JP2010057233A - Rotor structure of permanent magnet rotating electric machine - Google Patents

Rotor structure of permanent magnet rotating electric machine Download PDF

Info

Publication number
JP2010057233A
JP2010057233A JP2008217804A JP2008217804A JP2010057233A JP 2010057233 A JP2010057233 A JP 2010057233A JP 2008217804 A JP2008217804 A JP 2008217804A JP 2008217804 A JP2008217804 A JP 2008217804A JP 2010057233 A JP2010057233 A JP 2010057233A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor structure
reinforcing ring
shaft
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008217804A
Other languages
Japanese (ja)
Other versions
JP5386885B2 (en
Inventor
Takashi Okitsu
隆志 沖津
Daiki Matsuhashi
大器 松橋
Hiromitsu Watanabe
広光 渡辺
Yoshitaka Azuma
義高 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008217804A priority Critical patent/JP5386885B2/en
Publication of JP2010057233A publication Critical patent/JP2010057233A/en
Application granted granted Critical
Publication of JP5386885B2 publication Critical patent/JP5386885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor structure of a permanent magnet rotating electric machine, which is enhanced in the transmission property of rotation torque, can suppress the occurrence of eddy current loss, and is high in productivity by means of a practical production method, while the permanent magnet serves as the interference of a reinforcing ring to endure high speed rotation. <P>SOLUTION: In the rotor structure of the permanent magnet rotating electric machine, cylindrically formed permanent magnets 3 are disposed on the outer circumference of a rotor shaft 2 to transmit the torque working on the permanent magnets 3 to the rotary shaft 2. The rotor structure includes a cylindrical reinforcing ring 5 provided on the outer circumference of the permanent magnets 3 so as to project both ends of the permanent magnets 3, and a side surface member 4 formed into a bottomed cylindrical shape and having a portion projecting from the reinforcing ring 5 of the permanent magnet 3 being fit into the cylindrical portion 4a and also having the rotary shaft 2 being fit into the shaft hole 4c formed at the bottom 4b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超高速回転に適用可能な永久磁石回転機の回転子構造に関し、とくに回転軸の外周部に円筒状の永久磁石を配し、永久磁石に働く回転トルクを回転軸に伝達するようにした永久磁石式回転機の回転子構造に関する。   The present invention relates to a rotor structure of a permanent magnet rotating machine applicable to ultra-high speed rotation, and in particular, a cylindrical permanent magnet is arranged on the outer peripheral portion of a rotating shaft so that rotational torque acting on the permanent magnet is transmitted to the rotating shaft. The present invention relates to a rotor structure of a permanent magnet type rotating machine.

従来、超高速回転に適用可能な永久磁石式同期電動機や、永久磁石式同期発電機等の永久磁石式回転機の回転子構造としては、円筒状の永久磁石を同じく円筒状の非磁性高強度材(以下、補強リングという)で圧入又は焼き嵌め又は冷やし嵌めした回転子構造や、非磁性金属線で巻いた回転子構造が周知となっている(例えば、特許文献1,2参照)。   Conventionally, as a rotor structure of a permanent magnet type synchronous motor applicable to ultra-high speed rotation or a permanent magnet type rotary machine such as a permanent magnet type synchronous generator, a cylindrical permanent magnet is also made of a cylindrical non-magnetic high strength. A rotor structure that is press-fitted or shrink-fitted or cold-fitted with a material (hereinafter referred to as a reinforcing ring) and a rotor structure that is wound with a nonmagnetic metal wire are well known (for example, see Patent Documents 1 and 2).

このようなリング磁石を用いる回転子構造においては、高速回転時に永久磁石の内径側に永久磁石の許容引張応力を超える引張応力が働き永久磁石が破損することを防止するため上記補強リング等に締め代を設けている。さらに、永久磁石に働く回転トルクは、高速回転時に遠心力で軸と永久磁石とが離れないように締め代をとる、または、回転軸と永久磁石とを接着することで回転軸に伝達される。なお、渦電流損失を低減するため補強リングとして炭素繊維などの高強度繊維や非磁性金属線を用いたものもある。   In such a rotor structure using a ring magnet, it is fastened to the reinforcing ring or the like to prevent the permanent magnet from being damaged due to a tensile stress exceeding the allowable tensile stress of the permanent magnet acting on the inner diameter side of the permanent magnet during high-speed rotation. A fee is provided. Furthermore, the rotational torque acting on the permanent magnet is transmitted to the rotating shaft by taking up a tightening margin so that the shaft and the permanent magnet are not separated by centrifugal force at high speed rotation or by adhering the rotating shaft and the permanent magnet. . Some of the reinforcing rings use high-strength fibers such as carbon fibers or nonmagnetic metal wires to reduce eddy current loss.

一方、円柱状の永久磁石を補強リングで圧入又は焼き嵌め又は冷やし嵌めした回転子構造もある(例えば、特許文献3参照)。   On the other hand, there is also a rotor structure in which a cylindrical permanent magnet is press-fitted, shrink-fitted, or cold-fitted with a reinforcing ring (see, for example, Patent Document 3).

このような円柱状の永久磁石を用いる回転子構造においては、高速回転時に永久磁石の許容引張強さを超える引張応力が働かないように締め代をとることで永久磁石の破損を防止している。なお、補強リングと軸とは永久磁石の両端で圧入又は冷やし嵌め又は溶接される。そして、永久磁石に働く回転トルクは、高速回転時の遠心力で補強リングと永久磁石、及び軸と永久磁石が離れないように締め代をとることで軸に伝達される。永久磁石が円柱状であるため、同じ外径、長さの円筒状磁石に比較して遠心力に強く、磁石の起磁力を大きく取れるという利点を有している。   In such a rotor structure using a columnar permanent magnet, damage to the permanent magnet is prevented by taking a tightening margin so that a tensile stress exceeding the allowable tensile strength of the permanent magnet does not work during high-speed rotation. . The reinforcing ring and the shaft are press-fitted or cold-fitted or welded at both ends of the permanent magnet. Then, the rotational torque acting on the permanent magnet is transmitted to the shaft by tightening so that the reinforcing ring and the permanent magnet and the shaft and the permanent magnet are not separated by the centrifugal force during high-speed rotation. Since the permanent magnet has a columnar shape, it has an advantage that it is more resistant to centrifugal force than the cylindrical magnet having the same outer diameter and length, and the magnetomotive force of the magnet can be increased.

特開平03−159533号公報Japanese Patent Laid-Open No. 03-159533 特開2005−312250号公報JP 2005-312250 A 特開2002−354724号公報JP 2002-354724 A

しかしながら、上述した特許文献1,2に記載されているような回転子構造においては、永久磁石の許容引張応力を超える引張応力が作用することを防止するため、または遠心力や使用温度条件によって回転軸と永久磁石とが離れることがないようにするためには締め代を大きく取る必要があり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産には不向きな温度まで上昇させる必要があるという問題があった。締め代を大きく取るために実用上困難な温度とする必要があるのは冷やし嵌めを行う場合であっても同様であり、生産性の向上を妨げる虞があった。   However, in the rotor structure as described in Patent Documents 1 and 2 mentioned above, the rotor structure is rotated in order to prevent a tensile stress exceeding the allowable tensile stress of the permanent magnet from acting, or depending on centrifugal force or operating temperature conditions. In order to prevent the shaft and the permanent magnet from separating, it is necessary to make a large allowance, and it is necessary to raise the press-fit or shrink-fit temperature to a temperature that is practically difficult, in other words, unsuitable for mass production. There was a problem that there was. In order to increase the tightening allowance, it is necessary to make the temperature practically difficult even in the case of cold fitting, and there is a concern that the improvement of productivity may be hindered.

永久磁石の回転トルクを、軸と永久磁石を接着することで軸に伝達するような回転子構造にあっては、高温環境下(100℃以上)では接着剤の機能が低下するおそれがある。接着剤の機能の低下により一度永久磁石が回転軸から剥がれると再度接着状態とはならないために、上記高温環境下では回転軸と永久磁石とが分離してトルクを軸に伝達できなくなる可能性があった。   In the rotor structure in which the rotational torque of the permanent magnet is transmitted to the shaft by bonding the shaft and the permanent magnet, the function of the adhesive may be reduced in a high temperature environment (100 ° C. or higher). Once the permanent magnet is peeled off from the rotating shaft due to a decrease in the function of the adhesive, the bonded state will not be restored.Therefore, in the high temperature environment, the rotating shaft and the permanent magnet may be separated so that torque cannot be transmitted to the shaft. there were.

更に加えて、補強リングとして高強度繊維を用いる場合、該高強度繊維は熱膨張係数が小さいために焼き嵌めが困難であることから、圧入または永久磁石を冷やし嵌めすることとなる。しかし、永久磁石の熱膨張係数は鉄の約半分であるため、締め代を大きく取ることが困難となり、永久磁石の許容引張応力を超える引張応力が作用することを防止すること、遠心力や使用温度条件によらず軸と永久磁石とが離れないようにすることが難しかった。   In addition, when high-strength fibers are used as the reinforcing ring, since the high-strength fibers have a small coefficient of thermal expansion, it is difficult to shrink-fit, and thus press-fit or permanent magnets are cold-fitted. However, since the thermal expansion coefficient of permanent magnets is about half that of iron, it is difficult to make a large tightening allowance, preventing the application of tensile stress exceeding the allowable tensile stress of permanent magnets, centrifugal force and use It was difficult to prevent the shaft and the permanent magnet from separating regardless of the temperature conditions.

また、特許文献3に記載されているような回転子構造にあっては、永久磁石の許容引張応力を超える引張応力が働かないように締め代を設定すると、締め代が大きくなり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産に不向きな温度まで上昇させる必要が生じることが考えられ、生産性の向上が抑制される虞があった。これは冷やし嵌めを行う場合であっても同様であった。   Further, in the rotor structure as described in Patent Document 3, if the tightening margin is set so that the tensile stress exceeding the allowable tensile stress of the permanent magnet does not work, the tightening margin becomes large, and press fitting or firing is performed. It may be necessary to raise the fitting temperature to a practically difficult temperature, in other words, a temperature unsuitable for mass production, and there is a possibility that improvement in productivity may be suppressed. This was the same even when the cold fitting was performed.

更に、円柱状の永久磁石を用いる場合、永久磁石を挟んで回転軸を分断させることとなる。回転軸を永久磁石の両端に固定する方法としては、回転軸を補強リングで圧入または焼き嵌めまたは冷やし嵌めするか、回転軸と補強リングとを溶接で固定する方法があるが、回転軸の歪や剛性に注意が必要であり、作業が煩雑であった。   Further, when a cylindrical permanent magnet is used, the rotating shaft is divided with the permanent magnet interposed therebetween. As a method of fixing the rotating shaft to both ends of the permanent magnet, there are a method in which the rotating shaft is press-fit, shrink-fitted, or cold-fitted with a reinforcing ring, or the rotating shaft and the reinforcing ring are fixed by welding. Care was required for the rigidity and the work was complicated.

そして、回転軸を補強リングで圧入または焼き嵌めまたは冷やし嵌めする場合、永久磁石に働く回転トルクを補強リングに伝達し、更に回転軸に伝達することとなるため、遠心力や使用温度条件で補強リングと回転軸、及び補強リングと永久磁石が離れることがないように締め代を取ると、締め代が大きくなり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産に不向きな温度まで上昇させる必要が生じることが考えられる。これは冷やし嵌めを行う場合であっても同様であり、生産性の向上が妨げられる虞があった。   When the rotary shaft is press-fit, shrink-fitted, or cold-fitted with a reinforcing ring, the rotational torque acting on the permanent magnet is transmitted to the reinforcing ring and further transmitted to the rotating shaft. If the allowance is taken so that the ring and the rotating shaft, and the reinforcing ring and the permanent magnet are not separated from each other, the allowance becomes large, and the press-fit or shrink-fit temperature is a temperature that is practically difficult, in other words, a temperature unsuitable for mass production It may be necessary to raise it to a maximum. This is the same even when performing cold fitting, and there is a possibility that improvement in productivity may be hindered.

なお、本出願人は、特願2007−240451において、上述した問題を解決する回転子構造として、回転軸の外周部に円筒状の永久磁石を配すとともに、該永久磁石の両端面側に回転軸を一体動可能に嵌入する金属部材からなる環状の側面板を設け、永久磁石と側面板とを金属材からなる円筒状の補強リングによって一体動可能に締め付けることにより、側面板を介して永久磁石に働く回転トルクを回転軸に伝達するようにしたものを提案している。   In addition, in the Japanese Patent Application No. 2007-240451, the present applicant arranges a cylindrical permanent magnet on the outer peripheral portion of the rotating shaft as a rotor structure that solves the above-described problem, and rotates both ends of the permanent magnet. An annular side plate made of a metal member into which the shaft can be integrally moved is provided, and the permanent magnet and the side plate are tightened so as to be integrally movable by a cylindrical reinforcing ring made of a metal material. It has been proposed to transmit the rotational torque acting on the magnet to the rotating shaft.

しかし、上述した特願2007−240451の構造においては、補強リングによりトルクが働く永久磁石とトルクが働かない側面板とを一体動可能に締め付ける構造としている。そのため、回転機の駆動時において補強リングに捻り方向の力が働き、渦電流損失が発生して回転機の効率に影響を及ぼすおそれがあった。   However, in the structure of the above-mentioned Japanese Patent Application No. 2007-240451, a permanent magnet that works with torque and a side plate that does not work with torque are tightened so as to be able to move together. Therefore, a twisting direction force acts on the reinforcing ring when the rotating machine is driven, and eddy current loss may occur, which may affect the efficiency of the rotating machine.

このようなことから本発明は、永久磁石が高速回転に耐え得る補強リングの締め代でありながら実用的な製造方法により生産性が高く、回転トルクの伝達に優れ、かつ、渦電流損失の発生を抑制可能な永久磁石式回転機の回転子構造を提供することを目的とする。   For this reason, the present invention is highly productive by a practical manufacturing method, is excellent in rotational torque transmission, and generates eddy current loss, although the permanent magnet is capable of withstanding the high-speed rotation of the permanent magnet. An object of the present invention is to provide a rotor structure of a permanent magnet type rotating machine capable of suppressing the above.

上記の課題を解決するための第1の発明に係る永久磁石式回転機の回転子構造は、回転軸の外周部に円筒状に形成された永久磁石を配し、前記永久磁石に働くトルクを前記回転軸に伝達するようにした永久磁石式回転機の回転子構造において、前記永久磁石の両端が突出するように前記永久磁石の外周部に設けられる円筒状の補強部材と、有底の円筒状に形成され、円筒部分に前記永久磁石の前記補強部材から突出した部分を嵌入する一方、底部に形成された軸孔に前記回転軸が嵌入されて、前記永久磁石および前記回転軸と一体動可能に構成された側面部材とを備えたことを特徴とする。   In the rotor structure of the permanent magnet type rotating machine according to the first invention for solving the above-mentioned problems, a permanent magnet formed in a cylindrical shape is arranged on the outer peripheral portion of the rotating shaft, and the torque acting on the permanent magnet is provided. In the rotor structure of the permanent magnet type rotating machine configured to transmit to the rotating shaft, a cylindrical reinforcing member provided on an outer peripheral portion of the permanent magnet so that both ends of the permanent magnet protrude, and a bottomed cylinder The portion of the permanent magnet that protrudes from the reinforcing member is inserted into the cylindrical portion, while the rotating shaft is inserted into the shaft hole formed in the bottom portion, and moves integrally with the permanent magnet and the rotating shaft. And a side member configured to be possible.

第2の発明に係る永久磁石式回転機の回転子構造は、第1の発明において、前記側面部材は前記円筒部分に小径部と大径部とを有し、前記小径部が前記永久磁石の前記補強部材から突出した部分を嵌入する一方、前記大径部が前記補強部材の端部を被覆することを特徴とする。   In the rotor structure of the permanent magnet type rotating machine according to the second invention, in the first invention, the side member has a small diameter portion and a large diameter portion in the cylindrical portion, and the small diameter portion is formed of the permanent magnet. While inserting the part which protruded from the said reinforcement member, the said large diameter part coat | covers the edge part of the said reinforcement member, It is characterized by the above-mentioned.

第3の発明に係る永久磁石式回転機の回転子構造は、第1または第2の発明において、前記補強部材が、ガラス繊維強化プラスチックまたは炭素繊維強化プラスチックからなることを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a third invention is characterized in that, in the first or second invention, the reinforcing member is made of glass fiber reinforced plastic or carbon fiber reinforced plastic.

上述した本発明の第1の永久磁石式回転機の回転子構造によれば、回転軸の外周部に円筒状に形成された永久磁石を配し、永久磁石に働くトルクを回転軸に伝達するようにした永久磁石式回転機の回転子構造において、永久磁石の両端が突出するように永久磁石の外周部に設けられる円筒状の補強部材と、有底の円筒状に形成され、円筒部分に永久磁石の補強部材から突出した部分を嵌入する一方、底部に形成された軸孔に回転軸が嵌入されて、永久磁石および回転軸と一体動可能に構成された側面部材とを備えるようにしたので、補強部材の内周面は永久磁石にのみ接することとなり、補強部材に対して捻り方向に力が掛かることがなく、補強部材として金属部材を用いた場合は渦電流損失を抑制することができ、補強部材として捻り方向の力に対する耐性が比較的低い高強度繊維を用いたとしても捻り力による破損を防止することができる。   According to the rotor structure of the first permanent magnet type rotating machine of the present invention described above, the permanent magnet formed in a cylindrical shape is arranged on the outer peripheral portion of the rotating shaft, and torque acting on the permanent magnet is transmitted to the rotating shaft. In the rotor structure of the permanent magnet type rotating machine, the cylindrical reinforcing member provided on the outer peripheral portion of the permanent magnet so that both ends of the permanent magnet protrude, and the bottomed cylindrical shape are formed on the cylindrical portion. While inserting the part which protruded from the reinforcement member of the permanent magnet, the rotating shaft was inserted in the shaft hole formed in the bottom part, and it was provided with the side member comprised so that the permanent magnet and the rotating shaft could move integrally. Therefore, the inner peripheral surface of the reinforcing member is in contact with only the permanent magnet, and no force is applied to the reinforcing member in the twisting direction. When a metal member is used as the reinforcing member, eddy current loss can be suppressed. Can be twisted as a reinforcing member It is also possible to prevent damage due to twisting forces as resistance to force is a relatively low high-strength fibers.

さらに、無分割の円筒状の永久磁石を用いるため、円筒状の永久磁石を周方向または軸方向に分割した場合と比べて、回転軸に永久磁石を固定した後、外径を研磨するなどの工程が不要であり、生産性を大幅に向上させることができ、低コスト化を実現できる。   Furthermore, since an undivided cylindrical permanent magnet is used, the outer diameter is polished after the permanent magnet is fixed to the rotating shaft as compared with the case where the cylindrical permanent magnet is divided in the circumferential direction or the axial direction. No process is required, productivity can be greatly improved, and cost can be reduced.

また、永久磁石を周方向に分割していないため、補強部材に応力集中が発生せず、補強部材を高強度繊維で構成した場合は、該高強度繊維の高引張強度特性を有効に利用することができる。そのため、永久磁石を周方向に分割した場合と比較して、補強部材の厚みを薄くすることができるとともに、固定子と回転子間の電気的ギャップ(磁石と固定子間の距離)を小さくすることができ、回転機の特性が向上する。   Further, since the permanent magnet is not divided in the circumferential direction, stress concentration does not occur in the reinforcing member, and when the reinforcing member is composed of high-strength fibers, the high tensile strength characteristics of the high-strength fibers are effectively used. be able to. Therefore, compared with the case where the permanent magnet is divided in the circumferential direction, the thickness of the reinforcing member can be reduced, and the electrical gap between the stator and the rotor (the distance between the magnet and the stator) is reduced. The characteristics of the rotating machine can be improved.

永久磁石の内径は回転軸に接触させる必要がないため、補強部材と永久磁石の締め代は遠心力によって永久磁石が破損しない程度でよい。また、回転軸に永久磁石を接着剤等で固着する必要がなく、高温環境下でも安定して使用することができる。   Since the inner diameter of the permanent magnet does not need to be in contact with the rotating shaft, the tightening margin between the reinforcing member and the permanent magnet may be such that the permanent magnet is not damaged by centrifugal force. Further, it is not necessary to fix the permanent magnet to the rotating shaft with an adhesive or the like, and it can be used stably even in a high temperature environment.

よって、永久磁石が高速回転に耐え得る補強部材の締め代でありながら実用的な製造方法により生産性が高く、永久磁石に働く回転トルクを確実に回転軸に伝達することができるとともに、渦電流損失の発生を抑制することができる。   Therefore, although the permanent magnet is capable of withstanding high-speed rotation, it is highly productive by a practical manufacturing method, and the rotational torque acting on the permanent magnet can be reliably transmitted to the rotating shaft, and the eddy current Generation of loss can be suppressed.

上記第2の発明に係る永久磁石式回転機の回転子構造によれば、側面部材は円筒部分に小径部と大径部とを有し、小径部が永久磁石の補強部材から突出した部分を嵌入する一方、大径部が補強部材の端部を被覆するので、永久磁石の端面と側面部材との当接部分を大径部によって覆うことができ、磁石粉の飛散を抑制することができる。補強部材の外周を側面部材で圧入または焼き嵌めすることができれば、最も効果が高い。   According to the rotor structure of the permanent magnet type rotating machine according to the second invention, the side member has a small diameter portion and a large diameter portion in the cylindrical portion, and the small diameter portion projects from the reinforcing member of the permanent magnet. On the other hand, since the large diameter portion covers the end portion of the reinforcing member, the contact portion between the end surface of the permanent magnet and the side member can be covered with the large diameter portion, and scattering of the magnet powder can be suppressed. . If the outer periphery of the reinforcing member can be press-fitted or shrink-fitted with a side member, the effect is highest.

上記第3の発明に係る永久磁石式回転機の回転子構造によれば、補強部材が、ガラス繊維強化プラスチック(以下、GFRP)または炭素繊維強化プラスチック(以下、CFRP)からなるので、渦電流を生じさせることがなく、補強部材に非磁性金属を用いた場合に比較して回転機駆動時の渦電流損失をより低減することができる。   According to the rotor structure of the permanent magnet type rotating machine according to the third invention, the reinforcing member is made of glass fiber reinforced plastic (hereinafter referred to as GFRP) or carbon fiber reinforced plastic (hereinafter referred to as CFRP). Without causing it, it is possible to further reduce the eddy current loss when the rotating machine is driven as compared with the case where a nonmagnetic metal is used for the reinforcing member.

また、永久磁石の熱膨張係数は6.5×10-6/Kと鉄の熱膨張係数の半分程度であり、補強部材に永久磁石より高い熱膨張係数を有する材質を用いた場合、高温環境下において永久磁石と補強部材との締め代が少なくなるため、これを考慮して予め締め代を大きくする必要が生じる場合がある。これに対し、GFRPまたはCFRPは熱膨張係数がほぼ0であるため、補強部材の材質として該GFRPまたはCFRPを用いることにより、高温環境下で締め代が増え、補強部材として金属材を用いる場合に比較して締め代を小さくとることが可能となる。 The thermal expansion coefficient of the permanent magnet is 6.5 × 10 −6 / K, which is about half of the thermal expansion coefficient of iron. When a material having a higher thermal expansion coefficient than the permanent magnet is used for the reinforcing member, Since the tightening allowance between the permanent magnet and the reinforcing member is reduced below, it may be necessary to increase the tightening allowance in advance. On the other hand, since the thermal expansion coefficient of GFRP or CFRP is almost 0, the use of the GFRP or CFRP as the material for the reinforcing member increases the tightening allowance in a high temperature environment, and a metal material is used as the reinforcing member. In comparison, it is possible to reduce the tightening allowance.

本発明を実施するための実施の形態を以下に示す実施例において詳細に説明する。   Embodiments for carrying out the present invention will be described in detail in the following examples.

図1及び図2に基づいて本発明の第1の実施例を説明する。図1(a)は本実施例に係る高速永久磁石式回転機の回転子構造の部分断面図、図1(b)は図1(a)のA−A矢視図、図2は本実施例に係る側面部材の断面図である。本実施例に係る高速永久磁石式回転機の回転子構造は、例えば超高速回転の永久磁石式同期電動機、又は永久磁石式同期発電機の回転子に適用される。   A first embodiment of the present invention will be described with reference to FIGS. 1A is a partial cross-sectional view of a rotor structure of a high-speed permanent magnet type rotating machine according to the present embodiment, FIG. 1B is a view taken along the line AA in FIG. 1A, and FIG. It is sectional drawing of the side member which concerns on an example. The rotor structure of the high-speed permanent magnet type rotating machine according to the present embodiment is applied to, for example, an ultra-high speed rotating permanent magnet type synchronous motor or a rotor of a permanent magnet type synchronous generator.

図1に示すように、回転子1は、回転軸2と、無分割の完全円筒形状に形成されて回転軸2の外周部に配設される永久磁石3と、永久磁石3の両端面3aに配される側面部材4と、円筒状に形成されて永久磁石3の外周部に配される補強部材としての補強リング5とを備えている。   As shown in FIG. 1, the rotor 1 includes a rotating shaft 2, a permanent magnet 3 that is formed in an undivided complete cylindrical shape and disposed on the outer peripheral portion of the rotating shaft 2, and both end surfaces 3 a of the permanent magnet 3. And a reinforcing ring 5 as a reinforcing member formed in a cylindrical shape and disposed on the outer peripheral portion of the permanent magnet 3.

補強リング5は、GFRPまたはCFRPからなる円筒状の部材であり、圧入により永久磁石3の外周部を締め付け、回転機の駆動に伴って永久磁石3に作用する遠心力により永久磁石3に該永久磁石3の許容引張応力を超える引張応力が働いて永久磁石3が破損することを防止するものである。   The reinforcing ring 5 is a cylindrical member made of GFRP or CFRP. The outer periphery of the permanent magnet 3 is tightened by press-fitting, and the permanent magnet 3 is permanently attached to the permanent magnet 3 by centrifugal force acting on the permanent magnet 3 when the rotating machine is driven. The permanent magnet 3 is prevented from being damaged by a tensile stress exceeding the allowable tensile stress of the magnet 3.

本実施例において補強リング5の軸方向の長さは永久磁石3の軸方向の長さに比較して所定の長さだけ短く、永久磁石3の両端はそれぞれ補強リング5から概ね均等な長さで突出した状態となっている。補強リング5の内径は、永久磁石3に対する締め代が、回転機の駆動に伴って永久磁石3に作用する引張応力が許容引張応力を超えない程度となるように設定するものとする。   In this embodiment, the length of the reinforcing ring 5 in the axial direction is shorter than the length of the permanent magnet 3 in the axial direction by a predetermined length, and both ends of the permanent magnet 3 are approximately equal in length from the reinforcing ring 5. It is in a protruding state. The inner diameter of the reinforcing ring 5 is set such that the tightening margin for the permanent magnet 3 is such that the tensile stress acting on the permanent magnet 3 as the rotating machine is driven does not exceed the allowable tensile stress.

また、側面部材4は、非磁性金属材をカップ状、換言すると、有底筒状に形成してなり、図2に示すように、円筒部分4aと該円筒部分4aの一方の開口端を閉塞する底部4bとを有している。円筒部分4aは、その軸方向の長さが永久磁石3の補強リング5から突出した部分とほぼ同一の長さとなっている。また、底部4bはその軸心部分に軸孔4cを有している。   Further, the side member 4 is formed of a non-magnetic metal material in a cup shape, in other words, a bottomed cylindrical shape, and as shown in FIG. 2, the cylindrical portion 4a and one open end of the cylindrical portion 4a are closed. And a bottom portion 4b. The length of the cylindrical portion 4 a in the axial direction is substantially the same as that of the portion protruding from the reinforcing ring 5 of the permanent magnet 3. Further, the bottom 4b has a shaft hole 4c at its axial center.

このような側面部材4は、円筒部分4aによって永久磁石3の補強リング5から突出した部分の外周面を締め付ける一方、圧入又は焼き嵌めにより軸孔4cに回転軸2を固定することにより、永久磁石3及び回転軸2を一体動可能に連結するように構成されており、これにより永久磁石3に働くトルクを回転軸2に伝達可能となっている。   Such a side member 4 tightens the outer peripheral surface of the portion protruding from the reinforcing ring 5 of the permanent magnet 3 by the cylindrical portion 4a, while fixing the rotating shaft 2 to the shaft hole 4c by press-fitting or shrink-fitting. 3 and the rotary shaft 2 are connected so as to be able to move integrally, so that torque acting on the permanent magnet 3 can be transmitted to the rotary shaft 2.

なお、永久磁石3は回転軸2に隙間嵌めされており、これにより回転軸2と永久磁石3との間には微小間隔dの隙間6が形成された状態となっている。即ち、本実施例において永久磁石3は回転軸2に対して非接触に設定されている。   The permanent magnet 3 is fitted into the rotary shaft 2 with a gap, so that a gap 6 with a minute distance d is formed between the rotary shaft 2 and the permanent magnet 3. That is, in this embodiment, the permanent magnet 3 is set to be non-contact with the rotating shaft 2.

このように、本実施例の回転子1は、永久磁石3の端部と側面部材4の嵌め合いにより永久磁石3に働くトルクを側面部材4に伝達し、これを側面部材4の軸孔4に圧入または焼き嵌めされた回転軸2に伝達するように構成されている。   Thus, the rotor 1 of this embodiment transmits the torque acting on the permanent magnet 3 to the side member 4 by fitting the end portion of the permanent magnet 3 and the side member 4, and this is transmitted to the shaft hole 4 of the side member 4. The rotary shaft 2 is press-fitted or shrink-fitted into the rotary shaft 2.

本実施例に係る永久磁石式回転機の回転子構造によれば、上述したように、永久磁石3は無分割の完全円筒形状であり、円筒状の永久磁石3を周方向または軸方向に分割した場合と比べて、回転軸2に永久磁石3を固定した後、外径を研磨するなどの工程が不要であるため、生産性が大幅に向上し安価である。   According to the rotor structure of the permanent magnet type rotating machine according to the present embodiment, as described above, the permanent magnet 3 has an undivided complete cylindrical shape, and the cylindrical permanent magnet 3 is divided in the circumferential direction or the axial direction. Compared with the case where the permanent magnet 3 is fixed to the rotating shaft 2, a process such as polishing the outer diameter is not necessary, so that the productivity is greatly improved and the cost is low.

また、永久磁石3の内径を回転軸2に接触させる必要がないため、補強リング5と永久磁石3の締め代は遠心力によって永久磁石3が破損しない程度でよい。また、回転軸2と永久磁石3とを接着剤などで固着する必要がないため、高温環境下でも安定して使用することができる。   Further, since there is no need to make the inner diameter of the permanent magnet 3 contact the rotary shaft 2, the tightening allowance between the reinforcing ring 5 and the permanent magnet 3 may be such that the permanent magnet 3 is not damaged by centrifugal force. Moreover, since it is not necessary to fix the rotating shaft 2 and the permanent magnet 3 with an adhesive etc., it can be used stably also in a high temperature environment.

さらに、永久磁石3を周方向に分割していないため、補強リング5に応力集中が発生せず補強リング5を構成するGFRPまたはCFRPの高引張強度特性を有効に利用することができる。そのため、永久磁石3を周方向に分割した場合に比較して補強リング5の厚みを薄くすることができるとともに、固定子(図示せず)と回転子1間の電気的ギャップ(永久磁石3と固定子間の距離)を小さくすることができ、回転機の特性が向上する。   Furthermore, since the permanent magnet 3 is not divided in the circumferential direction, stress concentration does not occur in the reinforcing ring 5, and the high tensile strength characteristics of GFRP or CFRP constituting the reinforcing ring 5 can be used effectively. Therefore, the thickness of the reinforcing ring 5 can be reduced as compared with the case where the permanent magnet 3 is divided in the circumferential direction, and the electrical gap between the stator (not shown) and the rotor 1 (with the permanent magnet 3 and The distance between the stators) can be reduced, and the characteristics of the rotating machine are improved.

さらに加えて、補強リング5の内周面が永久磁石3のみに接触する構成としたため、補強リング5に捻り方向の力が作用することがなく、回転軸2と永久磁石3とを非接触としつつ永久磁石3に働く回転トルクを確実に回転軸2に伝達することが可能な構成でありながら、補強リング5としてGFRPまたはCFRPを用いることができる。そのため、渦電流が発生せず、回転機駆動時の渦電流損失を低減することができる。   In addition, since the inner peripheral surface of the reinforcing ring 5 is in contact with only the permanent magnet 3, no force in the twisting direction acts on the reinforcing ring 5, and the rotating shaft 2 and the permanent magnet 3 are not in contact with each other. However, GFRP or CFRP can be used as the reinforcing ring 5 while being able to reliably transmit the rotational torque acting on the permanent magnet 3 to the rotating shaft 2. Therefore, no eddy current is generated, and eddy current loss during driving of the rotating machine can be reduced.

なお、本実施例においては補強リング5としてGFRPまたはCFRPを用いる例を示したが、補強リング5としては非磁性金属を用いてもよい。上述したように本実施例では補強リングの内周面が永久磁石3のみに接触するように構成されているため、補強リング5として非磁性金属を用いたとしても、補強リング5に捻り方向の力が発生することがなく、渦電流損失を抑制することができる。   In the present embodiment, an example in which GFRP or CFRP is used as the reinforcing ring 5 is shown, but a nonmagnetic metal may be used as the reinforcing ring 5. As described above, in this embodiment, since the inner peripheral surface of the reinforcing ring is configured to contact only the permanent magnet 3, even if a nonmagnetic metal is used as the reinforcing ring 5, the reinforcing ring 5 is twisted. Force is not generated and eddy current loss can be suppressed.

図3及び図4を用いて本発明の第2の実施例を詳細に説明する。図3は本実施例に係る永久磁石式回転機の回転子構造を示す部分断面図、図4は本実施例に係る側面部材の断面図である。本実施例は図1に示し上述した側面部材4に代えて、図3に示す側面部材14を用いる例である。その他の構成は図1に示し上述したものと概ね同様であり、以下、同一の部材には同一の符号を付し、重複する説明は省略する。   A second embodiment of the present invention will be described in detail with reference to FIGS. FIG. 3 is a partial sectional view showing a rotor structure of the permanent magnet type rotating machine according to the present embodiment, and FIG. 4 is a sectional view of a side member according to the present embodiment. In this embodiment, the side member 14 shown in FIG. 3 is used in place of the side member 4 shown in FIG. Other configurations are substantially the same as those shown in FIG. 1 and described above. Hereinafter, the same members are denoted by the same reference numerals, and redundant description is omitted.

図3及び図4に示すように、本実施例において側面部材14は、非磁性金属材を有底筒状に形成してなり、図4に示すように、円筒部分14aと該円筒部分14aの一方の開口端を閉塞する底部14bとを有している。円筒部分14aは、その軸方向の長さが永久磁石3の補強リング5から突出した部分に比較して長くなるように設定されている。また、底部14bはその軸心部分に軸孔14cを有している。   As shown in FIGS. 3 and 4, in this embodiment, the side member 14 is formed by forming a nonmagnetic metal material into a bottomed cylindrical shape. As shown in FIG. 4, the cylindrical portion 14a and the cylindrical portion 14a And a bottom portion 14b that closes one open end. The cylindrical portion 14 a is set so that its axial length is longer than the portion protruding from the reinforcing ring 5 of the permanent magnet 3. The bottom portion 14b has a shaft hole 14c in the axial center portion.

さらに、円筒部分14aはその外径が一定である一方、内径が段階的に変化するように形成されている。具体的には、円筒部分14aの内周面の軸孔14c側に小径部14d、開口端側に小径部14dに比較して内径が大きい大径部14eが形成されている。詳しくは、小径部14dの内径は永久磁石3の外周に対して締め代を有するように、また、大径部14eの内径は補強リング5の外径程度(好ましくは補強リング5の外周に対して締め代を有する程度)にそれぞれ設定されている。   Further, the cylindrical portion 14a is formed so that its outer diameter is constant, while its inner diameter changes stepwise. Specifically, a small diameter portion 14d is formed on the inner peripheral surface of the cylindrical portion 14a on the shaft hole 14c side, and a large diameter portion 14e having a larger inner diameter than the small diameter portion 14d is formed on the opening end side. Specifically, the inner diameter of the small-diameter portion 14d has an allowance relative to the outer periphery of the permanent magnet 3, and the inner diameter of the large-diameter portion 14e is about the outer diameter of the reinforcing ring 5 (preferably relative to the outer periphery of the reinforcing ring 5). To the extent that they have a tightening allowance).

このような側面部材4は、それぞれ圧入又は焼き嵌めにより、小径部14dによって永久磁石3の補強リング5から突出した部分の外周面を締め付ける一方、軸孔14cに回転軸2を固定することにより、永久磁石3に働く回転トルクを回転軸2に伝達するように構成されているのに加えて、大径部14eによって補強リング5の端部を覆うことにより、永久磁石3が固定子側に対して露出することを防止している。   Such a side member 4 tightens the outer peripheral surface of the portion protruding from the reinforcing ring 5 of the permanent magnet 3 by the small diameter portion 14d by press fitting or shrink fitting, while fixing the rotating shaft 2 to the shaft hole 14c, In addition to being configured to transmit the rotational torque acting on the permanent magnet 3 to the rotary shaft 2, the end of the reinforcing ring 5 is covered with the large-diameter portion 14e, so that the permanent magnet 3 is against the stator side. To prevent exposure.

上述した本実施例に係る永久磁石式回転機の回転子構造によれば、実施例1による効果に加えて、高速回転による遠心力で補強リング5と側面部材14との間に微小な隙間が生じたとしても、そこから永久磁石3の粉末が漏れ出ることがなく、回転機や回転機以外の装置に永久磁石3の粉末が飛散することがない。これにより、回転機や周辺機器等の回転機以外の装置の健全性をより向上させることができる。大径部14eによって補強リング5の外周を圧入または焼き嵌めすることができれば、より高い効果が得られる。   According to the rotor structure of the permanent magnet type rotating machine according to the present embodiment described above, in addition to the effects of the first embodiment, there is a minute gap between the reinforcing ring 5 and the side member 14 due to the centrifugal force due to the high speed rotation. Even if it occurs, the powder of the permanent magnet 3 does not leak from there, and the powder of the permanent magnet 3 does not scatter to a rotating machine or a device other than the rotating machine. Thereby, the soundness of apparatuses other than rotating machines, such as a rotating machine and peripheral equipment, can be improved more. If the outer periphery of the reinforcing ring 5 can be press-fitted or shrink-fitted by the large diameter portion 14e, a higher effect can be obtained.

本発明は、超高速回転に適用可能な永久磁石式回転機の回転子構造に利用可能であり、とくに回転軸の外周部に円筒状の永久磁石を配し、永久磁石に働く回転トルクを回転軸に伝達するようにした永久磁石式回転電気の回転子構造に適用して好適なものである。   INDUSTRIAL APPLICABILITY The present invention can be used for a rotor structure of a permanent magnet type rotating machine applicable to ultra-high speed rotation, and in particular, a cylindrical permanent magnet is arranged on the outer peripheral portion of a rotating shaft to rotate rotational torque acting on the permanent magnet. The present invention is suitable for application to a permanent magnet type rotary electric rotor structure adapted to transmit to a shaft.

図1(a)は本発明の実施例1に係る永久磁石式回転機の回転子構造の部分断面図、図1(b)は図1(a)のA−A矢視断面図である。FIG. 1A is a partial cross-sectional view of a rotor structure of a permanent magnet type rotating machine according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 本発明の実施例1における側面部材の断面図である。It is sectional drawing of the side member in Example 1 of this invention. 本発明の第2の実施例に係る永久磁石式回転機の回転子構造の部分断面図である。It is a fragmentary sectional view of the rotor structure of the permanent magnet type rotating machine concerning the 2nd example of the present invention. 本発明の実施例2における側面部材の断面図である。It is sectional drawing of the side member in Example 2 of this invention.

符号の説明Explanation of symbols

1 回転子
2 回転軸
3 永久磁石
4,14 側面部材
4a,14a 円筒部分
4b,14b 底部
4c,14c 軸孔
5 補強リング
6 間隙
14d 小径部
14e 大径部
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotating shaft 3 Permanent magnet 4,14 Side member 4a, 14a Cylindrical part 4b, 14b Bottom part 4c, 14c Shaft hole 5 Reinforcement ring 6 Gap 14d Small diameter part 14e Large diameter part

Claims (3)

回転軸の外周部に円筒状に形成された永久磁石を配し、前記永久磁石に働くトルクを前記回転軸に伝達するようにした永久磁石式回転機の回転子構造において、
前記永久磁石の両端が突出するように前記永久磁石の外周部に設けられる円筒状の補強部材と、
有底の円筒状に形成され、円筒部分に前記永久磁石の前記補強部材から突出した部分を嵌入する一方、底部に形成された軸孔に前記回転軸が嵌入されて、前記永久磁石および前記回転軸と一体動可能に構成された側面部材と
を備えたことを特徴とする永久磁石式回転機の回転子構造。
In the rotor structure of the permanent magnet type rotating machine, a permanent magnet formed in a cylindrical shape is arranged on the outer periphery of the rotating shaft, and the torque acting on the permanent magnet is transmitted to the rotating shaft.
A cylindrical reinforcing member provided on the outer periphery of the permanent magnet so that both ends of the permanent magnet protrude;
It is formed in a cylindrical shape with a bottom, and a portion protruding from the reinforcing member of the permanent magnet is fitted into the cylindrical portion, while the rotating shaft is fitted into a shaft hole formed in the bottom, and the permanent magnet and the rotation A rotor structure for a permanent magnet type rotating machine, comprising: a shaft and a side member configured to be integrally movable.
前記側面部材は前記円筒部分に小径部と大径部とを有し、前記小径部が前記永久磁石の前記補強部材から突出した部分を嵌入する一方、前記大径部が前記補強部材の端部を被覆することを特徴とする請求項1記載の永久磁石式回転機の回転子構造。   The side member has a small-diameter portion and a large-diameter portion in the cylindrical portion, and the small-diameter portion is inserted into a portion protruding from the reinforcing member of the permanent magnet, while the large-diameter portion is an end portion of the reinforcing member. The rotor structure of the permanent magnet type rotating machine according to claim 1, wherein: 前記補強部材が、ガラス繊維強化プラスチックまたは炭素繊維強化プラスチックからなる
ことを特徴とする請求項1又は請求項2記載の永久磁石式回転機の回転子構造。
The rotor structure of a permanent magnet type rotating machine according to claim 1 or 2, wherein the reinforcing member is made of glass fiber reinforced plastic or carbon fiber reinforced plastic.
JP2008217804A 2008-08-27 2008-08-27 Rotor structure of permanent magnet rotating machine Expired - Fee Related JP5386885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217804A JP5386885B2 (en) 2008-08-27 2008-08-27 Rotor structure of permanent magnet rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217804A JP5386885B2 (en) 2008-08-27 2008-08-27 Rotor structure of permanent magnet rotating machine

Publications (2)

Publication Number Publication Date
JP2010057233A true JP2010057233A (en) 2010-03-11
JP5386885B2 JP5386885B2 (en) 2014-01-15

Family

ID=42072572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217804A Expired - Fee Related JP5386885B2 (en) 2008-08-27 2008-08-27 Rotor structure of permanent magnet rotating machine

Country Status (1)

Country Link
JP (1) JP5386885B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009553A (en) * 2011-06-27 2013-01-10 Toyota Central R&D Labs Inc Rotor of rotary electric machine
JP2017192169A (en) * 2016-04-11 2017-10-19 株式会社デンソー Rotor and dynamoelectric machine
US20190036430A1 (en) * 2017-07-26 2019-01-31 Fanuc Corporation Rotor and rotary electric machine
CN111164867A (en) * 2017-09-24 2020-05-15 詹尼斯机器人移动技术加拿大公司 Radial multi-piece rotor for an electric machine
US11018538B2 (en) 2018-03-29 2021-05-25 Nidec Corporation Rotor assembly, motor, blower, and vacuum cleaner
JP2022044777A (en) * 2016-04-25 2022-03-17 ゼネラル・エレクトリック・カンパニイ Sleeve rotor synchronous reluctance electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177263A (en) * 1981-04-22 1982-10-30 Hitachi Ltd Permanent magnet synchronous motor
JPH0389821A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Rotor
JPH08223837A (en) * 1995-02-07 1996-08-30 Fuji Electric Co Ltd Rotor of rotating machine provided with cylindrical permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177263A (en) * 1981-04-22 1982-10-30 Hitachi Ltd Permanent magnet synchronous motor
JPH0389821A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Rotor
JPH08223837A (en) * 1995-02-07 1996-08-30 Fuji Electric Co Ltd Rotor of rotating machine provided with cylindrical permanent magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009553A (en) * 2011-06-27 2013-01-10 Toyota Central R&D Labs Inc Rotor of rotary electric machine
JP2017192169A (en) * 2016-04-11 2017-10-19 株式会社デンソー Rotor and dynamoelectric machine
JP2022044777A (en) * 2016-04-25 2022-03-17 ゼネラル・エレクトリック・カンパニイ Sleeve rotor synchronous reluctance electric machine
US20190036430A1 (en) * 2017-07-26 2019-01-31 Fanuc Corporation Rotor and rotary electric machine
JP2019030060A (en) * 2017-07-26 2019-02-21 ファナック株式会社 Rotator and rotary electric machine
US10594194B2 (en) 2017-07-26 2020-03-17 Fanuc Corporation Rotor and rotary electric machine
CN111164867A (en) * 2017-09-24 2020-05-15 詹尼斯机器人移动技术加拿大公司 Radial multi-piece rotor for an electric machine
US11527931B2 (en) 2017-09-24 2022-12-13 Genesis Robotics And Motion Technologies Canada, Ulc Radial multi piece rotor for electric machine
US11791682B2 (en) 2017-09-24 2023-10-17 Genesis Motion Solutions Ulc Radial multi piece rotor for electric machine
US11018538B2 (en) 2018-03-29 2021-05-25 Nidec Corporation Rotor assembly, motor, blower, and vacuum cleaner

Also Published As

Publication number Publication date
JP5386885B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5359062B2 (en) Rotor structure of permanent magnet rotating machine
TWI574488B (en) Rotor of rotary electrical machine, rotary electrical machine, and rotor member of rotary electrical machine
CN102782989B (en) Rotating electrical machine rotor
JP5386885B2 (en) Rotor structure of permanent magnet rotating machine
JP6618768B2 (en) Rotor of rotating electrical machine
US9876404B2 (en) Rotor of rotating electrical machine
JP2008295178A (en) Rotor structure of permanent magnet rotating electric machine
JP2008306796A (en) Rotary electric machine
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
JP2015220846A (en) Rotor of dynamo-electric machine
JP2006311702A (en) Stator structure of rotary electric machine
WO2019150500A1 (en) Rotor member, rotor and rotating electric device
JP6370521B1 (en) Rotor and rotating electric machine
JP2010093988A (en) Permanent magnet type rotating machine
JP6688461B2 (en) Rotor and rotating electric machine
JP2018007449A (en) Rotor for rotary electric machine
JP2004173341A (en) Rotating electric machine rotor, rotating electric machine, and power generation system
WO2019150499A1 (en) Rotor member, rotor, and rotating electric device
JP2009072036A (en) Rotor structure of permanent-magnet rotating machine
JP6926874B2 (en) Rotor
WO2012101716A1 (en) Core material, stator core, and motor provided with stator core
JP2022156718A (en) Rotor for motor and motor
US20170338700A1 (en) Rotary machine including rotor, stator, and insertion member
WO2020194382A1 (en) Rotor member, rotor, and rotating electric machine
JP4863145B2 (en) Permanent magnet type rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5386885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees