to the separator 10.

そして、セパレータ10の被処理表面10aと電極30との間に、電源部40を用いて電流を通電する。この際、電源部40により、所望のパルス波形に調整した電流を通電し、被処理表面10aに金を粒子状に析出させる。この結果、図2に示すように、セパレータ10の不働態酸化膜11の被処理表面10aに金粒子状体が付着しためっき膜20を被覆することができる。   Then, a current is passed between the surface to be treated 10 a of the separator 10 and the electrode 30 using the power supply unit 40. At this time, a current adjusted to a desired pulse waveform is applied by the power supply unit 40 to deposit gold in the form of particles on the surface to be processed 10a. As a result, as shown in FIG. 2, the plating film 20 having the gold particulates attached thereto can be coated on the surface 10 a of the passive oxide film 11 of the separator 10.

このようにして得られためっき膜20は、セパレータ10の被処理表面10aと電極30との間にパルス波形の電流を通電することにより、直流電流を通電する場合に比べて、ピーク電流密度を増やすことができ、断続的な電流(又は電圧)が被処理表面10aに流れるので、被処理表面10aにめっきを生成する核を増加させることができる。この結果、従来の直流電流を通電してめっき処理を行う場合に比べて、微細な金粒子状体20aが被処理表面10aに無数に析出するので、めっき膜厚Tを薄くし、かつめっき被覆率を高めることができる。これにより、耐食性が高く、接触抵抗が低く、かつ信頼性が高いセパレータをより安価に製造することができる。   The plating film 20 obtained in this way has a peak current density compared to the case where a direct current is passed by passing a current having a pulse waveform between the surface to be treated 10 a of the separator 10 and the electrode 30. Since an intermittent current (or voltage) flows to the surface to be processed 10a, the number of nuclei that generate plating on the surface to be processed 10a can be increased. As a result, in comparison with the case where the plating process is performed by energizing a direct current, the fine gold particles 20a are deposited innumerably on the surface 10a to be processed, so that the plating film thickness T is reduced and the plating coating is performed. The rate can be increased. As a result, a separator having high corrosion resistance, low contact resistance, and high reliability can be manufactured at a lower cost.

以下に本発明を実施例に基づいて説明する。
(実施例1)
燃料電池用のチタン製のセパレータに相当する板材を準備し、被処理表面をアルカリ脱脂した。次に、板材を、金イオンを含む非シアン系のめっき液浴中に浸漬させ、板材のめっき処理を行うべき被処理表面を、白金電極に対向するように配置した。そして、板材と電極とに電源を接続し、被処理表面と電極との間に、平均電流密度0.2A/dm、ピーク電流密度0.8A/dmのパルス波形の電流を30秒間通電し、被処理表面に金を粒子状に析出させ、被処理表面に金めっき膜を被覆した。
The present invention will be described below based on examples.
Example 1
A plate material corresponding to a titanium separator for a fuel cell was prepared, and the surface to be treated was alkali degreased. Next, the plate material was immersed in a non-cyanide plating bath containing gold ions, and the surface to be processed for plating the plate material was disposed so as to face the platinum electrode. Then, a power source is connected to the plate material and the electrode, and a current having a pulse waveform with an average current density of 0.2 A / dm 2 and a peak current density of 0.8 A / dm 2 is passed between the surface to be processed and the electrode for 30 seconds. Then, gold was deposited in the form of particles on the surface to be treated, and the surface to be treated was coated with a gold plating film.

<めっき厚み測定試験>
実施例1のめっき処理されたセパレータのめっき膜のめっき厚みを、蛍光X線分析装置(XRF)を用いて測定した。この結果を表1に示す。
<Plating thickness measurement test>
The plating thickness of the plating film of the separator treated in Example 1 was measured using a fluorescent X-ray analyzer (XRF). The results are shown in Table 1.

