JP2010058059A - Method of manufacturing spherical particle - Google Patents

Method of manufacturing spherical particle Download PDF

Info

Publication number
JP2010058059A
JP2010058059A JP2008226843A JP2008226843A JP2010058059A JP 2010058059 A JP2010058059 A JP 2010058059A JP 2008226843 A JP2008226843 A JP 2008226843A JP 2008226843 A JP2008226843 A JP 2008226843A JP 2010058059 A JP2010058059 A JP 2010058059A
Authority
JP
Japan
Prior art keywords
oxygen
pressure
flame
raw material
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226843A
Other languages
Japanese (ja)
Other versions
JP5134474B2 (en
Inventor
Shinji Murakami
真二 村上
Kimio Iino
公夫 飯野
Kazumichi Suzuki
一路 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2008226843A priority Critical patent/JP5134474B2/en
Publication of JP2010058059A publication Critical patent/JP2010058059A/en
Application granted granted Critical
Publication of JP5134474B2 publication Critical patent/JP5134474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a spherical particle, in which a material having a high-melting point such as magnesia and zirconia is spheroidized without damaging the productivity and economic efficiency in a flame method. <P>SOLUTION: Raw powder is fed into a flame formed by a burner 13 for manufacturing a high-pressure combustion spherical particle in a high-pressure atmosphere inside a high-pressure combustion chamber 16, and is melt-treated in the high-temperature atmosphere of the flame formed at high pressure to be spheroidized. Since the flame having a higher temperature than the flame formed in atmospheric pressure can be formed by forming the flame in the high-pressure atmosphere, the material having the high-melting point such as magnesia and zirconia, which cannot be spheroidized in the atmospheric pressure, can be spheroidized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、球状粒子の製造方法に関し、詳しくは、マグネシアやジルコニアのような高融点材料の球状化に適した球状粒子の製造方法に関する。   The present invention relates to a method for producing spherical particles, and more particularly to a method for producing spherical particles suitable for spheroidizing a high melting point material such as magnesia or zirconia.

無機酸化物の球状粒子を製造する方法として各種方法が知られているが、生産性や経済性の面から工業的には火炎法が広く採用されている。この火炎法は、燃料と支燃性ガス(助燃ガス)とをバーナから噴出させて形成した火炎中に原料粉末を投入し、火炎の高温雰囲気内で原料粉末を溶融乃至半溶融させて表面張力により粉末表面を球状化させることで球状粒子を得ている(例えば、特許文献1,2参照。)。
特開2005−288399号公報 特開2007−15884号公報
Various methods are known as methods for producing inorganic oxide spherical particles, but the flame method is widely used industrially from the viewpoint of productivity and economy. In this flame method, the raw material powder is put into a flame formed by jetting fuel and supporting gas (support gas) from a burner, and the raw material powder is melted or semi-melted in a high temperature atmosphere of the flame to obtain surface tension. Spherical particles are obtained by spheroidizing the powder surface (see, for example, Patent Documents 1 and 2).
JP 2005-288399 A JP 2007-15588 A

しかしながら、メタンやプロパンを主成分とするガス燃料の燃焼反応熱により形成される火炎の高温雰囲気内で溶融処理を行う火炎法では、火炎温度以上の融点をもつ材料の溶融は不可能であり、溶融可能な材料に制限があった。例えば、プロパン−酸素系での化学量論比を満たし、各化学種が完全に混合され、完全に反応した状態での理論最高温度−断熱平衡火炎温度は3095Kであるから、3095K以上の融点を有する材料、例えばマグネシア(MgO,融点3098K)の溶融処理は理論的に不可能である。   However, in the flame method in which the melting process is performed in the high temperature atmosphere of the flame formed by the combustion reaction heat of the gas fuel containing methane or propane as the main component, it is impossible to melt a material having a melting point higher than the flame temperature. There was a limit to the material that could be melted. For example, when the stoichiometric ratio in the propane-oxygen system is satisfied, the chemical species are thoroughly mixed, and the theoretical maximum temperature-adiabatic equilibrium flame temperature in a fully reacted state is 3095 K, a melting point of 3095 K or more is required. It is theoretically impossible to melt a material such as magnesia (MgO, melting point 3098K).

また、融点が3095K未満の材料でも、融点が3095Kに近付くに伴って単位燃料流量当たりの理論溶融処理量[kg/Nm・fuel]が減少することが知られている。さらに、火炎法では、燃料と支燃性ガスとの混合方法を誤ると大量のすすが発生し、回収される製品の球状粒子中に不純物としてすすが混入する。製品中へのすすの混入は、球状粒子を電子材料と使用する場合には、その性能を著しく低下させてしまう。 It is also known that the theoretical melting throughput [kg / Nm 3 · fuel] per unit fuel flow rate decreases as the melting point approaches 3095 K even for materials having a melting point of less than 3095 K. Further, in the flame method, a large amount of soot is generated if the mixing method of the fuel and the combustion-supporting gas is mistaken, and soot is mixed as impurities in the spherical particles of the recovered product. Incorporation of soot into the product significantly reduces the performance of the spherical particles when used as an electronic material.

そこで本発明は、火炎法における生産性や経済性を損なうことなく、マグネシアやジルコニアのような高融点材料の球状化を可能とした球状粒子の製造方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for producing spherical particles that enables spheroidization of a high-melting-point material such as magnesia or zirconia without impairing productivity and economic efficiency in the flame method.

上記目的を達成するため、本発明の球状粒子の製造方法は、高圧雰囲気中で形成された火炎中に原料粉末を投入し、該原料粉末を球状化することを特徴としており、特に、前記原料粉末の融点に応じて前記火炎を形成する高圧雰囲気の圧力を調節することを特徴としている。さらに、前記火炎は、バーナから噴出される燃料と支燃性ガスとにより形成され、前記支燃性ガスの一部を前記バーナから旋回流として噴出させ、残部の支燃性ガスを前記バーナの軸線方向に直進流として噴出させることを特徴としている。また、前記高圧雰囲気が0.2〜10MPaの範囲であること、前記原料粉末がマグネシア又はジルコニアであることを特徴としている。   In order to achieve the above object, the method for producing spherical particles of the present invention is characterized in that raw material powder is put into a flame formed in a high-pressure atmosphere, and the raw material powder is spheroidized, and in particular, the raw material The pressure of the high-pressure atmosphere that forms the flame is adjusted according to the melting point of the powder. Further, the flame is formed by fuel and a combustion-supporting gas ejected from a burner, a part of the combustion-supporting gas is ejected from the burner as a swirling flow, and the remaining combustion-supporting gas is discharged from the burner. It is characterized by being ejected as a straight flow in the axial direction. Further, the high-pressure atmosphere is in a range of 0.2 to 10 MPa, and the raw material powder is magnesia or zirconia.

本発明の球状粒子の製造方法によれば、高圧雰囲気中で火炎を形成することにより、大気圧で形成した火炎に比べて温度の高い火炎を形成することができるので、大気圧雰囲気では不可能だった高融点材料の球状化を行うことができる。また、高圧雰囲気の圧力を材料の融点に応じて適切な圧力に調節することにより、高融点材料の球状化を効率よく行うことができる。さらに、支燃性ガスの一部を旋回流とし、残りの支燃性ガスを軸線方向の直進流として長い火炎を形成することにより、火炎内での原料粉末の滞留時間を長くできるので、高融点材料の加熱、溶融を確実に行うことができる。   According to the method for producing spherical particles of the present invention, a flame having a higher temperature than a flame formed at atmospheric pressure can be formed by forming a flame in a high-pressure atmosphere. It was possible to spheroidize the high melting point material. Further, by adjusting the pressure of the high-pressure atmosphere to an appropriate pressure according to the melting point of the material, the high melting point material can be efficiently spheroidized. Furthermore, the residence time of the raw material powder in the flame can be increased by forming a long flame by using a part of the combustion-supporting gas as a swirl flow and the remaining combustion-supporting gas as a straight flow in the axial direction. The melting point material can be reliably heated and melted.

