JP5236920B2 - Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles - Google Patents

Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles Download PDF

Info

Publication number
JP5236920B2
JP5236920B2 JP2007260504A JP2007260504A JP5236920B2 JP 5236920 B2 JP5236920 B2 JP 5236920B2 JP 2007260504 A JP2007260504 A JP 2007260504A JP 2007260504 A JP2007260504 A JP 2007260504A JP 5236920 B2 JP5236920 B2 JP 5236920B2
Authority
JP
Japan
Prior art keywords
supply path
burner
raw material
oxygen
inorganic spheroidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007260504A
Other languages
Japanese (ja)
Other versions
JP2009092254A (en
Inventor
康之 山本
公夫 飯野
義之 萩原
真二 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2007260504A priority Critical patent/JP5236920B2/en
Publication of JP2009092254A publication Critical patent/JP2009092254A/en
Application granted granted Critical
Publication of JP5236920B2 publication Critical patent/JP5236920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Glanulating (AREA)

Description

本発明は、無機質粉体原料を火炎中に供給して無機質球状化粒子を生成する無機質球状化粒子製造用バーナーに関し、さらに、この無機質球状化粒子製造用バーナーを用いて無機質球状化粒子を製造する無機質球状化粒子製造の製造方法及び装置に関する。   The present invention relates to a burner for producing inorganic spheroidized particles in which an inorganic powder raw material is supplied into a flame to produce inorganic spheroidized particles, and further, inorganic spheroidized particles are produced using the burner for producing inorganic spheroidized particles. The present invention relates to a production method and apparatus for producing inorganic spheroidized particles.

無機質球状化粒子は、粉砕した原料粉体を高温の火炎中で溶融し、表面張力により球状化させたものである。例えば、原料として珪石を用いる高純度シリカは、半導体素子のエポキシ封止材用の充填材として広く使用されており、球状化により樹脂フィラーの流動性の向上、高充填、耐摩耗性向上等の様々なメリットを得ることができる。   The inorganic spheroidized particles are obtained by melting a pulverized raw material powder in a high-temperature flame and spheroidizing it by surface tension. For example, high-purity silica using silica as a raw material is widely used as a filler for epoxy encapsulants of semiconductor elements, such as improved fluidity of resin fillers due to spheroidization, high filling, improved wear resistance, etc. Various advantages can be obtained.

無機質球状化粒子の製造における原料粉体の球状化には、高温の火炎が必要であることから、通常は、酸素・ガス燃焼のバーナーが用いられている。このバーナーには、予混合型バーナーと、拡散型バーナーとがあり、予混合型バーナーは、酸素と燃焼ガスとを予め混合させて燃焼場に噴出させるものであり、バーナー内で、原料粉体、酸素、LPGが充分に混合され、バーナー先端に形成される火炎中に原料粉体が供給されるものが知られている(例えば、特許文献1参照。)。   In order to spheroidize the raw material powder in the production of inorganic spheroidized particles, a high-temperature flame is required, and therefore, an oxygen / gas combustion burner is usually used. This burner includes a premix burner and a diffusion burner. The premix burner mixes oxygen and combustion gas in advance and ejects them into the combustion field. , Oxygen, and LPG are well mixed, and raw material powder is supplied into a flame formed at the tip of a burner (see, for example, Patent Document 1).

拡散型バーナーは、酸素と燃焼ガスとを別々に噴出し、燃焼場で混合させるものであり、例えば、竪型炉に配置される拡散型バーナーとして、同心円状の二重管で構成され、その内管と外管との間に多数の小管を設け、珪素質原料をバーナーの中心管(内管)から自然流下(又は加圧流下)させ、小管からの可燃ガスと外管からの酸素ガスとで形成した火炎中に原料を投入し、溶融シリカ球状体を製造するものが知られている(例えば、特許文献2参照。)。   A diffusion type burner is a type in which oxygen and combustion gas are separately ejected and mixed in a combustion field. For example, a diffusion type burner arranged in a vertical furnace is composed of a concentric double tube, Many small pipes are provided between the inner pipe and the outer pipe, and the siliceous raw material is allowed to flow naturally (or under a pressurized flow) from the center pipe (inner pipe) of the burner, and combustible gas from the small pipe and oxygen gas from the outer pipe And manufacturing a fused silica sphere by introducing the raw material into a flame formed in (see, for example, Patent Document 2).

また、他の拡散型バーナーとしては、同心の五重管で構成され、中心部から酸素ガス又は酸素富化ガスを搬送ガスとして原料粉体を燃焼室に供給し、その外周から燃料ガスを、さらにその外周から一次酸素と二次酸素とを供給するように形成され、最外周部にバーナーを冷却する冷却ジャケットが設けられているものが知られている(例えば、特許文献3,4参照。)。
特開昭62−241543号公報 特開昭58−145613号公報 特許第3331491号公報 特許第3312228号公報
Further, as another diffusion burner, it is composed of concentric quintuple pipes, supplying raw material powder to the combustion chamber using oxygen gas or oxygen-enriched gas as a carrier gas from the center, and fuel gas from its outer periphery, Further, it is known that primary oxygen and secondary oxygen are supplied from the outer periphery, and a cooling jacket for cooling the burner is provided on the outermost periphery (see, for example, Patent Documents 3 and 4). ).
JP 62-241543 A JP 58-145613 A Japanese Patent No. 3331491 Japanese Patent No. 3322228

特許文献2に記載された拡散型バーナーでは、逆火の虞はないが、原料供給管と平行して燃料供給管が設けられていることから、原料粉体が火炎中で、主に火炎からの強制対流熱伝達により加熱・溶融され、表面張力によって球状化する際に、凝集状態で融着した粒子が生成されることがあった。さらに、特許文献3及び4に記載された構造の拡散型バーナーでは、燃焼室が設けられていることから、特許文献2に記載のバーナーに比べ、製造された無機質球状化粒子の凝集状態に改善が見られる。   In the diffusion burner described in Patent Document 2, there is no risk of backfire, but since the fuel supply pipe is provided in parallel with the raw material supply pipe, the raw material powder is in flame, mainly from the flame. When heated and melted by forced convection heat transfer and spheroidized by surface tension, particles fused in an aggregated state may be generated. Further, in the diffusion burner having the structure described in Patent Documents 3 and 4, since the combustion chamber is provided, the state of aggregation of the produced inorganic spheroidized particles is improved as compared with the burner described in Patent Document 2. Is seen.

しかし、種々の平均粒径を持つ無機質原料粉体を同一燃焼量で球状化処理したところ、平均粒径が小さくなるにつれて凝集がすすみ、球状化処理できる量が減少する傾向が見られた。また、火炎中で処理された後の球状化粒子の平均粒度が、原料の平均粒度より大きくなる傾向が見られた。したがって、平均粒径が、より小さい球状化粒子を得るためには、特許文献3や特許文献4に記載された拡散型バーナーでは不充分である。   However, when the inorganic raw material powders having various average particle diameters were spheroidized with the same combustion amount, agglomeration progressed as the average particle diameter decreased, and the amount of spheroidizing treatment tended to decrease. Moreover, the tendency for the average particle diameter of the spheroidized particle after processing in a flame to become larger than the average particle diameter of a raw material was seen. Therefore, in order to obtain spheroidized particles having a smaller average particle diameter, the diffusion burners described in Patent Document 3 and Patent Document 4 are insufficient.

そこで本発明は、原料粉体の特性(粒径・密度・比熱・溶解潜熱・融点・沸点等)に応じた球状化処理を行うことができる無機質球状化粒子製造用バーナー及び無機質球状化粒子製造の製造方法及び装置を提供することを目的としている。   Accordingly, the present invention provides a burner for producing inorganic spheroidized particles that can be spheroidized according to the characteristics of the raw material powder (particle size, density, specific heat, latent heat of melting, melting point, boiling point, etc.) and inorganic spheroidized particle production. An object of the present invention is to provide a manufacturing method and apparatus.

