JP2010055753A - Method for manufacturing battery with wound electrode body - Google Patents

Method for manufacturing battery with wound electrode body Download PDF

Info

Publication number
JP2010055753A
JP2010055753A JP2008216053A JP2008216053A JP2010055753A JP 2010055753 A JP2010055753 A JP 2010055753A JP 2008216053 A JP2008216053 A JP 2008216053A JP 2008216053 A JP2008216053 A JP 2008216053A JP 2010055753 A JP2010055753 A JP 2010055753A
Authority
JP
Japan
Prior art keywords
separator
trace space
shaping
core trace
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216053A
Other languages
Japanese (ja)
Inventor
Ryohei Shimizu
良平 清水
Minoru Kamei
稔 亀井
Yoshihiro Matsushita
佳弘 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008216053A priority Critical patent/JP2010055753A/en
Publication of JP2010055753A publication Critical patent/JP2010055753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To push a shaping rod against only a portion requiring shaping of a separator left in a winding core trace space for a sufficient time period. <P>SOLUTION: A method for manufacturing a battery includes steps of: in a forming process displacing a separator left in a winding core trace space 14a of a wound electrode body 14 against the inner peripheral wall of the winding core trace space 14a with the shaping rod, recognizing the position of the separator 13a left in the winding core trace space 14a and the distal end position 13b of the bulge in an image recognition process; obtaining a circumscribed circle CC corresponding to the maximum diameter portion of the winding core trace space 14a and an inscribed circle IC of the maximum diameter formed between the circumscribed circle CC and the separator 13b left in the winding core trace space 14a; inserting a shaping rod 30 into the center of the inscribed circle IC and moving the shape rod toward the center of the circumscribed circle CC; and moving the shape rod linearly or curvilinearly toward the distal end position 13b of the bulge of the separator 13a left in the winding core trace space 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、帯状の正極板及び負極板間にセパレータを介在させて渦巻状に巻回した巻回状電極体を備えた電池の製造方法に関する。   The present invention relates to a method of manufacturing a battery including a wound electrode body wound in a spiral shape with a separator interposed between a strip-like positive electrode plate and a negative electrode plate.

一般に、リチウムイオン二次電池に代表される非水電解質二次電池、ニッケル−カドミウム二次電池、ニッケル−水素二次電池などの二次電池には、角形のものや円筒形のもの等が作製されている。このうち、円筒形の電池は以下のようにして作製されている。最初に、帯状の正極板及び負極板の間にセパレータを介在させ、これらを渦巻状に巻回して巻回状電極体を形成し、この巻回状電極体の上下端部にそれぞれ正極集電体及び負極集電体を接続する。次いで、この巻回状電極体を金属製外装缶に収納し、一方の集電体から延出する集電タブを封口体の下面に溶接し、他方の集電体から延出する集電リードを電池外装缶の底部内面に溶接する。その後、電解液を外装缶内に注入し、電池外装缶の開口に絶縁ガスケットを介在させて封口体を装着して密閉することにより円筒形の電池が作製されている。   In general, secondary batteries such as non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries, nickel-cadmium secondary batteries, nickel-hydrogen secondary batteries, etc. are manufactured in rectangular or cylindrical shapes. Has been. Among these, the cylindrical battery is manufactured as follows. First, a separator is interposed between a strip-shaped positive electrode plate and a negative electrode plate, and these are wound in a spiral shape to form a wound electrode body, and a positive electrode current collector and Connect the negative electrode current collector. Next, the wound electrode body is housed in a metal outer can, a current collecting tab extending from one current collector is welded to the lower surface of the sealing body, and a current collecting lead extending from the other current collector Is welded to the inner surface of the bottom of the battery case. Thereafter, an electrolytic solution is injected into the outer can, and a sealing battery is attached to the opening of the battery outer can with an insulating gasket interposed therebetween, thereby sealing the cylindrical battery.

このうち、従来の円筒形の電池の製造工程を図6〜図8を用いて説明する。なお、図6Aは巻芯にセパレータを巻き付ける状態を示す斜視図であり、図6Bは巻芯を抜き取った状態を示す図である。図7は巻回状電極体の一方の集電リードを電池外装缶の底部内面に溶接する工程を示す断面図である。図8はセパレータの整形工程を示す斜視図である。なお、図6〜図8においては同一構成部分には同一の参照符号を付与して説明する。   Among these, the manufacturing process of the conventional cylindrical battery is demonstrated using FIGS. 6A is a perspective view showing a state in which the separator is wound around the core, and FIG. 6B is a view showing a state in which the core is removed. FIG. 7 is a cross-sectional view showing a process of welding one current collecting lead of the wound electrode body to the bottom inner surface of the battery outer can. FIG. 8 is a perspective view showing a separator shaping process. 6 to 8, the same components are given the same reference numerals for explanation.

巻回状電極体は、例えば図6Aに示すような端面52の中心部を通る縦方向のスリット53が設けられた巻芯51を用い、このスリット53に帯状のセパレータ54の中央部あるいは2枚重ねた帯状のセパレータ54の端部を挟んで、巻芯51を約1回転させた後、帯状の正極板あるいは帯状の負極板がセパレータ54間に介在するように配置し、巻芯51を回転させて渦巻状に巻回した後、この渦巻状に巻回された巻回状電極体から巻芯51を引き抜く方法によって作製されている。   The wound electrode body uses, for example, a winding core 51 provided with a longitudinal slit 53 passing through the central portion of the end face 52 as shown in FIG. 6A, and the central portion or two sheets of the strip-shaped separator 54 is formed in the slit 53. The core 51 is rotated about one turn across the end of the overlapped strip-shaped separator 54, and then disposed so that the strip-shaped positive electrode plate or the strip-shaped negative electrode plate is interposed between the separators 54, and the core 51 is rotated. After being wound in a spiral shape, the core 51 is produced by pulling out the winding core 51 from the spirally wound electrode body.

このように、渦巻状に巻回された巻回状電極体から巻芯51を引き抜くと、図6Bに示すように、巻芯51が引き抜かれた後の空間(巻芯跡空間)55の中心部にこの巻芯跡空間55を分割するようにセパレータ54が残存する。このため、この巻回状電極体の一方の集電体から延出する集電タブを一方の端子を兼ねる金属製外装缶の底部内面にスポット溶接するための電極棒をこの巻芯跡空間55に挿入しようとした場合に、巻芯跡空間55を分割するように残存したセパレータ54が邪魔になって、スポット溶接作業を繁雑にしていた。   Thus, when the core 51 is pulled out from the spirally wound electrode body, as shown in FIG. 6B, the center of the space (core trace space) 55 after the core 51 is pulled out. The separator 54 remains so as to divide the core trace space 55 into the part. For this reason, an electrode rod for spot welding to the inner surface of the bottom of a metal outer can that also serves as one terminal with a current collecting tab extending from one current collector of the wound electrode body is provided in the core trace space 55. When it is going to insert in, the separator 54 which remained so that the core trace space 55 might be divided became obstructive, and the spot welding operation was complicated.

なお、巻回状電極体の一方の集電体から延出する集電タブを金属製外装缶の底部内面にスポット溶接する工程は、以下のようにして行われている。最初に、図7に示したように、一方の集電体から延出する集電タブ62を成形し、集電タブ62が電池外装缶61の底部内面の中央部に位置するように巻回状電極体60を金属製の電池外装缶61内に挿入する。次いで、巻回電極体60に形成された巻芯跡空間55内に一方のスポット溶接用電極63を挿入し、このスポット溶接用電極63を集電タブ62に当接させると共に、電池外装缶61の中央部の外側から他方のスポット溶接用電極64を当接させる。その後、両方のスポット溶接用電極63及び64間に短時間に大電流を流すことにより、集電タブ62と電池外装缶61の底部内面との間でスポット溶接を行うものである。   The step of spot welding a current collecting tab extending from one current collector of the wound electrode body to the inner surface of the bottom of the metal outer can is performed as follows. First, as shown in FIG. 7, a current collecting tab 62 extending from one current collector is formed and wound so that the current collecting tab 62 is positioned at the center of the bottom inner surface of the battery outer can 61. The electrode body 60 is inserted into a metal battery outer can 61. Next, one spot welding electrode 63 is inserted into the core trace space 55 formed in the wound electrode body 60, the spot welding electrode 63 is brought into contact with the current collecting tab 62, and the battery outer can 61 is placed. The other spot welding electrode 64 is brought into contact with the outer side of the central portion of the. Thereafter, spot welding is performed between the current collecting tab 62 and the bottom inner surface of the battery outer can 61 by flowing a large current between the spot welding electrodes 63 and 64 in a short time.

そのため、巻芯跡空間55を分割するように残存したセパレータ54が上述のスポット溶接の邪魔にならないようにするため、図8に示すように、加熱された整形棒66を巻芯跡空間55内に挿入し、巻芯跡空間55に残存するセパレータ54を熱整形させて巻芯跡空間55の内周壁方向に変位させる整形工程が採用されるようになった(下記特許文献1〜4参照)。
特開昭58−066270号公報 特公昭62−043304号公報 特開平05−225998号公報 特開平11−273713号公報
Therefore, in order to prevent the separator 54 remaining so as to divide the core trace space 55 from interfering with the spot welding described above, the heated shaping rod 66 is placed in the core trace space 55 as shown in FIG. A shaping step is adopted in which the separator 54 remaining in the core trace space 55 is thermally shaped and displaced in the direction of the inner peripheral wall of the core trace space 55 (see Patent Documents 1 to 4 below). .
Japanese Patent Laid-Open No. 58-066270 Japanese Examined Patent Publication No. 62-043304 Japanese Patent Laid-Open No. 05-225998 Japanese Patent Laid-Open No. 11-273713

上述のような従来の整形工程では、整形棒66として加熱された先細のテーパー状金属棒等を用い、この整形棒66を巻芯跡空間55の中心に挿入した後に巻芯跡空間55の内壁の全周に亘って均等に押し当てることにより、巻芯跡空間55に残存するセパレータ54を熱整形させて巻芯跡空間55の内周壁方向に変位させるようにしている。しかしながら、従来の整形工程では、電池外形を基準として電池外形の中心に加熱した整形棒を挿入しているため、電池外形とセンター穴の中心が偏芯している場合は、整形棒の挿入時にセパレータを潰してしまうことがあった。   In the conventional shaping process as described above, a heated tapered taper metal rod or the like is used as the shaping rod 66, and the shaping rod 66 is inserted into the center of the core trace space 55 and then the inner wall of the core trace space 55. The separator 54 remaining in the core trace space 55 is thermally shaped and displaced in the direction of the inner peripheral wall of the core trace space 55 by being pressed evenly over the entire circumference. However, in the conventional shaping process, a heated shaping rod is inserted into the center of the battery outer shape with respect to the battery outer shape. Therefore, when the battery outer shape and the center of the center hole are eccentric, Sometimes the separator was crushed.

また、従来の整形工程では、巻芯跡空間に残存するセパレータの先端位置が不明であるため、整形棒を巻芯跡空間内に挿入後、整形棒を巻芯跡空間の内周壁全周に亘って均等に押し当てる必要があった。しかしながら、巻芯跡空間に残存するセパレータを熱整形させて巻芯跡空間の内周壁方向に変位させる際には、整形が必要でない箇所も押し当てていることとなるため、最も整形が必要な箇所に整形棒を押し当てる時間が短くなり、整形状態が安定しないことがあるという問題点があった。   Further, in the conventional shaping process, since the tip position of the separator remaining in the core trace space is unknown, after the shaping rod is inserted into the core trace space, the shaping rod is placed around the inner peripheral wall of the core trace space. It had to be pressed evenly over. However, when the separator remaining in the core trace space is thermally shaped and displaced in the direction of the inner peripheral wall of the core trace space, the portion that does not need to be shaped is also pressed, so the most shaping is necessary. There was a problem that the time for pressing the shaping rod to the place was shortened, and the shaping state might not be stable.

本発明は、上記従来技術の問題点を解決すべくなされたものであり、その目的は、画像認識技術を利用して巻芯跡空間に残存するセパレータの位置及び膨らみの先端位置を認識し、セパレータの整形が必要な箇所のみに、十分な時間、整形棒を押し当てることができるようにして確実にセパレータを整形できるようにした電池の製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems of the prior art, and its purpose is to recognize the position of the separator remaining in the core trace space and the tip position of the bulge using an image recognition technique, It is an object of the present invention to provide a method for manufacturing a battery in which a shaping rod can be pressed against a location where the shaping of the separator is necessary for a sufficient time so that the separator can be reliably shaped.

上記目的を達成するため、本発明の巻回電極体を備えた電池の製造方法は、帯状の正極板及び負極板間にセパレータを介在させ、このセパレータの端部あるいは中央部を巻き始め部として巻芯により渦巻状に巻回して巻回電極体を形成する工程と、前記巻回電極体から巻芯を取り除いて巻芯跡空間を有する巻回電極体を形成する工程と、前記巻回電極体の巻芯跡空間に残存するセパレータを整形棒によって巻芯跡空間の内周壁に変位させる整形工程と、を有する巻回電極体を備えた電池の製造方法であって、前記整形工程は、予め画像認識工程において、前記巻芯跡空間に残存するセパレータの位置及び膨らみの先端位置を認識するとともに、前記巻芯跡空間の最大径部分に対応する外接円と、前記外接円と前記巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円を求めておき、前記整形棒を、前記内接円の中心に挿入した後に前記外接円の中心に向けて移動させ、次いで、前記巻芯跡空間に残存するセパレータの膨らみの先端位置に向かって直線的又は曲線的に移動させることを特徴とする。   In order to achieve the above object, a method of manufacturing a battery having a wound electrode body according to the present invention includes a separator interposed between a strip-like positive electrode plate and a negative electrode plate, and an end or center portion of the separator as a winding start portion. A step of forming a wound electrode body by spirally winding with a winding core; a step of removing the winding core from the winding electrode body to form a wound electrode body having a core trace space; and the winding electrode And a shaping step of displacing the separator remaining in the core trace space of the body to the inner peripheral wall of the core trace space by a shaping rod, and a method for producing a battery comprising a wound electrode body, wherein the shaping step comprises: In the image recognition step in advance, the position of the separator remaining in the core trace space and the tip position of the bulge are recognized, the circumscribed circle corresponding to the maximum diameter portion of the core trace space, the circumscribed circle and the core Separe that remains in the trace space An inscribed circle having a maximum diameter formed between the inner surface and the shaping rod is inserted into the center of the inscribed circle and then moved toward the center of the inscribed circle. The separator is moved linearly or in a curve toward the tip of the bulge of the separator remaining in the trace space.