図1は本発明の球状粒子の製造方法を実施可能な球状化粒子製造装置の一形態例を示す系統図である。この球状化粒子製造装置は、高圧用フィーダー11で切り出された原料粉末は、経路12から供給されるキャリアガスに同伴されて高圧燃焼球状粒子製造用バーナ13に搬送される。この高圧燃焼球状粒子製造用バーナ13には、支燃性ガス供給設備14からの加圧された支燃性ガスと、燃料供給設備15からの加圧された燃料とが供給されて高圧燃焼チャンバー16内に噴出し、高圧燃焼チャンバー16内の高圧雰囲気中で火炎を形成する。高圧燃焼球状粒子製造用バーナ13に搬送された原料粉末は、高圧燃焼球状粒子製造用バーナ13から高圧燃焼チャンバー16内の高圧雰囲気中で形成された前記火炎中に投入され、高温の火炎中で溶融乃至半溶融することによって球状化する。   FIG. 1 is a system diagram showing an embodiment of a spheroidized particle production apparatus capable of implementing the method for producing spherical particles of the present invention. In this spheroidized particle manufacturing apparatus, the raw material powder cut out by the high-pressure feeder 11 is transported to the burner 13 for manufacturing high-pressure combustion spherical particles along with the carrier gas supplied from the path 12. The burner 13 for producing high-pressure combustion spherical particles is supplied with the pressurized combustion-supporting gas from the combustion-supporting gas supply facility 14 and the pressurized fuel from the fuel supply facility 15, so that a high-pressure combustion chamber is provided. A flame is formed in the high-pressure atmosphere in the high-pressure combustion chamber 16. The raw material powder conveyed to the burner 13 for producing high-pressure combustion spherical particles is put into the flame formed in the high-pressure atmosphere in the high-pressure combustion chamber 16 from the burner 13 for producing high-pressure combustion spherical particles, and in the high-temperature flame. It spheroidizes by melting or semi-melting.

球状化した粒子は、経路17から高圧燃焼チャンバー16内に供給される加圧された空気によって冷却され、高圧用のサイクロン18及びキャンドルフィルター19で捕捉され、製品球状粒子Pとして回収される。球状粒子を分離した燃焼排ガスは、排気弁20で大気圧付近まで減圧されて大気中に放出される。球状粒子を製造して分離回収するまでの系内の圧力は、排気弁20の開度を制御することによってあらかじめ設定された高圧雰囲気に調節される。また、各経路には必要に応じてドレン21が設けられており、系内で発生した凝縮水が適宜排出される。   The spheroidized particles are cooled by pressurized air supplied from the passage 17 into the high-pressure combustion chamber 16, captured by the high-pressure cyclone 18 and the candle filter 19, and collected as product spherical particles P. The combustion exhaust gas from which the spherical particles are separated is depressurized to near atmospheric pressure by the exhaust valve 20 and released into the atmosphere. The pressure in the system until the spherical particles are produced and separated and recovered is adjusted to a preset high-pressure atmosphere by controlling the opening degree of the exhaust valve 20. Each path is provided with a drain 21 as necessary, and condensed water generated in the system is appropriately discharged.

このように、系内を高圧雰囲気に保って形成した火炎で原料粉末の球状化を行うことにより、火炎の温度を上昇させることができるので、大気圧雰囲気では不可能だった高融点材料の球状化を行うことができる。系内の圧力、特に火炎が形成される高圧燃焼チャンバー16内の圧力は、材料の融点や使用する燃料等の条件によって異なるが、通常は、0.2〜10MPaの範囲が適当であり、0.2MPa未満では高圧雰囲気として火炎温度を上昇させるという効果が十分に得られず、10MPaを超えると装置に使用する各種機器や配管のコストが上昇するという問題がある。   In this way, since the temperature of the flame can be increased by spheronizing the raw material powder with a flame formed while maintaining the inside of the system in a high-pressure atmosphere, the spherical shape of the high melting point material that was impossible in an atmospheric pressure atmosphere Can be made. The pressure in the system, particularly the pressure in the high-pressure combustion chamber 16 where a flame is formed, varies depending on the melting point of the material, the fuel used, etc., but the range of 0.2 to 10 MPa is usually appropriate. If the pressure is less than 2 MPa, the effect of increasing the flame temperature as a high-pressure atmosphere cannot be obtained sufficiently, and if it exceeds 10 MPa, there is a problem that the costs of various devices and piping used in the apparatus increase.

前記燃料には、火炎法で一般に使用されているものを使用することができ、液化天然ガス(LNG)、都市ガス(13A)、液化石油ガス(LPG)、ジメチルエーテル(DME)、水素等を使用可能である。これらの中で、水素は、より高い火炎温度を得られるという利点を有するものの、現状ではコスト面での問題があるため、単位熱量当たりのコストを考慮すると、液化天然ガス、都市ガス、液化石油ガスが実用的である。前記支燃性ガスには、必要とする火炎温度によって適当なガスを使用することができるが、高温の燃焼火炎を得るためには酸素(工業用酸素)が最適である。また、前記キャリアガスは、任意のガスを使用可能であるが、酸素や窒素、これらの混合ガス等を使用することができる。   As the fuel, those generally used in the flame method can be used, and liquefied natural gas (LNG), city gas (13A), liquefied petroleum gas (LPG), dimethyl ether (DME), hydrogen, etc. are used. Is possible. Among these, although hydrogen has the advantage that a higher flame temperature can be obtained, there is a problem in terms of cost at present, so when considering the cost per unit calorie, liquefied natural gas, city gas, liquefied petroleum Gas is practical. As the combustion-supporting gas, an appropriate gas can be used depending on the required flame temperature, but oxygen (industrial oxygen) is optimal for obtaining a high-temperature combustion flame. The carrier gas can be any gas, but oxygen, nitrogen, a mixed gas thereof, or the like can be used.

図2及び図3は、本発明の球状粒子の製造方法で使用可能な高圧燃焼球状粒子製造用バーナの第1形態例を示すもので、図2は断面図、図3は図2のIII−III断面図である。   2 and 3 show a first embodiment of a high-pressure combustion spherical particle production burner that can be used in the method for producing spherical particles of the present invention. FIG. 2 is a sectional view, and FIG. It is III sectional drawing.

この高圧燃焼球状粒子製造用バーナ30は、キャリアガスに搬送された原料粉末を供給する原料粉末供給路31と、該原料粉末供給路31の外周に設置された燃料ガス供給路32と、該燃料ガス供給路32の外周に設置された旋回酸素供給路33と、該旋回酸素供給路33の外周に設置された直進酸素供給路34と、該直進酸素供給路34の外周に設置された冷却水通路35a,35bとを有する多重管構造に形成されており、冷却水通路35a,35b内を流れる冷却水を除く各流体は、各供給路の先端に設けられた各噴出口からそれぞれ噴出する。   The high pressure combustion spherical particle manufacturing burner 30 includes a raw material powder supply path 31 for supplying a raw material powder conveyed to a carrier gas, a fuel gas supply path 32 installed on the outer periphery of the raw material powder supply path 31, and the fuel A swirling oxygen supply path 33 installed on the outer periphery of the gas supply path 32, a straight oxygen supply path 34 installed on the outer periphery of the swirl oxygen supply path 33, and cooling water installed on the outer periphery of the straight oxygen supply path 34 Each of the fluids excluding the cooling water flowing in the cooling water passages 35a and 35b is ejected from each outlet provided at the tip of each supply passage.

原料粉末供給路31の先端には、複数の小孔からなる原料粉末噴出口31sが設けられており、原料粉末は、キャリアガスに同伴されて外側に拡がるようにして噴出する。原料粉末噴出口31sの外周側で燃料ガス供給路32の先端に設けられた燃料ガス噴出口32sは、燃料ガスをバーナ軸線に平行な方向に直進流れで筒状に噴出する。燃料ガス噴出口32sの外周側で旋回酸素供給路33の先端に設けられた旋回酸素噴出口33sは、旋回羽根等によって酸素を旋回流として噴出し、旋回酸素噴出口33sから噴出した酸素は、螺旋状に旋回しながら前方に向かって流れていく。また、旋回酸素噴出口33sの外周側で直進酸素供給路34の先端に設けられた直進酸素噴出口34sは、酸素をバーナ軸線に平行な方向に直進流れで筒状に噴出する。   At the tip of the raw material powder supply path 31, there is provided a raw material powder ejection port 31s composed of a plurality of small holes, and the raw material powder is ejected so as to spread outward along with the carrier gas. The fuel gas jet 32s provided at the tip of the fuel gas supply passage 32 on the outer peripheral side of the raw material powder jet 31s jets the fuel gas in a cylindrical shape by a straight flow in a direction parallel to the burner axis. The swirl oxygen outlet 33s provided at the tip of the swirl oxygen supply path 33 on the outer peripheral side of the fuel gas spout 32s ejects oxygen as a swirl flow by swirl vanes and the like, and the oxygen ejected from the swirl oxygen spout 33s is It flows forward while turning in a spiral. Further, the straight oxygen outlet 34s provided at the tip of the straight oxygen supply passage 34 on the outer peripheral side of the swirling oxygen jet 33s ejects oxygen in a cylindrical shape by a straight flow in a direction parallel to the burner axis.

図4及び図5は、本発明の球状粒子の製造方法で使用可能な高圧燃焼球状粒子製造用バーナの第2形態例を示すもので、図4は断面図、図5はバーナ前方から見た正面図である。   4 and 5 show a second embodiment of a high-pressure combustion spherical particle production burner that can be used in the spherical particle production method of the present invention. FIG. 4 is a sectional view, and FIG. 5 is a front view of the burner. It is a front view.

この高圧燃焼球状粒子製造用バーナ40は、前記同様に、キャリアガスに搬送された原料粉末を供給する原料粉末供給路41と、該原料粉末供給路41の外周に設置された燃料ガス供給路42と、該燃料ガス供給路42の外周に設置された旋回酸素供給路43と、該旋回酸素供給路43の外周に設置された直進酸素供給路44と、該直進酸素供給路44の外周に設置された冷却水通路45a,45bとを有する多重管構造に形成されたバーナ本体部46の先端に、前方が拡開したコーン状の燃焼室47を設けている。   In the same way as described above, the burner 40 for producing high-pressure combustion spherical particles includes a raw material powder supply path 41 for supplying the raw material powder conveyed to the carrier gas, and a fuel gas supply path 42 installed on the outer periphery of the raw material powder supply path 41. A swirl oxygen supply path 43 installed on the outer periphery of the fuel gas supply path 42, a rectilinear oxygen supply path 44 installed on the outer periphery of the swirl oxygen supply path 43, and an outer periphery of the straight oxygen supply path 44. A cone-shaped combustion chamber 47 whose front is expanded is provided at the tip of the burner main body 46 formed in a multiple tube structure having the cooling water passages 45a and 45b.

燃焼室42の底部中心には、原料粉末供給路31から供給される原料粉末を外側に拡がるようにして噴出するための複数の小孔からなる原料粉末噴出口31sが設けられている。原料粉末噴出口31sの外周側で燃焼室42の前方側には、燃料ガス供給路32から供給される燃料ガスをバーナ軸線に平行な方向に直進流れで筒状に噴出するための複数の小孔からなる燃料ガス噴出口32sが周方向に等間隔で設けられている。燃料ガス噴出口32sの外周側で燃焼室42の前方側には、旋回酸素供給路33から供給される旋回流用酸素を旋回流として噴出するため、噴出方向を燃焼室42の内側で、かつ、燃焼室42の接線方向に向けて傾斜させた複数の小孔からなる旋回酸素噴出口33sが周方向に等間隔で設けられている。さらに、旋回酸素噴出口33sの外周側で燃焼室42の前方側には、直進酸素供給路34から供給される直進流用酸素をバーナ軸線に平行な方向に直進流れで筒状に噴出するための複数の小孔からなる直進酸素噴出口34sが周方向に等間隔で設けられている。   In the center of the bottom of the combustion chamber 42, a raw material powder jet 31s is formed which is composed of a plurality of small holes for jetting the raw material powder supplied from the raw material powder supply passage 31 so as to spread outward. On the outer peripheral side of the raw material powder outlet 31s, on the front side of the combustion chamber 42, a plurality of small nozzles for jetting the fuel gas supplied from the fuel gas supply passage 32 in a straight line flow in a direction parallel to the burner axis. The fuel gas jets 32s formed of holes are provided at equal intervals in the circumferential direction. Since the swirl flow oxygen supplied from the swirl oxygen supply path 33 is spouted as a swirl flow on the outer peripheral side of the fuel gas outlet 32s and on the front side of the combustion chamber 42, the ejection direction is inside the combustion chamber 42, and Swirling oxygen jets 33 s composed of a plurality of small holes inclined toward the tangential direction of the combustion chamber 42 are provided at equal intervals in the circumferential direction. Further, on the outer peripheral side of the swirling oxygen outlet 33 s and on the front side of the combustion chamber 42, the straight-flowing oxygen supplied from the straight-ahead oxygen supply passage 34 is jetted in a cylindrical shape with a straight-forward flow in a direction parallel to the burner axis. A straight oxygen outlet 34s composed of a plurality of small holes is provided at equal intervals in the circumferential direction.

このように形成された高圧燃焼球状粒子製造用バーナ30,40における前記旋回酸素噴出口33s,43sと前記直進酸素噴出口34s,44sとからそれぞれ噴出する酸素量は、前記旋回酸素供給路33,43と前記直進酸素供給路34,44とにそれぞれ供給する酸素量を調整することによって任意に調整が可能であり、旋回酸素噴出口33s,43sから噴出する旋回酸素と直進酸素噴出口34s,44sから噴出する直進酸素との流量割合や流速割合を調節することにより、バーナ前方に形成される燃焼火炎の前方への推進力と周囲への広がりとを制御することができ、火炎の形と火炎の温度分布とを調整することができる。   The amount of oxygen ejected from the swirling oxygen outlets 33s, 43s and the straight oxygen outlets 34s, 44s in the burner 30, 40 for producing high-pressure combustion spherical particles formed in this way is the swirl oxygen supply path 33, 43 and the straight oxygen supply passages 34 and 44 can be arbitrarily adjusted by adjusting the amounts of oxygen supplied to the straight oxygen supply passages 34 and 44, respectively. By adjusting the flow rate ratio and flow rate ratio with the straight oxygen that is ejected from the flame, the propulsive force of the combustion flame formed in front of the burner and the spread to the surroundings can be controlled, and the shape and flame of the flame And the temperature distribution can be adjusted.

すなわち、直進酸素に対する旋回酸素の割合を増加させると、相対的に直進流れが弱まるために短い火炎形状となり、火炎中心軸に対して旋回する螺旋流れの多い燃焼ガス流動特性となる。この特性が強い火炎は、原料粉末噴出口31s,41sから火炎中心軸前方に噴出した原料粉末を分散させる効果は大きくなるものの、高温の火炎内での滞留時間が短くなるため、加熱溶融能力は低下する。さらに、燃料ガス噴出口32s,42sから噴出した燃料ガスも分散して酸素流れから外れるおそれがあり、酸素濃度の低い領域に存在する燃料の割合が多くなってすすが発生し易くなる。   That is, when the ratio of the swirling oxygen to the straight oxygen is increased, the straight flow becomes relatively weak and the flame shape becomes short, and the combustion gas flow characteristics with a lot of spiral flow swirling with respect to the flame central axis are obtained. A flame having strong characteristics has a greater effect of dispersing the raw material powder ejected from the raw material powder jet ports 31s and 41s to the front of the flame center axis, but the residence time in the high-temperature flame is shortened. descend. Further, the fuel gas ejected from the fuel gas ejection ports 32 s and 42 s may also disperse and deviate from the oxygen flow, so that the ratio of the fuel present in the region having a low oxygen concentration increases and soot is easily generated.

一方、直進酸素に対する旋回酸素の割合を減少させると、相対的に直進流れが強まるために長い火炎形状となり、火炎中心軸に対して旋回する螺旋流れの少ない直進的な燃焼ガス流動特性となる。この特性が強い火炎は、原料粉末噴出口31s,41sから火炎中心軸前方に噴出した原料粉末を分散させる効果は小さくなるものの、高温の火炎内での原料粉末の滞留時間が長くなるため、加熱溶融能力は向上する。   On the other hand, when the ratio of the swirling oxygen to the straight oxygen is decreased, the straight flow is relatively strong, so that a long flame shape is obtained, and a straight combustion gas flow characteristic with a small spiral flow swirling with respect to the flame central axis is obtained. A flame having such strong characteristics is less effective in dispersing the raw material powder ejected from the raw material powder jet outlets 31s and 41s in front of the flame center axis, but the residence time of the raw material powder in the high-temperature flame becomes longer. The melting capacity is improved.

この場合、原料粉末噴出口31s,41sの形状を、前述のように原料粉末を外側に拡がるようにして噴出する形状とし、原料粉末を十分に分散させることができるように形成することにより、原料粉末を十分に分散させることが可能となる。また、バーナ外周側に位置する直進酸素噴出口34s,44sから噴出する直進流れが強まるため、内側の燃料ガス噴出口32s,42sから噴出した燃料ガスの分散を抑えることができ、燃料ガスを酸素濃度の高い領域で燃焼させることができるので、すすの発生も少なくなる。   In this case, the raw material powder outlets 31 s and 41 s are shaped so that the raw material powder is ejected so as to spread outward as described above, and the raw material powder is formed so as to be sufficiently dispersed. It becomes possible to fully disperse the powder. Further, since the straight flow that is jetted from the straight oxygen jets 34s and 44s located on the outer peripheral side of the burner is strengthened, dispersion of the fuel gas jetted from the inner fuel gas jets 32s and 42s can be suppressed, and the fuel gas is oxygenated. Since it can be burned in a high concentration region, the generation of soot is reduced.

したがって、原料粉末の性状や雰囲気圧力等の条件に応じて直進酸素と旋回酸素との割合を適切に設定することにより、低融点材料だけでなく高融点材料からなる原料粉末の球状化を効率よく確実に行うことができる。   Therefore, by appropriately setting the ratio of straight oxygen and swirling oxygen according to the conditions such as the properties of the raw material powder and the atmospheric pressure, the spheroidization of the raw material powder made of not only the low melting point material but also the high melting point material can be efficiently performed. It can be done reliably.

例えば、同じような図2,図3に示す構造のバーナを用いてシリカのような低融点材料の球状化を大気圧雰囲気で行う場合には、直進酸素と旋回酸素との合計量に対する旋回酸素の割合を30%前後に設定して処理することにより、原料粉末の適切な加熱溶融を行うことができ、溶融粒子同士の付着・粗粒化を防ぐことができる。   For example, when a low-melting-point material such as silica is spheroidized in an atmospheric pressure atmosphere using a burner having the same structure as shown in FIGS. 2 and 3, swirling oxygen relative to the total amount of straight oxygen and swirling oxygen By setting the ratio to about 30%, the raw material powder can be appropriately heated and melted, and adhesion and coarsening of the molten particles can be prevented.

しかし、マグネシアやジルコニアのような高融点材料の球状化を行う場合は、高圧雰囲気での燃焼であることから、大気圧雰囲気での燃焼火炎に比べて火炎が短くなり、大気圧雰囲気と同じように合計酸素量に対する旋回酸素の割合を30%前後に設定すると、前述のようにすすが発生し易くなる傾向がある。このため、合計酸素量に対する旋回酸素の割合を大気圧雰囲気下に比べて少なくし、通常は、旋回酸素の割合を合計酸素量の5〜20%の範囲に設定し、直進酸素の割合を相対的に増加させることにより、火炎を長くしてすすの発生を抑制することができる。   However, when spheroidizing high melting point materials such as magnesia and zirconia, the flame is shorter than the combustion flame in the atmospheric pressure atmosphere because it is a combustion in the high pressure atmosphere, which is the same as the atmospheric pressure atmosphere. If the ratio of swirling oxygen to the total amount of oxygen is set to around 30%, soot tends to occur as described above. For this reason, the ratio of the swirling oxygen to the total oxygen amount is reduced as compared with that under the atmospheric pressure atmosphere. Usually, the ratio of the swirling oxygen is set in a range of 5 to 20% of the total oxygen amount, and the ratio of the straight oxygen is relatively set. By making it increase, the flame can be lengthened and the generation of soot can be suppressed.

一方、直進酸素量の割合を増加させて旋回酸素量を減量させると、旋回酸素による燃料ガスの流動性向上効果が相対的に低下する傾向となるが、燃料ガス噴出口32s,42sから噴出する燃料ガスの噴出速度よりも直進酸素噴出口34s,44sから噴出する直進酸素の噴出速度を大きくすることにより、直進酸素の流れで燃料ガスの流れを包み込むことができる。例えば、燃料ガス噴出口32s,42sから噴出する燃料ガスの噴出速度は一般的な15〜40m/sの範囲でよく、このときの直進酸素噴出口34s,44sから噴出する直進酸素の噴出速度を、前記燃料ガスの噴出速度に対して1.1〜3倍の範囲に設定することにより、直進酸素の流れで燃料ガスの流れを十分に包み込むことができる。   On the other hand, when the amount of the straight-ahead oxygen amount is increased to reduce the swirling oxygen amount, the effect of improving the fluidity of the fuel gas due to the swirling oxygen tends to decrease relatively, but the fuel gas is ejected from the fuel gas outlets 32s and 42s. By increasing the jet speed of the straight oxygen jetted from the straight oxygen jet outlets 34s and 44s rather than the jet speed of the fuel gas, the flow of the fuel gas can be wrapped with the straight oxygen flow. For example, the ejection speed of the fuel gas ejected from the fuel gas ejection ports 32 s and 42 s may be in a general range of 15 to 40 m / s, and the ejection speed of the rectilinear oxygen ejected from the rectilinear oxygen ejection ports 34 s and 44 s at this time By setting the fuel gas in a range of 1.1 to 3 times the jetting speed of the fuel gas, the flow of the fuel gas can be sufficiently wrapped with the flow of straight oxygen.

図6は、高圧燃焼チャンバー(16)内の圧力(雰囲気圧力)を中圧の0.5MPaに設定し、燃料源としてLNGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。LNGは、LNG貯蔵タンク50からLNG蒸発器51に送られて気化し、液体酸素は、液体酸素貯蔵タンク52から酸素蒸発器53に送られて気化し、各流量制御器54,55で流量調節され、各供給配管56,57を経て前記高圧燃焼球状粒子製造用バーナ13に供給される。   FIG. 6 shows the fuel supply when the pressure (atmospheric pressure) in the high-pressure combustion chamber (16) is set to an intermediate pressure of 0.5 MPa, LNG is used as the fuel source, and liquid oxygen is used as the combustion-supporting gas source. It is a systematic diagram showing an example of equipment and oxygen supply equipment. LNG is sent from the LNG storage tank 50 to the LNG evaporator 51 for vaporization, and liquid oxygen is sent from the liquid oxygen storage tank 52 to the oxygen evaporator 53 for vaporization, and the flow rate is adjusted by the flow rate controllers 54 and 55. Then, it is supplied to the burner 13 for producing high-pressure combustion spherical particles through the supply pipes 56 and 57.

図7は、高圧燃焼チャンバー内の圧力(雰囲気圧力)を中圧の0.5MPaに設定し、燃料源としてLPG(C濃度90%以上)を、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。LPGは、LPG貯蔵タンク60から蒸発器61に送られて気化し、液体酸素は、貯蔵タンク62から蒸発器63に送られて気化し、各流量制御器64,65で流量調節され、各供給配管66,67を経て高圧燃焼球状粒子製造用バーナ13に供給される。LPG側の供給配管66には、蒸発器61で気化した燃料ガスが管内で再液化することを防止するため、供給配管66を30〜70℃に加熱する配管加熱器66Hを設置している。配管加熱器66Hの加熱源は、電気ヒーターやスチームトレースなどを任意に用いることができる。 FIG. 7 shows that the pressure in the high-pressure combustion chamber (atmospheric pressure) is set to an intermediate pressure of 0.5 MPa, LPG (C 3 H 8 concentration 90% or more) is used as the fuel source, and liquid oxygen is used as the combustion-supporting gas source. It is a systematic diagram which shows an example of the fuel supply equipment and oxygen supply equipment when each is used. The LPG is sent from the LPG storage tank 60 to the evaporator 61 for vaporization, and the liquid oxygen is sent from the storage tank 62 to the evaporator 63 for vaporization. It is supplied to the burner 13 for producing high-pressure combustion spherical particles via pipes 66 and 67. In the supply pipe 66 on the LPG side, a pipe heater 66H for heating the supply pipe 66 to 30 to 70 ° C. is installed in order to prevent the fuel gas vaporized by the evaporator 61 from being reliquefied in the pipe. An electric heater, a steam trace, or the like can be arbitrarily used as the heating source of the pipe heater 66H.

図8は、高圧燃焼チャンバー内の圧力を高圧の2.3MPaに設定し、燃料源としてLNGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。LNGは、貯蔵タンク70から導出されてLNGポンプ71により2.3MPa以上の圧力、例えば2.5〜2.6MPaに加圧された後にLNG蒸発器72に送られて気化する。液体酸素も同様に、貯蔵タンク73から導出されて酸素ポンプ74で2.5〜2.6MPaに加圧された後に蒸発器75に送られて気化する。気化した燃料及び酸素は、各流量制御器76,77で流量調節され、各供給配管78,79を経て高圧燃焼球状粒子製造用バーナ13に供給される。   FIG. 8 shows an example of fuel supply equipment and oxygen supply equipment when the pressure in the high-pressure combustion chamber is set to a high pressure of 2.3 MPa, LNG is used as the fuel source, and liquid oxygen is used as the combustion-supporting gas source. It is a systematic diagram shown. The LNG is led out from the storage tank 70 and pressurized to 2.3 MPa or more, for example, 2.5 to 2.6 MPa by the LNG pump 71, and then sent to the LNG evaporator 72 and vaporized. Similarly, liquid oxygen is led out from the storage tank 73 and pressurized to 2.5 to 2.6 MPa by the oxygen pump 74 and then sent to the evaporator 75 to be vaporized. The vaporized fuel and oxygen are adjusted in flow rate by the flow rate controllers 76 and 77 and supplied to the burner 13 for producing high-pressure combustion spherical particles through the supply pipes 78 and 79.

図9は、高圧燃焼チャンバー内の圧力を高圧の2.3MPaに設定し、燃料源としてLPGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。LPGは、LPG貯蔵タンク80から導出されてLPGポンプ81で前記同様の2.5〜2.6MPaに加圧された後に蒸発器82に送られて気化する。液体酸素も同様に、貯蔵タンク83から導出されて酸素ポンプ84で2.5〜2.6MPaに加圧された後に蒸発器85に送られて気化する。気化した燃料及び酸素は、各流量制御器86,87で流量調節され、各供給配管88,89を経て高圧燃焼球状粒子製造用バーナ13に供給される。LPG側の供給配管88には、蒸発器82で気化した燃料ガスが管内で再液化することを防止するため、供給配管88を80〜120℃に加熱する配管加熱器88Hを設置している。配管加熱器88Hの加熱源は、電気ヒーターやスチームトレースなどを任意に用いることができる。   FIG. 9 shows an example of fuel supply equipment and oxygen supply equipment when the pressure in the high-pressure combustion chamber is set to a high pressure of 2.3 MPa, LPG is used as the fuel source, and liquid oxygen is used as the combustion-supporting gas source. It is a systematic diagram shown. The LPG is led out from the LPG storage tank 80, pressurized to 2.5 to 2.6 MPa as described above by the LPG pump 81, and then sent to the evaporator 82 to be vaporized. Similarly, liquid oxygen is led out from the storage tank 83 and pressurized to 2.5 to 2.6 MPa by the oxygen pump 84 and then sent to the evaporator 85 to be vaporized. The vaporized fuel and oxygen are adjusted in flow rate by the flow rate controllers 86 and 87, and supplied to the burner 13 for producing high-pressure combustion spherical particles through the supply pipes 88 and 89. In the supply pipe 88 on the LPG side, a pipe heater 88H for heating the supply pipe 88 to 80 to 120 ° C. is installed in order to prevent the fuel gas vaporized by the evaporator 82 from being reliquefied in the pipe. As a heating source of the pipe heater 88H, an electric heater, a steam trace, or the like can be arbitrarily used.

高圧燃焼チャンバー内の圧力を高圧の0.5MPaに設定し、図4及び図5の第2形態例で示した構造の高圧燃焼球状粒子製造用バーナ(40)を使用し、図7に示した前記燃料供給設備からLPG(C濃度97%以上)を気化して燃料ガスとして供給するとともに、前記酸素供給設備から液体酸素を気化した酸素ガス(酸素濃度99%)を支燃性ガスとして供給し、原料粉末には平均粒径(D50)が20.5μmである破砕マグネシア粉末(MgO純度98.0%)を使用して球状マグネシア粒子を製造する実験を行った。 The pressure in the high-pressure combustion chamber was set to a high pressure of 0.5 MPa, and the burner (40) for producing high-pressure combustion spherical particles having the structure shown in the second embodiment of FIGS. 4 and 5 was used, as shown in FIG. LPG (C 3 H 8 concentration 97% or more) is vaporized from the fuel supply facility and supplied as fuel gas, and oxygen gas (oxygen concentration 99%) vaporized from the oxygen supply facility is used as a combustion-supporting gas. As a raw material powder, an experiment was carried out in which spherical magnesia particles were produced using crushed magnesia powder (MgO purity 98.0%) having an average particle diameter (D 50 ) of 20.5 μm.

破砕マグネシア粉末は、7.5Nm/hの酸素をキャリアガスとして3.5kg/hをバーナへ供給し、燃料ガスは5Nm/hで、酸素ガスは旋回酸素及び直進酸素の合計量で17.5Nm/h(キャリアガスとの合計量は25Nm/h)を供給した。燃料ガス噴出口から噴出する燃料ガスの噴出速度は25m/s、直進酸素噴出口から噴出する直進酸素の噴出速度は37.7m/sとした。運転中の高圧燃焼チャンバー内の雰囲気温度は1000〜1600℃であった。なお、流量の[Nm/h]は大気圧、0℃の状態に換算した値、噴出速度の[m/s]は0℃の状態に換算した値を示している。 The crushed magnesia powder uses 7.5 Nm 3 / h oxygen as a carrier gas and supplies 3.5 kg / h to the burner, the fuel gas is 5 Nm 3 / h, and the oxygen gas is 17 in total amount of swirling oxygen and straight oxygen. 0.5 Nm 3 / h (total amount with carrier gas was 25 Nm 3 / h). The ejection speed of the fuel gas ejected from the fuel gas ejection port was 25 m / s, and the ejection speed of the rectilinear oxygen ejected from the rectilinear oxygen ejection port was 37.7 m / s. The atmospheric temperature in the high-pressure combustion chamber during operation was 1000 to 1600 ° C. The flow rate [Nm 3 / h] represents a value converted to atmospheric pressure and 0 ° C., and the ejection velocity [m / s] represents a value converted to 0 ° C.

合計酸素量に対する旋回酸素量の割合、「(旋回酸素量)/(旋回酸素量+直進酸素量)」を変化させて実験を行ったところ、旋回酸素量の割合を20%以下にすることにより、火炎から発生するすすの混入も少なく、良好に溶融された円形度の高い球状マグネシア粒子が得られた。旋回酸素量の割合を20%以下にしたときにキャンドルフィルターで回収した球状粒子を観察した結果、原料粉末と略同等の粒度分布であり、平均粒径が20〜30μmの球形粒子であることが確認された。   When the experiment was performed by changing the ratio of the swirling oxygen amount to the total oxygen amount, “(swirl oxygen amount) / (swirl oxygen amount + straight-ahead oxygen amount)”, the ratio of the swirling oxygen amount was reduced to 20% or less As a result, there was little mixing of soot generated from the flame, and spherical magnesia particles with a high degree of circularity that were well melted were obtained. As a result of observing the spherical particles collected by the candle filter when the ratio of the amount of swirling oxygen is 20% or less, the particle size distribution is substantially the same as the raw material powder, and the spherical particles have an average particle size of 20 to 30 μm. confirmed.

一方、合計酸素流量に対する旋回酸素流量の割合を30%、40%で運転したところ、キャンドルフィルターで回収した球状粒子にすすの混入があり、未溶融の非球形粒子も多く見られた。また、燃焼チャンバー内の圧力を0.15MPa(略大気圧)に設定し、各供給量を同じにして運転したが、この場合は、圧力が低いために火炎温度が十分に上昇せず、合計酸素量に対する旋回酸素量の割合が0〜50%のいずれの条件においても、火炎中で原料粉末を溶融させることができず、円形度の高い球状粒子は全く得られなかった。   On the other hand, when the ratio of the swirling oxygen flow rate to the total oxygen flow rate was 30% and 40%, soot was mixed in the spherical particles collected by the candle filter, and many unmelted non-spherical particles were also observed. In addition, the pressure in the combustion chamber was set to 0.15 MPa (substantially atmospheric pressure) and each supply amount was the same, but in this case, the flame temperature did not rise sufficiently due to the low pressure, and the total Under any conditions where the ratio of the amount of swirling oxygen to the amount of oxygen was 0 to 50%, the raw material powder could not be melted in the flame, and spherical particles with a high degree of circularity were not obtained at all.

高圧燃焼チャンバー内の圧力を高圧の0.5MPaに設定し、図4及び図5の第2形態例で示した構造の高圧燃焼球状粒子製造用バーナを使用し、図7に示した前記燃料供給設備からLPG(C濃度97%以上)を気化して燃料ガスとして供給するとともに、前記酸素供給設備から液体酸素を気化した酸素ガス(酸素濃度99%)を支燃性ガスとして供給し、原料粉末には平均粒径(D50)が10.9μmである破砕ジルコニア粉末(ZrO純度99.3%)を使用して球状ジルコニア粒子を製造する実験を行った。 The pressure in the high-pressure combustion chamber is set to a high pressure of 0.5 MPa, and the fuel supply shown in FIG. 7 is performed using the burner for producing high-pressure combustion spherical particles having the structure shown in the second embodiment of FIGS. LPG (C 3 H 8 concentration 97% or more) is vaporized from the facility and supplied as fuel gas, and oxygen gas (oxygen concentration 99%) vaporized from the oxygen supply facility is supplied as combustion-supporting gas. In addition, an experiment was conducted in which spherical zirconia particles were produced using crushed zirconia powder (ZrO 2 purity 99.3%) having an average particle diameter (D 50 ) of 10.9 μm as the raw material powder.

破砕ジルコニア粉末は、7.5Nm/hの酸素をキャリアガスとして13kg/hをバーナへ供給し、燃料ガスは5Nm/hで、酸素ガスは旋回酸素及び直進酸素の合計量で17.5Nm/h(キャリアガスとの合計量は25Nm/h)を供給した。燃料ガス噴出口から噴出する燃料ガスの噴出速度は25m/s、直進酸素噴出口から噴出する直進酸素の噴出速度は37.7m/sとした。運転中の高圧燃焼チャンバー16内の雰囲気温度は1000〜1600℃であった。 Crushed zirconia powder uses 7.5 Nm 3 / h oxygen as a carrier gas and supplies 13 kg / h to the burner, fuel gas is 5 Nm 3 / h, oxygen gas is 17.5 Nm in total amount of swirling oxygen and straight oxygen 3 / h (total amount with carrier gas is 25 Nm 3 / h). The ejection speed of the fuel gas ejected from the fuel gas ejection port was 25 m / s, and the ejection speed of the rectilinear oxygen ejected from the rectilinear oxygen ejection port was 37.7 m / s. The atmospheric temperature in the high-pressure combustion chamber 16 during operation was 1000 to 1600 ° C.

合計酸素量に対する旋回酸素量の割合を変化させて実験を行ったところ、旋回酸素量の割合を20%以下にすることにより、火炎から発生するすすの混入も少なく、良好に溶融された円形度の高い球状ジルコニア粒子が得られた。旋回酸素量の割合を20%以下にしたときにキャンドルフィルターで回収した球状粒子を観察した結果、原料粉末と略同等の粒度分布であり、平均粒径が10〜20μmの球形粒子であることが確認された。   Experiments were performed by changing the ratio of the amount of swirling oxygen to the total amount of oxygen. By reducing the ratio of the amount of swirling oxygen to 20% or less, the soot generated from the flame was reduced, and the melted circularity was good. High spherical zirconia particles were obtained. As a result of observing the spherical particles collected by the candle filter when the ratio of the amount of swirling oxygen is 20% or less, it is a spherical particle having a particle size distribution substantially the same as the raw material powder and an average particle size of 10 to 20 μm. confirmed.

一方、合計酸素流量に対する旋回酸素流量の割合を30%、40%で運転したところ、キャンドルフィルターで回収した球状粒子にすすの混入があり、未溶融の非球形粒子も多く見られた。また、旋回酸素量の割合を20%とした状態で、燃料ガス噴出口から噴出する燃料ガスの噴出速度を10m/sにした場合、さらに、直進酸素噴出口から噴出する直進酸素の噴出速度を燃料ガスの噴出速度の0.9倍以下にした場合、いずれの場合もすすの発生が見られ、未溶融の非球形粒子の割合が多くなった。   On the other hand, when the ratio of the swirling oxygen flow rate to the total oxygen flow rate was 30% and 40%, soot was mixed in the spherical particles collected by the candle filter, and many unmelted non-spherical particles were also observed. Further, in the state where the ratio of the swirling oxygen amount is 20%, when the ejection speed of the fuel gas ejected from the fuel gas ejection port is set to 10 m / s, the ejection speed of the rectilinear oxygen ejected from the rectilinear oxygen ejection port is further increased. When the fuel gas ejection speed was 0.9 times or less, soot was observed in all cases, and the proportion of unmelted non-spherical particles increased.

高圧燃焼チャンバー内の圧力を高圧の2.3MPaに設定し、図4及び図5の第2形態例で示した構造の高圧燃焼球状粒子製造用バーナを使用し、図9に示した前記燃料供給設備からLPG(C濃度97%以上)を気化して燃料ガスとして供給するとともに、前記酸素供給設備から液体酸素を気化した酸素ガス(酸素濃度99%)を支燃性ガスとして供給し、原料粉末には平均粒径(D50)が20.5μmである破砕マグネシア粉末(MgO純度98.0%)を使用して球状マグネシア粒子を製造する実験を行った。 The fuel supply shown in FIG. 9 is performed by setting the pressure in the high-pressure combustion chamber to a high pressure of 2.3 MPa and using the burner for producing high-pressure combustion spherical particles having the structure shown in the second embodiment of FIGS. LPG (C 3 H 8 concentration 97% or more) is vaporized from the facility and supplied as fuel gas, and oxygen gas (oxygen concentration 99%) vaporized from the oxygen supply facility is supplied as combustion-supporting gas. In addition, an experiment was conducted in which spherical magnesia particles were produced using crushed magnesia powder (MgO purity 98.0%) having an average particle diameter (D 50 ) of 20.5 μm as the raw material powder.

破砕マグネシア粉末は、7.5Nm/hの酸素をキャリアガスとして5.5kg/hをバーナへ供給し、燃料ガスは5Nm/hで、酸素ガスは旋回酸素及び直進酸素の合計量で17.5Nm/h(キャリアガスとの合計量は25Nm/h)を供給した。燃料ガス噴出口から噴出する燃料ガスの噴出速度は25m/s、直進酸素噴出口から噴出する直進酸素の噴出速度は37.7m/sとした。運転中の高圧燃焼チャンバー16内の雰囲気温度は1000〜1600℃であった。 The crushed magnesia powder supplies 5.5 kg / h to the burner using 7.5 Nm 3 / h oxygen as a carrier gas, the fuel gas is 5 Nm 3 / h, and the oxygen gas is 17 in total amount of swirling oxygen and straight oxygen. 0.5 Nm 3 / h (total amount with carrier gas was 25 Nm 3 / h). The ejection speed of the fuel gas ejected from the fuel gas ejection port was 25 m / s, and the ejection speed of the rectilinear oxygen ejected from the rectilinear oxygen ejection port was 37.7 m / s. The atmospheric temperature in the high-pressure combustion chamber 16 during operation was 1000 to 1600 ° C.

合計酸素量に対する旋回酸素量の割合、「(旋回酸素量)/(旋回酸素量+直進酸素量)」を変化させて実験を行ったところ、旋回酸素量の割合を20%以下にすることにより、火炎から発生するすすの混入も少なく、良好に溶融された円形度の高い球状マグネシア粒子が得られた。旋回酸素量の割合を20%以下にしたときにキャンドルフィルターで回収した球状粒子を観察した結果、原料粉末と略同等の粒度分布であり、平均粒径が20〜30μmの球形粒子であることが確認された。一方、合計酸素流量に対する旋回酸素流量の割合を30%、40%で運転したところ、キャンドルフィルターで回収した球状粒子にすすの混入があり、未溶融の非球形粒子も多く見られた。   When the experiment was performed by changing the ratio of the swirling oxygen amount to the total oxygen amount, “(swirl oxygen amount) / (swirl oxygen amount + straight-ahead oxygen amount)”, the ratio of the swirling oxygen amount was reduced to 20% or less. As a result, there was little mixing of soot generated from the flame, and spherical magnesia particles having a high degree of circularity that were well melted were obtained. As a result of observing the spherical particles collected by the candle filter when the ratio of the amount of swirling oxygen is 20% or less, the particle size distribution is substantially the same as the raw material powder, and the spherical particles have an average particle size of 20 to 30 μm. confirmed. On the other hand, when the ratio of the swirling oxygen flow rate to the total oxygen flow rate was 30% and 40%, soot was mixed in the spherical particles collected by the candle filter, and many unmelted non-spherical particles were also observed.

本発明の球状粒子の製造方法を実施可能な球状化粒子製造装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of the spheroidized particle manufacturing apparatus which can implement the manufacturing method of the spherical particle of this invention. 本発明の球状粒子の製造方法で使用可能な高圧燃焼球状粒子製造用バーナの第1形態例を示す断面図である。It is sectional drawing which shows the 1st example of a high pressure combustion spherical particle manufacturing burner which can be used with the manufacturing method of the spherical particle of this invention. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 本発明の球状粒子の製造方法で使用可能な高圧燃焼球状粒子製造用バーナの第2形態例を示す断面図である。It is sectional drawing which shows the 2nd example of a high pressure combustion spherical particle manufacturing burner which can be used with the manufacturing method of the spherical particle of this invention. 同じくバーナ前方から見た正面図である。It is the front view similarly seen from the burner front. 高圧燃焼チャンバー内の圧力を0.5MPaに設定し、燃料源としてLNGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。FIG. 3 is a system diagram showing an example of a fuel supply facility and an oxygen supply facility when the pressure in the high-pressure combustion chamber is set to 0.5 MPa, LNG is used as a fuel source, and liquid oxygen is used as a combustion-supporting gas source. 高圧燃焼チャンバー内の圧力を0.5MPaに設定し、燃料源としてLPGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。FIG. 3 is a system diagram showing an example of a fuel supply facility and an oxygen supply facility when the pressure in the high-pressure combustion chamber is set to 0.5 MPa, LPG is used as a fuel source, and liquid oxygen is used as a combustion-supporting gas source. 高圧燃焼チャンバー内の圧力を2.3MPaに設定し、燃料源としてLNGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。It is a systematic diagram showing an example of a fuel supply facility and an oxygen supply facility when the pressure in the high-pressure combustion chamber is set to 2.3 MPa, LNG is used as a fuel source, and liquid oxygen is used as a combustion-supporting gas source. 高圧燃焼チャンバー内の圧力を2.3MPaに設定し、燃料源としてLPGを、支燃性ガス源として液体酸素をそれぞれ使用したときの燃料供給設備、酸素供給設備の一例を示す系統図である。It is a systematic diagram which shows an example of a fuel supply equipment and an oxygen supply equipment when the pressure in a high pressure combustion chamber is set to 2.3 MPa, LPG is used as a fuel source, and liquid oxygen is used as a combustion-supporting gas source.

