JP2010054677A - Method and device for adjusting tilt of lens - Google Patents

Method and device for adjusting tilt of lens Download PDF

Info

Publication number
JP2010054677A
JP2010054677A JP2008217936A JP2008217936A JP2010054677A JP 2010054677 A JP2010054677 A JP 2010054677A JP 2008217936 A JP2008217936 A JP 2008217936A JP 2008217936 A JP2008217936 A JP 2008217936A JP 2010054677 A JP2010054677 A JP 2010054677A
Authority
JP
Japan
Prior art keywords
lens
adjusted
tilt
image
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008217936A
Other languages
Japanese (ja)
Inventor
Yukinobu Nakabayashi
幸信 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008217936A priority Critical patent/JP2010054677A/en
Publication of JP2010054677A publication Critical patent/JP2010054677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for adjusting tilt of a lens so that the lens does not tilt relative to a lens frame. <P>SOLUTION: Illuminating light from a ring type light source 300 is radiated to a lens to be adjusted 23, an image of reflected light from an optical surface is received by a CCD, and a shifted amount of the image by eccentricity caused when the lens is titled is detected and converted into a tilt angle, then the tilt of the lens is corrected by using an actuator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光通信用レンズ、撮像系用レンズ及び光ディスク用レンズ等のレンズ傾き調整方法、及びレンズ傾き調整装置に関するものである。   The present invention relates to a lens tilt adjusting method and a lens tilt adjusting device such as an optical communication lens, an imaging system lens, and an optical disk lens.

光通信用レンズ等の光学素子のコンパクト化及び非球面レンズの多様化により、レンズを光学ユニットに組込む際に、厳密な位置決め調整精度が要求されている。特許文献1には、レンズ系を構成するレンズ間の偏心量を小さくするために、点光源からの光をレンズ系に透過させ、その点像の位置や形状を観察することで、レンズ間の偏心量を計測し、レンズ系の組立時に光軸調整を行うという方法と装置とが開示されている。
特開昭60−150016号公報
Due to the downsizing of optical elements such as optical communication lenses and the diversification of aspherical lenses, strict positioning adjustment accuracy is required when the lenses are incorporated into the optical unit. In Patent Document 1, in order to reduce the amount of decentration between lenses constituting a lens system, light from a point light source is transmitted through the lens system, and the position and shape of the point image are observed. A method and apparatus for measuring the amount of eccentricity and adjusting the optical axis when assembling a lens system are disclosed.
Japanese Patent Laid-Open No. 60-150016

しかし、特許文献1に開示されている技術を用いれば、レンズ系を構成するレンズ間の偏心量を少なく調整することはできるが、レンズを組込む鏡枠に対するレンズの傾斜角を調整することはできない。レンズは鏡枠ごと光学ユニットに組付調整される場合も多く、レンズが鏡枠に対して少なからず傾斜していると、光学ユニットの光軸に対してレンズが傾斜してしまい、所望の性能を有する光学ユニットを得ることができない。本発明は上記問題に鑑み、鏡枠に対してレンズが傾斜しないように調整できる調整方法及び調整装置を提供することを目的とするものである。   However, if the technique disclosed in Patent Document 1 is used, the amount of eccentricity between the lenses constituting the lens system can be adjusted to be small, but the tilt angle of the lens with respect to the lens frame in which the lens is incorporated cannot be adjusted. . The lens is often assembled and adjusted together with the lens frame in the optical unit. If the lens is tilted with respect to the lens frame, the lens tilts with respect to the optical axis of the optical unit, and the desired performance is achieved. It is not possible to obtain an optical unit having In view of the above problems, an object of the present invention is to provide an adjustment method and an adjustment device that can be adjusted so that a lens is not inclined with respect to a lens frame.

前述の目的は、下記に記載する発明により達成される。   The above object is achieved by the invention described below.

1.レンズと、該レンズを組込む鏡枠の基準平面とのなす傾きを調整するレンズ傾き調整方法であって、
発光面が円周状であるリング状光源からの照明光を、前記基準平面に照射し、前記基準平面からの第1の反射光を、結像系を通過させて、所定の位置に配置したセンサに受光させる工程と、
前記センサの出力から前記第1の反射光の重心位置を求める工程と、
前記鏡枠に前記レンズを組込んだ後、前記レンズの光学面からの第2の反射光を、前記結像系を通過させて、前記センサに受光させる工程と、
前記センサの出力から前記第2の反射光の重心位置を求める工程と、
前記第1の反射光の重心位置と前記第2の反射光の重心位置に基づいて前記レンズを傾斜させる工程と、
を含むことを特徴とするレンズ傾き調整方法。
1. A lens tilt adjustment method for adjusting a tilt between a lens and a reference plane of a lens frame in which the lens is incorporated,
Illumination light from a ring-shaped light source having a circumferential light emitting surface is irradiated to the reference plane, and the first reflected light from the reference plane is passed through the imaging system and arranged at a predetermined position. A step of causing the sensor to receive light;
Obtaining the position of the center of gravity of the first reflected light from the output of the sensor;
After incorporating the lens into the lens frame, passing the second reflected light from the optical surface of the lens through the imaging system and receiving the sensor;
Obtaining the position of the center of gravity of the second reflected light from the output of the sensor;
Tilting the lens based on the position of the center of gravity of the first reflected light and the position of the center of gravity of the second reflected light;
A method of adjusting the tilt of the lens.

2.レンズと、当該レンズを組込む鏡枠の基準平面とのなす傾きを調整するレンズ傾き調整装置であって、
発光面が円周状であるリング状光源からの照明光を投光する手段と、
前記リング状光源の内側に光軸を有する結像系と、
前記結像系によって結像された前記照明光を受光するセンサと、
前記センサの出力に基づいて、前記レンズを傾斜させる傾斜手段と、
を有することを特徴とするレンズ傾き調整装置。
2. A lens tilt adjusting device that adjusts a tilt between a lens and a reference plane of a lens frame in which the lens is incorporated,
Means for projecting illumination light from a ring-shaped light source having a circumferential light emitting surface;
An imaging system having an optical axis inside the ring-shaped light source;
A sensor for receiving the illumination light imaged by the imaging system;
Tilting means for tilting the lens based on the output of the sensor;
A lens tilt adjusting device comprising:

本発明によれば、鏡枠に対してレンズが傾斜しないように調整できる。これにより、鏡枠に組込まれたレンズを、光学ユニットへ組付調整する精度を向上でき、所望の性能を有する光学ユニットを提供することができる。   According to the present invention, the lens can be adjusted so as not to be inclined with respect to the lens frame. Thereby, the accuracy of assembling and adjusting the lens assembled in the lens frame to the optical unit can be improved, and an optical unit having desired performance can be provided.

本発明のレンズ傾き調整方法、及びそのレンズ傾き調整方法を実施するレンズ傾き調整装置の実施の形態を図面に基づいて説明するが、本発明は該実施の形態に限定されるものではない。   An embodiment of a lens tilt adjusting method and a lens tilt adjusting apparatus that performs the lens tilt adjusting method of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiment.

最初に本発明に係るレンズ傾き調整装置500の概略構成を図1に示し説明する。レンズ傾き調整装置500は、リング状光源300、光軸調整部100、CCD信号処理部7、画像処理部8、演算処理部9、表示部10、駆動部11、アクチュエータ12、13、紫外線露光装置16などからなる。   First, a schematic configuration of a lens tilt adjusting apparatus 500 according to the present invention will be described with reference to FIG. The lens tilt adjustment device 500 includes a ring-shaped light source 300, an optical axis adjustment unit 100, a CCD signal processing unit 7, an image processing unit 8, an arithmetic processing unit 9, a display unit 10, a drive unit 11, actuators 12 and 13, and an ultraviolet exposure device. 16 or the like.

リング状光源300は、発光面が円周状をなす光源である。図2(a)にリング状光源の光の照射面側から見た概略図を示す。照射面21に点光源であるLED(Light emitted Diode)を円周上に同一間隔で設けたタイプである。LEDの他に電球を用いてもよい。また、LED等のような点光源ではなく、EL(Electronic Luminessence)発光体を円周状に連続に形成したタイプでもよい。   The ring-shaped light source 300 is a light source whose light emitting surface has a circumferential shape. FIG. 2A shows a schematic view seen from the light irradiation surface side of the ring-shaped light source. This is a type in which LEDs (Light Emitted Diodes), which are point light sources, are provided on the irradiation surface 21 at the same interval on the circumference. You may use a light bulb other than LED. Further, instead of a point light source such as an LED, a type in which EL (Electronic Luminescence) light emitters are continuously formed in a circumferential shape may be used.

同図(b)にレンズを保持する光軸調整部100を示す。光軸調整部100は、中央にレンズを保持する凹状のスペースを備える。光軸調整部100の材質としてはアルミなどの金属材料の他、テフロン(登録商標)などのプラスチック材料の採用が好ましい。特にテフロン(登録商標)はレンズ面を傷つけないのでより好ましい。図2(c)に示すように、光軸調整部100は、凹部にレンズの鏡枠22と、その鏡枠に傾き調整する対象である被調整レンズ23を組込む構造となっている。被調整レンズ23の鏡枠22は段差部24に突き当てる状態で位置保持され、被調整レンズ23は、底面25に接触して位置保持される。段差部24の底面25からの高さは、各レンズのサイズに合わせて設定する。   FIG. 2B shows the optical axis adjustment unit 100 that holds the lens. The optical axis adjustment unit 100 includes a concave space that holds the lens in the center. As the material of the optical axis adjustment unit 100, it is preferable to use a metal material such as aluminum or a plastic material such as Teflon (registered trademark). In particular, Teflon (registered trademark) is more preferable because it does not damage the lens surface. As shown in FIG. 2C, the optical axis adjustment unit 100 has a structure in which a lens barrel 22 of a lens and a lens 23 to be adjusted that is an object of tilt adjustment are incorporated in the recess. The lens frame 22 of the lens 23 to be adjusted is held in a position where it abuts against the step portion 24, and the lens 23 to be adjusted is held in contact with the bottom surface 25. The height of the step portion 24 from the bottom surface 25 is set according to the size of each lens.

リング状光源300からの光は、図1に示すように被調整レンズ23を照射する。被調整レンズ23のリング状光源300側の面にはアクチュエータ12、13からプローブ121、131が伸ばされていて、被調整レンズ23の表面に軽く接触している。   The light from the ring light source 300 irradiates the adjusted lens 23 as shown in FIG. Probes 121 and 131 are extended from the actuators 12 and 13 to the surface of the lens to be adjusted 23 on the ring-shaped light source 300 side, and lightly contact the surface of the lens to be adjusted 23.

演算処理部9が駆動部11に指示し、例えばアクチュエータ12を同図に示したXYZ座標系におけるY方向のマイナス方向に移動させ、アクチュエータ13をY方向のプラス方向に移動させることで、被調整レンズ23は底面25に接触するポイントを支持部として光軸調整部100の凹部内で回転する構造となっている。なお、演算処理部9は、レンズ傾き調整装置500の各部を統括的に制御する機能を有し、制御プログラムやデータ等を記憶するROM、制御プログラムに従って演算等を実行するCPU、CPUがワークエリアとして利用するRAM、等から構成されている。   The arithmetic processing unit 9 instructs the drive unit 11 to move the actuator 12 in the negative direction of the Y direction in the XYZ coordinate system shown in the figure, and move the actuator 13 in the positive direction of the Y direction. The lens 23 has a structure that rotates in the concave portion of the optical axis adjustment unit 100 with a point contacting the bottom surface 25 as a support unit. The arithmetic processing unit 9 has a function of comprehensively controlling each part of the lens tilt adjusting device 500, a ROM that stores a control program, data, and the like, a CPU that executes arithmetic and the like according to the control program, and a CPU that has a work area. It is comprised from RAM etc. which are utilized as.

リング状光源300からの光は被調整レンズ23の光学面S1や、光学面S2で反射して結像レンズ101を通過して受光素子であるCCD(Charge Coupled Devise)102に入射する。結像レンズ101は、単レンズでもいいし、複数枚のレンズからなるレンズ系であってもよい。CCD102の撮像面上では、被調整レンズ23の光学面S1または光学面S2面で反射したリング状光源300の像が写り込んでいる。リング状光源300の像の形状は、CCD102、結像レンズ101、リング状光源300、被調整レンズ23の位置関係、及び結像レンズ101の諸元設定に基づいて決定される。被調整レンズ23の傾斜角を求めるに際し、使用者は傾斜角を求める対象として、光学面S1または光学面S2のどちらを選択してもよい。   Light from the ring-shaped light source 300 is reflected by the optical surface S1 of the lens 23 to be adjusted and the optical surface S2, passes through the imaging lens 101, and enters a CCD (Charge Coupled Device) 102 that is a light receiving element. The imaging lens 101 may be a single lens or a lens system including a plurality of lenses. On the imaging surface of the CCD 102, an image of the ring-shaped light source 300 reflected by the optical surface S1 or the optical surface S2 of the lens 23 to be adjusted is reflected. The shape of the image of the ring-shaped light source 300 is determined based on the positional relationship between the CCD 102, the imaging lens 101, the ring-shaped light source 300, the adjusted lens 23, and the specification settings of the imaging lens 101. When obtaining the inclination angle of the lens 23 to be adjusted, the user may select either the optical surface S1 or the optical surface S2 as an object for obtaining the inclination angle.