本発明の巻回電極体を備えた電池の製造方法では、整形工程は、予め画像認識工程において、巻芯跡空間に残存するセパレータの位置及び膨らみの先端位置を認識するとともに、巻芯跡空間の最大径部分に対応する外接円と、前記外接円と前記巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円を求めている。本発明における「巻芯跡空間の最大径部分に対応する外接円」とは、実質的に巻芯の直径に対応する部分であって、巻芯跡空間に延びているセパレータを除外したセパレータ部分の内周径に相当する。なお、従来例の巻芯跡空間の中心に整形棒を挿入することは、本発明の「巻芯跡空間の最大径部分に対応する外接円」の中心に整形棒を挿入することに相当する。また、本発明における「外接円と巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円」とは、外接円と巻芯跡空間に残存するセパレータとの間に形成される内接円は複数存在するが、その内の最大径のもの、すなわち、外接円と巻芯跡空間に残存するセパレータとの間の距離が最も大きい側の内接円を示す。   In the method for manufacturing a battery provided with the wound electrode body of the present invention, the shaping step recognizes in advance the position of the separator remaining in the winding core trace space and the tip position of the bulge in the image recognition step, and the winding core trace space. And a maximum inscribed circle formed between the circumscribed circle corresponding to the maximum diameter portion and the separator remaining in the core trace space. In the present invention, the “circumferential circle corresponding to the maximum diameter portion of the core trace space” is a portion substantially corresponding to the diameter of the core core and excluding the separator extending into the core trace space. This corresponds to the inner peripheral diameter of. Note that inserting the shaping rod into the center of the core trace space of the conventional example corresponds to inserting the shaping rod into the center of the “circumferential circle corresponding to the maximum diameter portion of the core trace space” of the present invention. . Further, in the present invention, the “inscribed circle of the maximum diameter formed between the circumscribed circle and the separator remaining in the core trace space” is formed between the circumscribed circle and the separator remaining in the core trace space. Although there are a plurality of inscribed circles, the inscribed circle having the largest diameter among them, that is, the inscribed circle on the side where the distance between the circumscribed circle and the separator remaining in the core trace space is the largest is shown.

そして、本発明の巻回電極体を備えた電池の製造方法では、最初に外接円と巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円の中心に成型棒を挿入する。巻芯跡空間の最大径部分に対応する外接円の中心にはセパレータが存在している可能性があるが、外接円と巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円の中心にはセパレータは存在していない。そのため、本発明の巻回電極体を備えた電池の製造方法によれば、整形棒の挿入時にセパレータを押し潰すことなくスムーズに巻芯跡空間内に挿入することができる。   And in the manufacturing method of the battery provided with the wound electrode body of the present invention, a molding rod is first formed at the center of the inscribed circle having the maximum diameter formed between the circumscribed circle and the separator remaining in the core trace space. insert. There may be a separator at the center of the circumscribed circle corresponding to the maximum diameter portion of the core trace space, but the maximum diameter formed between the circumscribed circle and the separator remaining in the core trace space. There is no separator at the center of the inscribed circle. Therefore, according to the manufacturing method of the battery provided with the wound electrode body of the present invention, the separator can be smoothly inserted into the core trace space without being crushed when the shaping rod is inserted.

また、本発明の巻回電極体を備えた電池の製造方法では、外接円と巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円の中心に成型棒を挿入した後、外接円の中心に向けて移動させ、次いで、巻芯跡空間に残存するセパレータの膨らみの先端位置に向かって直線的又は曲線的に移動させるようにしている。このような方法を採用すると、整形棒を押し当てる必要があるところのみを押し当てることになるので、整形工程に要する時間を従来例の場合と同じにしても巻芯跡空間に残存しているセパレータに対する押し当て時間を長くすることができるため、確実にセパレータの整形を行うことができるようになる。   Further, in the method for manufacturing a battery including the wound electrode body according to the present invention, a molding rod is inserted at the center of the inscribed circle having the maximum diameter formed between the circumscribed circle and the separator remaining in the core trace space. Then, it is moved toward the center of the circumscribed circle, and then moved linearly or curvedly toward the tip of the bulge of the separator remaining in the core trace space. If such a method is adopted, only the place where the shaping rod needs to be pressed will be pressed, so that the time required for the shaping process remains the same in the core trace space even if it is the same as the case of the conventional example. Since the pressing time against the separator can be lengthened, the separator can be reliably shaped.

また、本発明の電池の製造方法においては、前記整形棒は、前記整形棒の先端が前記巻芯跡空間内の内接円内に入った時点で、前記巻芯跡空間内に更に挿入させつつ前記外接円の中心に向けて移動させることが好ましい。   In the battery manufacturing method of the present invention, the shaping rod is further inserted into the core trace space when the tip of the shaping rod enters the inscribed circle in the core trace space. However, it is preferable to move toward the center of the circumscribed circle.

このような方法を採用すると、巻芯跡空間の前記内接円の中心に整形棒を全て挿入してから前記外接円の中心に向けて移動させる場合と比すると、巻芯跡空間に存在しているセパレータの変位が少しずつ行われるので、整形棒を巻芯跡空間に挿入するときの抵抗及びセパレータの変位に要する抵抗が軽減される。そのため、本発明の電池の製造方法によれば、センター穴を潰すことなく容易に整形棒と巻芯跡空間内に挿入することができるようになるとともに、整形棒の直径を大きくすることが可能となるので、整形棒の曲がりに対しても有利となる。   When such a method is adopted, it is present in the core trace space as compared with the case where all the shaping rods are inserted into the center of the inscribed circle in the core trace space and then moved toward the center of the circumscribed circle. Since the separator is displaced little by little, the resistance when inserting the shaping rod into the core trace space and the resistance required for the displacement of the separator are reduced. Therefore, according to the method for manufacturing a battery of the present invention, it is possible to easily insert the shaping rod and the core trace space without crushing the center hole and to increase the diameter of the shaping rod. Therefore, it is advantageous for the bending of the shaping rod.

また、本発明の電池の製造方法においては、前記整形工程は、前記巻芯跡空間を有する巻回電極体を固定し、前記整形棒を3軸方向に移動させることにより行なわれるようになすことが好ましい。   In the battery manufacturing method of the present invention, the shaping step is performed by fixing the wound electrode body having the winding core trace space and moving the shaping rod in three axial directions. Is preferred.

本発明の電池の製造方法によれば、前記整形工程の自動化が容易となり、大量生産に適するようになる。   According to the method for manufacturing a battery of the present invention, the shaping process can be automated easily and is suitable for mass production.

また、本発明の電池の製造方法においては、前記整形棒は、先端が先細であり、前記セパレータの熱整形可能温度に加熱されていることが好ましい。   In the battery manufacturing method of the present invention, it is preferable that the shaping rod has a tapered tip and is heated to a temperature at which the separator can be thermally shaped.

本発明の電池の製造方法によれば、整形棒の先端は先細であるため、セパレータを押し潰すことなく整形棒を容易に巻芯跡空間内に挿入することができ、しかも整形棒がセパレータの熱整形可能温度に加熱されているため、小さい力で整形工程を行うことができるようになり、巻芯跡空間の異常整形が生じ難くなる。熱整形可能温度は、例えばポリエチレン製微多孔膜の場合、65〜95℃に設定することが好ましい。65℃より低いと整形が不充分となりやすく、95℃より高いとセパレータが収縮して巻芯跡空間が小さくなりやすい。ポリエチレン以外の材料についても、ほぼ同様の理由により、熱整形可能温度を適宜設定できる。   According to the battery manufacturing method of the present invention, since the tip of the shaping rod is tapered, the shaping rod can be easily inserted into the core trace space without crushing the separator. Since it is heated to a temperature at which heat shaping is possible, the shaping process can be performed with a small force, and abnormal shaping of the core trace space is less likely to occur. For example, in the case of a polyethylene microporous membrane, the heat-shaping temperature is preferably set to 65 to 95 ° C. If it is lower than 65 ° C., shaping tends to be insufficient, and if it is higher than 95 ° C., the separator shrinks and the core trace space tends to be small. For materials other than polyethylene, the temperature at which heat shaping is possible can be appropriately set for the same reason.

以下、本発明の実施形態を図面を用いて詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例として非水電解質二次電池を例示するものであって、本発明をこの実施形態に特定することを意図するものでなく、特許請求の範囲に含まれるその他の実施形態のものにも等しく適用し得るものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the embodiment described below exemplifies a non-aqueous electrolyte secondary battery as an example for embodying the technical idea of the present invention, and is intended to specify the present invention to this embodiment. However, the present invention is equally applicable to other embodiments included in the claims.

なお、図1は実施形態で製造した円筒形の非水電解質二次電池を縦方向に切断して示す斜視図である。図2Aは巻芯を取り除いた跡の巻回電極体端部側から見た拡大平面図であり、図2Bは図2Aの成型を必要としない部分を示す図であり、図2Cは図2Aに示す巻回電極体について画像認識によって認識した外接円及び内接円を描いた図である。図3A〜図3Hはセパレータの整形工程における整形棒の動きを順を追って説明する図である。図4は図3に示した各整形工程のタイミングチャートである。図5Aは実施形態の整形棒の直線状の動きを説明する図であり、図5Bは実施形態の整形棒の曲線状の動きを説明する図であり、図5Cは従来例の整形棒の曲線状の動きを説明する図である。   FIG. 1 is a perspective view showing the cylindrical nonaqueous electrolyte secondary battery manufactured in the embodiment cut in the vertical direction. FIG. 2A is an enlarged plan view of the trace from which the winding core has been removed as viewed from the end side of the wound electrode body, FIG. 2B is a diagram showing a portion that does not require the molding of FIG. 2A, and FIG. It is the figure which drawn the circumscribed circle and inscribed circle which were recognized by image recognition about the winding electrode body shown. 3A to 3H are diagrams for explaining the movement of the shaping bar in the separator shaping process step by step. FIG. 4 is a timing chart of each shaping process shown in FIG. 5A is a diagram for explaining the linear motion of the shaping rod of the embodiment, FIG. 5B is a diagram for explaining the curved motion of the shaping rod of the embodiment, and FIG. 5C is a curve of the shaping rod of the conventional example. It is a figure explaining movement of a shape.

実施例の非水電解質二次電池10は、図1に示したように、正極板11と負極板12とがセパレータ13を介して渦巻状に巻回された巻回電極体14が用いられており、この巻回電極体14の中心には巻芯跡空間14aが形成されている。巻回電極体14は、上下にそれぞれ絶縁板15及び16が配置され、負極端子を兼ねる有底で円筒形の電池外装缶17の内部に収容されている。この電池外装缶17は例えば表面にニッケルめっきをした鉄製のものが使用されている。   As shown in FIG. 1, the nonaqueous electrolyte secondary battery 10 of the example uses a wound electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound in a spiral shape with a separator 13 interposed therebetween. A wound core space 14 a is formed at the center of the wound electrode body 14. Insulating plates 15 and 16 are arranged on the upper and lower sides of the wound electrode body 14, respectively, and are housed inside a cylindrical battery outer can 17 having a bottom that also serves as a negative electrode terminal. The battery outer can 17 is made of, for example, iron with nickel plating on the surface.

絶縁板15及び16は中央部分が巻芯跡空間14aの開口と同一形状に切り欠かれている。そして、負極板12の集電タブ12aが電池外装缶17の内側底部に溶接され、正極板11の集電タブ11aは、絶縁板15に形成された開口を通して安全弁18を兼ねる正極端子19の底板部に溶接されている。そして、電池外装缶17の内部には図示しない非水電解質が注入されており、電池外装缶17の開口部は安全弁18を兼ねる正極端子19によって密閉されている。   The central portions of the insulating plates 15 and 16 are cut out in the same shape as the opening of the core trace space 14a. And the current collection tab 12a of the negative electrode plate 12 is welded to the inner bottom part of the battery outer can 17, and the current collection tab 11a of the positive electrode plate 11 is the bottom plate of the positive electrode terminal 19 that also serves as the safety valve 18 through the opening formed in the insulating plate 15. It is welded to the part. A non-aqueous electrolyte (not shown) is injected into the battery outer can 17, and the opening of the battery outer can 17 is sealed by a positive electrode terminal 19 that also serves as a safety valve 18.

正極板11の作製方法の一例を示すと次のとおりである。まず、正極活物質としてリチウムニッケルコバルトマンガン複合酸化物:コバルト酸リチウム=1:9(質量比)の割合となるように秤量し、正極導電剤としてのカーボン、結着剤としてのポリフッ化ビニリデン(PVdF)粉末とを、正極活物質:カーボン:PVdF=94:3:3の質量比でN−メチル−2−ピロリドン(NMP)に投入、混練してスラリーを調製する。このスラリーを厚さ15μmのアルミニウム箔製の芯体の両面にドクターブレード法により塗布した後、乾燥させて、正極集電体の両面に正極活物質層を形成する。その後、圧縮ローラを用いて圧縮して正極板11を作製する。作製された正極板11は例えば長さ700mm、幅55mm、厚さ100μmである。   An example of a method for producing the positive electrode plate 11 is as follows. First, the positive electrode active material was weighed so that the ratio of lithium nickel cobalt manganese composite oxide: lithium cobaltate = 1: 9 (mass ratio), carbon as the positive electrode conductive agent, polyvinylidene fluoride as the binder ( PVdF) powder is charged into N-methyl-2-pyrrolidone (NMP) at a mass ratio of positive electrode active material: carbon: PVdF = 94: 3: 3 and kneaded to prepare a slurry. This slurry is applied to both surfaces of a 15 μm thick aluminum foil core by the doctor blade method and then dried to form a positive electrode active material layer on both surfaces of the positive electrode current collector. Then, it compresses using a compression roller and the positive electrode plate 11 is produced. The produced positive electrode plate 11 has, for example, a length of 700 mm, a width of 55 mm, and a thickness of 100 μm.

また、負極板12の作製方法の一例を示すと次のとおりである。まず、負極活物質としての黒鉛粉末と、結着剤としてスチレンブタジエンゴム(SBR)(スチレン:ブタジエン=1:1)のディスパージョンを水に分散させ、更に、増粘剤としてのカルボキシメチルセルロース(CMC)を添加して負極活物質合剤スラリーを調製する。なお、この負極活物質合剤スラリーの乾燥質量比は、例えば黒鉛:SBR:CMC=95:3:2となるように調製する。この負極活物質合剤スラリーを厚みが10μmの銅箔製の芯体の両面にドクターブレード法により塗布し、乾燥した後、圧縮ローラで圧縮して負極板12を作製する。作製された負極板12は例えば長さ750mm、幅57mm、厚さ75μmである。   An example of a method for producing the negative electrode plate 12 is as follows. First, a graphite powder as a negative electrode active material and a dispersion of styrene butadiene rubber (SBR) (styrene: butadiene = 1: 1) as a binder are dispersed in water, and carboxymethyl cellulose (CMC) as a thickener is further dispersed. ) To prepare a negative electrode active material mixture slurry. In addition, the dry mass ratio of this negative electrode active material mixture slurry is prepared such that, for example, graphite: SBR: CMC = 95: 3: 2. The negative electrode active material mixture slurry is applied to both surfaces of a copper foil core having a thickness of 10 μm by the doctor blade method, dried, and then compressed by a compression roller to produce the negative electrode plate 12. The produced negative electrode plate 12 has, for example, a length of 750 mm, a width of 57 mm, and a thickness of 75 μm.

渦巻状に巻回された巻回電極体14は具体的には以下の方法によって作製される。まず、正極板11と負極板12をポリエチレン製微多孔膜のセパレータ13を挟んで互いに絶縁した状態で重ね合わせ、セパレータ13の先端部分図6Aに示した従来例のものと同様の巻芯に巻き付ける。ここで、重ね合わせた状態ではセパレータ13、正極板11、セパレータ13、負極板12の順に配された状態になっている。セパレータ13は正極板11と負極板12よりも長く幅も広い。一方、負極板12は正極板11よりも幅広になっている。   The spirally wound electrode body 14 wound in a spiral shape is specifically manufactured by the following method. First, the positive electrode plate 11 and the negative electrode plate 12 are overlapped with each other while being insulated from each other with a polyethylene microporous membrane separator 13 interposed therebetween, and wound around a core similar to that of the conventional example shown in FIG. 6A. . Here, in the overlapped state, the separator 13, the positive electrode plate 11, the separator 13, and the negative electrode plate 12 are arranged in this order. The separator 13 is longer and wider than the positive electrode plate 11 and the negative electrode plate 12. On the other hand, the negative electrode plate 12 is wider than the positive electrode plate 11.

正極板11の巻き始め部分にはアルミニウム製の集電タブ11aの一端が溶接されている。負極板12の巻き終わり部分には同じくニッケル製の集電タブ12aの一端が溶接されている。集電タブ11a、12aは、可撓性の平板であり、表面は、両端の溶接部分を除いて、絶縁被膜で覆われている。また、渦巻状に巻回された巻回電極体14は巻回状態が維持されるように最外周を絶縁テープ(図示せず)で止められている。   One end of an aluminum current collecting tab 11 a is welded to the winding start portion of the positive electrode plate 11. Similarly, one end of a current collecting tab 12a made of nickel is welded to the winding end portion of the negative electrode plate 12. The current collecting tabs 11a and 12a are flexible flat plates, and their surfaces are covered with an insulating film except for welded portions at both ends. In addition, the outermost periphery of the wound electrode body 14 wound in a spiral shape is stopped with an insulating tape (not shown) so that the wound state is maintained.

このような状態で巻芯を取り除き、巻回電極体14の端部側から巻芯跡空間14aを眺めると、例えば図2Aに示すとおりとなる。なお、図2Aにおいては、巻芯跡空間14a内に残存しているセパレータ13aのうち、丸印で囲んだ部分が膨らみの先端位置13bである。このような状態の巻回電極体14では、例えば図2Bの二点鎖線で描かれた部分14b部分は整形棒による整形が必要とされない部分である。そこで、本発明では、一般的に使用されている画像処理装置(図示せず)を用い、図2Cに示すように、巻芯跡空間14aに残存するセパレータ13aの位置及び膨らみの先端位置13bを認識するとともに、巻芯跡空間14aの最大径部分に対応する外接円CCと、この外接円CCと巻芯跡空間14aに残存するセパレータ13bとの間に形成される最大径の内接ICとを求める。   When the winding core is removed in such a state and the winding core trace space 14a is viewed from the end side of the winding electrode body 14, for example, as shown in FIG. 2A. In FIG. 2A, of the separator 13a remaining in the core trace space 14a, the portion surrounded by a circle is the bulging tip position 13b. In the wound electrode body 14 in such a state, for example, a portion 14b drawn by a two-dot chain line in FIG. 2B is a portion that does not require shaping with a shaping rod. Therefore, in the present invention, a commonly used image processing apparatus (not shown) is used, and as shown in FIG. 2C, the position of the separator 13a remaining in the core trace space 14a and the tip position 13b of the bulge are determined. A circumscribed circle CC corresponding to the maximum diameter portion of the core trace space 14a and a maximum diameter inscribed IC formed between the circumscribed circle CC and the separator 13b remaining in the core trace space 14a Ask for.

ここで、巻芯跡空間14aの最大径部分に対応する外接円CCは、実質的に巻芯(図6A参照)の直径に対応する部分であって、巻芯跡空間14aに残存しているセパレータ13a部分を除外したセパレータ13部分の内周に相当する。また、外接円CCと巻芯跡空間14aに残存するセパレータ13aとの間に形成される最大径の内接円ICは、外接円CCと巻芯跡空間14aに残存するセパレータ13aとの間に形成される複数の内接円のうち最大径のもの、すなわち、外接円CCと巻芯跡空間14aに残存するセパレータ13aとの間の距離が最も大きい側の内接円ICを示す。   Here, the circumscribed circle CC corresponding to the maximum diameter portion of the core trace space 14a is a portion substantially corresponding to the diameter of the core (see FIG. 6A) and remains in the core trace space 14a. This corresponds to the inner periphery of the separator 13 portion excluding the separator 13a portion. In addition, the maximum inscribed circle IC formed between the circumscribed circle CC and the separator 13a remaining in the core trace space 14a is between the circumscribed circle CC and the separator 13a remaining in the core trace space 14a. The inscribed circle IC having the largest diameter among the plurality of formed inscribed circles, that is, the inscribed circle IC on the side where the distance between the circumscribed circle CC and the separator 13a remaining in the core trace space 14a is the longest is shown.

このような画像処認識工程を得た後、巻芯跡空間14a内に残存しているセパレータ13aの整形工程が行われるが、この整形工程を図3及び図4を用いて説明する。なお、図3A〜図3Hにおいては、整形工程の各段階における巻回電極体14の垂直断面と整形棒30との相対的位置及び巻回電極体14の端部側から見た整形棒30の相対的位置が同時に示されており、一部の図面においては一部の参照符号が省略されている。また、図4には図3A〜図3Hに対応する時点を括弧書きで示してある。なお、ここでは、巻回電極体14は垂直に立てて固定されており、整形棒30は3軸制御によりX,Y,Z軸に沿って自動的に駆動されるようになっている。また、整形棒30は、従来例の場合と同様に、先細となっているとともに、セパレータ13の熱整形可能温度に加熱されている。   After obtaining such an image processing recognition process, a shaping process of the separator 13a remaining in the core trace space 14a is performed. This shaping process will be described with reference to FIGS. 3A to 3H, the relative position between the vertical cross section of the wound electrode body 14 and the shaping rod 30 in each stage of the shaping process and the shaping rod 30 as viewed from the end side of the wound electrode body 14. The relative positions are shown at the same time, and some reference numerals are omitted in some drawings. In FIG. 4, the time points corresponding to FIGS. 3A to 3H are shown in parentheses. Here, the wound electrode body 14 is vertically fixed and fixed, and the shaping rod 30 is automatically driven along the X, Y, and Z axes by three-axis control. Further, the shaping rod 30 is tapered and heated to a temperature at which the separator 13 can be thermally shaped, as in the case of the conventional example.

最初に、整形棒30を原点Oに位置させる(図3A)。原点Oは整形棒30のZ軸方向の上死点位置でもある。次いで、整形棒30の中心30aが内接円ICの中心A点上に位置するように水平移動させる(図3B)。その後、整形棒30を下降させながら整形棒30の中心30aが外接円CCの中心B点に位置するまで移動させる(図3C)。その後、整形棒30の下死点到達と同時に、整形棒30を巻芯跡空間14aに残存するセパレータ13aの膨らみの先端位置13b側に向けて移動させ、前記巻芯跡空間14aに残存しているセパレータ13aの整形を開始する(図3D)。この整形棒の移動は、巻芯跡空間14aに残存するセパレータ13aの膨らみの先端位置13bに向けた直線的な移動又は円弧状の移動とする(図3E)。整形終了後は、整形棒30を再度外接円CCの中心点に戻し、整形棒の上方への引き上げを開始する(図3F)。整形棒30が巻回電極体14の巻芯後空間14aから抜ける(図3G)と同時に原点位置Oへの移動を開始し、整形棒30を最初の位置に戻させる(図3H)。このようにして一連の巻芯跡空間14aに残存するセパレータ13aの整形工程を終える。   First, the shaping rod 30 is positioned at the origin O (FIG. 3A). The origin O is also the top dead center position of the shaping rod 30 in the Z-axis direction. Next, the shaping rod 30 is horizontally moved so that the center 30a is positioned on the center A point of the inscribed circle IC (FIG. 3B). Thereafter, the shaping rod 30 is moved down until the center 30a of the shaping rod 30 is positioned at the center B point of the circumscribed circle CC (FIG. 3C). Thereafter, simultaneously with reaching the bottom dead center of the shaping rod 30, the shaping rod 30 is moved toward the bulging tip position 13b of the separator 13a remaining in the core trace space 14a, and remains in the core trace space 14a. The shaping of the separator 13a is started (FIG. 3D). This movement of the shaping rod is a linear movement or a circular movement toward the tip position 13b of the bulge of the separator 13a remaining in the core trace space 14a (FIG. 3E). After the shaping is completed, the shaping rod 30 is returned to the center point of the circumscribed circle CC again, and the raising of the shaping rod is started (FIG. 3F). At the same time that the shaping rod 30 comes out of the post-core space 14a of the wound electrode body 14 (FIG. 3G), the movement to the origin position O is started and the shaping rod 30 is returned to the initial position (FIG. 3H). In this way, the shaping process of the separator 13a remaining in the series of core trace spaces 14a is completed.

本実施形態の整形工程における整形棒30の動きの軌跡を図5A及び図5Bに、また、従来例の整形棒30の動きの軌跡を図5Cに示した。なお、図5Aは図3Eにおいて整形棒30を巻芯跡空間14aに残存するセパレータ13aの膨らみの先端位置13b側に向けて直線的に移動させた際の軌跡であり、図5Bは同じく図3Eにおいて円弧状に移動させた際の軌跡である。また、図5Cは整形棒30を巻芯跡空間14aの中心点(外接円の中心点に等しい)に直接挿入した後、環状に移動させて芯跡空間14aの内面全体に亘って整形した際の軌跡である。   5A and 5B show the movement trajectory of the shaping rod 30 in the shaping process of the present embodiment, and FIG. 5C shows the movement trajectory of the shaping rod 30 of the conventional example. 5A is a locus when the shaping rod 30 is linearly moved toward the tip end position 13b side of the bulge of the separator 13a remaining in the core trace space 14a in FIG. 3E, and FIG. 5B is also the same as FIG. 3E. Is a trajectory when moved in an arc. 5C shows a case where the shaping rod 30 is directly inserted into the center point of the core trace space 14a (equal to the center point of the circumscribed circle) and then moved in an annular shape to shape the entire inner surface of the core trace space 14a. The trajectory.

図5A〜図5Cを対比すると明らかなように、本実施形態の整形工程によれば、整形が不要な部分(図2B参照)を認識できるため、整形が不要な部分については整形せず、整形が必要な部分のみを直接整形することができる。それに対し、従来例の整形工程では、整形が不要な部分を認識していないため、整形跡空間14aの内面全体に整形棒30を当接させて整形している。そのため、本実施形態の整形工程では、全整形工程に必要とする時間を従来例の場合と同様とした場合、整形棒30の押し当て時間を従来例では約0.012秒であったものを0.1秒以上確保することができるようになり、確実に巻芯跡空間14aに残存するセパレータ13aを整形することができるようになる。   5A to 5C, the shaping process according to the present embodiment can recognize a portion that does not require shaping (see FIG. 2B), so that the portion that does not need shaping is not shaped. Only the necessary parts can be directly shaped. On the other hand, in the shaping process of the conventional example, since the portion that does not require shaping is not recognized, the shaping rod 30 is brought into contact with the entire inner surface of the shaped trace space 14a and shaped. Therefore, in the shaping process of the present embodiment, when the time required for the entire shaping process is the same as in the conventional example, the pressing time of the shaping rod 30 is about 0.012 seconds in the conventional example. It becomes possible to secure 0.1 second or more, and the separator 13a remaining in the core trace space 14a can be shaped with certainty.

このようにして整形工程を終えた巻回状電極14は、図7に示した従来例の場合と同様の溶接工程を経て、必要であれは巻芯跡空間14a内にセンターピンを挿入し、所定量の非水電解質を電池外装缶17内に注入した後、図1に示したように、安全弁18を兼ねる正極端子19の周囲に絶縁ガスケット21を当接して正極端子19と電池外装缶17との間を電気的に絶縁し、電池外装缶17の先端部をカシメることによって実施形態の非水電解質二次電池10を得る。なお、安全弁18は、非水電解質二次電池10の内部でガスが発生して電池内部の圧力が規定値を超えた場合、ガスを非水電解質二次電池10の外部に排出するために設けられたものである。また、この実施形態の非水電解質二次電池10のサイズは、直径18mm、高さ65mmであり、設計容量は2600mAhである。   The wound electrode 14 having finished the shaping process in this way is subjected to the same welding process as in the conventional example shown in FIG. 7, and if necessary, a center pin is inserted into the core trace space 14a. After injecting a predetermined amount of nonaqueous electrolyte into the battery outer can 17, as shown in FIG. 1, an insulating gasket 21 is brought into contact with the periphery of the positive electrode terminal 19 that also serves as the safety valve 18, so that the positive electrode terminal 19 and the battery outer can 17 The nonaqueous electrolyte secondary battery 10 of the embodiment is obtained by electrically insulating the battery outer can 17 and crimping the tip of the battery outer can 17. The safety valve 18 is provided to discharge gas to the outside of the non-aqueous electrolyte secondary battery 10 when gas is generated inside the non-aqueous electrolyte secondary battery 10 and the pressure inside the battery exceeds a specified value. It is what was done. The size of the nonaqueous electrolyte secondary battery 10 of this embodiment is 18 mm in diameter and 65 mm in height, and the design capacity is 2600 mAh.

なお、非水電解質の一例としては、エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)とをそれぞれ15:10:65:10(体積比、20℃)となるように混合した混合溶媒にLiPFを1モル/リットルとなるように溶解したものを使用し得る。 As an example of the non-aqueous electrolyte, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) are each 15: 10: 65: 10 (volume ratio, 20 ° C. ) LiPF 6 dissolved in a mixed solvent so as to become 1 mol / liter can be used.

なお、上記実施形態では、非水電解質二次電池の場合を例にとって説明したが、本発明は、帯状の正極板及び負極板間にセパレータを介在させ、このセパレータの端部あるいは中央部を巻き始め部として巻芯により渦巻状に巻回した巻回電極を使用する電池であれば、例えばニッケル−カドミウム二次電池、ニッケル−水素二次電池等に対しても適用することができる。   In the above embodiment, the case of a non-aqueous electrolyte secondary battery has been described as an example. However, in the present invention, a separator is interposed between the strip-like positive electrode plate and the negative electrode plate, and the end portion or the central portion of the separator is wound. Any battery that uses a spirally wound electrode wound around a winding core as a starting portion can be applied to, for example, a nickel-cadmium secondary battery or a nickel-hydrogen secondary battery.

は実施形態で製造した円筒形の非水電解質二次電池を縦方向に切断して示す斜視図である。1 is a perspective view showing a cylindrical nonaqueous electrolyte secondary battery manufactured in an embodiment cut in a vertical direction. FIG. 図2Aは巻芯を取り除いた跡の巻回電極体端部側から見た拡大平面図であり、図2Bは図2Aの成型を必要としない部分を示す図であり、図2Cは図2Aに示す巻回電極体について画像認識によって認識した外接円及び内接円を描いた図である。FIG. 2A is an enlarged plan view of the trace from which the winding core has been removed as viewed from the end side of the wound electrode body, FIG. 2B is a diagram showing a portion that does not require the molding of FIG. 2A, and FIG. It is the figure which drawn the circumscribed circle and inscribed circle which were recognized by image recognition about the winding electrode body shown. 図3A〜図3Hはセパレータの整形工程における整形棒の動きを順を追って説明する図である。3A to 3H are diagrams for explaining the movement of the shaping bar in the separator shaping process step by step. 図3に示した整形工程のタイミングチャートである。It is a timing chart of the shaping process shown in FIG. 図5Aは実施形態の整形棒の直線状の動きを説明する図であり、図5Bは実施形態の整形棒の曲線状の動きを説明する図であり、図5Cは従来例の整形棒の曲線状の動きを説明する図である。5A is a diagram for explaining the linear motion of the shaping rod of the embodiment, FIG. 5B is a diagram for explaining the curved motion of the shaping rod of the embodiment, and FIG. 5C is a curve of the shaping rod of the conventional example. It is a figure explaining movement of a shape. 図6Aは巻芯にセパレータを巻き付ける状態を示す斜視図であり、図6Bは巻芯を抜き取った状態を示す図である。FIG. 6A is a perspective view showing a state in which the separator is wound around the core, and FIG. 6B is a diagram showing a state in which the core is removed. 巻回状電極体の一方の集電リードを電池外装缶の底部内面に溶接する工程を示す断面図である。It is sectional drawing which shows the process of welding one current collection lead of a winding electrode body to the bottom part inner surface of a battery exterior can. セパレータの変位工程を示す斜視図である。It is a perspective view which shows the displacement process of a separator.

符号の説明Explanation of symbols

10:非水電解質二次電池 11:正極板 11a:正極集電タブ 12:負極板 12a:負極集電タブ 13:セパレータ 13a:(巻芯跡空間に残存する)セパレータ 13b:先端部 14:巻回電極体 14a:巻芯跡空間 15、16:絶縁板 17:電池外装缶 18:安全弁 19:正極端子 21:ガスケット 10: Nonaqueous electrolyte secondary battery 11: Positive electrode plate 11a: Positive electrode current collecting tab 12: Negative electrode plate 12a: Negative electrode current collecting tab 13: Separator 13a: Separator 13b (remaining in the core trace space) 13b: Tip portion 14: Winding Rotating electrode body 14a: Winding core trace space 15, 16: Insulating plate 17: Battery outer can 18: Safety valve 19: Positive electrode terminal 21: Gasket

Claims (4)

帯状の正極板及び負極板間にセパレータを介在させ、このセパレータの端部あるいは中央部を巻き始め部として巻芯により渦巻状に巻回して巻回電極体を形成する工程と、
前記巻回電極体から巻芯を取り除いて巻芯跡空間を有する巻回電極体を形成する工程と、
前記巻回電極体の巻芯跡空間に残存するセパレータを整形棒によって巻芯跡空間の内周壁に変位させる整形工程と、
を有する巻回電極体を備えた電池の製造方法であって、
前記整形工程は、予め画像認識工程において、前記巻芯跡空間に残存するセパレータの位置及び膨らみの先端位置を認識するとともに、前記巻芯跡空間の最大径部分に対応する外接円と、前記外接円と前記巻芯跡空間に残存するセパレータとの間に形成される最大径の内接円を求めておき、前記整形棒を、前記内接円の中心に挿入した後に前記外接円の中心に向けて移動させ、次いで、前記巻芯跡空間に残存するセパレータの膨らみの先端位置に向かって直線的又は曲線的に移動させることを特徴とする巻回電極体を備えた電池の製造方法。
A step of interposing a separator between the belt-like positive electrode plate and the negative electrode plate, and forming a wound electrode body by winding the end or center of the separator in a spiral shape with a winding core as a winding start portion;
Removing the core from the wound electrode body and forming a wound electrode body having a core trace space;
A shaping step of displacing the separator remaining in the core trace space of the wound electrode body to the inner peripheral wall of the core trace space with a shaping rod;
A method for producing a battery comprising a wound electrode body having
The shaping step recognizes the position of the separator remaining in the core trace space and the tip position of the bulge in the image recognition step in advance, and the circumscribed circle corresponding to the maximum diameter portion of the core trace space, and the circumscribed circle A maximum inscribed circle formed between the circle and the separator remaining in the core trace space is obtained, and after the shaping rod is inserted into the center of the inscribed circle, A method for producing a battery having a wound electrode body, wherein the battery is moved linearly or curvedly toward the tip of the bulge of the separator remaining in the core trace space.
前記整形棒は、前記整形棒の先端が前記巻芯跡空間内の内接円内に入った時点で、前記巻芯跡空間内に更に挿入させつつ前記外接円の中心に向けて移動させることを特徴とする請求項1に記載の電池の製造方法。   The shaping rod is moved toward the center of the circumscribed circle while being further inserted into the core trace space when the tip of the shaping rod enters the inscribed circle in the core trace space. The method for producing a battery according to claim 1. 前記整形工程は、前記巻芯跡空間を有する巻回電極体を固定し、前記整形棒を3軸方向に移動させることにより行なわれることを特徴とする請求項1に記載の電池の製造方法。   2. The battery manufacturing method according to claim 1, wherein the shaping step is performed by fixing a wound electrode body having the winding core trace space and moving the shaping rod in three axial directions. 前記整形棒は、先端が先細であり、前記セパレータの熱整形可能温度に加熱されていることを特徴とする請求項1に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein the shaping rod has a tapered tip and is heated to a temperature at which the separator can be thermally shaped.
JP2008216053A 2008-08-26 2008-08-26 Method for manufacturing battery with wound electrode body Pending JP2010055753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216053A JP2010055753A (en) 2008-08-26 2008-08-26 Method for manufacturing battery with wound electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216053A JP2010055753A (en) 2008-08-26 2008-08-26 Method for manufacturing battery with wound electrode body

Publications (1)

Publication Number Publication Date
JP2010055753A true JP2010055753A (en) 2010-03-11

Family

ID=42071473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216053A Pending JP2010055753A (en) 2008-08-26 2008-08-26 Method for manufacturing battery with wound electrode body

Country Status (1)

Country Link
JP (1) JP2010055753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313241A1 (en) * 2017-09-29 2020-10-01 Panasonic Intellectual Property Management Co., Ltd. Cylindrical secondary battery
CN114597506A (en) * 2022-03-16 2022-06-07 厦门海辰新能源科技有限公司 Rolling core flattening device and rolling core flattening forming method
WO2023080440A1 (en) * 2021-11-08 2023-05-11 주식회사 엘지에너지솔루션 Reform pin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225998A (en) * 1992-02-15 1993-09-03 Sony Corp Manufacture of spiral type electrode structure for battery
JP2002289251A (en) * 2001-03-27 2002-10-04 Toshiba Battery Co Ltd Device and method for monitoring electrode body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225998A (en) * 1992-02-15 1993-09-03 Sony Corp Manufacture of spiral type electrode structure for battery
JP2002289251A (en) * 2001-03-27 2002-10-04 Toshiba Battery Co Ltd Device and method for monitoring electrode body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313241A1 (en) * 2017-09-29 2020-10-01 Panasonic Intellectual Property Management Co., Ltd. Cylindrical secondary battery
WO2023080440A1 (en) * 2021-11-08 2023-05-11 주식회사 엘지에너지솔루션 Reform pin
CN114597506A (en) * 2022-03-16 2022-06-07 厦门海辰新能源科技有限公司 Rolling core flattening device and rolling core flattening forming method
CN114597506B (en) * 2022-03-16 2023-04-07 厦门海辰储能科技股份有限公司 Rolling core flattening device and rolling core flattening forming method

Similar Documents

Publication Publication Date Title
JP2010232089A (en) Sealed cell
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP2003317805A (en) Cylindrical lithium ion secondary cell, and manufacturing method of the same
JP2009059572A (en) Nonaqueous electrolyte secondary battery
JP4535699B2 (en) Sealed battery with cleavage groove
JPWO2013031056A1 (en) Square battery
JP4097443B2 (en) Lithium secondary battery
JP2006278184A (en) Square battery and its manufacturing method
JP2006278267A (en) Nonaqueous electrolyte battery
JP2008123858A (en) Square type non-aqueous electrolyte secondary battery and its manufacturing method
JP2003132876A (en) Sealed battery and liquid pouring hole sealing method the battery
JP2010055753A (en) Method for manufacturing battery with wound electrode body
JP5064699B2 (en) Cylindrical battery and manufacturing method thereof
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
WO2005093892A1 (en) Secondary battery
US8420241B2 (en) Sealed cell
JP2008218133A (en) Nonaqueous secondary battery and manufacturing method therefor
JP2010277784A (en) Sealed battery and its manufacturing method
JP2010277785A (en) Sealed battery and its manufacturing method
JP4045627B2 (en) Explosion-proof non-aqueous secondary battery
JP4272657B2 (en) Non-aqueous secondary battery
JP2005093186A (en) Cylindrical battery armoring can, nonaqueous electrolyte battery using it, and manufacturing method of nonaqueous electrolyte battery
JP2011054319A (en) Nonaqueous electrolyte secondary battery
JP2011060656A (en) Method of manufacturing electrode group for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4171198B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130808