上記目的を達成するため、本発明の無機質球状化粒子製造用バーナーの第1の構成は、無機質粉体原料を火炎中に供給して無機質球状化粒子を生成する無機質球状化粒子製造用バーナーにおいて、前記無機質粉体原料を分散させる分散用ガスを供給する内側分散用ガス供給路と、該内側分散用ガス供給路の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路と、該原料粉体供給路の外側に配置される一次酸素供給路と、該一次酸素供給路の外側に配置される燃料流体供給路と、該燃料流体供給路の外側に配置される二次酸素供給路とを同心状に備えるとともに、前記各供給路の先端には、バーナー中心軸に直交する平面上に開口する噴出口がそれぞれ設けられていることを特徴としている。   In order to achieve the above object, a first configuration of the inorganic spheroidized particle manufacturing burner of the present invention is an inorganic spheroidized particle manufacturing burner that generates inorganic spheroidized particles by supplying an inorganic powder raw material into a flame. An inner dispersion gas supply path for supplying a dispersion gas for dispersing the inorganic powder raw material, and the inorganic powder using oxygen or oxygen-enriched air arranged outside the inner dispersion gas supply path as a carrier gas A raw material powder supply path for conveying a raw material, a primary oxygen supply path disposed outside the raw material powder supply path, a fuel fluid supply path disposed outside the primary oxygen supply path, and the fuel fluid supply A secondary oxygen supply passage disposed outside the passage is concentrically provided, and a tip opening of each of the supply passages is provided on a plane perpendicular to the burner central axis. as a feature That.

また、本発明の無機質球状化粒子製造用バーナーの第2の構成は、無機質粉体原料を火炎中に供給して無機質球状化粒子を生成する無機質球状化粒子製造用バーナーにおいて、前記無機質粉体原料を分散させる分散用ガスを供給する内側分散用ガス供給路と、該内側分散用ガス供給路の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路と、該原料粉体供給路の外側に配置される燃料流体供給路と、該燃料流体供給路の外側に配置される一次酸素供給路と、該一次酸素供給路の外側に配置される二次酸素供給路とを同心状に備えるとともに、各供給路の先端に接続する出口側が拡径した燃焼室とを備え、前記内側分散用ガス供給路と、原料粉体供給路と、燃料流体供給路とは、前記燃焼室の基端側で、バーナー中心軸に直交する平面上に開口する噴出口をそれぞれ有し、前記一次酸素供給路は、前記燃焼室の拡開した内周面に開口し、旋回流を形成する方向に酸素を噴出する一次酸素噴出口を有し、前記二次酸素供給路は、前記燃焼室の拡径した内周面の前記一次酸素噴出口よりも出口側に開口し、前記バーナー中心軸に向かって酸素を噴出する二次酸素噴出口を有していることを特徴としている。   A second configuration of the inorganic spheroidized particle manufacturing burner according to the present invention is the inorganic spheroidized particle manufacturing burner in which an inorganic spheroidized particle is generated by supplying an inorganic powder raw material into a flame. An inner dispersion gas supply passage for supplying a dispersion gas for dispersing the raw material, and a raw material for conveying the inorganic powder raw material using oxygen or oxygen-enriched air arranged outside the inner dispersion gas supply passage as a carrier gas A powder supply path, a fuel fluid supply path disposed outside the raw material powder supply path, a primary oxygen supply path disposed outside the fuel fluid supply path, and disposed outside the primary oxygen supply path A secondary oxygen supply path that is concentrically provided, and a combustion chamber having an enlarged diameter on the outlet side connected to the tip of each supply path, the inner dispersion gas supply path, the raw material powder supply path, The fuel fluid supply path is the fuel flow path. Each having a jet opening opening on a plane orthogonal to the burner central axis on the base end side of the chamber, and the primary oxygen supply passage opens to the expanded inner peripheral surface of the combustion chamber to form a swirling flow A secondary oxygen supply passage that blows out oxygen in a direction in which the secondary oxygen supply passage opens toward the outlet side of the primary oxygen outlet on the inner peripheral surface of the combustion chamber whose diameter has been expanded, It is characterized by having a secondary oxygen ejection port for ejecting oxygen toward the shaft.

さらに、本発明の無機質球状化粒子製造用バーナーは、前記両構成において、前記原料粉体供給路の前記噴出口が原料粉体の噴出方向がバーナー中心から拡がる方向に設けられていることが好ましい。また、前記原料粉体供給路と前記一次酸素供給路との間に外側分散用ガス供給路を備えるとともに、前記第1の構成では、外側分散用ガス供給路の先端には、前記各供給路の各噴出口と同一平面上で開口する噴出口を設けることが好ましく、前記第2の構成では、外側分散用ガス供給路の先端には、前記内側分散用ガス供給路、原料粉体供給路及び燃料流体供給路の各噴出口と同一平面上に開口する噴出口を設けることが好ましい。さらに、外側分散用ガス供給路は、両構成において、分散用ガスの噴出方向がバーナー中心から拡がる方向に設けられていることが好ましい。   Furthermore, the inorganic spheroidized particle producing burner of the present invention is preferably configured such that, in the both configurations, the jet outlet of the raw material powder supply path is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner. . In addition, an outer dispersion gas supply path is provided between the raw material powder supply path and the primary oxygen supply path, and in the first configuration, each of the supply paths is provided at the tip of the outer dispersion gas supply path. In the second configuration, the inner dispersion gas supply path and the raw material powder supply path are provided at the tip of the outer dispersion gas supply path. In addition, it is preferable to provide a jet port that opens on the same plane as each jet port of the fuel fluid supply path. Furthermore, it is preferable that the outer dispersion gas supply path is provided in a direction in which the ejection direction of the dispersion gas extends from the center of the burner in both configurations.

また、本発明の無機質球状化の製造方法は、前記外側分散用ガス供給路を設けた構成の無機質球状化粒子製造用バーナーを用いて無機質球状化粒子を製造する無機質球状化粒子の製造方法において、前記内側分散用ガス供給路と前記外側分散ガス供給路とに供給する各分散用ガスの流量をそれぞれ個別に制御することを特徴としている。   In addition, the method for producing inorganic spheroidized particles of the present invention is the method for producing inorganic spheroidized particles in which the inorganic spheroidized particles are produced using the burner for producing inorganic spheroidized particles having the above-mentioned outer dispersion gas supply path. The flow rate of each dispersion gas supplied to the inner dispersion gas supply path and the outer dispersion gas supply path is individually controlled.

また、本発明の無機質球状化の製造装置は、前記構成の無機質球状化粒子製造用バーナーを取り付けた炉を有する無機質球状化粒子製造装置であって、原料粉体をキャリアガスに同伴させて前記無機質球状化粒子製造用バーナーに搬送する手段と、酸素供給設備からの酸素及び燃料供給設備からの燃料を前記無機質球状化粒子製造用バーナーにそれぞれ供給する経路と、無機質球状化粒子製造用バーナーによって球状化された粒子を温度希釈用の空気に同伴させて炉内から抜き出して捕集、回収する手段とを備えていることを特徴としている。   Further, the inorganic spheroidizing production apparatus of the present invention is an inorganic spheroidizing particle manufacturing apparatus having a furnace equipped with the inorganic spheroidized particle manufacturing burner having the above-described configuration, wherein the raw material powder is accompanied by a carrier gas. Means for conveying to the burner for producing inorganic spheroidized particles, a path for supplying oxygen from the oxygen supply facility and fuel from the fuel supply facility to the burner for producing inorganic spheroidized particles, and a burner for producing inorganic spheroidized particles. The spheroidized particles are provided with a means for collecting, collecting, and recovering the spheroidized particles from the furnace with air for temperature dilution.

本発明の無機質球状化粒子製造用バーナーによれば、原料粉体供給路の噴出口の内周側から分散用ガスを噴出させることにより、この分散用ガスに原料粉体が引き込まれ、粉体流の広がり角が大きくなり、火炎中での原料粉体の分散性の向上を図ることができ、処理性能を向上させることができる。また、粉体の凝集が抑制され、粒径の粗大化を低減させることができる。さらに、原料粉体をバーナー中心から拡がる方向に噴出させることにより、原料粉体を火炎中により効果的に分散させることができる。そして、原料粉体供給路の噴出口の外周側からも分散用ガスを噴出させることにより、粉体流の広がりをさらに大きくすることができ、火炎中での原料粉体の分散性の向上を図ることができる。 According to the burner for producing inorganic spheroidized particles of the present invention, the raw material powder is drawn into the dispersion gas by ejecting the dispersion gas from the inner peripheral side of the jet outlet of the raw material powder supply path. The spread angle of the flow is increased, the dispersibility of the raw material powder in the flame can be improved, and the processing performance can be improved. Further, the aggregation of the powder is suppressed, and the coarsening of the particle size can be reduced. Furthermore, the raw material powder can be more effectively dispersed in the flame by ejecting the raw material powder in the direction of spreading from the center of the burner. And by spreading the dispersion gas from the outer periphery of the outlet of the raw material powder supply path, the spread of the powder flow can be further increased, and the dispersibility of the raw material powder in the flame can be improved. Can be planned.

また、内側分散用ガス供給路と外側分散ガス供給路とに供給する分散用ガスの流量を、それぞれ個別に制御することにより、原料粉体の噴出方向を制御することができる。例えば内側分散用ガスの流量を多くすれば、原料粉体のバーナー中心軸方向への広がりが大きくなり、外側分散用ガスの流量を多くすれば、原料粉体の外周側への広がりが大きくなる。このように、内側分散用ガスと外側分散用ガスの流量を調整することにより、原料粉体の噴出方向を調整して、火炎の高温度領域に原料粉体を通過させることができることから、処理性能を向上させることができる。   In addition, by individually controlling the flow rates of the dispersion gas supplied to the inner dispersion gas supply path and the outer dispersion gas supply path, the ejection direction of the raw material powder can be controlled. For example, if the flow rate of the inner dispersion gas is increased, the spread of the raw material powder in the direction of the burner central axis increases, and if the flow rate of the outer dispersion gas is increased, the spread of the raw material powder toward the outer peripheral side is increased. . In this way, by adjusting the flow rates of the inner dispersion gas and the outer dispersion gas, it is possible to adjust the injection direction of the raw material powder and allow the raw material powder to pass through the high temperature region of the flame. Performance can be improved.

図1及び図2は本発明の無機質球状化粒子製造用バーナーの第1形態例を示すもので、図1は図2のI−I断面図、図2は無機質球状化粒子製造用バーナーの正面図である。   1 and 2 show a first embodiment of the burner for producing inorganic spheroidized particles according to the present invention. FIG. 1 is a sectional view taken along the line II in FIG. 2, and FIG. 2 is a front view of the burner for producing inorganic spheroidized particles. FIG.

この無機質球状化粒子製造用バーナー(以下、単にバーナーという)10は、中心から順に、無機質粉体原料を分散させるための分散用ガスを供給する内側分散用ガス供給路11と、該内側分散用ガス供給路11の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路12と、該原料粉体供給路12の外側に配置される一次酸素供給路13と、該一次酸素供給路13の外側に配置される燃料流体供給路14と、該燃料流体供給路14の外側に配置される二次酸素供給路15と、該二次酸素供給路15の外側に配置される水冷ジャケット16とを同心状に備えている。   The inorganic spheroidized particle manufacturing burner (hereinafter simply referred to as burner) 10 includes, in order from the center, an inner dispersion gas supply path 11 for supplying a dispersion gas for dispersing the inorganic powder raw material, and the inner dispersion gas. A raw material powder supply passage 12 for conveying the inorganic powder raw material using oxygen or oxygen-enriched air arranged outside the gas supply passage 11 as a carrier gas, and a primary disposed outside the raw material powder supply passage 12 An oxygen supply path 13, a fuel fluid supply path 14 disposed outside the primary oxygen supply path 13, a secondary oxygen supply path 15 disposed outside the fuel fluid supply path 14, and the secondary oxygen supply A water cooling jacket 16 disposed outside the path 15 is provided concentrically.

また、前記各供給路11,12,13,14,15の先端には、バーナー中心軸に直交する一つの平面上に開口する複数の噴出口11a,12a,13a,14a,15aが同心状に設けられている。中心に1個設けられる噴出口11a以外の各噴出口は、所定の径及び周方向間隔でそれぞれ設けられている。さらに、原料粉体供給路12の噴出口12aは、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられている。   In addition, a plurality of jet outlets 11a, 12a, 13a, 14a, and 15a that are open on one plane orthogonal to the burner central axis are concentrically formed at the tips of the supply passages 11, 12, 13, 14, and 15. Is provided. Each jet port other than the single jet port 11a provided at the center is provided with a predetermined diameter and a circumferential interval. Furthermore, the jet outlet 12a of the raw material powder supply path 12 is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner.

このようなバーナー10では、原料粉体供給路12の噴出口12aの内周側に設けた内側分散用ガス供給路11の噴出口11aから分散用ガスを噴出させることにより、この分散用ガスに原料粉体供給路12の噴出口12aから噴出した原料粉体が引き込まれ、粉体流の広がり角を大きくすることができ、一次酸素供給路13及び二次酸素供給路15の各噴出口13a,15aからそれぞれ噴出する酸素と、燃料流体供給路14の噴出口14aから噴出する燃料ガス、例えばLPGとにより形成された火炎中に原料粉体を効果的に分散させることができるので、無機質球状化粒子の製造効率を向上させることができるとともに、加熱されて溶融状態となった粒子の凝集が抑制され、粒径の粗大化を抑えることができる。さらに、原料粉体供給路12の噴出口12aを原料粉体の噴出方向がバーナー中心から拡がる方向に設けることによって原料粉体の分散性をより高めることができる。   In such a burner 10, the dispersion gas is ejected from the ejection port 11 a of the inner dispersion gas supply passage 11 provided on the inner peripheral side of the ejection port 12 a of the raw material powder supply passage 12. The raw material powder ejected from the spout 12a of the raw material powder supply path 12 is drawn, and the spread angle of the powder flow can be increased, and each spout 13a of the primary oxygen supply path 13 and the secondary oxygen supply path 15 is provided. , 15a, and the raw material powder can be effectively dispersed in a flame formed by oxygen ejected from the fuel fluid supply passage 14 and fuel gas ejected from the fuel outlet 14a of the fuel fluid supply passage 14, for example, LPG. The production efficiency of the particles can be improved, and the aggregation of the particles that are heated to be in a molten state can be suppressed, and the coarsening of the particle size can be suppressed. Furthermore, dispersibility of the raw material powder can be further improved by providing the outlet 12a of the raw material powder supply path 12 in a direction in which the injection direction of the raw material powder extends from the center of the burner.

図3及び図4は本発明の第2形態例を示すもので、図3は図4のIII-III断面図、図4は無機質球状化粒子製造用バーナーの正面図である。   3 and 4 show a second embodiment of the present invention. FIG. 3 is a sectional view taken along the line III-III in FIG. 4, and FIG. 4 is a front view of the burner for producing inorganic spheroidized particles.

本形態例のバーナー20は、中心から順に、無機質粉体原料を分散させるための分散用ガスを供給する内側分散用ガス供給路21と、該内側分散用ガス供給路21の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路22と、該原料粉体供給路22の外側に配置される外側分散用ガス供給路23と、該外側分散用ガス供給路23の外側に配置される一次酸素供給路24と、該一次酸素供給路24の外側に配置される燃料流体供給路25と、該燃料流体供給路25の外側に配置される二次酸素供給路26と、該二次酸素供給路26の外側に配置される水冷ジャケット27とを同心状に備えている。   The burner 20 according to the present embodiment is arranged in order from the center on the inner dispersion gas supply passage 21 for supplying a dispersion gas for dispersing the inorganic powder raw material, and on the outer side of the inner dispersion gas supply passage 21. A raw material powder supply path 22 for conveying the inorganic powder raw material using oxygen or oxygen-enriched air as a carrier gas, an outer dispersion gas supply path 23 disposed outside the raw material powder supply path 22, and the outer side A primary oxygen supply path 24 arranged outside the dispersion gas supply path 23, a fuel fluid supply path 25 arranged outside the primary oxygen supply path 24, and an outside of the fuel fluid supply path 25. A secondary oxygen supply path 26 and a water cooling jacket 27 disposed outside the secondary oxygen supply path 26 are provided concentrically.

また、前記各供給路21,22,23,24,25,26の先端には、前記第1形態例と同様に、バーナー中心軸に直交する同一平面上に開口する複数の噴出口21a,22a,23a,24a,25a,26aが同心状に設けられている。中心に1個設けられる噴出口21a以外の各噴出口は、所定の径及び所定の周方向間隔でそれぞれ設けられている。さらに、原料粉体供給路22の噴出口22aは、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられ、外側分散用ガス供給路23の噴出口23aも、分散用ガスの噴出方向がバーナー中心から拡がる方向に設けられている。   Also, at the tip of each of the supply paths 21, 22, 23, 24, 25, 26, as in the first embodiment, a plurality of outlets 21a, 22a opened on the same plane orthogonal to the burner central axis. , 23a, 24a, 25a, 26a are provided concentrically. Each jet port other than the single jet port 21a provided at the center is provided with a predetermined diameter and a predetermined circumferential interval. Further, the jet outlet 22a of the raw material powder supply path 22 is provided in a direction in which the jet direction of the raw powder expands from the center of the burner, and the jet outlet 23a of the outer dispersion gas supply path 23 also has a jet direction of the dispersing gas. It is provided in a direction extending from the center of the burner.

また、内側分散用ガス供給路21と外側分散ガス供給路23とには、これら供給路21,23に供給する分散用ガスの流量をそれぞれ個別に制御する制御手段が設けられている。   The inner dispersion gas supply passage 21 and the outer dispersion gas supply passage 23 are provided with control means for individually controlling the flow rates of the dispersion gas supplied to the supply passages 21 and 23.

本形態例のバーナーでは、原料粉体供給路22の噴出口22aの内周側及び外周側から分散用ガスをそれぞれ噴出させることにより、原料粉体流の広がりを前記第1形態例に比べて更に大きくすることができ、火炎中での原料粉体の分散性の向上を図ることができる。   In the burner of the present embodiment, the dispersion of the raw material powder flow is made larger than that of the first embodiment by ejecting the dispersing gas from the inner peripheral side and the outer peripheral side of the jet outlet 22a of the raw material powder supply path 22, respectively. It can be further increased, and the dispersibility of the raw material powder in the flame can be improved.

また、内側分散用ガス供給路21と外側分散ガス供給路23とに供給する分散用ガスの流量をそれぞれ個別に制御することにより、原料粉体の性状に応じて原料粉体の噴出方向を最適に制御することができる。すなわち、内側分散用ガス供給路21の噴出口21aから噴出する分散用ガス流量を多くすることによって原料粉体の中心方向への広がりが大きくなり、外側分散ガス供給路23の噴出口22aから噴出する分散用ガス流量を多くすることによって原料粉体の外周方向への広がりが大きくすることができる。したがって、火炎の高温度領域に原料粉体を通過させることができることから、最適な条件で処理することができ、原料粉体の特性(粒径・密度・比熱・溶解潜熱・融点・沸点等)に応じた球状化処理をより確実に行うことができ、無機質球状化粒子の製造効率を更に向上させることができる。   Further, by individually controlling the flow rates of the dispersion gas supplied to the inner dispersion gas supply passage 21 and the outer dispersion gas supply passage 23, the injection direction of the raw material powder is optimized according to the properties of the raw material powder. Can be controlled. That is, by increasing the flow rate of the dispersion gas ejected from the ejection port 21 a of the inner dispersion gas supply passage 21, the spread of the raw material powder in the center direction increases, and the ejection from the ejection port 22 a of the outer dispersion gas supply passage 23. By increasing the flow rate of the dispersing gas, the spread of the raw material powder in the outer peripheral direction can be increased. Therefore, since the raw material powder can be passed through the high temperature region of the flame, it can be processed under optimal conditions, and the characteristics of the raw material powder (particle size, density, specific heat, latent heat of melting, melting point, boiling point, etc.) The spheroidizing treatment according to the above can be performed more reliably, and the production efficiency of the inorganic spheroidized particles can be further improved.

図5及び図6は本発明の第3形態例を示すもので、図5は図6のV-V断面図、図6は無機質球状化粒子製造用バーナーの正面図である。このバーナー30は、中心から順に、無機質粉体原料を分散させるための分散用ガスを供給する内側分散用ガス供給路31と、該内側分散用ガス供給路31の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路32と、該原料粉体供給路32の外側に配置された燃料流体供給路33と、該燃料流体供給路33の外側に配置される一次酸素供給路34と、該一次酸素供給路34の外側に配置される二次酸素供給路35とを同心状に備えるとともに、各供給路31,32,33,34,35の先端に接続する出口側が拡径した燃焼室36と、該燃焼室36及び二次酸素供給路35の外周を囲むように配置される水冷ジャケット37とを備えている。   5 and 6 show a third embodiment of the present invention. FIG. 5 is a VV cross-sectional view of FIG. 6, and FIG. 6 is a front view of a burner for producing inorganic spheroidized particles. The burner 30 includes an inner dispersion gas supply passage 31 for supplying a dispersion gas for dispersing the inorganic powder raw material and oxygen or oxygen disposed outside the inner dispersion gas supply passage 31 in order from the center. A raw material powder supply path 32 that conveys the inorganic powder raw material using enriched air as a carrier gas, a fuel fluid supply path 33 disposed outside the raw material powder supply path 32, and a fuel fluid supply path 33 A primary oxygen supply path 34 disposed outside and a secondary oxygen supply path 35 disposed outside the primary oxygen supply path 34 are provided concentrically, and the supply paths 31, 32, 33, 34, 35 are provided. And a water cooling jacket 37 disposed so as to surround the outer periphery of the combustion chamber 36 and the secondary oxygen supply path 35.

燃焼室36は、出口側が拡径したコーン形状に形成されており、内側分散用ガス供給路31と、原料粉体供給路32と、燃料流体供給路33との各先端には、燃焼室36の基端側の中央部で、バーナー中心軸に直交する同一平面上に開口する複数の噴出口31a,32a,33aが同心状に設けられ、中心に1個設けられる噴出口31aを除く噴出口32a,33aは、所定の径及び所定の周方向間隔でそれぞれ設けられている。さらに、一次酸素供給路34の先端には、燃焼室36の拡開した内周面に開口し、旋回流を形成する方向に酸素を噴出する複数の一次酸素噴出口34aが周方向等間隔に設けられ、二次酸素供給路35の先端には、燃焼室36の拡径した内周面の前記一次酸素噴出口34aよりも出口側に開口し、バーナー中心軸に向かって酸素を噴出する複数の二次酸素噴出口35aが周方向等間隔に設けられている。さらに、原料粉体供給路42の噴出口42aは、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられている。   The combustion chamber 36 is formed in a cone shape whose diameter is increased on the outlet side, and at each end of the inner dispersion gas supply passage 31, the raw material powder supply passage 32, and the fuel fluid supply passage 33, the combustion chamber 36 is provided. A plurality of outlets 31a, 32a, 33a that are open on the same plane perpendicular to the central axis of the burner are provided concentrically in the central portion on the base end side of the nozzle, and the outlets excluding one outlet 31a provided in the center 32a and 33a are each provided with the predetermined | prescribed diameter and the predetermined | prescribed circumferential direction space | interval. Further, at the tip of the primary oxygen supply path 34, a plurality of primary oxygen outlets 34a that open to the inner peripheral surface of the combustion chamber 36 that expands and eject oxygen in a direction to form a swirling flow are equally spaced in the circumferential direction. A plurality of secondary oxygen supply passages 35 are provided at the front end of the secondary oxygen supply passage 35 so as to open to the outlet side of the primary oxygen outlet 34a on the inner peripheral surface of the combustion chamber 36 whose diameter is increased, and to eject oxygen toward the burner central axis. Secondary oxygen jet nozzles 35a are provided at equal intervals in the circumferential direction. Furthermore, the jet outlet 42a of the raw material powder supply path 42 is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner.

本形態例のバーナー30は、原料粉体供給路の噴出口の内周側から分散用ガスを噴出させ、また、一次酸素噴出口34aは、燃焼室36の拡開した内周面から燃焼室36の内周面に沿うような旋回流を形成する方向に酸素を噴出するように設けられ、二次酸素噴出口35aは、燃焼室36の出口側からバーナー中心軸に向かって酸素を噴出するように設けられていることから、燃焼効率が向上するとともに、火炎中での原料粉体の分散性の向上を図ることができ、処理性能を大幅に向上させることができる。また、粉体の凝集が抑制され、粒径の粗大化を低減させることができる。   The burner 30 of this embodiment jets the gas for dispersion from the inner peripheral side of the jet outlet of the raw material powder supply path, and the primary oxygen jet outlet 34a starts from the expanded inner peripheral surface of the combustion chamber 36. The secondary oxygen jet port 35a is jetted from the outlet side of the combustion chamber 36 toward the central axis of the burner. Therefore, the combustion efficiency can be improved, the dispersibility of the raw material powder in the flame can be improved, and the processing performance can be greatly improved. Further, the aggregation of the powder is suppressed, and the coarsening of the particle size can be reduced.