<めっき被覆率測定試験>
実施例1のめっき処理されたセパレータのめっき被覆率を測定した。具体的には、走査電子顕微鏡(FE−SEM)によりめっき処理された表面を観察し、画像処理により、めっき被覆率を求めた。この結果を表1及び図3に示す。尚、図4(a),(b)に示すそれぞれの写真図は、後述する比較例2、実施例3の走査電子顕微鏡により観察した写真図である。
<Plating coverage measurement test>
The plating coverage of the plated separator of Example 1 was measured. Specifically, the plated surface was observed with a scanning electron microscope (FE-SEM), and the plating coverage was determined by image processing. The results are shown in Table 1 and FIG. 4A and 4B are photographic views observed with a scanning electron microscope of Comparative Example 2 and Example 3 described later.

<定電位腐食試験>
定電位腐食試験は、燃料電池の発電を擬似した環境の評価試験であり、具体的には、まず、実施例1のめっき処理されたセパレータを硫酸溶液(300ml、pH4、80℃)に浸漬した。この状態で、白金板からなる対極とセパレータとを電気的に接続することにより対極とセパレータとの間に電位差を生じさせ、セパレータの腐食試験をおこなった。なお、試験中は、白金線からなる参照極によってセパレータの電位を一定(浸漬電位〜1V)に保持してある。また、定電位腐食試験におけるセパレータの評価面積は16cm(4cm×4cm)であり、試験時間は50時間程度である。
<Constant potential corrosion test>
The constant potential corrosion test is an environmental evaluation test that simulates the power generation of a fuel cell. Specifically, first, the plated separator of Example 1 was immersed in a sulfuric acid solution (300 ml, pH 4, 80 ° C.). . In this state, a counter electrode made of a platinum plate and the separator were electrically connected to generate a potential difference between the counter electrode and the separator, and a corrosion test of the separator was performed. During the test, the potential of the separator is kept constant (immersion potential to 1 V) by a reference electrode made of a platinum wire. Further, the evaluation area of the separator in the constant potential corrosion test is 16 cm 2 (4 cm × 4 cm), and the test time is about 50 hours.

<接触抵抗試験>
実施例1のめっき処理されたセパレータのめっき膜上にカーボンペーパを載せ、セパレータおよびカーボンペーパを一定荷重(1MPa)で電極間に挟んだ。この状態で、電極間にセパレータに1Aの電流を流しつつ各燃料電池セパレータに印加される電圧を測定することによりめっき処理された表面の接触抵抗を調べた。接触抵抗試験は、定電位腐食試験の前後において1回ずつ行った。接触抵抗試験における各サンプルの評価面積は4cm(2cm×2cm)である。また、定電位腐食試験の前後の接触抵抗の上昇倍率も算出した。この結果を、表1及び図3に示す。なお、表1及び図3に示す接触低抗率は、後述する比較例1の試験前の接触抵抗の値で正規化したものである。
<Contact resistance test>
Carbon paper was placed on the plating film of the separator subjected to the plating treatment of Example 1, and the separator and carbon paper were sandwiched between the electrodes at a constant load (1 MPa). In this state, the contact resistance of the plated surface was examined by measuring the voltage applied to each fuel cell separator while flowing a current of 1 A between the electrodes. The contact resistance test was performed once before and after the constant potential corrosion test. The evaluation area of each sample in the contact resistance test is 4 cm 2 (2 cm × 2 cm). In addition, the rate of increase in contact resistance before and after the potentiostatic corrosion test was also calculated. The results are shown in Table 1 and FIG. In addition, the contact resistance ratio shown in Table 1 and FIG. 3 is normalized by the value of the contact resistance before the test of Comparative Example 1 described later.

Figure 2010059462
Figure 2010059462

(実施例2、3)
実施例1と同じように、セパレータの被処理表面に金めっき処理を行った。実施例1と相違する点は、それぞれのピーク電流密度を2.0A/dm、3.0A/dmにした点である。そして、実施例1と同じようにして、めっき膜のめっき厚み、めっき被覆率、接触抵抗、及び抵抗上昇倍率を求めた。この結果、表1及び図3に示す。なお、図4(b)に、実施例3の走査電子顕微鏡により観察した写真図を示した。
(Examples 2 and 3)
In the same manner as in Example 1, the surface of the separator to be processed was subjected to gold plating. The difference from Example 1 is that the respective peak current densities were set to 2.0 A / dm 2 and 3.0 A / dm 2 . And it carried out similarly to Example 1, and calculated | required the plating thickness of the plating film, the plating coverage, the contact resistance, and the resistance increase magnification. The results are shown in Table 1 and FIG. In addition, the photograph figure observed with the scanning electron microscope of Example 3 was shown in FIG.4 (b).

(比較例1〜3)
実施例1と同じように、セパレータの被処理表面に金めっき処理を行った。実施例1と相違する点は、板材と電極とに電源を接続し、被処理表面と電極との間に、直流電流をそれぞれ30秒から10分間通電し、被処理表面に金を粒子状に析出させ、被処理表面に金めっき膜を被覆した点である。なお、比較例1〜3のそれぞれの平均電流密度を、0.05A/dm、0.2A/dm、0.1A/dmとした。そして、実施例1と同じようにして、めっき膜のめっき厚み、めっき被覆率、接触抵抗、及び抵抗上昇倍率を求めた。この結果、表1及び図3に示す。なお、図4(a)に、比較例2の走査電子顕微鏡により観察した写真図を示した。
(Comparative Examples 1-3)
In the same manner as in Example 1, the surface of the separator to be processed was subjected to gold plating. The difference from Example 1 is that a power source is connected to the plate material and the electrode, a direct current is passed between the surface to be treated and the electrode for 30 seconds to 10 minutes, and gold is particulated on the surface to be treated. It is the point which deposited and coat | covered the gold plating film | membrane on the to-be-processed surface. Incidentally, each of the average current density of Comparative Example 1~3, 0.05A / dm 2, 0.2A / dm 2, was 0.1 A / dm 2. And it carried out similarly to Example 1, and calculated | required the plating thickness of the plating film, the plating coverage, the contact resistance, and the resistance increase magnification. The results are shown in Table 1 and FIG. In addition, the photograph figure observed with the scanning electron microscope of the comparative example 2 was shown to Fig.4 (a).

(結果1及び考察1)
実施例1〜3及び比較例1〜3のセパレータには、いずれも良好なめっき膜が被覆された。また、図4(a),(b)からも明らかなように、実施例1〜3のめっき膜を構成する金の粒子状析出物は、比較例1〜3のものに比べて、微細であった。実施例1〜3のめっき膜のめっき厚みは、比較例3のものに比べて薄く、めっき厚みに対する被覆率も高いと考えられる。
(Result 1 and Discussion 1)
The separators of Examples 1 to 3 and Comparative Examples 1 to 3 were all coated with a good plating film. Further, as is clear from FIGS. 4A and 4B, the gold particulate precipitates constituting the plating films of Examples 1 to 3 are finer than those of Comparative Examples 1 to 3. there were. The plating thicknesses of the plating films of Examples 1 to 3 are considered to be thinner than those of Comparative Example 3, and the coverage with respect to the plating thickness is also high.

これは、実施例1〜3のセパレータは、セパレータの被処理表面と電極との間にパルス波形の電流を通電することにより、比較例1〜3の直流電流を通電する場合に比べて、ピーク電流密度を増加させ、断続的な電流(又は電圧)が被処理表面に流れるので、めっきを生成する核が増えたからであると考えられる。これによりセパレータの被処理表面には、粒子状の貴金属が直流電流を流した場合に比べてより多く析出したと考えられる。この結果、実施例1〜3のセパレータの被処理表面に、被覆率が高くかつ膜厚の薄い(20nm以下)の粒子状の金のめっき膜を被覆することができたと考えられる。   This is because the separators of Examples 1 to 3 have a peak compared to the case where the direct current of Comparative Examples 1 to 3 is passed by passing a pulse waveform current between the treated surface of the separator and the electrode. This is probably because the current density is increased and intermittent current (or voltage) flows to the surface to be processed, so that the number of nuclei that generate plating increases. As a result, it is considered that a larger amount of particulate noble metal was deposited on the surface to be treated of the separator than when a direct current was passed. As a result, it is considered that the surface of the separators of Examples 1 to 3 could be coated with a particulate gold plating film having a high coverage and a thin film thickness (20 nm or less).

(結果2及び考察2)
さらに、実施例2及び3のめっき被覆率は73%以上であり、抵抗上昇倍率も略1倍であった。これは、実施例2及び3のセパレータは、被処理表面の露出部分の割合が少ないことから、めっき処理されたセパレータの耐食性を向上させるばかりでなく、腐食環境下においても低接触抵抗性を維持することができたからであると考えられる。従って、燃料電池用のセパレータの被処理表面のめっき被覆率は、73%以上であることがより好ましいといえる。
(Result 2 and discussion 2)
Furthermore, the plating coverage of Examples 2 and 3 was 73% or more, and the resistance increase magnification was also about 1 time. This is because the separators of Examples 2 and 3 have a small ratio of exposed portions of the surface to be treated, so that not only the corrosion resistance of the plated separator is improved, but also low contact resistance is maintained even in a corrosive environment. It is thought that it was because it was able to do. Therefore, it can be said that the plating coverage of the surface to be treated of the fuel cell separator is more preferably 73% or more.

(実施例4)
実施例1と同じようにしてセパレータのめっき処理を行った。実施例1と相違する点は、パルス波形電流の電流密度の組み合わせで、(平均電流密度,ピーク電流密度)が(0.2A/dm,0.8A/dm)、(0.1A/dm,1.5A/dm)、(0.8A/dm,6.0A/dm)、(0.1A/dm,0.5A/dm)、(0.4A/dm,8A/dm)の条件で、セパレータにめっき処理を行った。これらの条件では、セパレータの表面に良好なめっき膜が形成された。
Example 4
The separator was plated in the same manner as in Example 1. The difference from Example 1 is the combination of the current densities of the pulse waveform currents, where (average current density, peak current density) is (0.2 A / dm 2 , 0.8 A / dm 2 ), (0.1 A / dm 2 , 1.5 A / dm 2 ), (0.8 A / dm 2 , 6.0 A / dm 2 ), (0.1 A / dm 2 , 0.5 A / dm 2 ), (0.4 A / dm 2) , 8 A / dm 2 ), the separator was plated. Under these conditions, a good plating film was formed on the surface of the separator.

(実施例5)
実施例1と同じようにしてセパレータのめっき処理を行った。実施例1と相違する点は、パルス波形電流の電流密度の組み合わせで、(平均電流密度,ピーク電流密度)が(1.2A/dm(0.8A/dmを超えた値),5.0A/dm(0.5〜8A/dmの値))、(0.5A/dm(0.1〜0.8A/dmの値),12.0A/dm(8A/dmを超えた値))条件で、セパレータにめっき処理を行った。
(Example 5)
The separator was plated in the same manner as in Example 1. The difference from Example 1 is the combination of the current densities of the pulse waveform currents, where (average current density, peak current density) is (1.2 A / dm 2 (value exceeding 0.8 A / dm 2 )), 5 .0A / (value of 0.5~8A / dm 2) dm 2) , ( the value of 0.5A / dm 2 (0.1~0.8A / dm 2), 12.0A / dm 2 (8A / The separator was plated under the condition of a value exceeding dm 2 )).

(結果3及び考察3)
実施例5のめっき処理において、平均電流密度が0.8A/dmを超えた場合には、貴金属の析出不良、焼付き、又はめっき膜の剥がれなどのめっき不良が発生することがあった。さらに、ピーク電流密度が8A/dmを超えた場合には、焼付き、又はめっき効率の低下等の不具合が、発生することがあった。従って、燃料電池用のセパレータの被処理表面にめっき処理をする場合には、パルス波形電流の平均電流密度が、0.8A/dm以下であり、かつ、パルス波形電流のピーク電流密度が、8A/dm以下であることがより好ましい。尚、発明者らのその他実験から、めっき処理効率を考慮すると、平均電流密度が、0.1A/dm以上あり、かつ、パルス波形電流のピーク電流密度が、0.5A/dm以上にすることがより好ましいことがわかった。
(Result 3 and discussion 3)
In the plating treatment of Example 5, when the average current density exceeded 0.8 A / dm 2 , plating defects such as precious metal deposition failure, seizure, or peeling of the plating film may occur. Furthermore, when the peak current density exceeds 8 A / dm 2 , defects such as seizure or a decrease in plating efficiency may occur. Therefore, when plating the surface to be treated of the separator for a fuel cell, the average current density of the pulse waveform current is 0.8 A / dm 2 or less, and the peak current density of the pulse waveform current is More preferably, it is 8 A / dm 2 or less. In addition, from other experiments by the inventors, in consideration of the plating treatment efficiency, the average current density is 0.1 A / dm 2 or more, and the peak current density of the pulse waveform current is 0.5 A / dm 2 or more. It turned out to be more preferable.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although embodiment of this invention has been explained in full detail using drawing, a concrete structure is not limited to this embodiment, Even if there is a design change in the range which does not deviate from the gist of the present invention. These are included in the present invention.

本実施形態では、燃料電池用のセパレータについて詳述したが、腐食環境下で使用することを前提に貴金属めっきを行う部材であれば、特にセパレータに限定されるものではない。   In the present embodiment, the fuel cell separator has been described in detail. However, the separator is not particularly limited as long as it is a member that performs precious metal plating on the assumption that the separator is used in a corrosive environment.

本実施形態に係るセパレータのめっき処理方法を行うためのめっき処理装置の全体構成図。The whole block diagram of the plating processing apparatus for performing the plating processing method of the separator which concerns on this embodiment. 図1に示すめっき処理装置を用いて被処理表面にめっき処理を行ったセパレータの部分断面図。The fragmentary sectional view of the separator which plated the to-be-processed surface using the plating processing apparatus shown in FIG. 実施例1〜3及び比較例1,2の定電位腐食試験前後の接触低効率の結果を示した図。The figure which showed the result of the contact low efficiency before and behind the constant potential corrosion test of Examples 1-3 and Comparative Examples 1 and 2. FIG. めっき処理後の表面を、走査電子顕微鏡(FE−SEM)により観察した写真図であり、(a)は、比較例2に係る表面の写真図であり、(b)は、実施例3に係る表面の写真図。It is the photograph figure which observed the surface after plating processing with the scanning electron microscope (FE-SEM), (a) is the photograph figure of the surface which concerns on the comparative example 2, (b) concerns on Example 3. A photograph of the surface. 固体高分子型燃料電池(単セル)の一例を説明する模式図。The schematic diagram explaining an example of a polymer electrolyte fuel cell (single cell). 従来のめっき処理を行っためっき処理材の断面図であり、(a)は、めっき処理直後のめっき処理材の断面図であり、(b)は、腐食環境下で使用後のめっき処理材の断面図。It is sectional drawing of the plating processing material which performed the conventional plating processing, (a) is sectional drawing of the plating processing material immediately after plating processing, (b) is the plating processing material after use in a corrosive environment. Sectional drawing.

符号の説明Explanation of symbols

10:セパレータ、10a:被処理表面、11:不働態酸化膜、12:母材、20:めっき膜、20a:金粒子状体、30:電極、40:電源部、50:めっき液収容槽、100:めっき処理装置、L:めっき液   10: Separator, 10a: Surface to be treated, 11: Passive oxide film, 12: Base material, 20: Plating film, 20a: Gold particulate, 30: Electrode, 40: Power supply unit, 50: Plating solution storage tank, 100: plating apparatus, L: plating solution

Claims (3)

燃料電池用の金属製の被処理表面に貴金属を電気めっきするセパレータのめっき処理方法であって、
前記被処理表面が電極に対向するように、前記セパレータを前記貴金属のイオンを含む溶液中に浸漬し、前記被処理表面と電極との間にパルス波形の電流を流しながら前記被処理表面に前記貴金属を粒子状に析出させることを特徴とするセパレータのめっき処理方法。
A separator plating method for electroplating a noble metal on a metal surface to be processed for a fuel cell,
The separator is immersed in a solution containing ions of the noble metal so that the surface to be processed is opposed to the electrode, and a current having a pulse waveform is passed between the surface to be processed and the electrode, and the surface is processed. A method for plating a separator, comprising precipitating a noble metal in a particulate form.
前記被処理表面の表面積に対する前記貴金属のめっき被覆率を73%以上にすることを特徴とする請求項1に記載のセパレータのめっき処理方法。   2. The separator plating method according to claim 1, wherein a plating coverage of the noble metal with respect to a surface area of the surface to be processed is set to 73% or more. 前記パルス波形電流の平均電流密度は、0.1〜0.8A/dmであり、かつ、前記パルス波形電流のピーク電流密度は、0.5〜8A/dmであることを特徴とする請求項1または2に記載のセパレータのめっき処理方法。 An average current density of the pulse waveform current is 0.1 to 0.8 A / dm 2 , and a peak current density of the pulse waveform current is 0.5 to 8 A / dm 2. The separator plating method according to claim 1 or 2.
JP2008225598A 2008-09-03 2008-09-03 Plating treatment method for separator Pending JP2010059462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225598A JP2010059462A (en) 2008-09-03 2008-09-03 Plating treatment method for separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225598A JP2010059462A (en) 2008-09-03 2008-09-03 Plating treatment method for separator

Publications (1)

Publication Number Publication Date
JP2010059462A true JP2010059462A (en) 2010-03-18

Family

ID=42186592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225598A Pending JP2010059462A (en) 2008-09-03 2008-09-03 Plating treatment method for separator

Country Status (1)

Country Link
JP (1) JP2010059462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131709A1 (en) * 2017-01-16 2018-07-19 仲山貴金属鍍金株式会社 Base member having increased surface hydrophobicity or hydrophilicity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131709A1 (en) * 2017-01-16 2018-07-19 仲山貴金属鍍金株式会社 Base member having increased surface hydrophobicity or hydrophilicity

Similar Documents

Publication Publication Date Title
EP3048186A1 (en) Metal-plated stainless steel material, and production method for metal-plated stainless steel material
TWI600207B (en) Fuel cell collector plate and method of manufacturing the same
JP2008214672A (en) Nanodiamond-noble metal-compounded thin film layer, composite metal material comprising the same, and fuel cell
TWI263701B (en) Electrolytic electrode and process of producing the same
WO2007001334A2 (en) Activation of aluminum for electrodeposition or electroless deposition
Ved et al. Composition and corrosion behavior of iron-cobalt-tungsten
JP2008004498A (en) Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period
Fayomi et al. Anti-corrosion properties and structural characteristics of fabricated ternary coatings
EP4074864A1 (en) Electrolysis electrode
TW200923129A (en) Method of coating metallic material
JP5244078B2 (en) Fuel cell separator and method for producing the same
JP2007257883A (en) Fuel cell separator and its manufacturing method
JP4928222B2 (en) Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP2010059462A (en) Plating treatment method for separator
JP2000256898A (en) Copper plating method of wafer
TWI662162B (en) Electroplating method and system thereof
JP5403642B2 (en) Corrosion resistant conductive material
US10629917B2 (en) Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
Feng et al. Effect of Magnetic Field on Corrosion Behaviors of Gold-Coated Titanium as Cathode Plates for Proton Exchange Membrane Fuel Cells
JP2004265695A (en) Separator for fuel cell
JP2021127468A (en) Sn-GRAPHENE COMPOSITE FILM PLATED METALLIC TERMINAL AND PRODUCTION METHOD THEREOF
JP6812606B1 (en) Porous materials, electrochemical cells, and methods for producing porous materials
RU2538492C1 (en) Method of manufacturing of cathode plate of tantalum capacitor with porous anode
JP4816839B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2005243595A (en) Separator for solid polymer fuel cell, and the solid polymer fuel cell using the same