CCD102からの出力信号は、CCD信号処理部7へ送られ、CCD信号処理部7は受光した像の光強度に相当するビデオ信号を発生させ、画像処理部8に送信する。画像処理部8においては、受信したビデオ信号を画像信号に変換する。なお、CCD信号処理部7は、CCD102内に設けても良いし、演算処理部9内に設けてもよい。画像信号はマイクロコンピューターから構成される演算処理部9に送信され、演算により、光強度の重心などを求める。   An output signal from the CCD 102 is sent to the CCD signal processing unit 7, which generates a video signal corresponding to the light intensity of the received image and transmits it to the image processing unit 8. The image processing unit 8 converts the received video signal into an image signal. The CCD signal processing unit 7 may be provided in the CCD 102 or may be provided in the arithmetic processing unit 9. The image signal is transmitted to an arithmetic processing unit 9 composed of a microcomputer, and the center of gravity of the light intensity is obtained by calculation.

重心を求める場合には、CCD102のかわりにPSD(Position Sensing Detector)を用いても良い。その場合、画像処理部8のかわりにPSDの出力信号を処理する信号処理部を用いる。   When obtaining the center of gravity, a PSD (Position Sensing Detector) may be used instead of the CCD 102. In this case, a signal processing unit that processes PSD output signals is used instead of the image processing unit 8.

演算処理部9は、得られたCCD102の出力信号に基づいて、後述の演算処理を施し被調整レンズ23の傾斜角を算出し、傾斜角が許容値より大きいと、傾斜角が許容値内に収まるように駆動部11にアクチュエータ12、13の移動を指示する。   The arithmetic processing unit 9 calculates the inclination angle of the lens 23 to be adjusted based on the obtained output signal of the CCD 102 and calculates the inclination angle of the lens 23 to be adjusted. If the inclination angle is larger than the allowable value, the inclination angle falls within the allowable value. The actuator 11 is instructed to move the actuators 12 and 13 so as to be within the range.

被調整レンズ23の傾斜角が許容値より小さいと、傾斜角の調整は終了し、被調整レンズ23と鏡枠22とを固定する。   When the tilt angle of the lens 23 to be adjusted is smaller than the allowable value, the adjustment of the tilt angle is finished, and the lens 23 to be adjusted and the lens frame 22 are fixed.

被調整レンズ23と鏡枠22との固定は、図示しない紫外線硬化型接着剤塗布装置を用いて紫外線硬化型接着剤を鏡枠22と被調整レンズ23の間に肉盛り塗布した後に、紫外線露光装置16から紫外線照射プローブ17を通じて紫外線を照射させて紫外線硬化型接着剤を硬化させて行う。   The lens 23 to be adjusted and the lens frame 22 are fixed by applying an ultraviolet curing adhesive between the lens frame 22 and the lens to be adjusted 23 using an ultraviolet curing adhesive coating device (not shown), and then exposing the lens to the lens frame 22 with ultraviolet exposure. This is performed by irradiating ultraviolet rays from the device 16 through the ultraviolet irradiation probe 17 to cure the ultraviolet curable adhesive.

得られた画像や演算結果は表示部10に表示する。なお、表示部10には液晶ディスプレイやCRTディスプレイを採用する。   The obtained image and calculation result are displayed on the display unit 10. The display unit 10 employs a liquid crystal display or a CRT display.

なお、紫外線照射プローブ17は、レンズ傾き調整継続中には光軸調整部100から離れて待避させている。レンズ傾き調整が完了すると、演算処理部9から与えられる信号による指示で図示しないアクチュエータにより光軸調整部100の横に移動させる。   The ultraviolet irradiation probe 17 is moved away from the optical axis adjustment unit 100 while the lens tilt adjustment is continued. When the lens tilt adjustment is completed, it is moved to the side of the optical axis adjustment unit 100 by an actuator (not shown) according to an instruction by a signal given from the arithmetic processing unit 9.

次に被調整レンズ23の傾斜角を検出する検出方法について詳細に説明する。本検出方法は、被調整レンズ23が傾斜した際に生じる偏心の状態を求め、被調整レンズ23の傾斜角を検出するものである。偏心と像の関係について図3を用いて説明する。   Next, a detection method for detecting the tilt angle of the lens 23 to be adjusted will be described in detail. In this detection method, the state of decentration that occurs when the adjusted lens 23 is tilted is obtained, and the tilt angle of the adjusted lens 23 is detected. The relationship between the eccentricity and the image will be described with reference to FIG.

物体31から発した光はレンズ32によって像33として結像される。レンズ32が光軸35に直交する方向にある点線で示した位置32aに、偏心量z1で偏心して移動すると、像33は像34へずれる。このとき、像33の光強度の重心位置と、像34の光強度の重心位置とずれ量は大まかにレンズ32の偏心量z1に対して像の倍率mを掛け合わせた値となる。従って、像の光強度の重心位置のずれ量を求めることができれば、レンズ32の偏心量を逆算により求めることができる。なお、図3ではレンズ32の透過光を用いて説明したが、同様に、レンズ32の反射光の像の光強度の重心位置について、ずれ量を求めることができれば、レンズ32の偏心量を求めることができることは言うまでもない。   Light emitted from the object 31 is formed as an image 33 by the lens 32. When the lens 32 moves to a position 32 a indicated by a dotted line in a direction orthogonal to the optical axis 35 with an eccentric amount z 1, the image 33 shifts to the image 34. At this time, the centroid position of the light intensity of the image 33 and the centroid position of the light intensity of the image 34 and the shift amount are roughly values obtained by multiplying the eccentric amount z1 of the lens 32 by the magnification m of the image. Therefore, if the amount of deviation of the center of gravity of the light intensity of the image can be obtained, the amount of eccentricity of the lens 32 can be obtained by back calculation. In FIG. 3, the light transmitted through the lens 32 has been described. Similarly, if the amount of deviation can be obtained for the position of the center of gravity of the image of the reflected light from the lens 32, the amount of eccentricity of the lens 32 is obtained. It goes without saying that it can be done.

一方、一般にレンズ32の傾斜角とレンズ32の偏心量とは所定の関係がある。レンズ32の偏心量からレンズの傾斜角を求める方法について図4を用いて説明する。   On the other hand, in general, the inclination angle of the lens 32 and the amount of eccentricity of the lens 32 have a predetermined relationship. A method for obtaining the tilt angle of the lens from the amount of eccentricity of the lens 32 will be described with reference to FIG.

図4において、レンズ32を、その一方の面S2の曲率中心C2を中心に回転させる様子を示す。S1面の曲率中心C1とS2面の曲率中心C2とは光軸35上にある。S2面は略球面であるとすると、S2面の曲率中心を中心にレンズ32を回転させると、S2面はS2面に沿って回転する。これに対し、レンズ32のもう一方の光学面であるS1面の曲率中心C1はS2面の曲率中心と異なるので、レンズ32の回転に伴って、曲率中心C1はずれ、CC1へ移動する。S1面は球面であるとすると、S1面が傾斜しても球面であることには変わりは無いので、S1面での反射光は、レンズ32が横ずれした場合の挙動、すなわち偏心を生じた場合の挙動を示すこととなる。レンズ32が光軸35に対して偏心を生じると、像は横ずれを生じる。この様子を図5に示す。図5(a)、(b)、(c)において、図中上部にCCD102で得られた画像、図中下部に鏡枠22に対してのレンズ32の傾斜状況を示す。   FIG. 4 shows a state in which the lens 32 is rotated about the center of curvature C2 of one surface S2. The curvature center C1 of the S1 surface and the curvature center C2 of the S2 surface are on the optical axis 35. If the S2 surface is substantially spherical, when the lens 32 is rotated around the center of curvature of the S2 surface, the S2 surface rotates along the S2 surface. On the other hand, since the curvature center C1 of the S1 surface, which is the other optical surface of the lens 32, is different from the curvature center of the S2 surface, as the lens 32 rotates, the curvature center C1 shifts and moves to CC1. If the S1 surface is a spherical surface, the S1 surface is inclined even if the S1 surface is inclined. Therefore, the reflected light from the S1 surface has a behavior when the lens 32 is laterally displaced, that is, when eccentricity occurs. Will be shown. When the lens 32 is decentered with respect to the optical axis 35, the image is laterally shifted. This is shown in FIG. 5A, 5B, and 5C, an image obtained by the CCD 102 is shown in the upper part of the drawing, and the inclination state of the lens 32 with respect to the lens frame 22 is shown in the lower part of the drawing.

図5(b)はレンズ32が傾斜していない場合を示す。この時に、CCD102で得られる画像には、CCD視野36に対してのリング状光源300の像が現れる。この状態から図5(a)に示すようにW1の方向にレンズ32を回転させると、偏心によりレンズ32が横ずれを起こすので、リング状光源300の像、すなわち、リング状光源300の像の重心位置は、図中右にずれて観測される。次に、図5(c)に示すように、W2の方向にレンズ32を回転させると、偏心によりレンズ32が逆方向に横ずれを起こすので、リング状光源300の像、すなわち、リング状光源300の像の重心位置は、図中左にずれて観測される。   FIG. 5B shows a case where the lens 32 is not inclined. At this time, an image of the ring-shaped light source 300 with respect to the CCD visual field 36 appears in the image obtained by the CCD 102. When the lens 32 is rotated in the direction of W1 from this state as shown in FIG. 5A, the lens 32 is laterally shifted due to the eccentricity, so that the center of gravity of the image of the ring light source 300, that is, the image of the ring light source 300 is obtained. The position is observed shifted to the right in the figure. Next, as shown in FIG. 5C, when the lens 32 is rotated in the direction of W2, the lens 32 is laterally shifted in the reverse direction due to the eccentricity, so that an image of the ring-shaped light source 300, that is, the ring-shaped light source 300 is obtained. The position of the center of gravity of the image is observed shifted to the left in the figure.

このように、レンズ32が傾くと、光学面S1は偏心することとなり、その偏心の状態は、得られた画像から検出することができるので、検出した偏心の状態から、逆算してレンズ32の傾斜角等を求めることができる。   As described above, when the lens 32 is tilted, the optical surface S1 is decentered, and the state of decentering can be detected from the obtained image. An inclination angle or the like can be obtained.

すなわち、CCD102の画像から、リング状光源300の像の重心位置のずれ方向を検出することで、レンズ32の傾斜方向を検出でき、リング状光源300の像の重心位置のずれ量を検出することで、レンズ32の傾斜角を検出することができる。   That is, by detecting the shift direction of the center of gravity of the image of the ring-shaped light source 300 from the image of the CCD 102, the tilt direction of the lens 32 can be detected, and the shift amount of the center of gravity of the image of the ring-shaped light source 300 is detected. Thus, the tilt angle of the lens 32 can be detected.

次にレンズ傾き調整装置500を用いて、本発明に係るレンズ傾き調整方法を実施するフローについて説明する。本フローは演算処理部9におけるプログラムからの指示で実行される。プログラムは演算処理部9における図示しないROMやRAMに記憶されている。フローチャートを図6に示す。   Next, a flow for carrying out the lens tilt adjusting method according to the present invention using the lens tilt adjusting apparatus 500 will be described. This flow is executed by an instruction from a program in the arithmetic processing unit 9. The program is stored in a ROM or RAM (not shown) in the arithmetic processing unit 9. A flowchart is shown in FIG.

最初に、ステップS10において、レンズ32の光学面であるS1面からの反射光74(第1の反射光74とも称す)から、CCD102上の基準を定める。そのために、図7(a)に示すように、鏡枠22の鏡枠上面71に基準ミラー72を設置し、リング状光源300からの第1の反射光74を照射してCCD102で受光する。   First, in step S10, a reference on the CCD 102 is determined from the reflected light 74 (also referred to as first reflected light 74) from the S1 surface that is the optical surface of the lens 32. For this purpose, as shown in FIG. 7A, a reference mirror 72 is installed on the upper surface 71 of the lens frame 22, and the first reflected light 74 from the ring-shaped light source 300 is irradiated and received by the CCD 102.

第1の反射光74は図7(b)に示すように、結像レンズ101によってCCD102の撮像面上に結像される。CCD102の撮像面上で結像された像I1とCCD視野36の大きさの関係は、結像レンズ101、CCD102及び基準面73の位置関係と、結像レンズ101の倍率などの諸元によって決定される。CCD102による像I1の解像度は、CCD102の撮像面内の像I1の大きさに比例することから、第1の反射光74の像I1を撮像面内に大きく捕らえるように結像レンズ101のパワーとCCD102等の位置を設定する。   The first reflected light 74 is imaged on the imaging surface of the CCD 102 by the imaging lens 101 as shown in FIG. The relationship between the size of the image I1 imaged on the imaging surface of the CCD 102 and the CCD visual field 36 is determined by the positional relationship between the imaging lens 101, the CCD 102 and the reference surface 73, and the specifications such as the magnification of the imaging lens 101. Is done. Since the resolution of the image I1 by the CCD 102 is proportional to the size of the image I1 in the imaging surface of the CCD 102, the power of the imaging lens 101 is set so that the image I1 of the first reflected light 74 is captured largely in the imaging surface. The position of the CCD 102 etc. is set.

CCD102上では、図8に示すようにリング状光源300の形状に相当する像I1が受光され、像I1の光強度の重心位置r1を次のような方法で、演算処理部9のCPUなどの制御手段を用いて求める。CCD102は、同図に示したxy座標系におけるx方向に640画素、y方向に480画素を有するとする。位置(x、y)における画素の光強度の出力値をp(x、y)とし、r1におけるx方向の光強度の重心位置をr1(x)、y方向の光強度の重心位置をr1(y)とすると、各重心位置は次のように求められる。   On the CCD 102, as shown in FIG. 8, an image I1 corresponding to the shape of the ring-shaped light source 300 is received, and the center of gravity r1 of the light intensity of the image I1 is obtained by the following method using the CPU of the arithmetic processing unit 9 or the like. It calculates | requires using a control means. The CCD 102 has 640 pixels in the x direction and 480 pixels in the y direction in the xy coordinate system shown in FIG. The output value of the light intensity of the pixel at the position (x, y) is p (x, y), the centroid position of the light intensity in the x direction at r1 is r1 (x), and the centroid position of the light intensity in the y direction is r1 ( If y), the position of each center of gravity is obtained as follows.

r1(x)については、次式のように、各x方向において、yが1から480までの全てのp(x、y)を足し合わせてmy(x)を得る。
my(x)=SUM(p(x、1)〜p(x、480))
次に、各my(x)を重みとしてx方向の重心座標r1(x)を求める。
r1(x)=SUM(my(x)×x)/SUM(my(x))
同様にr1(y)については、最初に、次式のように、各y方向において、xが1から640までの全てのp(x、y)を足し合わせてmx(y)を得る。
mx(y)=SUM(p(1、y)〜p(640、y))
次に、各mx(y)を重みとしてy方向の重心座標r1(y)を求める。
r1(y)=SUM(mx(y)×y)/SUM(mx(y))
2値画像を用いる場合、p(x、y)は1または0の値となる。画素出力として8ビットの出力を用いると、p(x、y)は0から255までの値を示すこととなる。なお、CCD102の解像度を上げれば、r1の検出精度も向上する。また、8ビットの出力よりも16ビット、さらに32ビットとビット数を上げることでも検出精度を向上させることができる。CCD102の出力は環境温度によってバラつくため、時間平均をとるなどして検出値のバラツキを抑える。このような手法を用いて求めたr1は、演算処理部9に備えた図示しないRAM等に記憶させておく。
For r1 (x), as shown in the following equation, in each x direction, all p (x, y) from y 1 to 480 are added to obtain my (x).
my (x) = SUM (p (x, 1) to p (x, 480))
Next, the center-of-gravity coordinates r1 (x) in the x direction are obtained using each my (x) as a weight.
r1 (x) = SUM (my (x) × x) / SUM (my (x))
Similarly, for r1 (y), first, mx (y) is obtained by adding all p (x, y) from 1 to 640 in each y direction as shown in the following equation.
mx (y) = SUM (p (1, y) to p (640, y))
Next, the center-of-gravity coordinate r1 (y) in the y direction is obtained using each mx (y) as a weight.
r1 (y) = SUM (mx (y) × y) / SUM (mx (y))
When a binary image is used, p (x, y) has a value of 1 or 0. When an 8-bit output is used as the pixel output, p (x, y) indicates a value from 0 to 255. If the resolution of the CCD 102 is increased, the detection accuracy of r1 is also improved. The detection accuracy can also be improved by increasing the number of bits to 16 bits and 32 bits from the 8-bit output. Since the output of the CCD 102 varies depending on the environmental temperature, variations in detection values are suppressed by taking a time average. The r1 obtained using such a method is stored in a RAM (not shown) provided in the arithmetic processing unit 9.

次にステップS11以降では、鏡枠22に被調整レンズ23を調整して接着し固定する工程に入る。ステップS11においては、図9に示すように、被調整レンズ23を鏡枠22内に挿入してセットする。鏡枠22の内側には予め図示しないディスペンサーを用いて紫外線硬化型接着剤を塗布しておいてもよいし、被調整レンズ23を挿入後に被調整レンズ23と鏡枠22との接触部分に紫外線硬化型接着剤を図示しない冶具を用いて肉盛りして塗布してもよい。   In step S11 and subsequent steps, the process proceeds to a process of adjusting, adhering, and fixing the lens 23 to be adjusted to the lens frame 22. In step S11, as shown in FIG. 9, the lens 23 to be adjusted is inserted into the lens frame 22 and set. An ultraviolet curable adhesive may be applied to the inside of the lens frame 22 in advance using a dispenser (not shown), or ultraviolet light is applied to the contact portion between the lens to be adjusted 23 and the lens frame 22 after the lens to be adjusted 23 is inserted. You may build up and apply | coat a curable adhesive using the jig which is not shown in figure.

次に、ステップS12においてレンズ32からの反射光75(第2の反射光75とも称す)のCCD102の撮像面上での重心位置r2を求める。   Next, in step S12, the gravity center position r2 of the reflected light 75 from the lens 32 (also referred to as the second reflected light 75) on the imaging surface of the CCD 102 is obtained.

CCD102上では図10に示すように円形の像(像I2と称す)が受光されるので、上記と同じ手法を用いて像I2の光強度の重心位置r2を求める。   Since a circular image (referred to as an image I2) is received on the CCD 102 as shown in FIG. 10, the center of gravity position r2 of the light intensity of the image I2 is obtained using the same method as described above.

記憶しておいた像I1の重心位置r1と像I2の重心位置r2の画素上の距離を演算処理部が算出し、画素上の距離から第1の反射光74の重心位置r1と、第2の反射光75の重心位置r2の差、すなわち、重心位置ずれ量r12を求める。r12は次の式で求められる。
r12=((r1(x)−r2(x))+(r1(y)−r2(y))1/2
次にステップS13において、得られた重心位置ずれ量r12から、レンズ偏心量を求める。まず、得られた重心位置ずれ量r12は画素換算の量であるので、1画素の大きさを考慮し、得られた重心位置ずれ量r12を実空間でのずれ量に変換する。実空間でのずれ量に変換した重心位置ずれ量r12は、レンズ偏心量に対して結像レンズ101の倍率分程大きくなっているので、レンズ偏心量は、実空間でのずれ量に変換した重心位置ずれ量r12を結像レンズ101の倍率で除するなどして得る。
The arithmetic processing unit calculates the distance on the pixel between the stored centroid position r1 of the image I1 and the centroid position r2 of the image I2, and calculates the centroid position r1 of the first reflected light 74 from the distance on the pixel and the second The difference between the centroid positions r2 of the reflected light 75, that is, the centroid position deviation r12 is obtained. r12 is obtained by the following equation.
r12 = ((r1 (x) −r2 (x)) 2 + (r1 (y) −r2 (y)) 2 ) 1/2
Next, in step S13, a lens decentering amount is obtained from the obtained center-of-gravity position shift amount r12. First, since the obtained center-of-gravity position shift amount r12 is a pixel-converted amount, the obtained center-of-gravity position shift amount r12 is converted into a shift amount in real space in consideration of the size of one pixel. Since the center-of-gravity position shift amount r12 converted into the shift amount in the real space is increased by the magnification of the imaging lens 101 with respect to the lens eccentric amount, the lens eccentricity is converted into the shift amount in the real space. It is obtained by dividing the center-of-gravity position shift amount r12 by the magnification of the imaging lens 101 or the like.

次に得られたレンズ偏心量から被調整レンズ23の傾斜角を導き出す。レンズ偏心量から被調整レンズ23の傾斜角を換算は、被調整レンズ23の形状等の諸元から容易に行える。また、次のようにも導き出せる。最初に、予め被調整レンズ32を一定の角度、アクチュエータ12、13を用いて実際に移動させる。次に、CCD102上において形成されたr1とr2との画素間の画素間距離を求め、1画素相当のCCD102上の距離が実空間においてどれだけの距離に相当するかを算出する。   Next, the tilt angle of the adjusted lens 23 is derived from the obtained lens eccentricity. Conversion of the tilt angle of the lens 23 to be adjusted from the amount of lens decentration can be easily performed from various specifications such as the shape of the lens 23 to be adjusted. It can also be derived as follows. First, the lens 32 to be adjusted is actually moved in advance using the actuators 12 and 13 at a certain angle. Next, the inter-pixel distance between the pixels r1 and r2 formed on the CCD 102 is obtained, and the distance corresponding to one pixel on the CCD 102 is calculated in real space.

次にステップS14において、被調整レンズ23の傾斜角が許容値内の値であるどうかを演算処理部9が判断する。被調整レンズ23の傾斜角が許容値内に収まっていれば、ステップS16において、被調整レンズ23に対し紫外線を照射させ、紫外線硬化型接着剤を硬化させる。この時、図9に示すように、光軸調整部100から離れて待避させておいた紫外線露光装置16を、図示しないアクチュエータを用いて光軸調整対象である被調整レンズ23と鏡枠22の横に移動させる。傾き調整後の状態で被調整レンズ23を接着固定することが可能となる。所定時間経過後、紫外線露光装置16の紫外線照射を止め、待避させて傾き調整と被調整レンズ23の接着固定を終了する。   Next, in step S14, the arithmetic processing unit 9 determines whether or not the tilt angle of the lens 23 to be adjusted is a value within an allowable value. If the tilt angle of the lens 23 to be adjusted is within the allowable value, the UV light is irradiated to the lens 23 to be adjusted in step S16 to cure the UV curable adhesive. At this time, as shown in FIG. 9, the ultraviolet exposure device 16 that has been retracted away from the optical axis adjustment unit 100 is used to adjust the lens 23 and the lens frame 22 that are optical axis adjustment targets using an actuator (not shown). Move to the side. The lens 23 to be adjusted can be bonded and fixed in a state after the tilt adjustment. After a predetermined time has elapsed, the ultraviolet exposure of the ultraviolet exposure device 16 is stopped and retracted, and the tilt adjustment and the adhesion and fixing of the lens 23 to be adjusted are completed.

被調整レンズ23の傾斜角が許容値内に収まっていなければ、再度傾き調整を行うためにステップS15へ移って被調整レンズ23を所定の角度を傾斜させて傾き調整を行う。なお、被調整レンズ23を使用者が光軸調整部100に初期設定した際には、被調整レンズ23と鏡枠22の鏡枠上面71とは傾いている可能性が大きい。   If the tilt angle of the lens 23 to be adjusted is not within the allowable value, the process proceeds to step S15 to perform tilt adjustment again, and the tilt adjustment is performed by tilting the lens 23 to be adjusted by a predetermined angle. When the user initially sets the lens 23 to be adjusted to the optical axis adjustment unit 100, there is a high possibility that the lens 23 to be adjusted and the lens frame upper surface 71 of the lens frame 22 are inclined.

例えば図9に示すように、被調整レンズ23が傾いている場合には、アクチュエータ13を矢印91の方向へ、アクチュエータ12を矢印92の方向へ移動させることで、被調整レンズ23の傾斜角を小さくできる。以上のフローを繰り返して、被調整レンズ23の傾斜角が許容値内に収まる実施する。   For example, as shown in FIG. 9, when the lens 23 to be adjusted is tilted, the tilt angle of the lens 23 to be adjusted is adjusted by moving the actuator 13 in the direction of the arrow 91 and the actuator 12 in the direction of the arrow 92. Can be small. The above flow is repeated, and the tilt angle of the lens 23 to be adjusted falls within an allowable value.

ところで、被調整レンズ23を移動させるために動かしたアクチュエータ12、13の距離と、実際に被調整レンズ23が動いた距離とが異なる場合がある。例えば、被調整レンズ23を移動させるアクチュエータ12、13にバックラッシュやロストモーションを有している場合である。そのため、アクチュエータ12、13を一度駆動しただけでは、被調整レンズ23の傾斜角が許容値内に収まらない場合がある。その場合はさらに同様の工程を繰り返して傾き調整を行う。なお、予めそのようなバックラッシュやロストモーションの量が判明している場合には、それらの量を考慮して被調整レンズ23を移動させれば、1度のアクチュエータ12、13の駆動で許容値内に傾き調整できるので、バックラッシュやロストモーションの量を測定しておくことが望ましい。   By the way, the distance of the actuators 12 and 13 moved to move the adjusted lens 23 may be different from the distance actually moved by the adjusted lens 23. For example, this is a case where the actuators 12 and 13 that move the lens 23 to be adjusted have backlash or lost motion. For this reason, there is a case where the tilt angle of the lens 23 to be adjusted does not fall within the allowable value only by driving the actuators 12 and 13 once. In that case, the same process is repeated to adjust the tilt. If the amount of such backlash and lost motion is known in advance, it is acceptable to drive the actuators 12 and 13 once if the adjusted lens 23 is moved in consideration of these amounts. It is desirable to measure the amount of backlash and lost motion because the tilt can be adjusted within the value.

被調整レンズ23を移動させるアクチュエータの種類としては、微調整と租調整とを併せ持つものが好適である。最初に所定の位置に速く移動させ、次に微調整することでレンズの精度よく位置決めする。アクチュエータはサーボモータ(図示せず)、パルスモータ(図示せず)、またはピエゾ素子などの動力で駆動する。   As the type of actuator that moves the lens 23 to be adjusted, one that has both fine adjustment and adjustment is suitable. First, the lens is moved quickly to a predetermined position, and then finely adjusted to position the lens with high accuracy. The actuator is driven by power such as a servo motor (not shown), a pulse motor (not shown), or a piezo element.

なお、像I1、像I2を表示部に表示させ、かつ、重心位置r1、重心位置r2を画像処理部8により算出させ、使用者が確認しながらアクチュエータ12、13を駆動して、紫外線露光装置16を直接駆動するマニュアル操作も行うことができる。   In addition, the image I1 and the image I2 are displayed on the display unit, and the gravity center position r1 and the gravity center position r2 are calculated by the image processing unit 8, and the actuators 12 and 13 are driven while the user confirms the ultraviolet exposure apparatus. Manual operation for directly driving 16 can also be performed.

また、S2面はレンズの回転によって偏心しないものとして、被調整レンズ23のS1面の反射光のみを検出して被調整レンズ23の傾きの調整を行ったが、被調整レンズ23の回転によりS2面も偏心する場合には、S2面の曲率中心のレンズ偏心量も合わせて測定し、S1面のレンズ偏心量からS2面のレンズ偏心量を差し引くことで、正確に被調整レンズ23の傾斜角を検出でき、鏡枠22に対する被調整レンズ23の傾斜角をより精度よく補正して調整できる。   Further, it is assumed that the S2 surface is not decentered by the rotation of the lens, and only the reflected light of the S1 surface of the lens 23 to be adjusted is detected to adjust the tilt of the lens 23 to be adjusted. When the surface is also decentered, the lens eccentricity at the center of curvature of the S2 surface is also measured, and the lens eccentricity of the S2 surface is subtracted from the lens eccentricity of the S1 surface, so that the tilt angle of the adjusted lens 23 can be accurately determined. Can be detected, and the inclination angle of the lens 23 to be adjusted with respect to the lens frame 22 can be corrected and adjusted more accurately.

なおS1面は凹面を前提としたが、凸面でも同様にレンズ23の傾斜角を調整することができる。凸面からの反射光をCCD102の撮像面上に結像させれば、レンズ偏心量と傾斜角は図3と図4を用いて説明した事情と同様であるからである。   Although the S1 surface is assumed to be a concave surface, the inclination angle of the lens 23 can be similarly adjusted even on a convex surface. This is because if the reflected light from the convex surface is imaged on the imaging surface of the CCD 102, the lens decentering amount and the inclination angle are the same as those described with reference to FIGS.

以上のように、鏡枠22の基準面からの第1の反射光74の像の光強度の重心位置r1と、被調整レンズ23の光学面からの第2の反射光75の像の光強度の重心位置r2とを合わせることで、鏡枠22に対して被調整レンズ23が傾斜しないように調整することができる。   As described above, the gravity center position r1 of the light intensity of the image of the first reflected light 74 from the reference surface of the lens frame 22 and the light intensity of the image of the second reflected light 75 from the optical surface of the lens 23 to be adjusted. By adjusting the center of gravity position r <b> 2, the lens 23 to be adjusted can be adjusted so as not to be inclined with respect to the lens frame 22.

本実施形態におけるレンズ傾き調整装置の概略構成図である。It is a schematic block diagram of the lens inclination adjustment apparatus in this embodiment. 本実施形態におけるリング状光源300と光軸調整部の概略図である。It is the schematic of the ring-shaped light source 300 in this embodiment, and an optical axis adjustment part. レンズが軸ずれした際に、像が位置ずれすることを表す概念図である。It is a conceptual diagram showing that an image is displaced when the lens is off-axis. 本実施形態における被調整レンズ23の傾斜と、曲率中心の横ずれを表す概念図である。It is a conceptual diagram showing the inclination of the to-be-adjusted lens 23 in this embodiment, and the lateral shift | offset | difference of the curvature center. 本実施形態における被調整レンズ23の傾斜と、CCD102上での像の関係を表す概念図である。It is a conceptual diagram showing the relationship between the inclination of the to-be-adjusted lens 23 in this embodiment, and the image on CCD102. 本実施形態におけるレンズ傾き調整方法のフローチャートである。It is a flowchart of the lens inclination adjustment method in this embodiment. 本実施形態におけるレンズ傾き調整過程の一部を示す概略図である。It is the schematic which shows a part of lens inclination adjustment process in this embodiment. 本実施形態におけるCCD102の撮像面上での像の概略図である。It is the schematic of the image on the imaging surface of CCD102 in this embodiment. 本実施形態におけるレンズ傾き調整過程の一部を示す概略図である。It is the schematic which shows a part of lens inclination adjustment process in this embodiment. 本実施形態におけるCCD102の撮像面上での像の概略図である。It is the schematic of the image on the imaging surface of CCD102 in this embodiment.

符号の説明Explanation of symbols

7 CCD信号処理部
8 画像処理部
10 表示部
11 駆動部
12、13 アクチュエータ
16 紫外線露光装置
17 紫外線照射プローブ
21 照射面
22 鏡枠
23 被調整レンズ
24 段差部
25 底面
31 物体
32,101 レンズ
33、34 像
35 光軸
36 CCD視野
71 鏡枠上面
72 基準ミラー
73 基準面
74 第1の反射光
75 第2の反射光
100 光軸調整部
102 CCD
121、131 プローブ
300 リング状光源
500 調整装置
7 CCD signal processing unit 8 Image processing unit 10 Display unit 11 Drive unit 12, 13 Actuator 16 Ultraviolet exposure device 17 Ultraviolet irradiation probe 21 Irradiation surface 22 Mirror frame 23 Lens to be adjusted 24 Stepped portion 25 Bottom surface 31 Object 32, 101 Lens 33, 34 Image 35 Optical axis 36 CCD field of view 71 Upper surface of mirror frame 72 Reference mirror 73 Reference surface 74 First reflected light 75 Second reflected light 100 Optical axis adjustment unit 102 CCD
121, 131 Probe 300 Ring-shaped light source 500 Adjustment device

Claims (2)

レンズと、該レンズを組込む鏡枠の基準平面とのなす傾きを調整するレンズ傾き調整方法であって、
発光面が円周状であるリング状光源からの照明光を、前記基準平面に照射し、前記基準平面からの第1の反射光を、結像系を通過させて、所定の位置に配置したセンサに受光させる工程と、
前記センサの出力から前記第1の反射光の重心位置を求める工程と、
前記鏡枠に前記レンズを組込んだ後、前記レンズの光学面からの第2の反射光を、前記結像系を通過させて、前記センサに受光させる工程と、
前記センサの出力から前記第2の反射光の重心位置を求める工程と、
前記第1の反射光の重心位置と前記第2の反射光の重心位置に基づいて前記レンズを傾斜させる工程と、
を含むことを特徴とするレンズ傾き調整方法。
A lens tilt adjustment method for adjusting a tilt between a lens and a reference plane of a lens frame in which the lens is incorporated,
Illumination light from a ring-shaped light source having a circumferential light emitting surface is irradiated onto the reference plane, and the first reflected light from the reference plane is passed through the imaging system and arranged at a predetermined position. A step of causing the sensor to receive light;
Obtaining the position of the center of gravity of the first reflected light from the output of the sensor;
After incorporating the lens into the lens frame, passing the second reflected light from the optical surface of the lens through the imaging system and receiving the sensor;
Obtaining the position of the center of gravity of the second reflected light from the output of the sensor;
Tilting the lens based on the position of the center of gravity of the first reflected light and the position of the center of gravity of the second reflected light;
A method of adjusting the tilt of the lens.
レンズと、当該レンズを組込む鏡枠の基準平面とのなす傾きを調整するレンズ傾き調整装置であって、
発光面が円周状であるリング状光源からの照明光を投光する手段と、
前記リング状光源の内側に光軸を有する結像系と、
前記結像系によって結像された前記照明光を受光するセンサと、
前記センサの出力に基づいて、前記レンズを傾斜させる傾斜手段と、
を有することを特徴とするレンズ傾き調整装置。
A lens tilt adjusting device that adjusts a tilt between a lens and a reference plane of a lens frame in which the lens is incorporated,
Means for projecting illumination light from a ring-shaped light source having a circumferential light emitting surface;
An imaging system having an optical axis inside the ring-shaped light source;
A sensor for receiving the illumination light imaged by the imaging system;
Tilting means for tilting the lens based on the output of the sensor;
A lens tilt adjusting device comprising:
JP2008217936A 2008-08-27 2008-08-27 Method and device for adjusting tilt of lens Pending JP2010054677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217936A JP2010054677A (en) 2008-08-27 2008-08-27 Method and device for adjusting tilt of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217936A JP2010054677A (en) 2008-08-27 2008-08-27 Method and device for adjusting tilt of lens

Publications (1)

Publication Number Publication Date
JP2010054677A true JP2010054677A (en) 2010-03-11

Family

ID=42070694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217936A Pending JP2010054677A (en) 2008-08-27 2008-08-27 Method and device for adjusting tilt of lens

Country Status (1)

Country Link
JP (1) JP2010054677A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900500A (en) * 2014-03-25 2014-07-02 中国原子能科学研究院 Impact specimen fracture picture taking device
WO2014147902A1 (en) * 2013-03-21 2014-09-25 シャープ株式会社 Lens tilt detection device and lens tilt detection method
JP2015018324A (en) * 2013-07-09 2015-01-29 シャープ株式会社 Lens tilt detection device
WO2015108188A1 (en) * 2014-01-20 2015-07-23 オリンパス株式会社 Eccentricity amount acquisition method and eccentricity amount acquisition device
CN109313102A (en) * 2016-01-23 2019-02-05 6超越6视觉有限公司 Determine the devices, systems, and methods of one or more optical parameters of eyeglass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543109U (en) * 1991-11-11 1993-06-11 旭光学工業株式会社 Lens barrel
JPH10255304A (en) * 1997-03-06 1998-09-25 Sony Corp Method and device of adjusting objective lens for optical pickup
JP2003177292A (en) * 2001-12-13 2003-06-27 Sharp Corp Lens adjusting device and method
JP2004115545A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Method for position control-type bonding and joining and apparatus therefor
JP2004323666A (en) * 2003-04-24 2004-11-18 Ricoh Co Ltd Bonding method, boding device and part bonding apparatus using the boding device
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2006250964A (en) * 2005-03-07 2006-09-21 Ricoh Co Ltd Eccentricity adjusting assembly component, eccentricity adjusting assembly method, eccentricity adjusting assembly device and image forming apparatus
JP2006330210A (en) * 2005-05-24 2006-12-07 Olympus Corp Method and device for collimating lens
JP2008185832A (en) * 2007-01-30 2008-08-14 Fujinon Corp Optical element and method for assembling optical unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543109U (en) * 1991-11-11 1993-06-11 旭光学工業株式会社 Lens barrel
JPH10255304A (en) * 1997-03-06 1998-09-25 Sony Corp Method and device of adjusting objective lens for optical pickup
JP2003177292A (en) * 2001-12-13 2003-06-27 Sharp Corp Lens adjusting device and method
JP2004115545A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Method for position control-type bonding and joining and apparatus therefor
JP2004323666A (en) * 2003-04-24 2004-11-18 Ricoh Co Ltd Bonding method, boding device and part bonding apparatus using the boding device
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2006250964A (en) * 2005-03-07 2006-09-21 Ricoh Co Ltd Eccentricity adjusting assembly component, eccentricity adjusting assembly method, eccentricity adjusting assembly device and image forming apparatus
JP2006330210A (en) * 2005-05-24 2006-12-07 Olympus Corp Method and device for collimating lens
JP2008185832A (en) * 2007-01-30 2008-08-14 Fujinon Corp Optical element and method for assembling optical unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147902A1 (en) * 2013-03-21 2014-09-25 シャープ株式会社 Lens tilt detection device and lens tilt detection method
JP2015018324A (en) * 2013-07-09 2015-01-29 シャープ株式会社 Lens tilt detection device
WO2015108188A1 (en) * 2014-01-20 2015-07-23 オリンパス株式会社 Eccentricity amount acquisition method and eccentricity amount acquisition device
JPWO2015108188A1 (en) * 2014-01-20 2017-03-23 オリンパス株式会社 Eccentricity acquisition method and eccentricity acquisition device
US9952118B2 (en) 2014-01-20 2018-04-24 Olympus Corporation Eccentricity amount obtainment method and eccentricity amount obtainment device
CN103900500A (en) * 2014-03-25 2014-07-02 中国原子能科学研究院 Impact specimen fracture picture taking device
CN109313102A (en) * 2016-01-23 2019-02-05 6超越6视觉有限公司 Determine the devices, systems, and methods of one or more optical parameters of eyeglass
JP2019511699A (en) * 2016-01-23 2019-04-25 6 オーバー 6 ビジョン リミテッド Apparatus, system, and method for determining one or more optical parameters of a lens
JP7003041B2 (en) 2016-01-23 2022-01-20 6 オーバー 6 ビジョン リミテッド Equipment, systems, and methods for determining one or more optical parameters of a lens

Similar Documents

Publication Publication Date Title
US9628779B2 (en) Optical measurement method and measurement system for determining 3D coordinates on a measurement object surface
US10386266B2 (en) Optical inspection device having a mirror for reflecting light rays, a method of producing a lens using the optical inspection device, and an optical inspection method using the optical inspection device
JP6504274B2 (en) Three-dimensional shape data and texture information generation system, imaging control program, three-dimensional shape data and texture information generation method, and information recording medium
US20130100282A1 (en) Optical measurement method and measurement system for determining 3d coordinates on a measurement object surface
US10723078B2 (en) Method of aligning pixelated light engines
JP2010054677A (en) Method and device for adjusting tilt of lens
CN113696481B (en) Breadth brightness detection method and system of energy radiation device and 3D printing equipment
CN105467554A (en) Autofocus apparatus and autofocus method
WO2021111299A1 (en) System and method for optical alignment and calibration of an infrared camera lens
JP2001027723A (en) Method for sticking and fixing optical part
WO2014147902A1 (en) Lens tilt detection device and lens tilt detection method
JP5192669B2 (en) Projector, position adjusting device, and position adjusting method
JP2000121902A (en) Method and device for adjusting lens system optical axis
US20170255181A1 (en) Measurement apparatus, system, measurement method, and article manufacturing method
KR101958962B1 (en) Lens element transfer mechanism, controller, optical axis adjustment device, and equipment and method for manufacturing optical module
CN109031854B (en) Jitter correction characteristic evaluation device for optical device with jitter correction function
JP5747396B1 (en) Optical axis adjustment device
JP2010107355A (en) Optical filter adjusting method and irregularity inspection device
US8121471B1 (en) Focusing system for motion picture camera
JP2007259166A (en) Tilt adjusting method for imaging device and camera apparatus including imaging device adjusted by the same method
JP7077166B2 (en) How to operate the lens characteristic measuring device and the lens characteristic measuring device
JP7318190B2 (en) Shape measuring device, shape measuring method and shape measuring program
JP2009294353A (en) Lens unit optical axis adjusting method and lens unit optical axis adjusting device
EP3783429B1 (en) Method and apparatus for assembling a camera module for a motor vehicle
JP2014089257A (en) Lens tilt detection device, lens tilt detection method, and camera module assembly method using lens tilt detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110617

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20110805

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Effective date: 20121009

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130402

Free format text: JAPANESE INTERMEDIATE CODE: A02