JP2008295178A - Rotor structure of permanent magnet rotating electric machine - Google Patents

Rotor structure of permanent magnet rotating electric machine Download PDF

Info

Publication number
JP2008295178A
JP2008295178A JP2007137372A JP2007137372A JP2008295178A JP 2008295178 A JP2008295178 A JP 2008295178A JP 2007137372 A JP2007137372 A JP 2007137372A JP 2007137372 A JP2007137372 A JP 2007137372A JP 2008295178 A JP2008295178 A JP 2008295178A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
rotating shaft
rotor structure
magnet piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137372A
Other languages
Japanese (ja)
Inventor
Takashi Okitsu
隆志 沖津
Daiki Matsuhashi
大器 松橋
Hiromitsu Watanabe
広光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007137372A priority Critical patent/JP2008295178A/en
Publication of JP2008295178A publication Critical patent/JP2008295178A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor structure of a permanent magnet rotating electric machine which is improved in resistance properties for high-speed rotation, enhanced in the transmission of rotation torque, and high in productivity. <P>SOLUTION: A rotating shaft 1 has a plurality of recessed grooves 1a extendedly formed along the axial direction on its surface, and a permanent magnet is extended in the axial direction, and formed into a shape of an arc which has the same width in the radial direction along the external peripheral surface of the rotating shaft 1. The permanent magnet includes a plurality of first magnet pieces 2 arranged between the adjacent recessed grooves 1a on the surface of the rotating shaft 1, and a plurality of second magnet pieces 3 which are extended in the axial direction, of which the external peripheral surfaces located outside the radial direction are formed into shapes of arcs having the same outside diameters as those of the first magnet pieces 2, and the radial widths are formed thick in thickness compared with those of the first magnet pieces 2, and which are arranged between the adjacent first magnet pieces 2 so as to be inserted into the recessed grooves 1a at their portions located at an axial core side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、永久磁石式回転機の回転子構造に関し、とくに超高速回転の永久磁石式同期電動機および永久磁石式同期発電機の回転子構造に関する。   The present invention relates to a rotor structure of a permanent magnet type rotating machine, and more particularly to a rotor structure of a permanent magnet type synchronous motor and a permanent magnet type synchronous generator that rotate at an ultra high speed.

従来、主に超高速の永久磁石式同期電動機、永久磁石式同期発電機等に用いられる回転子構造としては、円筒状の永久磁石(リング磁石ともいう)、又は円筒状の永久磁石を周方向に分割したものを、円筒状の非磁性高強度材(以下、補強リング)で圧入または焼き嵌めまたは冷やし嵌めした回転子構造がある(例えば、特許文献1参照)。   Conventionally, as a rotor structure mainly used for an ultra-high speed permanent magnet type synchronous motor, a permanent magnet type synchronous generator, etc., a cylindrical permanent magnet (also called a ring magnet) or a cylindrical permanent magnet is used in the circumferential direction. There is a rotor structure obtained by press fitting, shrink fitting, or cold fitting with a cylindrical non-magnetic high-strength material (hereinafter referred to as a reinforcing ring) (see, for example, Patent Document 1).

図7は従来の回転子構造の一例であり、回転軸101の外周部に配した円筒状の永久磁石102に、補強リング104を設けたものである。   FIG. 7 shows an example of a conventional rotor structure, in which a reinforcing ring 104 is provided on a cylindrical permanent magnet 102 disposed on the outer periphery of a rotating shaft 101.

図7に示すような回転子構造においては、高速回転時に永久磁石の内径側に該永久磁石の許容引張応力を超える引張応力が作用しないように締め代を設けることで永久磁石の破損を防止している。   In the rotor structure as shown in FIG. 7, the permanent magnet is prevented from being damaged by providing a tightening margin on the inner diameter side of the permanent magnet so that a tensile stress exceeding the allowable tensile stress of the permanent magnet does not act at the time of high speed rotation. ing.

また、円筒状永久磁石を複数個の磁石片に分割し、分割された永久磁石の外周に補強リングを嵌める回転子構造においては、永久磁石を周方向に分割しているため、円筒状のリング磁石と比べて遠心力により永久磁石の内径側に働く引張応力が低減される。なお、遠心力により永久磁石の内径側に働く引張応力は、永久磁石の分割数が多いほど低減される。   In the rotor structure in which the cylindrical permanent magnet is divided into a plurality of magnet pieces and the reinforcing ring is fitted on the outer periphery of the divided permanent magnet, the permanent magnet is divided in the circumferential direction. The tensile stress acting on the inner diameter side of the permanent magnet is reduced by centrifugal force compared to the magnet. The tensile stress acting on the inner diameter side of the permanent magnet due to centrifugal force is reduced as the number of divisions of the permanent magnet is increased.

このような従来の回転子構造においては、高速回転時に遠心力によって軸と永久磁石とが離れないように締め代をとる、または、軸と永久磁石とを接着することによって永久磁石に働く回転トルクを回転軸に伝達するように構成されている。補強リングとしては、渦電流損失低減のために炭素繊維などの高強度繊維や、非磁性金属線を用いた例もある。   In such a conventional rotor structure, the rotational torque acting on the permanent magnet is secured by taking up a tightening force so that the shaft and the permanent magnet are not separated by centrifugal force during high-speed rotation, or by adhering the shaft and the permanent magnet. Is transmitted to the rotating shaft. Examples of the reinforcing ring include high-strength fibers such as carbon fibers and nonmagnetic metal wires for reducing eddy current loss.

しかし、円筒状の永久磁石を用いる回転子構造においては、ロータの発熱や急加減速時の慣性力などにより円筒形状の永久磁石と回転軸とを接着している接着剤が剥がれると、永久磁石に働く回転トルクが回転軸に伝わらなくなる虞がある。そのため、トルク伝達を目的とした溝を回転軸等に設け、永久磁石に働く回転トルクを、厚みの異なる磁石を用いることにより軸に伝達させるようにした回転子構造も開示されている(例えば、特許文献2参照)。   However, in a rotor structure using a cylindrical permanent magnet, if the adhesive that bonds the cylindrical permanent magnet and the rotating shaft is peeled off due to the heat generated by the rotor or the inertial force during rapid acceleration / deceleration, the permanent magnet There is a risk that the rotational torque acting on the rotating shaft will not be transmitted to the rotating shaft. Therefore, a rotor structure is also disclosed in which a groove for torque transmission is provided on a rotating shaft or the like, and rotational torque acting on the permanent magnet is transmitted to the shaft by using magnets having different thicknesses (for example, Patent Document 2).

このような回転子構造においては、永久磁石に働く回転トルクを回転軸に伝達することができるので、接着剤が剥がれてもモータ駆動を継続することができる。具体的には、永久磁石の厚肉部と薄肉部との肉厚差寸法が、前記永久磁石と前記ヨーク間に形成される隙間に対して大きくなるように設定され、永久磁石の肉厚部がヨークの肉薄部に入って嵌り合うような状態になり、高いトルクを伝達することができる。   In such a rotor structure, the rotational torque acting on the permanent magnet can be transmitted to the rotating shaft, so that the motor drive can be continued even if the adhesive is peeled off. Specifically, the thickness difference dimension between the thick part and the thin part of the permanent magnet is set so as to be larger than the gap formed between the permanent magnet and the yoke. Enters the thin part of the yoke and fits in, so that high torque can be transmitted.

例えば上記特許文献2に記載のものは、永久磁石の厚肉部と薄肉部の切り替わり部形状は鋭角のないウェーブ形状で形成され、永久磁石およびヨークにおける応力集中を防止している。また、温度変化により磁石内周とヨーク外周間の隙間が変化した場合であっても、磁石の変形を小さく抑えることができ、熱膨張による破損を防止できる。   For example, in the above-described Patent Document 2, the shape of the switching portion between the thick portion and the thin portion of the permanent magnet is formed in a wave shape without an acute angle, thereby preventing stress concentration in the permanent magnet and the yoke. Further, even when the gap between the inner circumference of the magnet and the outer circumference of the yoke is changed due to a temperature change, the deformation of the magnet can be suppressed to be small, and damage due to thermal expansion can be prevented.

一方、上述した円筒状の永久磁石を用いる回転子構造に対して、円柱状の永久磁石を補強リングで圧入または焼き嵌めまたは冷やし嵌めした回転子構造もある(例えば、特許文献3参照)。   On the other hand, there is also a rotor structure in which a cylindrical permanent magnet is press-fitted, shrink-fitted, or cold-fitted with a reinforcing ring in contrast to the above-described rotor structure using a cylindrical permanent magnet (see, for example, Patent Document 3).

このような円柱状の永久磁石を用いる回転子構造においても、上述した円筒状の永久磁石を用いる場合と同様、高速回転時に永久磁石の内径側に該永久磁石の許容引張応力を超える引張応力が作用しないように締め代を設けることで永久磁石の破損を防止している。   In such a rotor structure using a cylindrical permanent magnet, as in the case of using the cylindrical permanent magnet described above, a tensile stress exceeding the allowable tensile stress of the permanent magnet is applied to the inner diameter side of the permanent magnet during high-speed rotation. The permanent magnet is prevented from being damaged by providing a tightening margin so as not to act.

なお、補強リングと回転軸は、永久磁石の両端で圧入または焼き嵌めまたは冷やし嵌めまたは溶接される。そして、高速回転時の遠心力によって補強リングと永久磁石、または補強リングと回転軸とが離れないように締め代を取ることで、永久磁石に働く回転トルクを回転軸に伝達するようになっている。   The reinforcing ring and the rotary shaft are press-fitted, shrink-fitted, cold-fitted or welded at both ends of the permanent magnet. Then, the rotational torque acting on the permanent magnet is transmitted to the rotating shaft by taking the tightening allowance so that the reinforcing ring and the permanent magnet or the reinforcing ring and the rotating shaft are not separated by the centrifugal force at high speed rotation. Yes.

このような円柱状の永久磁石を用いる回転子構造にあっては、永久磁石の外径及び長さが同一であっても、上述した円筒状の永久磁石を用いる場合に比較して遠心力に対する耐性に優れ、磁石磁束が大きいという利点がある。   In such a rotor structure using a columnar permanent magnet, even if the outer diameter and the length of the permanent magnet are the same, compared with the case where the cylindrical permanent magnet described above is used, it is more resistant to centrifugal force. It has the advantages of excellent resistance and a large magnetic flux.

特開平02−241339号公報Japanese Patent Laid-Open No. 02-241339 特開平09−056092号公報Japanese Patent Laid-Open No. 09-056092 特開2002−142393号公報JP 2002-142393 A

しかしながら、上述した円筒状の永久磁石を用いる回転子構造においては、永久磁石の許容引張応力を超える引張応力が作用することを防止するため、または遠心力や使用温度条件によって回転軸と永久磁石とが離れることがないようにするためには締め代を大きく取る必要があり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産には不向きな温度まで上昇させる必要があるという問題があった。締め代を大きく取るために実用上困難な温度とする必要があるのは冷やし嵌めを行う場合であっても同様であり、生産性の向上を妨げる虞があった。   However, in the rotor structure using the cylindrical permanent magnet described above, the rotating shaft and the permanent magnet are prevented from acting on a tensile stress exceeding the allowable tensile stress of the permanent magnet, or depending on the centrifugal force or the operating temperature condition. However, it is necessary to increase the tightening margin in order to prevent separation, and it is necessary to raise the press-fitting or shrink-fitting temperature to a temperature that is practically difficult, in other words, to a temperature unsuitable for mass production. there were. In order to increase the tightening allowance, it is necessary to make the temperature practically difficult even in the case of cold fitting, and there is a concern that the improvement of productivity may be hindered.

また、永久磁石の回転トルクを、軸と永久磁石を接着することで軸に伝達するような回転子構造にあっては、高温環境下(100℃以上)では接着剤の機能が低下するおそれがある。接着剤の機能の低下により一度永久磁石が回転軸から剥がれると再度接着状態とはならないために、上記高温環境下では回転軸と永久磁石とが分離してトルクを軸に伝達できなくなる可能性があった。   Further, in a rotor structure that transmits the rotational torque of the permanent magnet to the shaft by bonding the shaft and the permanent magnet, the function of the adhesive may be reduced in a high temperature environment (100 ° C. or higher). is there. Once the permanent magnet is peeled off from the rotating shaft due to a decrease in the function of the adhesive, the bonded state will not be restored.Therefore, in the high temperature environment, the rotating shaft and the permanent magnet may be separated so that torque cannot be transmitted to the shaft. there were.

また、補強リングとして高強度繊維を用いる場合、該高強度繊維は熱膨張係数が小さいために焼き嵌めが困難であることから、圧入または永久磁石を冷やし嵌めすることとなる。しかし、永久磁石の熱膨張係数は鉄の約半分であるため、締め代を大きく取ることが困難となり、永久磁石の許容引張応力を超える引張応力が作用することを防止すること、遠心力や使用温度条件によらず軸と永久磁石とが離れないようにすることが難しかった。   Further, when high strength fibers are used as the reinforcing ring, the high strength fibers have a small coefficient of thermal expansion and are difficult to shrink fit. Therefore, press fitting or cold fitting of the permanent magnets is performed. However, since the thermal expansion coefficient of permanent magnets is about half that of iron, it is difficult to make a large tightening allowance, preventing the application of tensile stress exceeding the allowable tensile stress of permanent magnets, centrifugal force and use It was difficult to prevent the shaft and the permanent magnet from separating regardless of the temperature conditions.

また、特許文献2に記載されるような回転子構造にあっては、永久磁石が周方向に分割されているので該永久磁石の遠心力によって生じる応力が低減されると共に、分割された永久磁石である磁石片が肉厚差(肉厚部および肉薄部)を持つ構造であるため、回転軸との噛み合わせが良い。しかし、前記永久磁石は、一つの磁石片に肉厚部と肉薄部が存在するため、肉厚部と肉薄部の高速回転時の遠心力による遠心応力の違いから、磁石が破損し易いという問題が考えられた。さらに、一つの永久磁石の磁石片に肉厚部と肉薄部が存在するため、加工寸法精度により対向する回転軸との間に形成される隙間寸法が異なり、この隙間寸法の差異が接着剤充填時の押圧力に差を生じさせてしまい、接着強度が安定しないという問題が考えられた。   Further, in the rotor structure as described in Patent Document 2, since the permanent magnet is divided in the circumferential direction, the stress caused by the centrifugal force of the permanent magnet is reduced and the divided permanent magnet Since the magnet piece is a structure having a thickness difference (thick part and thin part), the meshing with the rotating shaft is good. However, since the permanent magnet has a thick portion and a thin portion in one magnet piece, there is a problem that the magnet is easily damaged due to a difference in centrifugal stress due to a centrifugal force when the thick portion and the thin portion are rotated at high speed. Was considered. Furthermore, because there are thick and thin portions in the magnet piece of one permanent magnet, the gap size formed between the opposing rotating shafts differs depending on the machining dimensional accuracy, and this gap size difference is due to adhesive filling. There was a problem that the adhesive strength was not stable due to a difference in the pressing force at the time.

更に、特許文献3に記載されるような回転子構造においては、永久磁石の許容引張応力を超える引張応力が働かないように締め代を設定すると、締め代が大きくなり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産に不向きな温度まで上昇させる必要が生じることが考えられ、生産性の向上が抑制される虞があった。これは冷やし嵌めを行う場合であっても同様である。   Furthermore, in the rotor structure as described in Patent Document 3, if the tightening margin is set so that a tensile stress exceeding the allowable tensile stress of the permanent magnet does not work, the tightening margin increases, and the press-fitting or shrink-fit temperature is reduced. It may be necessary to raise the temperature to a practically difficult temperature, in other words, a temperature unsuitable for mass production, and there is a concern that improvement in productivity may be suppressed. This is the same even when a cold fit is performed.

また、円柱状の永久磁石を用いる場合には、永久磁石を挟んで回転軸を分断させることとなる。回転軸を永久磁石の両端に固定する方法としては、回転軸を補強リングで圧入または焼き嵌めまたは冷やし嵌めするか、回転軸と補強リングとを溶接で固定する方法があるが、回転軸の歪や剛性に注意が必要であり、作業が煩雑であった。   Moreover, when using a cylindrical permanent magnet, a rotating shaft will be parted on both sides of a permanent magnet. As a method of fixing the rotating shaft to both ends of the permanent magnet, there are a method in which the rotating shaft is press-fit, shrink-fitted, or cold-fitted with a reinforcing ring, or the rotating shaft and the reinforcing ring are fixed by welding. Care was required for the rigidity and the work was complicated.

そして、回転軸を補強リングで圧入または焼き嵌めまたは冷やし嵌めする場合、永久磁石に働く回転トルクを補強リングに伝達し、更に回転軸に伝達することとなるため、遠心力や使用温度条件で補強リングと回転軸、及び補強リングと永久磁石が離れることがないように締め代を取ると、締め代が大きくなり、圧入または焼き嵌め温度を実用上困難な温度、換言すると大量生産に不向きな温度まで上昇させる必要が生じることが考えられる。これは冷やし嵌めを行う場合であっても同様であり、生産性の向上が妨げられる虞があった。   When the rotary shaft is press-fit, shrink-fitted, or cold-fitted with a reinforcing ring, the rotational torque acting on the permanent magnet is transmitted to the reinforcing ring and further transmitted to the rotating shaft. If the allowance is taken so that the ring and the rotating shaft, and the reinforcing ring and the permanent magnet are not separated from each other, the allowance becomes large, and the press-fit or shrink-fit temperature is a temperature that is practically difficult, in other words, a temperature unsuitable for mass production. It may be necessary to raise it to a maximum. This is the same even when performing cold fitting, and there is a possibility that improvement in productivity may be hindered.

このようなことから本発明は、高速回転に対する耐性を向上させると共に、回転トルクの伝達に優れ、且つ生産性が高い永久磁石式回転機の回転子構造を提供することを目的とする。   In view of the above, an object of the present invention is to provide a rotor structure of a permanent magnet type rotary machine that improves resistance to high-speed rotation, is excellent in transmission of rotational torque, and has high productivity.

上記の課題を解決するための第1の発明に係る永久磁石式回転機の回転子構造は、回転軸の外周部に、円筒状に配設された永久磁石と、円筒形状を有し前記永久磁石の外周部に配設された補強部材とを備える永久磁石式回転機の回転子構造において、前記回転軸が、表面に軸方向に沿って延設された複数の凹溝を有する一方、前記永久磁石が、軸方向に延びると共に前記回転軸の外周面に沿って円弧状に形成され、径方向の幅が同一であって、前記回転軸表面の隣り合う前記凹溝間に配置される複数の第一磁石片と、軸方向に延び、径方向外側に位置する外周面が前記第一磁石片と同一の外径を有する円弧状であると共に、前記第一磁石片に比較して径方向の幅が肉厚に形成されて、軸心側に位置する部分が前記凹溝に嵌入するように、隣接する前記第一磁石片間に配される複数の第二磁石片とからなることを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a first invention for solving the above-mentioned problems has a permanent magnet disposed in a cylindrical shape on an outer peripheral portion of a rotating shaft, a cylindrical shape, and the permanent structure. In a rotor structure of a permanent magnet type rotating machine provided with a reinforcing member disposed on the outer periphery of the magnet, the rotating shaft has a plurality of concave grooves extending in the axial direction on the surface, A plurality of permanent magnets that extend in the axial direction and are formed in an arc shape along the outer peripheral surface of the rotating shaft, have the same radial width, and are arranged between adjacent concave grooves on the surface of the rotating shaft. The first magnet piece and an outer circumferential surface extending in the axial direction and positioned radially outward have an arc shape having the same outer diameter as the first magnet piece, and are radially compared to the first magnet piece. So that the portion located on the axial center side fits into the concave groove. Characterized in that comprising a plurality of second magnet piece disposed in that said first magnet pieces.

第2の発明に係る永久磁石式回転機の回転子構造は、第1の発明において、前記凹溝の相互に対向する一対の側面がそれぞれ径方向に沿って傾斜し、且つ前記第二磁石片の軸心側の部分を該凹溝に嵌合する形状としたことを特徴とする。   The rotor structure of the permanent magnet type rotating machine according to the second invention is the rotor structure of the first invention, wherein the pair of side surfaces facing each other of the concave groove are inclined along the radial direction, respectively, and the second magnet piece The portion on the axial center side is shaped to fit into the groove.

第3の発明に係る永久磁石式回転機の回転子構造は、第1の発明において、前記凹溝の相互に対向する一対の側面がそれぞれ相互に平行であり、前記凹溝の底面部と前記側面とがなす角度が直角であって、且つ、前記第二磁石片の軸心側の部分を該凹溝に嵌合する形状としたことを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a third invention is the rotor structure according to the first invention, wherein a pair of opposite side surfaces of the concave groove are parallel to each other, and the bottom surface of the concave groove and the The angle formed with the side surface is a right angle, and the portion on the axial center side of the second magnet piece is configured to fit into the concave groove.

第4の発明に係る永久磁石式回転機の回転子構造は、第1又は第3のいずれかの発明において、磁極と異なる位置に配置された前記第二磁石片に変えて、前記第二磁石片と同一形状に形成されると共に、前記永久磁石に比較して高強度を有する非磁性金属材を用いることを特徴とする。   The rotor structure of the permanent magnet type rotating machine according to the fourth invention is the second magnet in the first or third invention, instead of the second magnet piece arranged at a position different from the magnetic pole. A non-magnetic metal material which is formed in the same shape as the piece and has a higher strength than the permanent magnet is used.

第5の発明に係る永久磁石式回転機の回転子構造は、第1乃至第4のいずれかの発明において、前記第二磁石片の軸心側に位置する一対の角部が円弧状に形成されたことを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a fifth invention is the rotor structure of any one of the first to fourth inventions, wherein a pair of corners located on the axial center side of the second magnet piece are formed in an arc shape. It is characterized by that.

第6の発明に係る永久磁石式回転機の回転子構造は、第1乃至第5のいずれかの発明において、前記第二磁石片の前記回転軸に対向する内周面が、前記回転軸と同軸の円弧状に形成されたことを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a sixth invention is the rotor structure of any one of the first to fifth inventions, wherein an inner peripheral surface of the second magnet piece facing the rotation shaft is the rotation shaft. It is formed in the shape of a coaxial arc.

上述した本発明に係る永久磁石式回転機の回転子構造によれば、第一磁石片の径方向の幅に比較して第二磁石片の径方向の幅を肉厚に形成し、第二磁石片が回転軸の凹溝に嵌合するように構成されていることにより、回転軸との噛み合わせを向上させることができると共に、加工寸法精度(隙間寸法精度)に依存せず第一及び第二磁石片を回転軸に押圧でき、接着剤充填時の押圧力に差が生じない。また、永久磁石に働く回転トルクを、回転軸に設けた凹溝に第二磁石片を嵌合させることで回転軸に伝達することができるため、第一及び第二磁石片と、回転軸とを接着剤によって接着固定した後に接着力が低下しても回転トルクを伝達でき、高温環境下等においても使用することが可能になる。
更に、第一および第二磁石片の径方向の幅、即ち肉厚を各々ほぼ一定としたことにより、該第一、第二磁石片において遠心応力の差が生じないため、磁石の破損を抑制することができる。
According to the rotor structure of the permanent magnet type rotating machine according to the present invention described above, the radial width of the second magnet piece is formed thicker than the radial width of the first magnet piece. Since the magnet piece is configured to fit into the concave groove of the rotating shaft, the meshing with the rotating shaft can be improved, and the first and the second are independent of the processing dimensional accuracy (gap dimensional accuracy). The second magnet piece can be pressed against the rotating shaft, and there is no difference in the pressing force when filling the adhesive. Moreover, since the rotation torque which acts on a permanent magnet can be transmitted to a rotating shaft by fitting a 2nd magnet piece to the ditch | groove provided in the rotating shaft, the 1st and 2nd magnet piece, Rotational torque can be transmitted even if the adhesive force is reduced after the adhesive is fixed with an adhesive, and can be used even in a high temperature environment.
Furthermore, since the radial width of the first and second magnet pieces, i.e., the wall thickness, is made substantially constant, there is no difference in centrifugal stress between the first and second magnet pieces. can do.

更に、第一及び第二磁石片が周方向に分離されているため、円筒状であって一体に形成された永久磁石、換言すると、無分割のリング磁石を用いる場合に比較して磁石渦電流損失を低減することができるとともに、遠心力によって第一、第二磁石片それぞれの軸心側に作用する引張応力を低減することができるので、リング磁石を用いる場合に比較して締め代を小さくすることができ、圧入温度を低く設定することが可能となる。   Further, since the first and second magnet pieces are separated in the circumferential direction, the magnet is an eddy current that is cylindrical and integrally formed, in other words, compared to the case of using an undivided ring magnet. Loss can be reduced, and the tensile stress acting on the axial center side of each of the first and second magnet pieces can be reduced by centrifugal force, so the tightening margin is smaller than when using a ring magnet. It is possible to set the press-fitting temperature low.

また、凹溝1bの底部と側壁とがなす角度を直角にし、第二磁石片を凹溝の形状に合わせて製作すれば、凹溝の加工が容易になり、低コスト化が可能となる。   Further, if the angle formed between the bottom of the groove 1b and the side wall is a right angle and the second magnet piece is manufactured in accordance with the shape of the groove, the groove can be easily processed and the cost can be reduced.

また、磁極と異なる位置に配された第二磁石片に変えて、永久磁石よりも強度が高い非磁性金属材を適用すれば、磁石片が破損して回転軸に回転トルクを伝達できなくなるという虞を大きく低減することができ、更に、何らかの原因で永久磁石が破損したとしても、非磁性金属材は剛性が大きく破損しにくいため、該非磁性金属材によって回転軸に回転トルクを伝達し続けることができる。   In addition, if a non-magnetic metal material having a higher strength than the permanent magnet is used instead of the second magnet piece arranged at a position different from the magnetic pole, the magnet piece is damaged and the rotational torque cannot be transmitted to the rotating shaft. In addition, even if the permanent magnet is damaged for some reason, the nonmagnetic metal material has great rigidity and is not easily damaged. Therefore, the nonmagnetic metal material can continue to transmit rotational torque to the rotating shaft. Can do.

また、第二磁石片の軸心側に位置する角部を円弧状に形成すれば、回転子の高速回転に伴う遠心力によって該角部に引張応力が集中することを防止することができ、より高速回転に好適な構成となる。   In addition, if the corner portion located on the axial center side of the second magnet piece is formed in an arc shape, it is possible to prevent concentration of tensile stress on the corner portion due to centrifugal force accompanying high-speed rotation of the rotor, The configuration is suitable for higher speed rotation.

また、回転軸と第二磁石片との接触面、即ち凹溝の底面と第二磁石片の内周面を円弧状にすれば、補強リング4を設けることによって、第二磁石片の軸心側に位置する内周面と、径方向に沿って形成され前記内周面に連続する面である側壁面とによって形成される角部に発生する応力の集中を抑制することができる。   Further, if the contact surface between the rotating shaft and the second magnet piece, that is, the bottom surface of the concave groove and the inner peripheral surface of the second magnet piece are formed in an arc shape, the reinforcing ring 4 is provided, thereby providing the axis of the second magnet piece. Concentration of stress generated at corner portions formed by the inner peripheral surface located on the side and the side wall surface that is formed along the radial direction and continues to the inner peripheral surface can be suppressed.

本発明の実施の形態を以下に示す実施例において詳細に説明する。   Embodiments of the present invention will be described in detail in the following examples.

以下、図1に基づいて本発明の第1の実施例を説明する。図1(a)は本実施例に係る回転子を一部破断して示す概略構造図、図1(b)は図1(a)のA−A視断面図である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1A is a schematic structural view showing the rotor according to the present embodiment with a part broken away, and FIG. 1B is a cross-sectional view taken along line AA of FIG.

図1に示すように、本実施例における永久磁石式回転機の回転子構造は、回転軸1に2箇所以上(図では4箇所)の凹溝1aを設ける一方、概ね円筒状の永久磁石を周方向に中心から放射状に分割した形状であって、相互に厚みの異なる第一磁石片2および第二磁石片3を、上記回転軸1の外周部に4個以上(図は永久磁石8個)配置し、補強リング4を圧入または焼き嵌めまたは冷やし嵌めして製作するものである。   As shown in FIG. 1, the rotor structure of the permanent magnet type rotating machine in the present embodiment is provided with two or more concave grooves 1a (four in the figure) on the rotary shaft 1, while a substantially cylindrical permanent magnet is used. Four or more first magnet pieces 2 and second magnet pieces 3 that are radially divided from the center in the circumferential direction and have different thicknesses on the outer periphery of the rotating shaft 1 (the figure shows eight permanent magnets). And the reinforcing ring 4 is manufactured by press-fitting, shrink fitting or cold fitting.

回転軸1は、その外周面に軸心方向に沿って延びる複数(図1では4箇所)の凹溝1aを有している。全ての凹溝1aは、同一形状に形成されると共に周方向に対して間欠的且つ等間隔に配置されている。また、図1(b)に示すように、それぞれの凹溝1aの軸心側に位置する面である底面及び相互に対向する一対の面である側面はそれぞれ平面状に形成されている。更に、上記凹溝1aの一対の側面は各々径方向に沿った傾斜を有し、これにより、凹溝1aの周方向の幅は径方向外側へ向かうに従って幅広になるように形成されている。   The rotating shaft 1 has a plurality of (four locations in FIG. 1) concave grooves 1a extending along the axial direction on the outer peripheral surface thereof. All the concave grooves 1a are formed in the same shape, and are arranged intermittently and at equal intervals in the circumferential direction. Moreover, as shown in FIG.1 (b), the bottom face which is a surface located in the axial center side of each ditch | groove 1a, and the side surface which is a pair of mutually opposing surface are each planarly formed. Furthermore, each of the pair of side surfaces of the groove 1a has an inclination along the radial direction, so that the circumferential width of the groove 1a becomes wider toward the outer side in the radial direction.

また、第一磁石片2および第二磁石片3(本実施例ではそれぞれ4個)は、それぞれ軸方向に延設されると共に回転軸1の外周面に沿ってほぼ円弧状に形成される一方、相互に径方向の厚さが異なり、第一磁石片2に対して第二磁石片3が肉厚に形成されている。第一磁石片2および第二磁石片3は回転軸1の外周部に交互に配設されており、換言すると、回転軸1の表面に配設されたほぼ円筒状の永久磁石を、周方向に8分割し、交互に肉厚を変化させた構成となっている。   In addition, the first magnet piece 2 and the second magnet piece 3 (four in this embodiment, respectively) extend in the axial direction and are formed in a substantially arc shape along the outer peripheral surface of the rotating shaft 1. The thicknesses in the radial direction are different from each other, and the second magnet piece 3 is formed thicker than the first magnet piece 2. The first magnet pieces 2 and the second magnet pieces 3 are alternately arranged on the outer peripheral portion of the rotating shaft 1. In other words, the substantially cylindrical permanent magnet arranged on the surface of the rotating shaft 1 is moved in the circumferential direction. It is divided into 8 and the thickness is changed alternately.

第一磁石片2の外径と第二磁石片3の外径は相互に等しく形成されており、これによって、回転軸1の表面に配設された第一磁石片2および第二磁石片3は、それぞれの外周面が周方向に滑らかに連続して断面視真円を形成しているのに対し、内周面は、周方向に対して凹凸に形成されている。なお、第一磁石片2の内径は回転軸1の外径とほぼ同一であり、且つ、第二磁石片3の軸心側に位置する部分は、凹溝1aに嵌合する形状となっている。   The outer diameter of the first magnet piece 2 and the outer diameter of the second magnet piece 3 are formed to be equal to each other, whereby the first magnet piece 2 and the second magnet piece 3 disposed on the surface of the rotating shaft 1. The outer peripheral surfaces of each of the outer peripheral surfaces are smoothly and continuously formed in the circumferential direction to form a perfect circle in cross section, whereas the inner peripheral surface is formed to be uneven in the circumferential direction. The inner diameter of the first magnet piece 2 is substantially the same as the outer diameter of the rotary shaft 1 and the portion located on the axial center side of the second magnet piece 3 is shaped to fit into the groove 1a. Yes.

更に、第一磁石片2および第二磁石片3の外周には補強リング4が施され、第一磁石片2および第二磁石片3は該補強リング4によって保持されている。   Further, the outer periphery of the first magnet piece 2 and the second magnet piece 3 is provided with a reinforcing ring 4, and the first magnet piece 2 and the second magnet piece 3 are held by the reinforcing ring 4.

本実施例の永久磁石式回転機の回転子構造によれば、回転軸の周面に配設する永久磁石の磁石片2,3を、第一磁石片2に比較して第二磁石片3が肉厚になるような構造とすることにより、回転軸1との噛み合わせを向上させることができる。さらに、第一磁石片2、第二磁石片3は、各々の肉厚がほぼ一定であり、これら磁石片2,3において遠心応力の差が生じないため、磁石の破損を抑制することができる。さらに加えて、第一磁石片2と第二磁石片3とが肉厚差を有するため、加工寸法精度(隙間寸法精度)に依存せず磁石片2,3を回転軸1に押圧でき、接着剤充填時の押圧力に差が生じない。   According to the rotor structure of the permanent magnet type rotating machine of the present embodiment, the magnet pieces 2 and 3 of the permanent magnet arranged on the peripheral surface of the rotating shaft are compared with the first magnet piece 2 and the second magnet piece 3. By making the structure thicker, the meshing with the rotating shaft 1 can be improved. Furthermore, since the first magnet piece 2 and the second magnet piece 3 are substantially constant in thickness, and no difference in centrifugal stress occurs between the magnet pieces 2 and 3, damage to the magnet can be suppressed. . In addition, since the first magnet piece 2 and the second magnet piece 3 have a thickness difference, the magnet pieces 2 and 3 can be pressed against the rotary shaft 1 without depending on the machining dimensional accuracy (gap dimensional accuracy) and bonded. There is no difference in the pressing force when filling the agent.

更に、磁石片2,3が周方向に分離された状態となっているため、円筒状且つ一体に形成された永久磁石、換言すると、無分割のリング磁石を用いる場合に比較して磁石渦電流損失を低減することができるとともに、遠心力によって磁石片2,3の軸心側に作用する引張応力を低減することができる。   Further, since the magnet pieces 2 and 3 are separated in the circumferential direction, the magnet eddy current is compared with the case of using a cylindrical and integrally formed permanent magnet, in other words, an undivided ring magnet. Loss can be reduced, and tensile stress acting on the axial center side of the magnet pieces 2 and 3 can be reduced by centrifugal force.

また、磁石片2,3が肉厚差を有し、第二磁石片3が回転軸1の凹溝1aに嵌合するように構成されているため、永久磁石と回転軸1との噛み合わせが向上する。さらに、回転軸1に設けた凹溝1aに第二磁石片3を嵌合させることで、永久磁石に働く回転トルクを回転軸1に伝達することができるため、永久磁石即ち磁石片2,3と、回転軸1とを接着剤によって接着固定した後に接着力が低下しても回転トルクを伝達でき、高温環境下等においても使用することが可能になる。   Further, since the magnet pieces 2 and 3 have a thickness difference and the second magnet piece 3 is configured to fit into the groove 1a of the rotating shaft 1, the permanent magnet and the rotating shaft 1 are engaged with each other. Will improve. Further, since the second magnet piece 3 is fitted in the concave groove 1a provided in the rotating shaft 1, the rotational torque acting on the permanent magnet can be transmitted to the rotating shaft 1, so that the permanent magnet, that is, the magnet pieces 2, 3 And even if the adhesive force is reduced after the rotary shaft 1 is bonded and fixed with an adhesive, the rotational torque can be transmitted, and it can be used even in a high temperature environment.

更に、永久磁石が第一磁石片2と第二磁石片3とに分離されているため、リング磁石を用いる場合に比較して締め代を小さくすることができ、圧入温度を低く設定することが可能となる。表1に、本実施例の永久磁石式回転機の回転子構造における補強リングの圧入温度と、図7に示した従来の回転子構造における補強リングの圧入温度を算出した例を示す。   Furthermore, since the permanent magnet is separated into the first magnet piece 2 and the second magnet piece 3, the allowance can be reduced compared with the case of using a ring magnet, and the press-fitting temperature can be set low. It becomes possible. Table 1 shows an example in which the press-in temperature of the reinforcing ring in the rotor structure of the permanent magnet type rotating machine of the present embodiment and the press-in temperature of the reinforcing ring in the conventional rotor structure shown in FIG. 7 are calculated.

Figure 2008295178
Figure 2008295178

表1に示す圧入温度は、回転子の周速度を207m/s、周囲温度を150℃、永久磁石に働く引張応力を70MPaとして、永久磁石と軸の初期締め代なし(隙間があると圧入温度はさらに高くなる)、周速度207m/s時に磁石と軸が離れないことを条件として算出した。   The press-fit temperatures shown in Table 1 are such that the peripheral speed of the rotor is 207 m / s, the ambient temperature is 150 ° C., the tensile stress acting on the permanent magnet is 70 MPa, and there is no initial tightening allowance between the permanent magnet and the shaft (if there is a gap, the press-fit temperature Was calculated under the condition that the magnet and the shaft do not separate at a peripheral speed of 207 m / s.

本実施例に係る永久磁石式回転機の回転子構造の場合、厚みの大きい第二磁石片3が回転軸1の凹溝1aの深さに比較して遠心方向に大きく変位しなければ、必ずしも圧入する必要はない。しかしながら、圧入しない場合は静止時に磁石片2,3と補強リング4との間に間隙が形成され、この状態で回転子を回転させると、補強リングが空転してしまい、磁石片2,3が破損する虞がある。従って、使用温度範囲に応じて圧入を行えば好適である。なお、表1に示す値は、このような点を考慮して算出したものである。   In the case of the rotor structure of the permanent magnet type rotating machine according to the present embodiment, the thick second magnet piece 3 is not necessarily displaced in the centrifugal direction as compared with the depth of the concave groove 1a of the rotating shaft 1. There is no need to press fit. However, when press-fitting is not performed, a gap is formed between the magnet pieces 2 and 3 and the reinforcing ring 4 at rest. When the rotor is rotated in this state, the reinforcing ring is idled and the magnet pieces 2 and 3 are There is a risk of damage. Therefore, it is preferable to perform press-fitting according to the operating temperature range. The values shown in Table 1 are calculated in consideration of such points.

表1に示すように本実施例の回転子においては、上述した点を考慮した場合であっても、補強リングとしてチタン合金、ニッケル合金、ステンレス、アルミ合金のうちどの材質を用いた場合も、圧入温度200℃程度で補強リングの空転がなく、トルクを回転軸に伝達することが可能であった。即ち、本実施例によれば、従来のリング磁石を用いる回転子構造に比較して、大幅に圧入温度を低下させた低温圧入が可能である。   As shown in Table 1, in the rotor of the present embodiment, even when the above-mentioned points are taken into consideration, any material of titanium alloy, nickel alloy, stainless steel, and aluminum alloy can be used as the reinforcing ring. At a press-in temperature of about 200 ° C., there was no idling of the reinforcing ring, and torque could be transmitted to the rotating shaft. That is, according to the present embodiment, it is possible to perform low-temperature press-fitting with a significantly reduced press-fitting temperature as compared with a conventional rotor structure using a ring magnet.

なお、圧入温度は200℃に限らず、磁石と補強リングの間に隙間ができない程度に圧入できればよいことはいうまでもない。また、本実施例においては補強リングとして非磁性金属を用いる例を示したが、補強リングとしては磁性体または高強度繊維等を用いても同様の効果が得られる。   Needless to say, the press-fitting temperature is not limited to 200 ° C., and it is sufficient that the press-fitting can be performed to such an extent that there is no gap between the magnet and the reinforcing ring. Moreover, although the example which uses a nonmagnetic metal as a reinforcement ring was shown in the present Example, the same effect is acquired even if it uses a magnetic body or a high strength fiber etc. as a reinforcement ring.

図2に基づいて、本発明の第2の実施例を説明する。図2は本実施例に係る永久磁石式回転機の回転子構造を示す概略断面図である。本実施例は、図1(a)に示し上述した回転子構造における第一磁石片2、第二磁石片3に変えて、図2に示す第一磁石片12、第二磁石片13を用いる例である。その他の構成は図1(a)に示し実施例1において説明したものと概ね同様である。以下、図1に示し上述した部材と同一の部材には同一符号を付し、重複する説明は適宜省略する。   A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing the rotor structure of the permanent magnet type rotating machine according to the present embodiment. In this embodiment, the first magnet piece 12 and the second magnet piece 13 shown in FIG. 2 are used in place of the first magnet piece 2 and the second magnet piece 3 in the rotor structure shown in FIG. It is an example. Other configurations are substantially the same as those shown in FIG. 1A and described in the first embodiment. In the following, the same members as those shown in FIG. 1 are denoted by the same reference numerals, and repeated description will be omitted as appropriate.

図2に示すように、本実施例における永久磁石式回転機の回転子構造は、回転軸1に2箇所以上(図2では4箇所)の凹溝1bを設ける一方、円筒状の永久磁石を8分割した形状であって、相互に厚みの異なる第一磁石片12および第二磁石片13を、上記回転軸1の外周部に4個以上(図は永久磁石8個)配置し、補強リング4を圧入または焼き嵌めまたは冷やし嵌めして製作するものである。   As shown in FIG. 2, the rotor structure of the permanent magnet type rotating machine in the present embodiment is provided with two or more concave grooves 1b (four places in FIG. 2) on the rotary shaft 1, while a cylindrical permanent magnet is used. Four or more first magnet pieces 12 and second magnet pieces 13 having a shape divided into eight and having different thicknesses are arranged on the outer peripheral portion of the rotating shaft 1 (eight permanent magnets in the figure), and a reinforcing ring. 4 is manufactured by press fitting, shrink fitting, or cold fitting.

回転軸1は、その外周面に軸心方向に沿って延びる複数(図2では4箇所)の凹溝1bを有している。全ての凹溝1bは、同一形状に形成されると共に周方向に対して間欠的且つ等間隔に配置されている。そして、それぞれの凹溝1bの相互に対向する一対の側面は各々平行に形成され、且つ凹溝1bの底部と側壁とがなす角度が直角になるようにしている。これにより、凹溝1bの周方向の幅は一定となっている。   The rotating shaft 1 has a plurality of (four locations in FIG. 2) concave grooves 1b extending along the axial direction on the outer peripheral surface thereof. All the concave grooves 1b are formed in the same shape and are disposed at regular intervals in the circumferential direction. A pair of side surfaces facing each other of each groove 1b are formed in parallel to each other, and an angle formed by a bottom portion and a side wall of the groove 1b is set to be a right angle. Thereby, the circumferential width of the groove 1b is constant.

また、第一磁石片12および第二磁石片13(本実施例ではそれぞれ4個)は、それぞれ軸方向に延設されてほぼ円弧状を有する一方、相互に径方向の厚さが異なる。具体的には、第一磁石片12に対して第二磁石片13が肉厚に形成されているとともに周方向に交互に配設されている。第一磁石片12の外径と第二磁石片13の外径は等しく、これにより、回転軸1の表面に配設された第一磁石片12および第二磁石片13は、それぞれの外周面が周方向に滑らかに連続しているのに対し、内周面は、周方向に対して凹凸に形成されている。なお、第一磁石片12の内径は回転軸1の外径とほぼ同一であり、且つ、第二磁石片13の軸心側に位置する部分は、凹溝1bに嵌合する形状となっている。   The first magnet piece 12 and the second magnet piece 13 (four in this embodiment) extend in the axial direction and have a substantially arc shape, but have different radial thicknesses. Specifically, the second magnet pieces 13 are formed thicker than the first magnet pieces 12 and are alternately arranged in the circumferential direction. The outer diameter of the first magnet piece 12 is equal to the outer diameter of the second magnet piece 13, so that the first magnet piece 12 and the second magnet piece 13 disposed on the surface of the rotating shaft 1 have their outer peripheral surfaces. Are smoothly continuous in the circumferential direction, whereas the inner circumferential surface is formed to be uneven in the circumferential direction. The inner diameter of the first magnet piece 12 is substantially the same as the outer diameter of the rotary shaft 1, and the portion located on the axial center side of the second magnet piece 13 has a shape that fits into the groove 1b. Yes.

上述した実施例1においては、図1に示すように回転軸1の軸心から放射状に永久磁石を分割した状態となるように磁石片2,3を配した例を示したが、その場合、回転軸1の凹溝1aの側壁に傾斜を施す必要があり、凹溝1aの加工にコストがかかることが考えられる。   In Example 1 mentioned above, although the example which has arrange | positioned the magnet pieces 2 and 3 so that it might be in the state which divided | segmented the permanent magnet radially from the axial center of the rotating shaft 1 was shown, as shown in FIG. It is necessary to incline the side wall of the groove 1a of the rotating shaft 1, and it is considered that the processing of the groove 1a is costly.

これに対し本実施例によれば、図2に示すように、凹溝1bの底部と側壁とがなす角度を直角にし、磁石片12,13を凹溝1bの形状に合わせて製作することにより、凹溝1bの加工が容易になり、実施例1に比較して低コストに回転子を製作することができる。   On the other hand, according to the present embodiment, as shown in FIG. 2, the angle formed by the bottom of the groove 1b and the side wall is set to a right angle, and the magnet pieces 12 and 13 are manufactured according to the shape of the groove 1b. The processing of the groove 1b is facilitated, and the rotor can be manufactured at a lower cost compared to the first embodiment.

ただし、永久磁石を中心から放射状に分割していないため、遠心力で永久磁石と補強リングが接触した状態では、永久磁石の角部に圧縮応力集中が働くことが考えられるため、設計時に注意が必要となる。   However, since the permanent magnet is not divided radially from the center, it is considered that compressive stress concentration acts on the corner of the permanent magnet when the permanent magnet and the reinforcing ring are in contact with each other by centrifugal force. Necessary.

図3に基づいて、本発明の第3の実施例を説明する。図3は本実施例に係る永久磁石式回転機の回転子構造を示す概略断面図である。   Based on FIG. 3, a third embodiment of the present invention will be described. FIG. 3 is a schematic cross-sectional view showing the rotor structure of the permanent magnet type rotating machine according to the present embodiment.

図3に示すように、本実施例は、上述した実施例1において、磁極と異なる位置(例えば、図1中左右方向)にある第二磁石片3に変えて、永久磁石に対して強度が高い非磁性金属26を配設する例である。非磁性金属26は、第二磁石片3と同一形状に形成するものとする。その他の構成は図1に示し実施例1において説明したものと概ね同様であり、図1に示し上述した部材と同一の部材には同一符号を付し、重複する説明は省略する。   As shown in FIG. 3, the present embodiment is different from the first embodiment in that the second magnet piece 3 is located at a position different from the magnetic pole (for example, in the left-right direction in FIG. 1). This is an example in which a high nonmagnetic metal 26 is provided. The nonmagnetic metal 26 is formed in the same shape as the second magnet piece 3. The other configurations are substantially the same as those shown in FIG. 1 and described in the first embodiment, and the same members as those shown in FIG.

上述した実施例1においては、回転軸1上に永久磁石として磁石片2,3のみを配置しているが、回転軸1に設けた溝1aで磁石片3を支えることにより、磁石片2,3に働く回転トルクを回転軸1に伝達する構成であるため、回転トルクが大きくなると、磁石片3が破損し、回転軸1に回転トルクを伝達できなくなる可能性が考えられる。   In the first embodiment described above, only the magnet pieces 2 and 3 are arranged as permanent magnets on the rotating shaft 1, but by supporting the magnet pieces 3 with the grooves 1 a provided on the rotating shaft 1, 3 is transmitted to the rotating shaft 1, and if the rotating torque increases, the magnet piece 3 may be damaged and the rotating torque cannot be transmitted to the rotating shaft 1.

これに対し、本実施例によれば、例えば二極機の場合は、実施例1で磁極と異なる位置(図1中左右方向)に配された磁石片3に変えて、図3に示し上述したように、永久磁石よりも強度が高い非磁性金属材(たとえばステンレス鋼など)を適用することにより、実施例1の回転子構造に比較して、磁石片3が破損して回転軸1にトルクを伝達できなくなるという可能性を大きく低減することができる。このことは、図2に示し上述した実施例2の回転子構造に対しても同様である。   On the other hand, according to the present embodiment, for example, in the case of a two-pole machine, instead of the magnet piece 3 arranged at a position different from the magnetic pole in the first embodiment (left and right direction in FIG. 1), FIG. As described above, by applying a nonmagnetic metal material (for example, stainless steel) having a strength higher than that of the permanent magnet, the magnet piece 3 is damaged and the rotating shaft 1 is applied to the rotating shaft 1 as compared with the rotor structure of the first embodiment. The possibility that torque cannot be transmitted can be greatly reduced. The same applies to the rotor structure of the second embodiment shown in FIG. 2 and described above.

更に、非磁性金属26は剛性が大きく破損しにくいため、何らかの原因で永久磁石が破損したとしても、該非磁性金属26によって回転軸1にトルクを伝達し続けることができる。   Furthermore, since the nonmagnetic metal 26 is highly rigid and difficult to break, even if the permanent magnet is broken for some reason, the torque can be continuously transmitted to the rotary shaft 1 by the nonmagnetic metal 26.

ただし、永久磁石に変えて非磁性金属材を適用することにより磁石量が減るため、必要最大トルク値や軸溝の数などにより永久磁石と非磁性金属材のどちらを選択すれば好適か
を十分検討する必要がある。
However, since the amount of magnets is reduced by applying a non-magnetic metal material instead of a permanent magnet, it is sufficient to select either a permanent magnet or a non-magnetic metal material depending on the required maximum torque value and the number of shaft grooves. It is necessary to consider.

図4に基づいて本発明の第4の実施例を説明する。図4(a)は本実施例に係る永久磁石式回転機の回転子構造の概略断面図、図4(b)は図4(a)に示すB部の拡大図である。   A fourth embodiment of the present invention will be described with reference to FIG. 4A is a schematic cross-sectional view of the rotor structure of the permanent magnet type rotating machine according to the present embodiment, and FIG. 4B is an enlarged view of a portion B shown in FIG. 4A.

図4(a)、図4(b)に示すように、本実施例は、図1に示し上述した実施例1における第二磁石片3に変えて、図4に示す第二磁石片33を用いる例である。第二磁石片33は、実施例1において説明した第二磁石片3に比較して、軸心側に位置する面である内周面と、径方向に沿って形成された面である側壁面とから構成される角部33a,33bが断面視円弧状に形成されている点で異なる。その他の構成は図1に示し実施例1において説明したものと概ね同様であって、図1に示し上述した部材と同一の部材には同一符号を付し、重複する説明は省略する。   As shown in FIGS. 4A and 4B, in this embodiment, the second magnet piece 33 shown in FIG. 4 is used instead of the second magnet piece 3 in the first embodiment shown in FIG. It is an example to use. Compared to the second magnet piece 3 described in the first embodiment, the second magnet piece 33 has an inner peripheral surface that is a surface located on the axial center side, and a side wall surface that is a surface formed along the radial direction. Are different in that the corners 33a and 33b are formed in an arc shape in a sectional view. Other configurations are substantially the same as those shown in FIG. 1 and described in the first embodiment, and the same members as those shown in FIG.

上述した本実施例によれば、第二磁石片33の角部33a,33bを断面視円弧状に形成することにより、回転子の高速回転に伴う遠心力によって第二磁石片33の角部33a,33bに対して引張応力が集中することを防止することができるため、上述した実施例1による効果に加えて更に高速回転に好適な構成とすることができる。   According to the present embodiment described above, the corners 33a and 33b of the second magnet piece 33 are formed in an arc shape in cross section, whereby the corners 33a of the second magnet piece 33 are caused by the centrifugal force accompanying the high-speed rotation of the rotor. , 33b can be prevented from concentrating the tensile stress, so that in addition to the effect of the first embodiment, a configuration suitable for high-speed rotation can be obtained.

図5に基づいて本発明の第5の実施例を詳細に説明する。図5(a)は本実施例に係る永久磁石式回転機の回転子構造の概略断面図、図5(b)は図5(a)に示すC部の拡大図である。   A fifth embodiment of the present invention will be described in detail based on FIG. FIG. 5A is a schematic cross-sectional view of the rotor structure of the permanent magnet type rotating machine according to the present embodiment, and FIG. 5B is an enlarged view of a portion C shown in FIG.

図5(a)、図5(b)に示すように、本実施例は、図1に示し上述した実施例1における回転軸1の凹溝1a、及び第二磁石片3に変えて、図5に示す凹溝1c、及び第二磁石片43を用いる例である。   As shown in FIGS. 5A and 5B, the present embodiment is changed to the concave groove 1a of the rotating shaft 1 and the second magnet piece 3 in the first embodiment shown in FIG. 5 is an example using the concave groove 1c and the second magnet piece 43 shown in FIG.

凹溝1cは、実施例1における凹溝1aに比較して、軸心側に位置する面である底面が回転軸1と同軸に形成された円弧状となっているものである。また、第二磁石片43は、実施例1における第二磁石片3に比較して、軸心側に位置する面である内周面43aが、凹溝1cと同様、円弧状に形成されているものである。その他の構成は図1に示し実施例1において説明したものと概ね同様であって、図1に示し上述した部材と同一の部材には同一符号を付し、重複する説明は省略する。   The concave groove 1 c has an arc shape in which the bottom surface, which is a surface located on the axial center side, is formed coaxially with the rotary shaft 1 as compared with the concave groove 1 a in the first embodiment. Moreover, the 2nd magnet piece 43 is formed in the circular arc shape like the ditch | groove 1c compared with the 2nd magnet piece 3 in Example 1, and the inner peripheral surface 43a which is a surface located in the axial center side. It is what. Other configurations are substantially the same as those shown in FIG. 1 and described in the first embodiment, and the same members as those shown in FIG.

上述した本実施例によれば、回転軸1と第二磁石片43との接触面、即ち凹溝1cの底面と第二磁石片43の軸心側に位置する内周面を円弧状にしたことにより、該第二磁石片43の内周面と径方向に沿って形成される側壁面とからなる角部に対し、補強リング4を設けることによって発生する応力の集中を抑制することができる。   According to the above-described embodiment, the contact surface between the rotating shaft 1 and the second magnet piece 43, that is, the bottom surface of the concave groove 1c and the inner peripheral surface located on the axial center side of the second magnet piece 43 are formed in an arc shape. Thereby, it is possible to suppress concentration of stress generated by providing the reinforcing ring 4 to the corner portion formed by the inner peripheral surface of the second magnet piece 43 and the side wall surface formed along the radial direction. .

これにより、締め代が大きい補強リングをはめ込む場合であっても、実施例1の構成に比較して応力の集中を抑制し、圧縮応力によって永久磁石が破損することを防止することができる。従って、締め代が大きい補強リングを使用することが可能となり、高速回転に好適な構成とすることができる。   Thereby, even if it is a case where a reinforcement ring with a big interference is inserted, compared with the structure of Example 1, concentration of stress can be suppressed and it can prevent that a permanent magnet is damaged by compressive stress. Therefore, it is possible to use a reinforcing ring having a large tightening margin, and a configuration suitable for high-speed rotation can be obtained.

なお、本発明は上述した実施例に限らず、例えば複数の実施例を組み合わせるなど本発明の趣旨を逸脱しない範囲で種々の変更が可能であることはいうまでもない。また、上述した実施例では図1(a)に示すように、端板5を大径部と小径部とを有する形状とし、ほぼ同一の厚みを有する円筒状の補強リング4に嵌合するような構成としたが、例えば、図6に示すように、補強リング14の端部に薄肉部を設け、端板15をほぼ同一の肉厚に形成して補強リング14に嵌合するように構成してもよい。   Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention, for example, by combining a plurality of embodiments. In the above-described embodiment, as shown in FIG. 1A, the end plate 5 has a shape having a large diameter portion and a small diameter portion, and is fitted to a cylindrical reinforcing ring 4 having substantially the same thickness. For example, as shown in FIG. 6, a thin-wall portion is provided at the end of the reinforcing ring 14, and the end plate 15 is formed to have substantially the same thickness and is fitted to the reinforcing ring 14. May be.

本発明は、超高速回転の永久磁石式同期電動機および永久磁石式同期発電機の永久磁石式回転機の回転子構造に適用して好適なものである。   The present invention is suitably applied to a rotor structure of a permanent magnet type synchronous motor and a permanent magnet type rotary generator of a permanent magnet type synchronous generator.

図1(a)は本発明の実施例1に係る回転子の概略構造図、図1(b)は図1(a)のA−A視断面図である。FIG. 1A is a schematic structural diagram of a rotor according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 本発明の実施例2に係る永久磁石式回転機の回転子構造の断面図である。It is sectional drawing of the rotor structure of the permanent magnet type rotary machine which concerns on Example 2 of this invention. 本発明の実施例3に係る永久磁石式回転機の回転子構造の断面図である。It is sectional drawing of the rotor structure of the permanent magnet type rotary machine which concerns on Example 3 of this invention. 図4(a)は本発明の実施例4に係る永久磁石式回転機の回転子構造の断面図、図4(b)は図4(a)の部分拡大図である。4A is a cross-sectional view of a rotor structure of a permanent magnet type rotating machine according to a fourth embodiment of the present invention, and FIG. 4B is a partially enlarged view of FIG. 4A. 図5(a)は本発明の実施例5に係る永久磁石式回転機の回転子構造の断面図、図5(b)は図5(a)の部分拡大図である。FIG. 5A is a sectional view of a rotor structure of a permanent magnet type rotating machine according to a fifth embodiment of the present invention, and FIG. 5B is a partially enlarged view of FIG. 本発明の実施例に係る他の回転子構造を示す概略構造図である。It is a schematic structure figure which shows the other rotor structure which concerns on the Example of this invention. 従来の回転子構造の一例を示す断面図である。It is sectional drawing which shows an example of the conventional rotor structure.

符号の説明Explanation of symbols

1 回転軸
1a,1b,1c 凹溝
2,12 第一磁石片
3,13,23,33,43 第二磁石片
4,14 補強リング
5,15 端板
26 非磁性金属材
33a,33b 第二磁石片の角部
43a 第二磁石片の内周面
DESCRIPTION OF SYMBOLS 1 Rotating shaft 1a, 1b, 1c Groove | groove 2,12 1st magnet piece 3,13,23,33,43 2nd magnet piece 4,14 Reinforcement ring 5,15 End plate 26 Nonmagnetic metal material 33a, 33b 2nd Corner part 43a of magnet piece Inner peripheral surface of second magnet piece

Claims (6)

回転軸の外周部に、円筒状に配設された永久磁石と、円筒形状を有し前記永久磁石の外周部に配設された補強部材とを備える永久磁石式回転機の回転子構造において、
前記回転軸が、表面に軸方向に沿って延設された複数の凹溝を有する一方、
前記永久磁石が、軸方向に延びると共に前記回転軸の外周面に沿って円弧状に形成され、径方向の幅が同一であって、前記回転軸表面の隣り合う前記凹溝間に配置される複数の第一磁石片と、軸方向に延び、径方向外側に位置する外周面が前記第一磁石片と同一の外径を有する円弧状であると共に、前記第一磁石片に比較して径方向の幅が肉厚に形成されて、軸心側に位置する部分が前記凹溝に嵌入するように、隣接する前記第一磁石片間に配される複数の第二磁石片とからなる
ことを特徴とする永久磁石式回転機の回転子構造。
In the rotor structure of a permanent magnet type rotating machine comprising a permanent magnet disposed in a cylindrical shape on the outer peripheral portion of the rotating shaft and a reinforcing member having a cylindrical shape and disposed on the outer peripheral portion of the permanent magnet.
While the rotating shaft has a plurality of concave grooves extending along the axial direction on the surface,
The permanent magnet extends in the axial direction and is formed in an arc shape along the outer peripheral surface of the rotating shaft, and has the same radial width and is disposed between the adjacent grooves on the surface of the rotating shaft. A plurality of first magnet pieces and an outer circumferential surface extending in the axial direction and positioned radially outward are arc-shaped having the same outer diameter as the first magnet pieces, and have a diameter compared to the first magnet pieces. A plurality of second magnet pieces arranged between adjacent first magnet pieces so that a width in the direction is formed thick and a portion located on the axial center side is fitted into the groove. A rotor structure of a permanent magnet type rotating machine.
前記凹溝の相互に対向する一対の側面がそれぞれ径方向に沿って傾斜し、且つ前記第二磁石片の軸心側の部分を該凹溝に嵌合する形状とした
ことを特徴とする請求項1記載の永久磁石式回転機の回転子構造。
A pair of mutually opposing side surfaces of the concave groove is inclined along the radial direction, and a portion on the axial center side of the second magnet piece is fitted into the concave groove. Item 10. A rotor structure of a permanent magnet type rotating machine according to Item 1.
前記凹溝の相互に対向する一対の側面がそれぞれ相互に平行であり、前記凹溝の底面部と前記側面とがなす角度が直角であって、且つ、前記第二磁石片の軸心側の部分を該凹溝に嵌合する形状とした
ことを特徴とする請求項1記載の永久磁石式回転機の回転子構造。
A pair of side surfaces facing each other of the concave groove are parallel to each other, an angle formed by a bottom surface portion of the concave groove and the side surface is a right angle, and an axial center side of the second magnet piece The rotor structure of the permanent magnet type rotating machine according to claim 1, wherein the portion is shaped to fit into the concave groove.
磁極と異なる位置に配置された前記第二磁石片に変えて、前記第二磁石片と同一形状に形成されると共に、前記永久磁石に比較して高強度を有する非磁性金属材を用いる
ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の永久磁石式回転機の回転子構造。
Instead of the second magnet piece arranged at a position different from the magnetic pole, a nonmagnetic metal material having the same shape as the second magnet piece and having higher strength than the permanent magnet is used. The rotor structure of the permanent magnet type rotating machine according to any one of claims 1 to 3, wherein the rotor structure is a permanent magnet type rotating machine.
前記第二磁石片の軸心側に位置する一対の角部が円弧状に形成された
ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の永久磁石式回転機の回転子構造。
The rotation of the permanent magnet type rotating machine according to any one of claims 1 to 4, wherein a pair of corner portions positioned on the axial center side of the second magnet piece are formed in an arc shape. Child structure.
前記第二磁石片の前記回転軸に対向する内周面が、前記回転軸と同軸の円弧状に形成された
ことを特徴とする請求項1乃至請求項6のいずれか一項に記載の永久磁石式回転機の回転子構造。
7. The permanent magnet according to claim 1, wherein an inner peripheral surface of the second magnet piece that faces the rotating shaft is formed in an arc shape that is coaxial with the rotating shaft. The rotor structure of a magnet type rotating machine.
JP2007137372A 2007-05-24 2007-05-24 Rotor structure of permanent magnet rotating electric machine Pending JP2008295178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137372A JP2008295178A (en) 2007-05-24 2007-05-24 Rotor structure of permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137372A JP2008295178A (en) 2007-05-24 2007-05-24 Rotor structure of permanent magnet rotating electric machine

Publications (1)

Publication Number Publication Date
JP2008295178A true JP2008295178A (en) 2008-12-04

Family

ID=40169349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137372A Pending JP2008295178A (en) 2007-05-24 2007-05-24 Rotor structure of permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP2008295178A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098046A1 (en) * 2009-02-24 2010-09-02 パナソニック株式会社 Rotor, motor utilizing the same, electric blower, and electric vacuum cleaner
WO2011114594A1 (en) * 2010-03-15 2011-09-22 株式会社安川電機 Permanent magnet-type rotary generator
KR101189449B1 (en) 2006-03-17 2012-10-09 엘지전자 주식회사 Motor
JP2013515455A (en) * 2009-12-21 2013-05-02 ホガナス アクチボラグ (パブル) Rotor for modulating pole machine
KR20140091626A (en) * 2013-01-09 2014-07-22 엘지이노텍 주식회사 The spoke type motor
CN104426262A (en) * 2013-08-26 2015-03-18 苏州奥宝杰电机科技有限公司 Motor rotor and motor with same
CN106602822A (en) * 2016-11-01 2017-04-26 东南大学 Rotor permanent-magnet type magnetic flux switching hub motor
WO2017073036A1 (en) * 2015-10-28 2017-05-04 川崎重工業株式会社 Rotor for rotary electric machine
CN110048575A (en) * 2019-05-17 2019-07-23 陈益广 A kind of composite construction p-m rotor suitable for high-speed permanent magnetic synchronous motor
CN113991959A (en) * 2017-07-21 2022-01-28 株式会社电装 Rotating electrical machine
JP7501271B2 (en) 2020-09-18 2024-06-18 株式会社Ihi Rotor and motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241339A (en) * 1989-03-14 1990-09-26 Hitachi Ltd Permanent magnet rotor for turbo-charger directly-connecting rotary machine
JPH1189143A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Permanent magnet type rotor
JP2000197289A (en) * 1998-12-28 2000-07-14 Kusatsu Denki Kk Motor and its manufacture
JP2002171702A (en) * 2000-12-05 2002-06-14 Isuzu Motors Ltd Rotor of rotating machine
JP2007028734A (en) * 2005-07-13 2007-02-01 Asmo Co Ltd Dynamo-electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241339A (en) * 1989-03-14 1990-09-26 Hitachi Ltd Permanent magnet rotor for turbo-charger directly-connecting rotary machine
JPH1189143A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Permanent magnet type rotor
JP2000197289A (en) * 1998-12-28 2000-07-14 Kusatsu Denki Kk Motor and its manufacture
JP2002171702A (en) * 2000-12-05 2002-06-14 Isuzu Motors Ltd Rotor of rotating machine
JP2007028734A (en) * 2005-07-13 2007-02-01 Asmo Co Ltd Dynamo-electric machine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189449B1 (en) 2006-03-17 2012-10-09 엘지전자 주식회사 Motor
WO2010098046A1 (en) * 2009-02-24 2010-09-02 パナソニック株式会社 Rotor, motor utilizing the same, electric blower, and electric vacuum cleaner
JP2013515455A (en) * 2009-12-21 2013-05-02 ホガナス アクチボラグ (パブル) Rotor for modulating pole machine
WO2011114594A1 (en) * 2010-03-15 2011-09-22 株式会社安川電機 Permanent magnet-type rotary generator
CN102792560A (en) * 2010-03-15 2012-11-21 株式会社安川电机 Permanent magnet-type rotary generator
JP5678954B2 (en) * 2010-03-15 2015-03-04 株式会社安川電機 Permanent magnet type rotating electric machine
US9219389B2 (en) 2010-03-15 2015-12-22 Kabushiki Kaisha Yaskawa Denki Permanent magnet rotating electrical machine
KR20140091626A (en) * 2013-01-09 2014-07-22 엘지이노텍 주식회사 The spoke type motor
KR102001954B1 (en) * 2013-01-09 2019-07-29 엘지이노텍 주식회사 The spoke type motor
CN104426262A (en) * 2013-08-26 2015-03-18 苏州奥宝杰电机科技有限公司 Motor rotor and motor with same
WO2017073036A1 (en) * 2015-10-28 2017-05-04 川崎重工業株式会社 Rotor for rotary electric machine
US20180316233A1 (en) * 2015-10-28 2018-11-01 Kawasaki Jukogyo Kabushiki Kaisha Rotor of electrical rotating machine
US10978924B2 (en) 2015-10-28 2021-04-13 Kawasaki Jukogyo Kabushiki Kaisha Rotor of electrical rotating machine
CN106602822B (en) * 2016-11-01 2019-03-12 东南大学 Rotor permanent magnet type magnetic flux switches hub motor
CN106602822A (en) * 2016-11-01 2017-04-26 东南大学 Rotor permanent-magnet type magnetic flux switching hub motor
CN113991959A (en) * 2017-07-21 2022-01-28 株式会社电装 Rotating electrical machine
CN113991959B (en) * 2017-07-21 2024-04-16 株式会社电装 Rotary electric machine
CN110048575A (en) * 2019-05-17 2019-07-23 陈益广 A kind of composite construction p-m rotor suitable for high-speed permanent magnetic synchronous motor
CN110048575B (en) * 2019-05-17 2021-12-31 陈益广 Composite structure permanent magnet rotor suitable for high-speed permanent magnet synchronous motor
JP7501271B2 (en) 2020-09-18 2024-06-18 株式会社Ihi Rotor and motor

Similar Documents

Publication Publication Date Title
JP2008295178A (en) Rotor structure of permanent magnet rotating electric machine
JP6072395B1 (en) Rotating machine rotor member, rotating machine rotor and rotating machine
CN107565724B (en) Rotor member, rotor provided with rotor member, method for manufacturing rotor, and rotating electrical machine
WO2010001776A1 (en) Rotor structure of permanent magnet type rotary machine
WO2011155042A1 (en) Rotating electrical machine rotor
WO2011125199A1 (en) Layered iron core of rotary electrical machine
JP2007104819A (en) Rotating electric machine
JP2006238678A (en) Magnetic material, rotor, electric motor
US20160141944A1 (en) Short-circuit ring for an electrical asynchronous machine, composed of partial ring segments
JP5386885B2 (en) Rotor structure of permanent magnet rotating machine
JPH0880015A (en) Electric rotary machine
WO2019150500A1 (en) Rotor member, rotor and rotating electric device
JP2010093988A (en) Permanent magnet type rotating machine
JPWO2015151244A1 (en) Cage rotor
JP5818949B2 (en) Rotating electric machine
JP4613833B2 (en) Surface magnet type rotating electrical machine and method for manufacturing the same
JP5611405B1 (en) Rotating electric machine
TW201909523A (en) High-speed asynchronous motor rotor structure and motor comprising same
JP5903545B2 (en) Core material, stator core, and motor including the stator core
JP2009072036A (en) Rotor structure of permanent-magnet rotating machine
CN106031003B (en) Synchronous reluctance electric rotating machine
US11043859B2 (en) Permanent magnet rotating electric machine
JP2012244824A (en) Rotor of motor
JP2003189529A (en) Canned motor
WO2019150499A1 (en) Rotor member, rotor, and rotating electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806