図7及び図8は本発明の第4形態例を示すもので、図7は図8のVII-VII断面図、図8は無機質球状化粒子製造用バーナーの正面図である。本形態例のバーナー40は、中心から順に、無機質粉体原料を分散させるための分散用ガスを供給する内側分散用ガス供給路41と、該内側分散用ガス供給路41の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路42と、該原料粉体供給路42の外側に配置された外側分散用ガス供給路43と、該外側分散用ガス供給路43の外側に配置される燃料流体供給路44と、該燃料流体供給路44の外側に配置される一次酸素供給路45と、該一次酸素供給路45の外側に配置される二次酸素供給路46とを同心状に備えるとともに、各供給路41,42,43,44,45,46の先端に接続する出口側が拡径した燃焼室47と、二次酸素供給路46との外周を囲むように配置される水冷ジャケット48とを備えている。   7 and 8 show a fourth embodiment of the present invention. FIG. 7 is a sectional view taken along the line VII-VII in FIG. 8, and FIG. 8 is a front view of the burner for producing inorganic spheroidized particles. The burner 40 according to this embodiment is disposed in order from the center, an inner dispersion gas supply passage 41 for supplying a dispersion gas for dispersing the inorganic powder raw material, and an outer side of the inner dispersion gas supply passage 41. A raw material powder supply path 42 for conveying the inorganic powder raw material using oxygen or oxygen-enriched air as a carrier gas, an outer dispersion gas supply path 43 disposed outside the raw material powder supply path 42, and the outer side A fuel fluid supply path 44 disposed outside the dispersion gas supply path 43, a primary oxygen supply path 45 disposed outside the fuel fluid supply path 44, and an outer side of the primary oxygen supply path 45. A secondary oxygen supply path 46 is provided concentrically, and a combustion chamber 47 whose outlet side is connected to the tip of each of the supply paths 41, 42, 43, 44, 45, 46 has an enlarged diameter, and a secondary oxygen supply path 46 It is arranged to surround the outer periphery of And a cold jacket 48.

燃焼室47は、出口側が拡径したコーン形状に形成されており、内側分散用ガス供給路41と、原料粉体供給路42と、外側分散用ガス供給路43と、燃料流体供給路44との先端には、燃焼室47の基端側で、バーナー中心軸に直交する同一平面上に開口する複数の噴出口41a,42a,43a,44aがそれぞれ設けられている。中心に1個設けられる噴出口41a以外の各噴出口は、所定の径及び所定の周方向間隔でそれぞれ設けられている。さらに、一次酸素供給路45の先端には、燃焼室47の拡開した内周面に開口し、旋回流を形成する方向に酸素を噴出する複数の一次酸素噴出口45aが設けられ、二次酸素供給路46の先端には、燃焼室47の拡径した内周面の一次酸素噴出口45aよりも出口側に開口し、バーナー中心軸に向かって酸素を噴出する複数の二次酸素噴出口46aが設けられている。また、原料粉体供給路42の噴出口42aは、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられ、外側分散用ガス供給路43の噴出口43aも、分散用ガスの噴出方向がバーナー中心から拡がる方向に設けられている。   The combustion chamber 47 is formed in a cone shape having an enlarged outlet side, and includes an inner dispersion gas supply path 41, a raw material powder supply path 42, an outer dispersion gas supply path 43, and a fuel fluid supply path 44. A plurality of jet nozzles 41 a, 42 a, 43 a, 44 a that open on the same plane orthogonal to the burner central axis are provided at the distal end of the combustion chamber 47. Each jet port other than the jet port 41a provided at the center is provided with a predetermined diameter and a predetermined circumferential interval. Furthermore, the primary oxygen supply passage 45 is provided with a plurality of primary oxygen outlets 45a that open to the expanded inner peripheral surface of the combustion chamber 47 and eject oxygen in a direction in which a swirl flow is formed. At the tip of the oxygen supply passage 46, a plurality of secondary oxygen jets that open to the outlet side of the primary oxygen jet 45a on the inner peripheral surface of the combustion chamber 47 whose diameter has been expanded and jet oxygen toward the burner central axis 46a is provided. Further, the jet outlet 42a of the raw material powder supply path 42 is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner, and the jet outlet 43a of the outer dispersion gas supply path 43 also has a jet direction of the dispersing gas. It is provided in a direction extending from the center of the burner.

さらに、前記内側分散用ガス供給路41と、外側分散用ガス供給路43とには、これら供給路41,43に供給する分散用ガスの流量をそれぞれ個別に制御する制御手段が設けられている。   Further, the inner dispersion gas supply passage 41 and the outer dispersion gas supply passage 43 are provided with control means for individually controlling the flow rates of the dispersion gas supplied to the supply passages 41 and 43, respectively. .

本形態例のバーナー40は、原料粉体供給路の噴出口の内周側及び外周側から分散用ガスを噴出させ、また、一次酸素噴出口45aは、燃焼室47の拡開した内周面に沿うような旋回流を形成する方向に酸素を噴出するように設けられ、二次酸素噴出口46aは、燃焼室47の出口側からバーナー中心軸に向かって酸素を噴出するように形成されていることから、前記同様に燃焼効率が向上するとともに、火炎中での原料粉体の分散性の更なる向上を図ることができ、処理性能を大幅に向上させることができる。また、粉体の凝集が抑制され、粒径の粗大化を低減させることができる。   The burner 40 according to the present embodiment causes the gas for dispersion to be ejected from the inner peripheral side and the outer peripheral side of the jet outlet of the raw material powder supply path, and the primary oxygen jet outlet 45a is an inner peripheral surface in which the combustion chamber 47 is expanded. The secondary oxygen outlet 46a is formed so as to eject oxygen from the outlet side of the combustion chamber 47 toward the burner central axis. As a result, the combustion efficiency is improved as described above, the dispersibility of the raw material powder in the flame can be further improved, and the processing performance can be greatly improved. Further, the aggregation of the powder is suppressed, and the coarsening of the particle size can be reduced.

また、内側分散用ガス供給路41と外側分散ガス供給路43とに供給する分散用ガスの流量をそれぞれ個別に制御することにより、前記同様に、内側分散用ガス供給路41の噴出口41aから噴出する分散用ガス流量を多くすることによって原料粉体の中心方向への広がりが大きくなり、外側分散ガス供給路43の噴出口42aから噴出する分散用ガス流量を多くすることによって原料粉体の外周方向への広がりが大きくすることができる。これにより、原料粉体の性状に応じて原料粉体の噴出方向を最適に制御することができ、火炎の高温度領域に原料粉体を通過させることができることから、最適な条件で原料粉体を溶融処理することができ、原料粉体の特性(粒径・密度・比熱・溶解潜熱・融点・沸点等)に応じた球状化処理をより確実に行うことができ、無機質球状化粒子の製造効率を更に向上させることができる。   Further, by individually controlling the flow rates of the dispersion gas supplied to the inner dispersion gas supply passage 41 and the outer dispersion gas supply passage 43, similarly to the above, from the jet outlet 41a of the inner dispersion gas supply passage 41. Increasing the flow rate of the dispersed gas to be ejected increases the spread of the raw material powder in the center direction, and increasing the flow rate of the dispersed gas ejected from the ejection port 42a of the outer dispersed gas supply path 43 increases the flow rate of the raw material powder. The spread in the outer peripheral direction can be increased. As a result, the injection direction of the raw material powder can be optimally controlled according to the properties of the raw material powder, and the raw material powder can be passed through the high temperature region of the flame. Spheroidizing treatment according to the characteristics of the raw material powder (particle size, density, specific heat, latent heat of melting, melting point, boiling point, etc.), and production of inorganic spheroidized particles Efficiency can be further improved.

なお、各形態例において、各噴出口の径や形状、配置状態、さらに、第3,第4形態例における燃焼室の形状等は、各供給路におけるガスの種類、ガスの供給量及びそのバランス、原料粉体の性状及び供給量、バーナーの径及び設置条件等の条件に応じて適宜設定することができる。また、内外の分散用ガスには、空気をはじめとする各種ガスを用いることが可能であるが、通常は、酸素又は酸素富化空気を用いることが好ましい。   In each embodiment, the diameter and shape of each nozzle, the arrangement state, the shape of the combustion chamber in the third and fourth embodiments, etc. are the type of gas in each supply passage, the amount of gas supplied, and the balance thereof. Depending on conditions such as the properties and supply amount of the raw material powder, the diameter of the burner, and installation conditions, it can be set as appropriate. In addition, various gases including air can be used as the inner and outer dispersion gases, but it is usually preferable to use oxygen or oxygen-enriched air.

各形態例に示すように形成されたバーナーは、例えば、図9に示されるような無機質球状化粒子製造装置50に取り付けられて用いられる。無機質球状化粒子製造装置50では、原料粉体は、通常のフィーダ51から切り出され、キャリアガス導入経路52から供給される酸素又は酸素富化空気からなるキャリアガスに同伴されて上述の構成を有するバーナー53に搬送される。このバーナー53には、酸素供給設備54からの酸素と、燃料供給設備55からの燃料ガス、例えばLPGとがそれぞれ供給され、炉56内の火炎中で球状化された粒子は、空気導入経路57から炉56に導入された空気により温度希釈されて炉56内から抜き出され、後段のサイクロン58や、バグフィルター59で粒子が捕集されて回収される。   The burner formed as shown in each embodiment is used by being attached to an inorganic spheroidized particle manufacturing apparatus 50 as shown in FIG. 9, for example. In the inorganic spheroidized particle manufacturing apparatus 50, the raw material powder is cut out from a normal feeder 51 and is accompanied by a carrier gas composed of oxygen or oxygen-enriched air supplied from a carrier gas introduction path 52 and has the above-described configuration. It is conveyed to the burner 53. The burner 53 is supplied with oxygen from the oxygen supply facility 54 and fuel gas such as LPG from the fuel supply facility 55, and the particles spheroidized in the flame in the furnace 56 are supplied to the air introduction path 57. Then, the temperature is diluted with the air introduced into the furnace 56 and extracted from the furnace 56, and the particles are collected and collected by the subsequent cyclone 58 and the bag filter 59.

前記第1形態例に示したバーナー10を、前記図9に示した無機質球状化粒子製造装置50に取り付けてシリカ粉末を球状化する実験を行った。   The burner 10 shown in the first embodiment was attached to the inorganic spheroidized particle manufacturing apparatus 50 shown in FIG. 9, and an experiment for spheroidizing silica powder was conducted.

燃料としてはLPGを、キャリアガス、支燃性ガス、分散用ガスとしては純酸素を、原料粉体としては平均粒径20μmの粉体をそれぞれ用い、LPG:30Nm/h,1次酸素:36Nm/h,2次酸素:84Nm/h,キャリアガス30Nm/hとした。内側分散用ガス供給路11に供給する酸素の流量を調整して噴出口11aから噴出する分散用ガスの流速を変化させ、各流速において、サイクロン58で回収したシリカのガラス化率が98%以上得られる最大処理量(単位LPG流量当たりの粉体処理量)を調べた。その結果を図10に示す。なお、前記特許文献4に記載された無機質球状化製造用バーナーを用いて同様の条件で実験を行った結果、最大処理量は、6.7kg/Nm−LPGであった。なお、単位のNmにおけるNは標準状態を表す記号である。 LPG is used as the fuel, pure oxygen is used as the carrier gas, combustion-supporting gas, and dispersion gas, and a powder having an average particle size of 20 μm is used as the raw material powder. LPG: 30 Nm 3 / h, primary oxygen: 36Nm 3 / h, 2 primary oxygen: was 84Nm 3 / h, the carrier gas 30 Nm 3 / h. The flow rate of oxygen supplied to the inner dispersion gas supply passage 11 is adjusted to change the flow velocity of the dispersion gas ejected from the ejection port 11a. At each flow velocity, the vitrification rate of silica recovered by the cyclone 58 is 98% or more. The maximum throughput (powder throughput per unit LPG flow rate) obtained was examined. The result is shown in FIG. In addition, as a result of conducting an experiment under the same conditions using the inorganic spheroidizing production burner described in Patent Document 4, the maximum throughput was 6.7 kg / Nm 3 -LPG. Note that N in the unit Nm 3 is a symbol representing a standard state.

前記第2形態例に示したバーナー20を、前記図9に示した無機質球状化粒子製造装置50に取り付けてシリカ粉末を球状化する実験を行った。燃料としてはLPGを、キャリアガス、支燃性ガス、分散用ガスとしては純酸素を、原料粉体としては平均粒径20μmの粉体をそれぞれ用い、LPG:30Nm/h,1次酸素:36Nm/h,2次酸素:84Nm/h,キャリアガス30Nm/hとした。内側分散用ガス供給路21と外側分散用ガス供給路23とに同じ噴出速度になるように分散用ガスをそれぞれ供給するとともに分散用ガスの噴出流速を変化させ、サイクロン58で回収したシリカのガラス化率が98%以上得られる最大処理量を調べた。その結果を図11に示す。 The burner 20 shown in the second embodiment was attached to the inorganic spheroidized particle manufacturing apparatus 50 shown in FIG. 9, and an experiment for spheroidizing silica powder was conducted. LPG is used as the fuel, pure oxygen is used as the carrier gas, combustion-supporting gas, and dispersion gas, and a powder having an average particle size of 20 μm is used as the raw material powder. LPG: 30 Nm 3 / h, primary oxygen: 36Nm 3 / h, 2 primary oxygen: was 84Nm 3 / h, the carrier gas 30 Nm 3 / h. Silica glass recovered by the cyclone 58 by supplying the dispersion gas to the inner dispersion gas supply passage 21 and the outer dispersion gas supply passage 23 so as to have the same ejection speed and changing the ejection flow velocity of the dispersion gas. The maximum processing amount at which a conversion rate of 98% or more was obtained was examined. The result is shown in FIG.

前記第3形態例に示したバーナー30を、前記図9に示した無機質球状化粒子製造装置50に取り付けてシリカ粉末を球状化する実験を行った。燃料としてはLPGを、キャリアガス、支燃性ガス、分散用ガスとしては純酸素を、原料粉体としては平均粒径20μmの粉体をそれぞれ用い、LPG:30Nm/h,1次酸素:36Nm/h,2次酸素:84Nm/h,キャリアガス流量30Nm/hとした。内側分散用ガス供給路31に供給する酸素の流量を調整して噴出口31aからの流速を変化させ、各流速において、サイクロン58で回収したシリカのガラス化率が98%以上得られる最大処理量を調べた。その結果を図12に示す。 The burner 30 shown in the third embodiment was attached to the inorganic spheroidized particle manufacturing apparatus 50 shown in FIG. 9, and an experiment for spheroidizing silica powder was conducted. LPG is used as the fuel, pure oxygen is used as the carrier gas, combustion-supporting gas, and dispersion gas, and a powder having an average particle size of 20 μm is used as the raw material powder. LPG: 30 Nm 3 / h, primary oxygen: 36Nm 3 / h, 2 primary oxygen: 84Nm 3 / h, and the carrier gas flow rate 30 Nm 3 / h. The maximum amount of treatment with which the vitrification rate of silica recovered by the cyclone 58 can be obtained at 98% or more at each flow rate by changing the flow rate from the jet port 31a by adjusting the flow rate of oxygen supplied to the inner dispersion gas supply passage 31. I investigated. The result is shown in FIG.

前記第4形態例に示したバーナー40を、前記図9に示した無機質球状化粒子製造装置50に取り付けてシリカ粉末を球状化する実験を行った。燃料としてはLPGを、キャリアガス、支燃性ガス、分散用ガスとしては純酸素を、原料粉体としては平均粒径20μmの粉体をそれぞれ用い、LPG:30Nm/h,1次酸素:36Nm/h,2次酸素:84Nm/h,キャリアガス流量30Nm/hとした。 The burner 40 shown in the fourth embodiment was attached to the inorganic spheroidized particle manufacturing apparatus 50 shown in FIG. 9, and an experiment for spheroidizing silica powder was conducted. LPG is used as the fuel, pure oxygen is used as the carrier gas, combustion-supporting gas, and dispersion gas, and a powder having an average particle size of 20 μm is used as the raw material powder. LPG: 30 Nm 3 / h, primary oxygen: 36Nm 3 / h, 2 primary oxygen: 84Nm 3 / h, and the carrier gas flow rate 30 Nm 3 / h.

内側分散用ガス供給路41と外側分散用ガス供給路43とに同じ噴出速度になるように分散用ガスをそれぞれ供給するとともに分散用ガスの流速を変化させ、各流速において、サイクロン58で回収したシリカのガラス化率が98%以上得られる最大処理量を調べた。その結果を図13に示す。 The dispersion gas was supplied to the inner dispersion gas supply passage 41 and the outer dispersion gas supply passage 43 so as to have the same ejection speed, and the flow velocity of the dispersion gas was changed, and the cyclone 58 was collected at each flow velocity. The maximum processing amount at which the vitrification rate of silica was 98% or more was examined. The result is shown in FIG.

