JP2010059045A - Water-reducing agent for hydraulic composition - Google Patents

Water-reducing agent for hydraulic composition Download PDF

Info

Publication number
JP2010059045A
JP2010059045A JP2009183231A JP2009183231A JP2010059045A JP 2010059045 A JP2010059045 A JP 2010059045A JP 2009183231 A JP2009183231 A JP 2009183231A JP 2009183231 A JP2009183231 A JP 2009183231A JP 2010059045 A JP2010059045 A JP 2010059045A
Authority
JP
Japan
Prior art keywords
reducing agent
nsf
molecular weight
water reducing
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009183231A
Other languages
Japanese (ja)
Other versions
JP5536389B2 (en
Inventor
Shuichi Fujita
修一 藤田
Makoto Okubo
真 大久保
Toshimasa Hamai
利正 濱井
Yoshihito Naka
良仁 名嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009183231A priority Critical patent/JP5536389B2/en
Publication of JP2010059045A publication Critical patent/JP2010059045A/en
Application granted granted Critical
Publication of JP5536389B2 publication Critical patent/JP5536389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • C04B24/226Sulfonated naphtalene-formaldehyde condensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/0212Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with acyclic or carbocyclic organic compounds
    • C08G16/0218Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with acyclic or carbocyclic organic compounds containing atoms other than carbon and hydrogen
    • C08G16/0237Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with acyclic or carbocyclic organic compounds containing atoms other than carbon and hydrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a naphthalene-based water-reducing agent capable of giving outstanding flow retention effectiveness and strength development effectiveness for a hydraulic composition. <P>SOLUTION: The water-reducing agent for a hydraulic composition includes a naphthalenesulfonic acid-formaldehyde condensate which has a weight average molecular weight of 1,900-24,000 as determined by GPC and in which the peak area of a molecular weight of 4,000 or below as determined by GPC is 17 to 38% of the whole peak area as determined thereby. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水硬性組成物用減水剤に関する。   The present invention relates to a water reducing agent for hydraulic compositions.

水硬性組成物用の減水剤は、セメント粒子を分散させることにより、所要のスランプを得るのに必要な単位水量を減少させ、水硬性組成物の作業性等を向上させるために用いる化学混和剤である。減水剤には、従来、ナフタレン系(ナフタレンスルホン酸ホルムアルデヒド縮合物)やメラミン系(メラミンスルホン酸ホルムアルデヒド縮合物)の高性能減水剤が知られている。   The water reducing agent for hydraulic composition is a chemical admixture used to reduce the unit water amount required to obtain the required slump by dispersing cement particles and to improve the workability of the hydraulic composition. It is. As water reducing agents, naphthalene-based (naphthalene sulfonic acid formaldehyde condensate) and melamine-based (melamine sulfonic acid formaldehyde condensate) are conventionally known.

ナフタレン系減水剤を使用する系、あるいは使用し得る系での、セメントや石膏を水硬性物質としたペースト、スラリー、モルタル、コンクリート等の流動性保持技術としては、いくつか提案されている(特許文献1〜4)。例えば、特許文献1〜3には、ナフタレン又はその誘導体とホルムアルデヒド共縮合可能な物質とその誘導体による共縮合物が記載されている。なかでも、ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩によるセメント配合物について、特に有効な流動性保持技術としては、低級オレフィンとエチレン性不飽和ジカルボン酸無水物(無水マレイン酸等)との共重合物の粉粒体と減水剤とをセメント配合物に添加して、徐放作用によりセメント粒子の凝集を防止する方法がある(特許文献4)。   Several systems have been proposed for maintaining fluidity in pastes, slurries, mortars, concretes, etc. using cement or gypsum as a hydraulic substance in systems that use or can use naphthalene-based water reducing agents (patents) Literatures 1-4). For example, Patent Documents 1 to 3 describe a co-condensation product of a substance that can be co-condensed with naphthalene or a derivative thereof and formaldehyde and a derivative thereof. Among them, as a particularly effective fluidity maintaining technique for a cement compound of naphthalenesulfonic acid formaldehyde condensate or a salt thereof, a copolymer of a lower olefin and an ethylenically unsaturated dicarboxylic anhydride (such as maleic anhydride) is used. There is a method of preventing the agglomeration of cement particles by adding a granular material and a water-reducing agent to the cement compound and controlling the release of the cement particles (Patent Document 4).

特開平6−340459号公報Japanese Patent Laid-Open No. 6-340459 特開平7−109158号公報JP-A-7-109158 特開平7−247147号公報JP 7-247147 A 特公昭63−5346号公報Japanese Patent Publication No. 63-5346

ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、通常、重量平均分子量が8,000〜18,000のものが減水剤として多用されているが、それらは、水硬性組成物のスランプロスといった流動保持性面で課題がある。流動保持性を向上させる方法としては、糖類、グルコン酸ソーダといった、遅延剤等の添加が一般的であるが、硬化体の初期強度を著しく低下させる事から使用量も制限され充分な流動保持性を維持できない。又、上記の通り、特許文献4は、スランプロス防止効果に有効であるとされているが、強度(特に初期強度)については更なる向上が望まれる。また、特許文献4の混和剤は、工業的には粉粒体を含む懸濁液として用いることが有利であるが、粉粒体を沈降させない均一な状態で使用しないと設計通りのスロンプロス防止効果が発揮されないため、例えば、長期間均一な状態を保つための制御手段や使用前に粉粒体を均一化できるような手段が必要となる。   Naphthalene sulfonic acid formaldehyde condensates or salts thereof are generally used as water reducing agents having a weight average molecular weight of 8,000 to 18,000, but they are fluid retaining properties such as slump loss of hydraulic compositions. There is a problem in terms. Addition of retarders such as saccharides and sodium gluconate is common as a method to improve fluid retention, but the initial strength of the cured product is significantly reduced, so the amount used is also limited and sufficient fluid retention Cannot be maintained. Further, as described above, Patent Document 4 is said to be effective in the effect of preventing slump loss, but further improvement in strength (particularly initial strength) is desired. In addition, the admixture of Patent Document 4 is industrially advantageously used as a suspension containing a granular material, but if it is not used in a uniform state where the granular material is not settled, the designed anti-slopros effect is achieved. Therefore, for example, a control means for maintaining a uniform state for a long period of time and a means for making the powder particles uniform before use are required.

本発明の課題は、セメントや石膏を水硬性物質としたペースト、スラリー、モルタル、コンクリート等の水硬性組成物に対して、優れた流動保持効果と強度発現効果を付与できるナフタレン系減水剤を提供することである。   An object of the present invention is to provide a naphthalene-based water reducing agent capable of imparting excellent fluid retention effect and strength development effect to hydraulic compositions such as pastes, slurries, mortars, concretes, etc. with cement or gypsum as a hydraulic substance. It is to be.

本発明は、下記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜24,000であり、且つGPC測定で得られる分子量が4,000以下のピーク面積が全ピーク面積の17〜38%であるナフタレンスルホン酸ホルムアルデヒド縮合物を含有する水硬性組成物用減水剤に関する。   The present invention has the structure of the following general formula (I), the weight average molecular weight obtained by gel permeation chromatography (GPC) measurement is 1,900 to 24,000, and the molecular weight obtained by GPC measurement is The present invention relates to a water reducing agent for a hydraulic composition containing a naphthalenesulfonic acid formaldehyde condensate having a peak area of 4,000 or less of 17 to 38% of the total peak area.

Figure 2010059045
Figure 2010059045

〔式中、Rは水素原子又は炭素数1〜4のアルキル基、nは縮合度であり1以上の数、Mは対イオンを示す。尚、一般式(I)の両末端は水素原子である。〕 [Wherein, R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n is the degree of condensation and is a number of 1 or more, and M is a counter ion. In addition, both ends of general formula (I) are hydrogen atoms. ]

また、本発明は、ナフタレンスルホン酸又は炭素数1〜4のアルキル基を有するナフタレンスルホン酸1モルに対してホルムアルデヒド0.6〜0.97を85〜95℃で4〜5時間で滴下し、100〜110℃で4〜30時間反応させる工程の後、中和する工程を有する、上記水硬性組成物用減水剤の製造方法に関する。   Moreover, this invention dripped formaldehyde 0.6-0.97 at 85-95 degreeC with respect to 1 mol of naphthalenesulfonic acid or naphthalenesulfonic acid which has a C1-C4 alkyl group at 4 to 5 hours, It is related with the manufacturing method of the said water reducing agent for hydraulic compositions which has the process of neutralizing after the process made to react at 100-110 degreeC for 4 to 30 hours.

また、本発明は、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が8,700〜29,300の高縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物と、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜4,000の低縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物とを混合する工程を有する、上記水硬性組成物用減水剤の製造方法に関する。   Further, the present invention has a structure of the above general formula (I) and has a high condensation degree naphthalenesulfonic acid formaldehyde condensation having a weight average molecular weight of 8,700 to 29,300 obtained by gel permeation chromatography (GPC) measurement. And a low-condensation degree naphthalene sulfonic acid formaldehyde condensate having a structure of the above general formula (I) and having a weight average molecular weight of 1,900 to 4,000 obtained by gel permeation chromatography (GPC) measurement. It is related with the manufacturing method of the said water reducing agent for hydraulic compositions which has the process to mix.

また、本発明は、上記本発明の水硬性組成物用減水剤、水硬性物質及び水を、下記(1)〜(3)の少なくとも何れかの方法で混合する工程を有する、水硬性組成物の製造方法に関する。
方法(1):水硬性物質への注水開始と同時に該減水剤を添加する
方法(2):水硬性物質への注水中に該減水剤を添加する
方法(3):水硬性物質への注水完了後、混練終了までの間に該減水剤を添加する
Moreover, this invention has the process of mixing the water reducing agent for hydraulic compositions of the said invention, a hydraulic substance, and water by the method of at least any one of following (1)-(3). It relates to the manufacturing method.
Method (1): Method of adding the water reducing agent simultaneously with the start of water injection to the hydraulic substance (2): Method of adding the water reducing agent to the water injection of the hydraulic substance (3): Water injection to the hydraulic substance Add the water reducing agent after completion and before the end of kneading

また、本発明は、上記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜24,000であり、且つGPC測定で得られる分子量が4,000以下のピーク面積が全ピーク面積の17〜38%であるナフタレンスルホン酸ホルムアルデヒド縮合物の水硬性組成物用減水剤用途である。   Moreover, this invention has the structure of the said general formula (I), the weight average molecular weight obtained by a gel permeation chromatography (GPC) measurement is 1,900-24,000, and is obtained by GPC measurement. This is a water reducing agent use for a hydraulic composition of naphthalenesulfonic acid formaldehyde condensate having a molecular weight of 4,000 or less and a peak area of 17 to 38% of the total peak area.

本発明によれば、セメントや石膏を水硬性物質としたペースト、スラリー、モルタル、コンクリート等の流動保持性と硬化体強度発現に優れた、水硬性組成物用減水剤が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the water reducing agent for hydraulic compositions which was excellent in the fluid holding | maintenance and hardened | cured material strength expression, such as a paste, slurry, mortar, and concrete which used cement and gypsum as a hydraulic substance, is provided.

本発明の好ましい態様は、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が8,700〜29,300の高縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物(以下、高縮合度NSFという)と、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜4,000の低縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物(以下、低縮合度NSFという)とを配合してなる、上記水硬性組成物用減水剤である。   A preferred embodiment of the present invention is a highly condensed naphthalene sulfonate formaldehyde having the structure of the general formula (I) and having a weight average molecular weight of 8,700 to 29,300 obtained by gel permeation chromatography (GPC) measurement. A condensate (hereinafter referred to as a high condensation degree NSF) and a structure having the above general formula (I), and a weight average molecular weight obtained by gel permeation chromatography (GPC) measurement is as low as 1,900 to 4,000. This is a water reducing agent for a hydraulic composition formed by blending a condensation degree naphthalenesulfonic acid formaldehyde condensate (hereinafter referred to as a low condensation degree NSF).

上記態様において、低縮合度NSFと、高縮合度NSF縮合物の固形分比(低縮合度NSF/高縮合NSF)が、80/20〜20/80であることがより好ましい。   In the above aspect, the solid content ratio of the low condensation degree NSF and the high condensation degree NSF condensate (low condensation degree NSF / high condensation NSF) is more preferably 80/20 to 20/80.

また、上記態様において、高縮合度NSFは、GPC測定で得られる分子量4,000以下のピーク面積が全ピーク面積の12〜17%であり、低縮合度NSFは、GPC測定で得られる分子量4,000以下のピーク面積が全ピーク面積の33〜38%であることがさらにより好ましい。   In the above embodiment, the high condensation degree NSF has a molecular area of 4,000 or less obtained by GPC measurement and the peak area is 12 to 17% of the total peak area, and the low condensation degree NSF has a molecular weight of 4 obtained by GPC measurement. More preferably, the peak area of 1,000 or less is 33 to 38% of the total peak area.

本発明に係るナフタレンスルホン酸ホルムアルデヒド縮合物(以下、NSFと表記する)は、重量平均分子量1,900〜24,000、好ましくは1,900〜9,700、より好ましくは1,900〜6,000、更に好ましくは1,900〜4,000である。また、GPC測定で得られる分子量が4,000以下のピーク面積(以下、ピーク面積%ということもある)が全体の17〜38%、流動保持効果の観点から、好ましくは27〜38%、より好ましくは33〜38%である。流動保持効果と初期強度発現効果の観点から、好ましくは20〜38%、より好ましくは24〜33%、さらに好ましくは27〜33%である。このピーク面積%は、本発明では流動保持性能と強度発現性能の指標となり、この比率が上記所定範囲にあることは、低縮合度の反応物を所定量含有することを意味する。なお、NSFという場合、ナフタレンスルホン酸ホルムアルデヒド縮合物の一部又は全部が塩であるものを含む。   The naphthalenesulfonic acid formaldehyde condensate (hereinafter referred to as NSF) according to the present invention has a weight average molecular weight of 1,900 to 24,000, preferably 1,900 to 9,700, more preferably 1,900 to 6,6. 000, more preferably 1,900 to 4,000. Further, the peak area (hereinafter sometimes referred to as peak area%) having a molecular weight of 4,000 or less obtained by GPC measurement is 17 to 38% of the whole, and preferably 27 to 38% from the viewpoint of the fluid retention effect. Preferably it is 33 to 38%. From the viewpoint of the flow retention effect and the initial strength development effect, it is preferably 20 to 38%, more preferably 24 to 33%, and still more preferably 27 to 33%. The peak area% is an indicator of flow retention performance and strength development performance in the present invention, and that this ratio is in the predetermined range means that a predetermined amount of a low-condensation degree reactant is contained. In addition, when mentioning NSF, the thing in which a part or all of the naphthalenesulfonic acid formaldehyde condensate is a salt is included.

ここで、NSFの重量平均分子量及びピーク面積%は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)法で測定したものである。なお、本発明におけるNSFの重量平均分子量及びピーク面積%は、該縮合体のピークに基づいて算出されたものとする。すなわち、NSFに由来する全ピーク面積の合計に対する標準物質分子量4,000の保持時間より後に検出される重量平均分子量4,000以下のNSFのピーク物質に由来する合計面積により求める。具体的にはナフタレンスルホン酸ホルムアルデヒド縮合物の3核体、2核体、ナフタレンジスルホン酸及びナフタレンモノスルホン酸に由来する4つを含むピーク面積を合計する。
[GPC条件]
カラム:G4000SWXL+G2000SWXL(東ソー)
溶離液:30mM CH3COONa/CH3CN=6/4
流量 :0.7ml/min
検出 :UV280nm
サンプルサイズ:0.2mg/ml
標準物質:西尾工業(株)社製 ポリスチレンスルホン酸ソーダ換算(重量平均分子量、206、1,800、4,000、8,000、18,000、35,000、88,000、780,000)
検出器:東ソー株式会社 UV-8020
ピークの境界:分子量4000以下のピーク物質に由来するピークと分子量4000超のピーク物質に由来するピークの境界は、両ピークの極小値(谷)とした。
データ処理:東ソー株式会社 GPC-8020 マルチステーション8020
GPCデータ収集アプリケーション Version 2.01
Copyright(C)東ソー(株)1997-1999
Here, the weight average molecular weight and peak area% of NSF are measured by gel permeation chromatography (GPC) method under the following conditions. In addition, the weight average molecular weight and peak area% of NSF in the present invention are calculated based on the peak of the condensate. That is, the total area derived from NSF peak substances having a weight average molecular weight of 4,000 or less detected after the retention time of the standard substance molecular weight of 4,000 relative to the total of all peak areas derived from NSF is obtained. Specifically, the peak areas including four derived from trinuclear, dinuclear, naphthalene disulfonic acid and naphthalene monosulfonic acid naphthalene sulfonic acid formaldehyde condensate are totaled.
[GPC conditions]
Column: G4000SWXL + G2000SWXL (Tosoh)
Eluent: 30 mM CH 3 COONa / CH 3 CN = 6/4
Flow rate: 0.7 ml / min
Detection: UV280nm
Sample size: 0.2 mg / ml
Standard substance: Nishio Kogyo Co., Ltd. polystyrene sulfonate conversion (weight average molecular weight, 206, 1,800, 4,000, 8,000, 18,000, 35,000, 88,000, 780,000)
Detector: Tosoh Corporation UV-8020
Boundary between peaks: The boundary between the peak derived from the peak substance having a molecular weight of 4000 or less and the peak derived from the peak substance having a molecular weight of more than 4000 was the minimum value (valley) of both peaks.
Data processing: Tosoh Corporation GPC-8020 Multistation 8020
GPC data collection application version 2.01
Copyright (C) Tosoh Corporation 1997-1999

上記重量平均分子量及びピーク面積%を満たすNSFは、低分子量領域(低縮合度領域)では、通常のナフタレンスルホン酸とホルムアルデヒドとの縮合反応により、上記ピーク面積%を満たすものを比較的容易に得ることができる。一方、高分子量領域(高縮合度領域)では、通常のナフタレンスルホン酸とホルムアルデヒドとの縮合反応では、上記ピーク面積%を満たすものが得られにくい傾向にある。そのため、本発明に係るNSFは、分子量及び分子量分布が既知のNSFを混合して得ることが、作業性の点では好ましい。例えば、GPC測定で得られる重量平均分子量が好ましくは13,000〜18,000程度の高縮合度NSF(市販品では、例えば、花王(株)製マイテイ150)と、重量平均分子量が好ましく2,000〜3,500程度の低縮合度NSF(市販品では、例えば、花王(株)製デモールNL、デモールN、デモールRN−L、デモールRN)とを混合することで、本発明に係るNSFを得ることができる。また、これら高縮合度NSFと低縮合度NSFとを、それぞれ合成して混合する方法も好ましい。 NSF satisfying the above weight average molecular weight and peak area% can be relatively easily obtained in the low molecular weight region (low condensation region) by satisfying the above peak area% by the usual condensation reaction of naphthalenesulfonic acid and formaldehyde. be able to. On the other hand, in the high molecular weight region (high condensation degree region), the usual condensation reaction of naphthalenesulfonic acid and formaldehyde tends to make it difficult to obtain a material satisfying the above peak area%. Therefore, it is preferable in terms of workability that the NSF according to the present invention is obtained by mixing NSF having a known molecular weight and molecular weight distribution. For example, the weight average molecular weight obtained by GPC measurement is preferably about 13,000 to 18,000 with high degree of condensation NSF (commercially available product, for example, Mighty 150 manufactured by Kao Corporation), and the weight average molecular weight is preferably 2, NSF according to the present invention is mixed with low-condensation degree NSF of about 000 to 3,500 (in the commercial product, for example, Kao Co., Ltd. Demol NL, Demol N, Demol RN-L, Demol RN). Obtainable. A method of synthesizing and mixing the high condensation degree NSF and the low condensation degree NSF is also preferable.

従って、本発明により、GPC測定で得られる重量平均分子量が8,700〜29,300の高縮合度NSFと、GPC測定で得られる重量平均分子量が1,900〜4,000の低縮合度NSFとを混合して、GPC測定で得られる重量平均分子量が1,900〜24,000であり、好ましくは3,600〜24,000、より好ましくは3,600〜10,000であり、且つGPC測定で得られる分子量が4,000以下のピーク面積が全体の17〜33%であるNSFを含有する水硬性組成物用減水剤を製造する、水硬性組成物用減水剤の製造方法が提供される。この場合、高縮合度NSFは、GPC測定で得られる分子量が4,000以下のピーク面積が全体の12〜17%のもの、さらに13〜16%のものを、また、低縮合度NSFは、GPC測定で得られる分子量が4,000以下のピーク面積が全体の33〜38%のもの、さらに34〜38%のものを用いることが好ましい。流動保持性と強度を向上させる観点から、低縮合度NSFと高縮合度NSFとを固形分比、すなわち重量比で低縮合度NSF/高縮合度NSF=80/20〜20/80、より80/20〜40/60、更に80/20〜60/40で混合することが好ましい。低縮合度NSFの比率を大きくすると流動保持性が向上する傾向がある。高縮合度NSFの比率を大きくすると同じ流動性を得るために必要な減水剤の量を少なくできる傾向がある。また、低縮合度NSFは重量平均分子量が、流動保持性と強度を向上させる観点から2,500〜3,500が好ましく2,800〜3,200がさらに好ましい。また、高縮合度NSFは重量平均分子量が、流動保持性と強度を向上させる観点から12,000〜22,000が好ましい。 Therefore, according to the present invention, a high condensation degree NSF having a weight average molecular weight of 8,700 to 29,300 obtained by GPC measurement and a low condensation degree NSF having a weight average molecular weight of 1,900 to 4,000 obtained by GPC measurement. And the weight average molecular weight obtained by GPC measurement is 1,900 to 24,000, preferably 3,600 to 24,000, more preferably 3,600 to 10,000, and GPC Provided is a method for producing a water reducing agent for a hydraulic composition, which produces a water reducing agent for a hydraulic composition containing NSF having a peak area of 17 to 33% of the total molecular weight of 4,000 or less obtained by measurement. The In this case, the high condensation degree NSF is 12 to 17% of the total peak area having a molecular weight of 4,000 or less obtained by GPC measurement, more preferably 13 to 16%, and the low condensation degree NSF is It is preferable to use a peak area having a molecular weight of 4,000 or less obtained by GPC measurement having a peak area of 33 to 38%, more preferably 34 to 38%. From the viewpoint of improving fluidity retention and strength, the low condensation degree NSF and the high condensation degree NSF are in a solid content ratio, that is, in a weight ratio, the low condensation degree NSF / high condensation degree NSF = 80/20 to 20/80, and more 80 It is preferable to mix at / 20 to 40/60, more preferably 80/20 to 60/40. When the ratio of the low condensation degree NSF is increased, the flow retention tends to be improved. Increasing the ratio of the high degree of condensation NSF tends to reduce the amount of water reducing agent required to obtain the same fluidity. The low-condensation degree NSF has a weight average molecular weight of preferably 2,500 to 3,500, more preferably 2,800 to 3,200, from the viewpoint of improving fluidity retention and strength. Further, the high condensation degree NSF preferably has a weight average molecular weight of 12,000 to 22,000 from the viewpoint of improving fluidity retention and strength.

また、通常、NSFは、ナフタレンスルホン酸1モルに対して、0.60〜0.97モルのホルムアルデヒドを縮合反応させることにより得られるので、この反応を利用して本発明に係るNSFを含有する水硬性組成物用減水剤を得ることもできる。この反応には、35〜37重量%濃度のホルマリンが用いられる。その際の縮合時間(反応時間)やホルムアルデヒドのモル比を調整することで、重量平均分子量やピーク面積%の異なるNSFを得ることができる。例えば、反応時間を長くすると重量平均分子量が大きくなる傾向があり、反応時間を短くすると重量平均分子量が小さくなる傾向がある。また、ホルムアルデヒドのモル比を大きくすると重量平均分子量が大きくなる傾向があり、ホルムアルデヒドのモル比を小さくすると重量平均分子量が小さくなる傾向がある。 Moreover, since NSF is usually obtained by a condensation reaction of 0.60 to 0.97 mol of formaldehyde with respect to 1 mol of naphthalenesulfonic acid, the NSF according to the present invention is contained using this reaction. A water reducing agent for a hydraulic composition can also be obtained. For this reaction, formalin having a concentration of 35 to 37% by weight is used. By adjusting the condensation time (reaction time) and the molar ratio of formaldehyde at that time, NSFs having different weight average molecular weights and peak area% can be obtained. For example, when the reaction time is lengthened, the weight average molecular weight tends to increase, and when the reaction time is shortened, the weight average molecular weight tends to decrease. Further, when the molar ratio of formaldehyde is increased, the weight average molecular weight tends to increase, and when the molar ratio of formaldehyde is decreased, the weight average molecular weight tends to decrease.

例えば、ナフタレンスルホン酸又は炭素数1〜4のアルキル基を有するアルキル置換ナフタレンスルホン酸1モルに対してホルムアルデヒド0.6〜0.97モルを85〜95℃で4〜5時間で滴下し、100〜110℃で4〜30時間反応させる工程の後、中和する工程を有する製造方法により、本発明の水硬性組成物用減水剤を得ることができる。すなわち、ナフタレンスルホン酸又は炭素数1〜4のアルキル基を有するアルキル置換ナフタレンスルホン酸を含む反応系(水を含んでいてもよい)に、前記比率でホルムアルデヒドを85〜95℃で4〜5時間で、滴下等により導入し、100〜110℃で4〜30時間反応させ、得られた反応生成物を中和する。   For example, 0.6 to 0.97 mol of formaldehyde is added dropwise at 85 to 95 ° C. in 4 to 5 hours with respect to 1 mol of naphthalenesulfonic acid or an alkyl-substituted naphthalenesulfonic acid having an alkyl group having 1 to 4 carbon atoms, and 100 The water reducing agent for hydraulic composition of the present invention can be obtained by a production method having a step of neutralizing after a step of reacting at ˜110 ° C. for 4 to 30 hours. That is, formaldehyde is added at 85 to 95 ° C. for 4 to 5 hours in a reaction system (which may contain water) containing naphthalene sulfonic acid or an alkyl-substituted naphthalene sulfonic acid having an alkyl group having 1 to 4 carbon atoms. Then, it is introduced by dropping or the like and reacted at 100 to 110 ° C. for 4 to 30 hours to neutralize the obtained reaction product.

具体的には、ナフタレンスルホン酸1モルに対して、0.60〜0.97モル、好ましくは0.60〜0.80モル、より好ましくは0.60〜0.70モルのホルムアルデヒドを85℃から95℃で4〜5時間かけて滴下し、100〜105℃で4〜30時間、好ましくは4〜12時間、より好ましくは4〜7時間縮合反応させることにより、縮合反応化物を得る。得られた縮合反応化物に対して水又は温水8〜10モルを加え、温度50℃から95℃、好ましくは65〜85℃で1時間から2時間かけて縮合反応化物を溶解させる。溶解した縮合反応化物中の全余剰硫酸に対して1.00〜1.20モルの中和剤1(水酸化カルシウムまたは炭酸カルシウム)を加え、石膏として分別後、更に中和剤2(水酸化ナトリムまたは炭酸ナトリウム)を加え(中和剤1で炭酸カルシウムを使用した場合、炭酸カルシウム副生炭酸カルシウムを分別する)、温度20℃から80℃、好ましくは20℃から60℃で、pH値2.0〜12.5、好ましくは7.0から11.0に調整し、NSFのナトリウム塩を含有する水溶液の形態の水硬性組成物用減水剤が得られる。得られる水溶液状水硬性組成物用減水剤の固形分濃度は、30重量%〜43重量%、好ましくは40重量%から43重量%である。また、水分を除いて粉末品として得ることもできる。   Specifically, 0.60 to 0.97 mol, preferably 0.60 to 0.80 mol, more preferably 0.60 to 0.70 mol of formaldehyde is added to 85 ° C. with respect to 1 mol of naphthalenesulfonic acid. To 95 ° C. over 4 to 5 hours, followed by a condensation reaction at 100 to 105 ° C. for 4 to 30 hours, preferably 4 to 12 hours, more preferably 4 to 7 hours, to obtain a condensation reaction product. 8-10 mol of water or warm water is added to the obtained condensation reaction product, and the condensation reaction product is dissolved at a temperature of 50 to 95 ° C., preferably 65 to 85 ° C. over 1 to 2 hours. 1.00 to 1.20 mol of neutralizing agent 1 (calcium hydroxide or calcium carbonate) is added to the total surplus sulfuric acid in the dissolved condensation reaction product, and after fractionation as gypsum, further neutralizing agent 2 (hydroxylated) (Natrime or sodium carbonate) is added (if calcium carbonate is used as the neutralizing agent 1, the calcium carbonate byproduct is fractionated), the temperature is 20 ° C. to 80 ° C., preferably 20 ° C. to 60 ° C., and the pH value is 2. A water reducing agent for a hydraulic composition in the form of an aqueous solution containing a sodium salt of NSF, adjusted to 0.0 to 12.5, preferably 7.0 to 11.0 is obtained. The solid content concentration of the water reducing agent for an aqueous hydraulic composition obtained is 30% to 43% by weight, preferably 40% to 43% by weight. It can also be obtained as a powder product by removing moisture.

なお、ナフタレンスルホン酸ホルムアルデヒド縮合物の塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられ、アルカリ金属塩が好ましい。アルカリ金属塩の中ではナトリウム塩が好ましい。中和度は0.95〜1.02が好ましい。   Examples of the salt of the naphthalenesulfonic acid formaldehyde condensate include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and the like, and alkali metal salts are preferable. Of the alkali metal salts, sodium salts are preferred. The degree of neutralization is preferably 0.95 to 1.02.

本発明では、スランプロス防止効果に有効な遅延剤や徐放性分散剤である低級オレフィンと無水マレイン酸共重合物の粉粒体を添加する事なく、特定の分子量と分子量分布を有するNSFを含有する減水剤を提供するものである。本発明の水硬性組成物用減水剤を用いることで、水硬性組成物の用途、性質に応じたスランプロスの制御が容易となる。例えば、水硬性組成物の調製後30分程度の流動保持性が望まれる用途(二次製品用途)と、水硬性組成物の調製後60分程度の流動保持性が望まれる用途(生コン用途)といった具合に、用途別の要求性能に応じて適切なスランプロスを付与することができる。本発明で規定する範囲の重量平均分子量及びピーク面積%を満たす場合、NSFにおける分子量4,000以下の化合物が多くなると流動保持性は高くなり、分子量4,000以下の化合物が少なくなると流動保持性は低くなる傾向を示す。これを考慮して、用途に応じた流動保持性(スランプロス)を付与することができる。なお、重量平均分子量の小さいNSF、例えば重量平均分子量が1,900未満のNSFは分子量4,000以下の化合物を多く含むが、流動保持性は悪い。従って、従来当業界で使用されている重量平均分子量8,000〜18,000程度のNSFに、単にこうした低分子量のNSFを併用した場合には、流動保持性の向上は期待できないことが予想される。ところが、本発明では、所定範囲の重量平均分子量のNSFにおいて分子量4,000以下のピーク面積を特定比率にすることで流動保持性が向上し、更に強度も向上する効果が得られる。これは、従来の知見からは予測できない格別の効果を奏するものであるといえる。即ち、本発明の水硬性組成物用減水剤において、GPC測定で得られる分子量が4000以下のピーク面積が全ピーク面積の17〜38%であると、流動保持性と強度向上の観点から好ましいが、高縮合度NSFを混合しない場合には33〜38%がより好ましく、34〜36%が更に好ましく、高縮合度NSFを混合する場合には、24〜33%好ましく、27〜33%がより好ましい。 In the present invention, NSF having a specific molecular weight and molecular weight distribution is added without adding a granule of a lower olefin and a maleic anhydride copolymer, which is an effective retarding agent and a slow-release dispersing agent. The water reducing agent to be contained is provided. By using the water reducing agent for hydraulic composition of the present invention, it becomes easy to control slump loss in accordance with the use and properties of the hydraulic composition. For example, applications that require fluid retention of about 30 minutes after preparation of the hydraulic composition (secondary product applications) and applications that require fluid retention of about 60 minutes after preparation of the hydraulic composition (container applications) Thus, an appropriate slump loss can be imparted according to the required performance for each application. When satisfying the weight average molecular weight and peak area% within the range specified in the present invention, the flow retention increases when the number of compounds having a molecular weight of 4,000 or less in NSF increases, and the flow retention increases when the number of compounds having a molecular weight of 4,000 or less decreases. Shows a tendency to decrease. In consideration of this, flow retention (slump loss) according to the application can be imparted. Note that NSF having a small weight average molecular weight, for example, NSF having a weight average molecular weight of less than 1,900 contains many compounds having a molecular weight of 4,000 or less, but has poor flow retention. Therefore, when the NSF having a weight average molecular weight of about 8,000 to 18,000 conventionally used in this industry is used in combination with such a low molecular weight NSF, it is expected that improvement in fluidity cannot be expected. The However, in the present invention, the flow retention is improved and the strength is further improved by setting the peak area having a molecular weight of 4,000 or less to a specific ratio in NSF having a weight average molecular weight within a predetermined range. This can be said to have an exceptional effect that cannot be predicted from conventional knowledge. That is, in the water reducing agent for a hydraulic composition of the present invention, the peak area having a molecular weight of 4000 or less obtained by GPC measurement is preferably 17 to 38% of the total peak area, from the viewpoint of improving fluidity and strength. When the high condensation degree NSF is not mixed, 33 to 38% is more preferable, 34 to 36% is more preferable, and when the high condensation degree NSF is mixed, 24 to 33% is preferable, and 27 to 33% is more preferable. preferable.

本発明の水硬性組成物用減水剤は、水溶液の場合、本発明に係るNSFを30〜42重量%、更に35〜42重量%、より更に39〜42重量%含有することが好ましい。また、本発明の減水剤は、粉体の場合、本発明に係るNSFからなるものであってもよい。   In the case of an aqueous solution, the water reducing agent for hydraulic composition of the present invention preferably contains 30 to 42% by weight, further 35 to 42% by weight, and more preferably 39 to 42% by weight of NSF according to the present invention. In the case of powder, the water reducing agent of the present invention may be composed of NSF according to the present invention.

本発明の水硬性組成物用減水剤は、他の公知のセメント添加材(剤)、例えば高性能AE減水剤、流動化剤、AE(空気連行)剤、AE減水剤、遅延剤、早強剤、促進剤、起泡剤、消泡剤、保水剤、増粘剤、防水剤、ひび割れ低減剤、高分子エマルジョン、水溶性高分子、高炉スラグ、フライアッシュ、シリカフューム、膨張剤、徐放性分散剤、徐放性起泡剤等の併用が可能である。なお、減水剤を併用する場合は、リグニン系(リグニンスルホン酸塩)及びメラミン系(メラミンスルホン酸ホルムアルデヒド縮合物塩)から選ばれる減水剤が好ましい。   The water reducing agent for hydraulic composition of the present invention is a known cement additive (agent) such as high performance AE water reducing agent, fluidizing agent, AE (air entrainment) agent, AE water reducing agent, retarder, early strength Agent, accelerator, foaming agent, antifoaming agent, water retention agent, thickening agent, waterproofing agent, crack reducing agent, polymer emulsion, water-soluble polymer, blast furnace slag, fly ash, silica fume, swelling agent, sustained release A dispersing agent, sustained release foaming agent and the like can be used in combination. In addition, when using a water reducing agent together, the water reducing agent chosen from a lignin type (lignin sulfonate) and a melamine type (melamine sulfonate formaldehyde condensate salt) is preferable.

本発明の水硬性組成物用減水剤は、水硬性物質100重量部に対して、本発明に係るNSFが0.3〜3.0重量部、より0.5〜3.0重量部、更に1.0〜3.0重量部となるように用いられることが好ましい。   The water reducing agent for a hydraulic composition of the present invention has an NSF of 0.3 to 3.0 parts by weight, more preferably 0.5 to 3.0 parts by weight, and 100 parts by weight of a hydraulic substance. It is preferably used so as to be 1.0 to 3.0 parts by weight.

本発明の減水剤の対象となる水硬性組成物に使用される水硬性物質とは、水と反応して硬化する性質をもつ物質、及び単一物質では硬化性を有しないが、2種以上を組み合わせると水を介して相互作用により水和物を形成し硬化する物質のことであり、粉体状のものが好ましく、セメント、石膏等が挙げられる。好ましくは普通ポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸セメント等のセメントであり、またこれらに高炉スラグ、フライアッシュ、シリカフューム、石粉(炭酸カルシウム粉末)等が添加されたものでもよい。なお、これらの粉体に骨材として、砂、砂及び砂利が添加されて最終的に得られる水硬性組成物が、一般にそれぞれモルタル、コンクリートなどと呼ばれている。本発明の減水剤は、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、グラウト用、地盤改良用、寒中用等の種々のコンクリートの何れの分野においても有用である。   The hydraulic substance used in the hydraulic composition that is the target of the water reducing agent of the present invention is a substance that has a property of curing by reacting with water, and a single substance that has no curability, but two or more types. Is a substance that forms a hydrate by the interaction through water and hardens, and is preferably in the form of powder, such as cement and gypsum. Preferred are ordinary Portland cement, Belite cement, medium heat cement, early strong cement, super early strong cement, sulfate resistant cement, etc., and blast furnace slag, fly ash, silica fume, stone powder (calcium carbonate powder), etc. May be added. In addition, the hydraulic composition finally obtained by adding sand, sand and gravel as aggregates to these powders is generally called mortar, concrete, etc., respectively. The water reducing agent of the present invention is used for ready-mixed concrete, concrete vibration products, for self-leveling, for refractories, for plaster, for gypsum slurry, for lightweight or heavy concrete, for AE, for repair, for prepacked, for trayy, It is useful in any field of various concrete such as grout, ground improvement, and cold.

本発明の対象となる水硬性組成物は、水/水硬性物質比〔スラリー中の水と水硬性物質の重量百分率(重量%)、通常W/Pと略記されるが、水硬性物質がセメントの場合、W/Cと略記される。〕が、25〜55重量%、更に35〜55重量%、更に40〜55重量%、更に40〜50重量%であることができる。   The hydraulic composition that is the subject of the present invention is a water / hydraulic substance ratio [weight percentage (% by weight) of water and hydraulic substance in the slurry, usually abbreviated as W / P. Is abbreviated as W / C. ] Can be 25 to 55% by weight, further 35 to 55% by weight, further 40 to 55% by weight, and further 40 to 50% by weight.

本発明の水硬性組成物用減水剤は、従来のNSFを含有する減水剤と同様、セメントペースト、モルタル、コンクリート等の水硬性組成物の減水剤として用いられる。減水剤の水硬性組成物に対する添加時期は、通常、水硬性物質への注水開始と同時から注水直後、或は混練終了までの間であり、限定されるものではない。具体的には、本発明の水硬性組成物用減水剤、水硬性物質及び水を、下記(1)〜(3)の少なくとも何れかの方法で混合する工程を有する、水硬性組成物の製造方法が挙げられる。なかでも方法(3)は、該減水剤添加量低減効果の観点から好ましい。また、方法(1)〜(3)は複数を組み合わせて行ってもよい。
方法(1):水硬性物質への注水開始と同時に該減水剤を添加する
方法(2):水硬性物質への注水中に該減水剤を添加する
方法(3):水硬性物質への注水完了後、混練終了までの間に該減水剤を添加する
The water reducing agent for hydraulic compositions of the present invention is used as a water reducing agent for hydraulic compositions such as cement paste, mortar, concrete, etc., as with conventional water reducing agents containing NSF. The timing of adding the water reducing agent to the hydraulic composition is usually not limited to the time from the start of water injection to the hydraulic material until immediately after the water injection or until the end of kneading. Specifically, production of a hydraulic composition having a step of mixing the water reducing agent for hydraulic composition, the hydraulic substance and water of the present invention by at least one of the following methods (1) to (3). A method is mentioned. Among these, the method (3) is preferable from the viewpoint of the effect of reducing the amount of the water reducing agent added. In addition, the methods (1) to (3) may be performed in combination.
Method (1): Method of adding the water reducing agent simultaneously with the start of water injection to the hydraulic substance (2): Method of adding the water reducing agent to the water injection of the hydraulic substance (3): Water injection to the hydraulic substance Add the water reducing agent after completion and before the end of kneading

また、本発明の水硬性組成物用減水剤に係る高縮合度NSFと低縮合度NSFとを、水硬性物質に別々に添加してもよい。別々に添加することで、目的とする水硬性組成物の流動性と流動保持性の調整をし易くなる。この添加の際には、別々に添加したNSFを混合した際に、GPC測定で得られる重量平均分子量及び分子量4000以下のピーク面積が、本発明の範囲を満たす関係であればよい。さらに、本発明の水硬性組成物用減水剤は、予め水と混合して水硬性物質に添加してもよい。 Moreover, you may add separately the high condensation degree NSF and the low condensation degree NSF which concern on the water reducing agent for hydraulic compositions of this invention to a hydraulic substance. By adding them separately, it becomes easy to adjust the fluidity and fluid retention of the intended hydraulic composition. At the time of this addition, when NSF added separately is mixed, the weight average molecular weight obtained by GPC measurement and the peak area having a molecular weight of 4000 or less may be in a relationship satisfying the scope of the present invention. Furthermore, the water reducing agent for hydraulic composition of the present invention may be mixed with water in advance and added to the hydraulic substance.

<1>配合成分
〔1−1〕ナフタレンスルホン酸(NSF原料)の製造
攪拌機付き反応容器中にナフタレン1モルを仕込み、120℃に昇温し、攪拌しながら98%硫酸1.28モルを滴下ロートに計り込み1時間かけて滴下する。次に、160℃に昇温し、3時間攪拌して目的のナフタレンスルホン酸を得る。酸価は、340±10mgKOH/gであった。
<1> Compounding component [1-1] Production of naphthalenesulfonic acid (NSF raw material) 1 mol of naphthalene is charged in a reaction vessel equipped with a stirrer, heated to 120 ° C., and 1.28 mol of 98% sulfuric acid is added dropwise with stirring. Weigh into funnel and drop over 1 hour. Next, the temperature is raised to 160 ° C. and stirred for 3 hours to obtain the desired naphthalenesulfonic acid. The acid value was 340 ± 10 mg KOH / g.

〔1−2〕NSFの製造
(1−2−1)合成例1(低縮合度NSFの合成)
上記で製造したナフタレンスルホン酸1モルと水2.2モルを攪拌付き反応容器に入れ90℃に昇温し、37%ホルマリン(ホルムアルデヒドとして0.70モル)を4時間かけて滴下する。次いで、105℃に昇温して、4時間から12時間反応して水又は温水8〜10モルを加え、ゲル状縮合化物を溶解し縮合反応を停止させることで重量平均分子量やピーク面積%の異なる低縮合度NSF(I−0〜I−3)を得る。縮合物の中和方法は、ライミングソーデーション法(炭酸カルシウムでカルシウム塩として全余剰硫酸を石膏として分別した後、炭酸ナトリウムでナトリウム塩とし、副生炭酸カルシウムを分別する方法)で行い、固形分濃度が40重量%になるように調整して、種々の低縮合度NSFを得た。
[1-2] Production of NSF (1-2-1) Synthesis Example 1 (Synthesis of low-condensation NSF)
1 mol of naphthalenesulfonic acid prepared above and 2.2 mol of water are put into a reaction vessel with stirring, and the temperature is raised to 90 ° C., and 37% formalin (0.70 mol as formaldehyde) is added dropwise over 4 hours. Next, the temperature is raised to 105 ° C., reacted for 4 to 12 hours, added with water or 8 to 10 moles of warm water, dissolved the gel condensate and stopped the condensation reaction, thereby reducing the weight average molecular weight and peak area%. Different low condensation degrees NSF (I-0 to I-3) are obtained. The neutralization method of the condensate is carried out by the rimming foundation method (a method in which calcium carbonate is used to separate all excess sulfuric acid as gypsum as gypsum, and then sodium carbonate is used as sodium salt to separate by-product calcium carbonate). Various low-condensation degrees NSF were obtained by adjusting the concentration to 40% by weight.

(1−2−2)合成例2(高縮合度NSFの合成)
ナフタレンスルホン酸1モルと水2.2モルを攪拌付き反応容器に入れ90℃に昇温し、37%ホルマリン(ホルムアルデヒドとして0.97モル)を4時間かけて滴下する。次いで、105℃に昇温して、10時間から30時間反応して水又は温水8〜10モルを加え、ゲル状縮合化物を溶解し縮合反応を停止させることで重量平均分子量やピーク面積%の異なる高縮合度NSF(II−1〜II−3)を得る。縮合物を合成例1と同様に中和し、固形分濃度が40重量%になるように調整して、種々の高縮合度NSFを得た。
(1-2-2) Synthesis Example 2 (Synthesis of high condensation degree NSF)
1 mol of naphthalenesulfonic acid and 2.2 mol of water are placed in a reaction vessel with stirring, the temperature is raised to 90 ° C., and 37% formalin (0.97 mol as formaldehyde) is added dropwise over 4 hours. Next, the temperature is raised to 105 ° C., reacted for 10 to 30 hours, added with water or 8 to 10 mol of warm water, dissolved the gel condensate, and stopped the condensation reaction, thereby reducing the weight average molecular weight and peak area%. Different high condensation degrees NSF (II-1 to II-3) are obtained. The condensate was neutralized in the same manner as in Synthesis Example 1 and adjusted so that the solid content concentration was 40% by weight to obtain various high-condensation degrees NSF.

合成例1、2で得たNSFの重量平均分子量、及びGPC測定で得られる分子量が4,000以下のピーク面積の全ピーク面積に対する割合を表1に示す。   Table 1 shows the weight average molecular weight of NSF obtained in Synthesis Examples 1 and 2 and the ratio of the peak area having a molecular weight of 4,000 or less to the total peak area obtained by GPC measurement.

Figure 2010059045
Figure 2010059045

〔1−3〕その他の減水剤成分
・III−1:花王(株)製デモールRN−L(重量平均分子量2,890、ピーク面積35.1%)
・III−2:花王(株)製マイテイ150(Na塩)(重量平均分子量14,500、ピーク面積14.7%)
・III−3:花王(株)製マイテイ2000WH〔花王(株)製マイテイ150のNa塩をCa塩としたNSFと、徐放性分散剤である低級オレフィンと無水マレイン酸共重合物の粉粒体とを、NSF/粉粒体=91/9の重量比で含む減水剤。〕(NSFの重量平均分子量14,500、ピーク面積14.7%)
・III−4:花王(株)製マイテイ2000WHを、一ヶ月静置した後の上澄み液。〔マイテイ2000WH中の低級オレフィンと無水マレイン酸共重合物の粉粒体が沈降し、NSFの割合が増加した減水剤。〕(NSFの重量平均分子量14,500、ピーク面積14.7%)
[1-3] Other water-reducing agent components III-1: Demol RN-L manufactured by Kao Corporation (weight average molecular weight 2,890, peak area 35.1%)
III-2: Mighty 150 (Na salt) manufactured by Kao Corporation (weight average molecular weight 14,500, peak area 14.7%)
III-3: Mighty 2000WH manufactured by Kao Corporation [NSF with Na salt of Mighty 150 manufactured by Kao Corporation as Ca salt, and a low-olefin and maleic anhydride copolymer as a sustained-release dispersant] A water-reducing agent containing NSF / powder body = 91/9 in weight ratio. ] (NSF weight average molecular weight 14,500, peak area 14.7%)
-III-4: Supernatant liquid after leaving Mighty 2000WH manufactured by Kao Corporation for one month. [A water-reducing agent in which a powder of a lower olefin and a maleic anhydride copolymer in Mighty 2000WH is settled and the ratio of NSF is increased. ] (NSF weight average molecular weight 14,500, peak area 14.7%)

<2>コンクリート試験
上記の配合成分を用いて、表2、3に示す水硬性組成物用減水剤を調製し、コンクリートに対する流動保持性能(スランプ値の経時変化)と硬化体材齢圧縮強度を評価した。結果を表2、3に示す。性能評価は、以下のコンクリート配合によるコンクリート流動の保持性並びに気中養生後の圧縮強度で行った。
<2> Concrete test Using the above ingredients, water reducing agents for hydraulic compositions shown in Tables 2 and 3 were prepared, and the flow retention performance (time change of slump value) and the hardened material age compressive strength against concrete were determined. evaluated. The results are shown in Tables 2 and 3. The performance evaluation was performed based on the retention of concrete flow and the compressive strength after air curing by the following concrete blending.

*コンクリートの製造方法
60L練り二軸ミキサーに所定量のコンクリート成分(セメント16.0kgに相当)に所定量の水を投入混練し、混練20秒後に所定量の表2、3に示す調製された減水剤を投入して70秒間混練りした。
* Concrete production method A predetermined amount of water was added to a predetermined amount of concrete components (corresponding to 16.0 kg of cement) into a 60L kneaded biaxial mixer, and after 20 seconds of mixing, the predetermined amounts shown in Tables 2 and 3 were prepared. A water reducing agent was added and kneaded for 70 seconds.

*コンクリート配合条件
セメント:普通ポルトランドセメント〔太平洋セメント(株)製/住友大阪セメント(株)製=1/1(重量比)〕(密度=3.16g/cm3) 400kg
水:水道水 170kg
砂:城陽産 山砂(密度=2.55g/cm3) 941kg
砂利:鳥形山産 砕石(密度=2.72g/cm3) 815kg
減水剤:表2の減水剤、コンクリート混練後初期スランプ値が20.0±0.5cmとなる様に減水剤添加量で調整した。コンクリート空気量は消泡剤(フォームレックス797、日華化学株式会社製)を添加にて1.5±0.3%になる様に調整した。コンクリート温度は20±1℃であった。
* Concrete blending condition cement: Ordinary Portland cement [manufactured by Taiheiyo Cement Co., Ltd./Sumitomo Osaka Cement Co., Ltd. = 1/1 (weight ratio)] (Density = 3.16 g / cm 3 ) 400 kg
Water: 170kg tap water
Sand: Joyo mountain sand (density = 2.55g / cm 3 ) 941kg
Gravel: Torigatayama crushed stone (density = 2.72 g / cm 3 ) 815 kg
Water reducing agent: The water reducing agent in Table 2 was adjusted with the amount of water reducing agent added so that the initial slump value after kneading the concrete was 20.0 ± 0.5 cm. The amount of concrete air was adjusted to 1.5 ± 0.3% by adding an antifoaming agent (Formrex 797, manufactured by Nikka Chemical Co., Ltd.). The concrete temperature was 20 ± 1 ° C.

*コンクリートの流動性
JIS A 1101法に準拠して、スランプ値(cm)を経時的に測定した。すなわち、混練終了直後と静置30分後、60分後、90分後のコンクリートについて、スランプを経時的に測定した。
* Concrete fluidity Slump value (cm) was measured over time in accordance with JIS A 1101 method. That is, the slump was measured over time for the concrete immediately after kneading and after 30 minutes, 60 minutes, and 90 minutes after standing.

*圧縮強度
JIS A 1108に準拠して圧縮強度(N/mm2)を経時的に測定した。
* Compressive strength Compressive strength (N / mm 2 ) was measured over time according to JIS A 1108.

Figure 2010059045
Figure 2010059045

Figure 2010059045
Figure 2010059045

Claims (7)

下記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜24,000であり、且つGPC測定で得られる分子量が4,000以下のピーク面積が全ピーク面積の17〜38%であるナフタレンスルホン酸ホルムアルデヒド縮合物を含有する水硬性組成物用減水剤。
Figure 2010059045

〔式中、Rは水素原子又は炭素数1〜4のアルキル基、nは縮合度であり1以上の数、Mは対イオンを示す。尚、一般式(I)の両末端は水素原子である。〕
It has the structure of the following general formula (I), the weight average molecular weight obtained by gel permeation chromatography (GPC) measurement is 1,900 to 24,000, and the molecular weight obtained by GPC measurement is 4,000 or less. Water reducing agent for hydraulic composition containing naphthalenesulfonic acid formaldehyde condensate having a peak area of 17 to 38% of the total peak area.
Figure 2010059045

[Wherein, R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n is the degree of condensation and is a number of 1 or more, and M is a counter ion. In addition, both ends of general formula (I) are hydrogen atoms. ]
前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が8,700〜29,300の高縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物(以下、高縮合度NSFという)と、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜4,000の低縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物(以下、低縮合度NSFという)とを配合してなる、請求項1記載の水硬性組成物用減水剤。 A highly condensed naphthalenesulfonic acid formaldehyde condensate (hereinafter referred to as “high condensation”) having a structure of the above general formula (I) and having a weight average molecular weight of 8,700 to 29,300 obtained by gel permeation chromatography (GPC) measurement. Degree NSF) and a low-condensation formaldehyde naphthalene sulfonate formaldehyde having a structure of the above general formula (I) and having a weight average molecular weight of 1,900 to 4,000 obtained by gel permeation chromatography (GPC) measurement The water-reducing agent for hydraulic compositions according to claim 1, comprising a product (hereinafter referred to as low-condensation degree NSF). 低縮合度NSFと、高縮合度NSF縮合物の固形分比(低縮合NSF/高縮合NSF)が、80/20〜20/80である請求項2記載の水硬性組成物用減水剤。   The water reducing agent for hydraulic compositions according to claim 2, wherein the solid content ratio of the low condensation degree NSF and the high condensation degree NSF condensate (low condensation NSF / high condensation NSF) is 80/20 to 20/80. 高縮合度NSFは、GPC測定で得られる分子量4,000以下のピーク面積が全ピーク面積の12〜17%であり、低縮合度NSFは、GPC測定で得られる分子量4,000以下のピーク面積が全ピーク面積の33〜38%である、請求項2又は3記載の水硬性組成物用減水剤。   The high condensation degree NSF is a peak area with a molecular weight of 4,000 or less obtained by GPC measurement is 12 to 17% of the total peak area, and the low condensation degree NSF is a peak area with a molecular weight of 4,000 or less obtained by GPC measurement. The water reducing agent for hydraulic composition according to claim 2 or 3, wherein is 33 to 38% of the total peak area. ナフタレンスルホン酸又は炭素数1〜4のアルキル基を有するアルキル置換ナフタレンスルホン酸1モルに対してホルムアルデヒド0.6〜0.97モルを85〜95℃で4〜5時間で滴下し、100〜110℃で4〜30時間反応させる工程の後、中和する工程を有する、請求項1記載の水硬性組成物用減水剤の製造方法。   Formaldehyde 0.6-0.97 mol is dripped at 85-95 degreeC with respect to 1 mol of naphthalenesulfonic acid or the alkyl substituted naphthalenesulfonic acid which has a C1-C4 alkyl group at 85-95 degreeC, and 100-110 The manufacturing method of the water reducing agent for hydraulic compositions of Claim 1 which has the process of neutralizing after the process made to react at 30 degreeC for 4 to 30 hours. 前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が8,700〜29,300の高縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物と、前記一般式(I)の構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる重量平均分子量が1,900〜4,000の低縮合度ナフタレンスルホン酸ホルムアルデヒド縮合物とを混合する工程を有する、請求項1〜4の何れか1項記載の水硬性組成物用減水剤の製造方法。   A highly condensed naphthalene sulfonic acid formaldehyde condensate having a structure of the general formula (I) and having a weight average molecular weight of 8,700 to 29,300 obtained by gel permeation chromatography (GPC) measurement, and the general formula A step of mixing a low-condensation degree naphthalenesulfonic acid formaldehyde condensate having a structure of (I) and having a weight average molecular weight of 1,900 to 4,000 obtained by gel permeation chromatography (GPC) measurement, The manufacturing method of the water reducing agent for hydraulic compositions of any one of Claims 1-4. 請求項1〜4の何れか1項記載の水硬性組成物用減水剤、水硬性物質及び水を、下記(1)〜(3)の少なくとも何れかの方法で混合する工程を有する、水硬性組成物の製造方法。
方法(1):水硬性物質への注水開始と同時に該減水剤を添加する
方法(2):水硬性物質への注水中に該減水剤を添加する
方法(3):水硬性物質への注水完了後、混練終了までの間に該減水剤を添加する
Hydraulic property which has the process of mixing the water reducing agent for hydraulic compositions of any one of Claims 1-4, a hydraulic substance, and water by the method of at least any one of following (1)-(3). A method for producing the composition.
Method (1): Method of adding the water reducing agent simultaneously with the start of water injection to the hydraulic substance (2): Method of adding the water reducing agent to the water injection of the hydraulic substance (3): Water injection to the hydraulic substance Add the water reducing agent after completion and before the end of kneading
JP2009183231A 2008-08-08 2009-08-06 Water reducing agent for hydraulic composition Active JP5536389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183231A JP5536389B2 (en) 2008-08-08 2009-08-06 Water reducing agent for hydraulic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008205477 2008-08-08
JP2008205477 2008-08-08
JP2009183231A JP5536389B2 (en) 2008-08-08 2009-08-06 Water reducing agent for hydraulic composition

Publications (2)

Publication Number Publication Date
JP2010059045A true JP2010059045A (en) 2010-03-18
JP5536389B2 JP5536389B2 (en) 2014-07-02

Family

ID=41663826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183231A Active JP5536389B2 (en) 2008-08-08 2009-08-06 Water reducing agent for hydraulic composition

Country Status (4)

Country Link
JP (1) JP5536389B2 (en)
CN (1) CN102112411B (en)
MY (1) MY164839A (en)
WO (1) WO2010016618A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124932A (en) * 2014-12-26 2016-07-11 花王株式会社 Method for producing naphthalenesulfonic acid formaldehyde condensate
JP2016150856A (en) * 2015-02-16 2016-08-22 株式会社日本触媒 Cement dispersant composition, and cement composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080031A1 (en) * 2010-12-14 2012-06-21 Basf Construction Polymers Gmbh Formaldehyde reduction with sugars under alkaline conditions
CN103896509A (en) * 2014-03-11 2014-07-02 山东省莱芜市汶河化工有限公司 Special water reducer for large-scale plasterboard line
CN104119024B (en) * 2014-06-25 2016-04-13 芜湖市三兴混凝土外加剂有限公司 Collapse protection type water reducer
CN111253135B (en) * 2020-02-11 2022-05-31 陕西科技大学 Early-strength multi-scene applicable natural hydraulic lime slurry and modification preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578157A (en) * 1991-09-24 1993-03-30 Kao Corp Method for producing cement dispersant
JPH06340459A (en) * 1992-10-16 1994-12-13 Kao Corp Cement dispersing agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2415084A1 (en) * 1978-01-20 1979-08-17 Protex Manuf Prod Chimiq ADDITIVE COMPOSITIONS FOR HYDRAULIC CEMENT-BASED MIXTURES
JPS59111964A (en) * 1982-12-16 1984-06-28 花王株式会社 Admixing agent for cement concrete
CN1264775C (en) * 2001-07-24 2006-07-19 上海世高科技有限公司 Coagulation-regulating gelatinizer for premixed mortar and its production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578157A (en) * 1991-09-24 1993-03-30 Kao Corp Method for producing cement dispersant
JPH06340459A (en) * 1992-10-16 1994-12-13 Kao Corp Cement dispersing agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013024928; FERRARI G et al.: 'THE INFLUENCE OF THE MOLECULAR WEIGHT OF BETA-NAPHTHALENESULFONATE BASED POLYMERS ON THE RHEOLOGICAL' CEMENTO VOL.83 NO.4, 1986, P.445-454 *
JPN6013024930; G. FERRARI et al.: 'ADSORPTION OF NAPHTHALENE SULFONATE SUPERPLASTICIZERS BY CEMENT PARTICLES THROUGH GEL PERMEATION CHR' AMERICAN CONCRETE INSTITUTE SP SP-173, 1997, P.869-892 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124932A (en) * 2014-12-26 2016-07-11 花王株式会社 Method for producing naphthalenesulfonic acid formaldehyde condensate
JP2016150856A (en) * 2015-02-16 2016-08-22 株式会社日本触媒 Cement dispersant composition, and cement composition

Also Published As

Publication number Publication date
CN102112411A (en) 2011-06-29
CN102112411B (en) 2013-11-06
MY164839A (en) 2018-01-30
JP5536389B2 (en) 2014-07-02
WO2010016618A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
RU2638380C2 (en) Polycondensation product based on aromatic compounds, method of its production and its application
RU2736845C2 (en) Construction chemical compositions containing a bisulphite adduct of glyoxylic acid
AU609881B2 (en) Aminoarylsulfonic acid-phenol-formaldehyde condensate and concrete admixture comprising the same
JP5536389B2 (en) Water reducing agent for hydraulic composition
US20060183879A1 (en) Process for producing a naphthalenesulfonate formaldehyde condensate
US20080308013A1 (en) Rapid Binder Compositions Containing a Calcium Salt for Concrete Components and Structures
KR20010034109A (en) Process for producing dispersant for powdery hydraulic composition
JPH07106933B2 (en) Method of using water-soluble salt of naphthalene sulfonic acid-formaldehyde condensation product as admixture of inorganic binder
JP5006466B2 (en) Dispersant for hydraulic composition
JP6370904B2 (en) Rapid setting Portland cement composition containing alkali metal citrate and phosphate with high early compression strength and low shrinkage
US4441929A (en) Superplasticizers for cementitious compositions
JPS5919901B2 (en) Additives for inorganic binders used as inorganic materials
US4424074A (en) Additives for cementitious compositions
JP5234700B2 (en) Method for producing naphthalenesulfonic acid formaldehyde condensate
JP5587007B2 (en) Sulfuric acid resistant cement composition, sulfuric acid resistant mortar composition and sulfuric acid resistant concrete composition
JP4709359B2 (en) Hydraulic composition
JP2696303B2 (en) Dispersant and method for producing the same
JPH0155210B2 (en)
JPH0216260B2 (en)
JPH04119954A (en) Admixture of cement
CN115279818A (en) Fluidizing compound for hydraulic compositions
JPH05147991A (en) Concrete admixture
JPH0517189A (en) Cement admixture
JPS5884160A (en) Cement dispersant
WO2019116693A1 (en) Hydraulic composition additive, and method for preparing hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

R151 Written notification of patent or utility model registration

Ref document number: 5536389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250