符号の説明Explanation of symbols

11…高圧用フィーダー、13…高圧燃焼球状粒子製造用バーナ、14…支燃性ガス供給設備、15…燃料供給設備、16…高圧燃焼チャンバー、18…サイクロン、19…キャンドルフィルター、20…排気弁、21…ドレン、30,40…高圧燃焼球状粒子製造用バーナ、31,41…原料粉末供給路、31s,41s…原料粉末噴出口、32,42…燃料ガス供給路、32s,42s…燃料ガス噴出口、33,43…旋回酸素供給路、33s,43s…旋回酸素噴出口、34,44…直進酸素供給路、34s,44s…直進酸素噴出口、35a,35b,45a,45b…冷却水通路、46…バーナ本体部、47…燃焼室、50…LNG貯蔵タンク、51…LNG蒸発器、52…液体酸素貯蔵タンク、53…酸素蒸発器、54,55…流量制御器、56,57…供給配管、60…LPG貯蔵タンク、61…LPG蒸発器、66H…配管加熱器、71…LNGポンプ、74…酸素ポンプ、80…LPG貯蔵タンク、81…LPGポンプ、88H…配管加熱器、P…製品球状粒子   DESCRIPTION OF SYMBOLS 11 ... High pressure feeder, 13 ... High pressure combustion spherical particle manufacturing burner, 14 ... Combustion gas supply equipment, 15 ... Fuel supply equipment, 16 ... High pressure combustion chamber, 18 ... Cyclone, 19 ... Candle filter, 20 ... Exhaust valve , 21 ... Drain, 30, 40 ... Burner for producing high-pressure combustion spherical particles, 31, 41 ... Raw material powder supply passage, 31s, 41s ... Raw material powder injection port, 32, 42 ... Fuel gas supply passage, 32s, 42s ... Fuel gas Spout, 33, 43 ... swirling oxygen supply path, 33s, 43s ... swirling oxygen spout, 34, 44 ... straight oxygen supply path, 34s, 44s ... straight oxygen discharge, 35a, 35b, 45a, 45b ... cooling water passage 46 ... Burner body, 47 ... Combustion chamber, 50 ... LNG storage tank, 51 ... LNG evaporator, 52 ... Liquid oxygen storage tank, 53 ... Oxygen evaporator, 54, 55 ... Volume controller, 56, 57 ... supply piping, 60 ... LPG storage tank, 61 ... LPG evaporator, 66H ... piping heater, 71 ... LNG pump, 74 ... oxygen pump, 80 ... LPG storage tank, 81 ... LPG pump, 88H ... Pipe heater, P ... Product spherical particles

Claims (5)

高圧雰囲気中で形成された火炎中に原料粉末を投入し、該原料粉末を球状化することを特徴とする球状粒子の製造方法。   A method for producing spherical particles, characterized in that raw material powder is put into a flame formed in a high-pressure atmosphere, and the raw material powder is spheroidized. 前記原料粉末の融点に応じて前記火炎を形成する高圧雰囲気の圧力を調節することを特徴とする請求項1記載の球状粒子の製造方法。   The method for producing spherical particles according to claim 1, wherein the pressure of the high-pressure atmosphere forming the flame is adjusted according to the melting point of the raw material powder. 前記火炎は、バーナから噴出される燃料と支燃性ガスとにより形成され、前記支燃性ガスの一部を前記バーナから旋回流として噴出させ、残部の支燃性ガスを前記バーナの軸線方向に直進流として噴出させることを特徴とする請求項1又は2記載の球状粒子の製造方法。   The flame is formed by a fuel and a combustion-supporting gas ejected from a burner, a part of the combustion-supporting gas is ejected from the burner as a swirling flow, and the remaining combustion-supporting gas is ejected in the axial direction of the burner. 3. The method for producing spherical particles according to claim 1, wherein the particles are ejected as a straight flow. 前記高圧雰囲気は、0.2〜10MPaの範囲であることを特徴とする請求項1乃至3のいずれか1項記載の球状粒子の製造方法。   The method for producing spherical particles according to any one of claims 1 to 3, wherein the high-pressure atmosphere is in a range of 0.2 to 10 MPa. 前記原料粉末は、マグネシア又はジルコニアであることを特徴とする請求項1乃至4のいずれか1項記載の球状粒子の製造方法。   The method for producing spherical particles according to any one of claims 1 to 4, wherein the raw material powder is magnesia or zirconia.
JP2008226843A 2008-09-04 2008-09-04 Method for producing spherical particles Active JP5134474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226843A JP5134474B2 (en) 2008-09-04 2008-09-04 Method for producing spherical particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226843A JP5134474B2 (en) 2008-09-04 2008-09-04 Method for producing spherical particles

Publications (2)

Publication Number Publication Date
JP2010058059A true JP2010058059A (en) 2010-03-18
JP5134474B2 JP5134474B2 (en) 2013-01-30

Family

ID=42185474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226843A Active JP5134474B2 (en) 2008-09-04 2008-09-04 Method for producing spherical particles

Country Status (1)

Country Link
JP (1) JP5134474B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193918A (en) * 2011-03-17 2012-10-11 Taiyo Nippon Sanso Corp Burner for manufacturing inorganic spheroidized particle, apparatus for manufacturing inorganic spheroidized particle and method of manufacturing inorganic spheroidized particle
JP2012206077A (en) * 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp Method for producing inorganic spheroidized particle, inorganic spheroidized particle-producing burner, and inorganic spheroidized particle production device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160040A (en) * 1988-12-15 1990-06-20 Mitsubishi Heavy Ind Ltd Production of superfine particle of mineral matter
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
JPH11199249A (en) * 1998-01-13 1999-07-27 Union Corp Production of spheroidized particle
WO2007034551A1 (en) * 2005-09-22 2007-03-29 Taiyo Nippon Sanso Corporation Spheroidizig system and its operating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160040A (en) * 1988-12-15 1990-06-20 Mitsubishi Heavy Ind Ltd Production of superfine particle of mineral matter
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
JPH11199249A (en) * 1998-01-13 1999-07-27 Union Corp Production of spheroidized particle
WO2007034551A1 (en) * 2005-09-22 2007-03-29 Taiyo Nippon Sanso Corporation Spheroidizig system and its operating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193918A (en) * 2011-03-17 2012-10-11 Taiyo Nippon Sanso Corp Burner for manufacturing inorganic spheroidized particle, apparatus for manufacturing inorganic spheroidized particle and method of manufacturing inorganic spheroidized particle
JP2012206077A (en) * 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp Method for producing inorganic spheroidized particle, inorganic spheroidized particle-producing burner, and inorganic spheroidized particle production device

Also Published As

Publication number Publication date
JP5134474B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4966288B2 (en) Method and apparatus for producing metal ultrafine powder, and apparatus for producing metal ultrafine powder
KR101524790B1 (en) Burner for Producing Inorganic Spherical Particles
JP7436357B2 (en) A cost-effective production method for large quantities of ultrafine spherical powder using thruster-assisted plasma atomization
US8393892B2 (en) Burner for production of inorganic spheroidized particle
CN102597629B (en) Method of combusting particulate solid fuel with a burner
JP2005218937A (en) Method and apparatus for manufacturing fine particles
JP5236920B2 (en) Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles
JP2009198083A (en) Burner and method of manufacturing spheronized particle using the same
WO2010016215A1 (en) Method for manufacturing inorganic spheroidized particles
JP2008194637A (en) Fine particle producing device
JP5134474B2 (en) Method for producing spherical particles
CN108473335A (en) The manufacturing method of titanium oxide microparticle without special ratios
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
JP2012193918A (en) Burner for manufacturing inorganic spheroidized particle, apparatus for manufacturing inorganic spheroidized particle and method of manufacturing inorganic spheroidized particle
JP2013017957A (en) Apparatus and method for manufacturing fine particle
JP5750286B2 (en) Method for producing inorganic spheroidized particles, burner for producing inorganic spheroidized particles, and inorganic spheroidized particle producing apparatus
JP2005218938A (en) Fine particle manufacturing apparatus
JP2012107828A (en) Burner for producing inorganic spheroidized particle, inorganic spheroidized particle production device, and method of producing inorganic spheroidized particle
JP5335478B2 (en) Metal particle manufacturing apparatus and manufacturing method
TWI691677B (en) Oxygen burner and operation method thereof
JP2010202445A (en) Method for manufacturing optical fiber preform
JPH04126534A (en) Method and apparatus for producing inorganic sphered particles
JP5367471B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP7303239B2 (en) Burner for producing inorganic spherical particles, method for producing inorganic spherical particles, and inorganic spherical particles
JP2010145071A (en) Distributor for powder body conveyed by air flow and distribution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5134474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250