図2のI−I断面図である。It is II sectional drawing of FIG. 本発明の第1形態例を示す無機質球状化粒子製造用バーナーの正面図である。It is a front view of the burner for inorganic spheroidized particle manufacture which shows the 1st form example of this invention. 図4のIII-III断面図である。It is III-III sectional drawing of FIG. 本発明の第2形態例を示す無機質球状化粒子製造用バーナーの正面図である。It is a front view of the burner for inorganic spheroidized particle manufacture which shows the 2nd form example of this invention. 図6のV-V断面図である。It is VV sectional drawing of FIG. 本発明の第3形態例を示す無機質球状化粒子製造用バーナーの正面図である。It is a front view of the burner for inorganic spheroidized particle manufacture which shows the 3rd form example of this invention. 図8のVII-VII断面図である。It is VII-VII sectional drawing of FIG. 本発明の第4形態例を示す無機質球状化粒子製造用バーナーの正面図である。It is a front view of the burner for inorganic spheroidized particle manufacture which shows the 4th example of this invention. 無機質球状化粒子製造装置の一例を示す系統図である。It is a systematic diagram which shows an example of an inorganic spheroidized particle manufacturing apparatus. 実施例1における内側分散用ガスの流速と最大処理量との関係を示す図である。It is a figure which shows the relationship between the flow rate of the gas for inner dispersion | distribution in Example 1, and the maximum processing amount. 実施例2における内側分散用ガス及び外側分散用ガスの流速と最大処理量との関係を示す図である。It is a figure which shows the relationship between the flow rate of the inner side dispersion | distribution gas in Example 2, and the outer side dispersion | distribution gas, and the maximum processing amount. 実施例3における内側分散用ガスの流速と最大処理量との関係を示す図である。FIG. 10 is a diagram showing the relationship between the flow rate of the inner dispersion gas and the maximum throughput in Example 3. 実施例4における内側分散用ガス及び外側分散用ガスの流速と最大処理量との関係を示す図である。It is a figure which shows the relationship between the flow rate of the inner side dispersion | distribution gas in Example 4, and the outer side dispersion | distribution gas, and the maximum processing amount.

符号の説明Explanation of symbols

10,20,30,40…バーナー、11,21,31,41…内側分散用ガス供給路、12,22,32,42…原料粉体供給路、13,24,34,45…一次酸素供給路、14,25,33,44…燃料流体供給路、15,26,35,46…二次酸素供給路、16,27,37,48…水冷ジャケット、23,43…外側分散用ガス供給路、36,47…燃焼室、50…無機質球状化粒子製造装置、51…フィーダ、52…キャリアガス導入経路、53…バーナー、54…酸素供給設備、55…燃料供給設備、56…炉、57…空気導入経路、58…サイクロン、59…バグフィルター   10, 20, 30, 40 ... burner, 11, 21, 31, 41 ... inner dispersion gas supply path, 12, 22, 32, 42 ... raw material powder supply path, 13, 24, 34, 45 ... primary oxygen supply , 14, 25, 33, 44 ... fuel fluid supply passage, 15, 26, 35, 46 ... secondary oxygen supply passage, 16, 27, 37, 48 ... water cooling jacket, 23, 43 ... gas supply passage for outer dispersion 36, 47 ... Combustion chamber, 50 ... Inorganic spheroidized particle production apparatus, 51 ... Feeder, 52 ... Carrier gas introduction path, 53 ... Burner, 54 ... Oxygen supply equipment, 55 ... Fuel supply equipment, 56 ... Furnace, 57 ... Air introduction path, 58 ... cyclone, 59 ... bag filter

Claims (11)

無機質粉体原料を火炎中に供給して無機質球状化粒子を生成する無機質球状化粒子製造用バーナーにおいて、前記無機質粉体原料を分散させる分散用ガスを供給する内側分散用ガス供給路と、該内側分散用ガス供給路の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路と、該原料粉体供給路の外側に配置される一次酸素供給路と、該一次酸素供給路の外側に配置される燃料流体供給路と、該燃料流体供給路の外側に配置される二次酸素供給路とを同心状に備えるとともに、前記各供給路の先端には、バーナー中心軸に直交する平面上に開口する噴出口がそれぞれ設けられていることを特徴とする無機質球状化粒子製造用バーナー。 In an inorganic spheroidized particle production burner for supplying inorganic powder raw material into a flame to produce inorganic spheroidized particles, an inner dispersion gas supply path for supplying a dispersion gas for dispersing the inorganic powder raw material, A raw material powder supply path for conveying the inorganic powder raw material using oxygen or oxygen-enriched air as a carrier gas, which is disposed outside the inner dispersion gas supply path, and a primary disposed outside the raw material powder supply path An oxygen supply path, a fuel fluid supply path disposed outside the primary oxygen supply path, and a secondary oxygen supply path disposed outside the fuel fluid supply path are provided concentrically, and each of the supply paths A burner for producing inorganic spheroidized particles, characterized in that, at the tip of each, a jet outlet opening on a plane perpendicular to the central axis of the burner is provided. 前記原料粉体供給路の前記噴出口は、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられていることを特徴とする請求項1記載の無機質球状化粒子製造用バーナー。 2. The burner for producing inorganic spheroidized particles according to claim 1, wherein the jet outlet of the raw material powder supply path is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner. 前記原料粉体供給路と前記一次酸素供給路との間に外側分散用ガス供給路を備えるとともに、該外側分散用ガス供給路の先端には、前記各供給路の各噴出口と同一平面上で開口する噴出口が設けられていることを特徴とする請求項1又は2記載の無機質球状化粒子製造用バーナー。 An outer dispersion gas supply path is provided between the raw material powder supply path and the primary oxygen supply path, and the front end of the outer dispersion gas supply path is flush with the outlets of the supply paths. A burner for producing inorganic spheroidized particles according to claim 1 or 2, wherein a jet nozzle is provided. 前記外側分散用ガス供給路の噴出口は、分散用ガスの噴出方向がバーナー中心から拡がる方向に設けられていることを特徴とする請求項3記載の無機質球状化粒子製造用バーナー。 4. The burner for producing inorganic spheroidized particles according to claim 3, wherein the ejection port of the outer dispersion gas supply path is provided in a direction in which the ejection direction of the dispersion gas extends from the center of the burner. 無機質粉体原料を火炎中に供給して無機質球状化粒子を生成する無機質球状化粒子製造用バーナーにおいて、前記無機質粉体原料を分散させる分散用ガスを供給する内側分散用ガス供給路と、該内側分散用ガス供給路の外側に配置された酸素又は酸素富化空気をキャリアガスとして前記無機質粉体原料を搬送する原料粉体供給路と、該原料粉体供給路の外側に配置される燃料流体供給路と、該燃料流体供給路の外側に配置される一次酸素供給路と、該一次酸素供給路の外側に配置される二次酸素供給路とを同心状に備えるとともに、各供給路の先端に接続する出口側が拡径した燃焼室とを備え、前記内側分散用ガス供給路と、原料粉体供給路と、燃料流体供給路との先端には、前記燃焼室の基端側で、バーナー中心軸に直交する平面上に開口する噴出口がそれぞれ設けられ、前記一次酸素供給路の先端には、前記燃焼室の拡開した内周面に開口し、旋回流を形成する方向に酸素を噴出する一次酸素噴出口が設けられ、前記二次酸素供給路の先端には、前記燃焼室の拡径した内周面の前記一次酸素噴出口よりも出口側に開口し、前記バーナー中心軸に向かって酸素を噴出する二次酸素噴出口が設けられていることを特徴とする無機質球状化粒子製造用バーナー。 In an inorganic spheroidized particle production burner for supplying inorganic powder raw material into a flame to produce inorganic spheroidized particles, an inner dispersion gas supply path for supplying a dispersion gas for dispersing the inorganic powder raw material, A raw material powder supply path for transporting the inorganic powder raw material using oxygen or oxygen-enriched air as a carrier gas disposed outside the inner dispersion gas supply path, and a fuel disposed outside the raw material powder supply path A fluid supply path, a primary oxygen supply path disposed outside the fuel fluid supply path, and a secondary oxygen supply path disposed outside the primary oxygen supply path are provided concentrically. A combustion chamber having an enlarged diameter on the outlet side connected to the distal end, and at the distal end of the inner dispersion gas supply passage, the raw material powder supply passage, and the fuel fluid supply passage, on the proximal end side of the combustion chamber, Open on a plane perpendicular to the burner central axis The primary oxygen supply passage is provided with a primary oxygen jet opening at the tip of the primary oxygen supply passage, which opens to the expanded inner peripheral surface of the combustion chamber and jets oxygen in a direction to form a swirling flow. The secondary oxygen supply passage is opened at the tip of the inner peripheral surface of the combustion chamber, which is closer to the outlet side than the primary oxygen jet outlet, and ejects oxygen toward the burner central axis. A burner for producing inorganic spheroidized particles, characterized in that a jet nozzle is provided. 前記原料粉体供給路の前記噴出口は、原料粉体の噴出方向がバーナー中心から拡がる方向に設けられていることを特徴とする請求項5記載の無機質球状化粒子製造用バーナー。 6. The burner for producing inorganic spheroidized particles according to claim 5, wherein the jet outlet of the raw material powder supply path is provided in a direction in which the jet direction of the raw material powder extends from the center of the burner. 前記原料粉体供給路と前記燃料流体供給路との間に外側分散用ガス供給路を備えるとともに、該外側分散用ガス供給路の先端には、前記内側分散用ガス供給路、原料粉体供給路及び燃料流体供給路の各噴出口と同一平面上に開口する噴出口が設けられていることを特徴とする請求項5又は6記載の無機質球状化粒子製造用バーナー。 An outer dispersion gas supply path is provided between the raw material powder supply path and the fuel fluid supply path, and the inner dispersion gas supply path and the raw material powder supply are provided at the tip of the outer dispersion gas supply path. The burner for producing inorganic spheroidized particles according to claim 5 or 6, wherein a jet opening that is open on the same plane as each jet nozzle of the channel and the fuel fluid supply channel is provided. 前記外側分散用ガス供給路の噴出口は、分散用ガスの噴出方向がバーナー中心から拡がる方向に設けられていることを特徴とする請求項7記載の無機質球状化粒子製造用バーナー。 8. The burner for producing inorganic spheroidized particles according to claim 7, wherein the ejection port of the outer dispersion gas supply passage is provided in a direction in which the ejection direction of the dispersion gas extends from the center of the burner. 請求項3又は4記載の無機質球状化粒子製造用バーナーを用いて無機質球状化粒子を製造する無機質球状化粒子の製造方法において、前記内側分散用ガス供給路と前記外側分散ガス供給路とに供給する各分散用ガスの流量をそれぞれ個別に制御することを特徴とする無機質球状化粒子の製造方法。 In the manufacturing method of the inorganic spheroidized particle which manufactures the inorganic spheroidized particle using the burner for manufacturing an inorganic spheroidized particle according to claim 3 or 4, the supply to the inner dispersion gas supply path and the outer dispersed gas supply path A method for producing inorganic spheroidized particles, wherein the flow rate of each dispersing gas is individually controlled. 請求項7又は8記載の無機質球状化粒子製造用バーナーを用いて無機質球状化粒子を製造する無機質球状化粒子の製造方法において、前記内側分散用ガス供給路と前記外側分散ガス供給路とに供給する各分散用ガスの流量をそれぞれ個別に制御することを特徴とする無機質球状化粒子の製造方法。 9. The method for producing inorganic spheroidized particles using the burner for producing inorganic spheroidized particles according to claim 7 or 8, wherein the inorganic spheroidized particles are supplied to the inner dispersion gas supply passage and the outer dispersion gas supply passage. A method for producing inorganic spheroidized particles, wherein the flow rate of each dispersing gas is individually controlled. 請求項1乃至8のいずれか1項記載の無機質球状化粒子製造用バーナーを取り付けた炉を有する無機質球状化粒子製造装置であって、原料粉体をキャリアガスに同伴させて前記無機質球状化粒子製造用バーナーに搬送する手段と、酸素供給設備からの酸素及び燃料供給設備からの燃料を前記無機質球状化粒子製造用バーナーにそれぞれ供給する経路と、無機質球状化粒子製造用バーナーによって球状化された粒子を温度希釈用の空気に同伴させて炉内から抜き出して捕集、回収する手段とを備えていることを特徴とする無機質球状化粒子の製造装置。 An inorganic spheroidized particle manufacturing apparatus comprising a furnace equipped with the burner for manufacturing inorganic spheroidized particles according to any one of claims 1 to 8, wherein the inorganic spheroidized particles are entrained in a carrier gas with a carrier gas. Sphericalized by means for conveying to the production burner, a path for supplying oxygen from the oxygen supply facility and fuel from the fuel supply facility to the inorganic spheroidized particle production burner, and the inorganic spheroidized particle production burner. An apparatus for producing inorganic spheroidized particles, comprising means for entraining the particles with air for temperature dilution, extracting the particles from the furnace, and collecting and collecting the particles.
JP2007260504A 2007-10-04 2007-10-04 Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles Expired - Fee Related JP5236920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260504A JP5236920B2 (en) 2007-10-04 2007-10-04 Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260504A JP5236920B2 (en) 2007-10-04 2007-10-04 Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles

Publications (2)

Publication Number Publication Date
JP2009092254A JP2009092254A (en) 2009-04-30
JP5236920B2 true JP5236920B2 (en) 2013-07-17

Family

ID=40664415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260504A Expired - Fee Related JP5236920B2 (en) 2007-10-04 2007-10-04 Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles

Country Status (1)

Country Link
JP (1) JP5236920B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367471B2 (en) * 2009-06-11 2013-12-11 大陽日酸株式会社 Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP5525929B2 (en) * 2010-06-23 2014-06-18 大陽日酸株式会社 Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP5603748B2 (en) * 2010-11-18 2014-10-08 大陽日酸株式会社 Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP5291748B2 (en) * 2011-03-29 2013-09-18 大陽日酸株式会社 Burning burner
CN102767827B (en) * 2012-07-27 2015-04-08 上海锅炉厂有限公司 Combined-type thermal-oxidation igniting process nozzle for gasifying solid powder fuel
JP6070323B2 (en) * 2013-03-21 2017-02-01 大陽日酸株式会社 Combustion burner, burner apparatus, and raw material powder heating method
WO2014148536A1 (en) 2013-03-21 2014-09-25 大陽日酸株式会社 Combustion burner
JP7339307B2 (en) * 2021-09-28 2023-09-05 中外炉工業株式会社 powder heat treatment burner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073136Y2 (en) * 1989-11-16 1995-01-30 月島機械株式会社 Burner for melting and oxidizing powder materials
JPH0622344U (en) * 1992-08-25 1994-03-22 古河電気工業株式会社 Glass fine particle synthetic burner
JP3312228B2 (en) * 1993-06-02 2002-08-05 日本酸素株式会社 Burner for producing inorganic spheroidized particles
JPH09132415A (en) * 1995-11-09 1997-05-20 Sumitomo Electric Ind Ltd Torch for synthesizing glass particulate
JP3331491B2 (en) * 1996-09-18 2002-10-07 日本酸素株式会社 Production equipment for inorganic spheroidized particles
JP2004284886A (en) * 2003-03-24 2004-10-14 Shin Etsu Chem Co Ltd Burner for manufacturing synthetic quartz glass
JP2006016292A (en) * 2004-05-31 2006-01-19 Nikon Corp Burner for synthesizing quartz glass and method of synthesizing quartz glass

Also Published As

Publication number Publication date
JP2009092254A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5236920B2 (en) Burner for producing inorganic spheroidized particles and method and apparatus for producing inorganic spheroidized particles
JP4769276B2 (en) Burner for producing inorganic spheroidized particles
JP4922400B2 (en) Burner for producing inorganic spheroidized particles
JP4864053B2 (en) Method for producing inorganic spheroidized particles
JP5116505B2 (en) Burner and method for producing spherical particles using the same
JP5074094B2 (en) Burner for producing inorganic spheroidized particles
EP1203754B1 (en) Process and vertical furnace for producing glass beads
JP5603748B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP5469938B2 (en) Manufacturing apparatus and manufacturing method of inorganic spheroidized particles
JP5367471B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
WO2021060028A1 (en) Inorganic spheroidized particle production burner, inorganic spheroidized particle production device, and inorganic spheroidized particle production method
JP6303241B2 (en) Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
JP7303239B2 (en) Burner for producing inorganic spherical particles, method for producing inorganic spherical particles, and inorganic spherical particles
TWM608559U (en) Equipment for producing spherical particles
JP5750286B2 (en) Method for producing inorganic spheroidized particles, burner for producing inorganic spheroidized particles, and inorganic spheroidized particle producing apparatus
JPH11199219A (en) Production of spherical silica particle
JP5887173B2 (en) Spheroidized particle manufacturing apparatus and spheroidized particle manufacturing method
TWI744067B (en) Equipment for producing spherical particles
JP2004269777A (en) Nozzle for supplying raw oil for manufacturing carbon black, apparatus for manufacturing carbon black therewith, and method for manufacturing carbon black

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Ref document number: 5236920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees