WO2014147902A1 - Lens tilt detection device and lens tilt detection method - Google Patents

Lens tilt detection device and lens tilt detection method Download PDF

Info

Publication number
WO2014147902A1
WO2014147902A1 PCT/JP2013/083159 JP2013083159W WO2014147902A1 WO 2014147902 A1 WO2014147902 A1 WO 2014147902A1 JP 2013083159 W JP2013083159 W JP 2013083159W WO 2014147902 A1 WO2014147902 A1 WO 2014147902A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
tilt
light source
center position
Prior art date
Application number
PCT/JP2013/083159
Other languages
French (fr)
Japanese (ja)
Inventor
章博 矢内
三宅 隆浩
哲史 野呂
三木 錬三郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014147902A1 publication Critical patent/WO2014147902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Definitions

  • the present invention relates to a lens tilt detection device and a lens tilt detection method, and relates to a lens tilt detection device and a lens tilt detection method used for lens tilt adjustment of an optical communication lens, an imaging system lens, an optical disk lens, and the like.
  • the lens becomes an optical unit in which an actuator for driving the lens is mounted after being incorporated in the lens unit.
  • the lens is often tilted and adjusted with respect to the reference plane of the optical unit, and the lens is tilted with respect to the optical axis of the optical unit, and this optical unit is attached to the image sensor without adjustment.
  • a camera module having desired performance cannot be obtained. Therefore, it is necessary to measure the tilt of the lens in the state of the optical unit and adjust the generated tilt.
  • the tilt angle of the optical axis of the lens with respect to the holder into which the lens is assembled can be adjusted.
  • the lens tilt reference is set to the lens outer shape or the inner diameter of the holder in contact with the lens. There is a need. For this reason, in the state of the optical unit already incorporated in the holder in which these cannot be seen, there is a problem that the tilt of the lens cannot be measured accurately and the optical unit cannot be incorporated into the image sensor and adjusted.
  • an object of the present invention is to provide a lens tilt detection device and a lens tilt detection method capable of accurately detecting the tilt of the optical axis of a lens even in a state of an optical unit in which a lens is incorporated in a holder. Is.
  • a lens tilt detection device of the present invention is A plurality of point light sources arranged on the same plane perpendicular to the reference axis and spaced from each other, and irradiating light to the lens to be measured arranged on the reference axis; It is arranged so that the optical axis coincides with the reference axis on the side opposite to the lens to be measured with respect to the plurality of point light sources, and is generated by reflected light from a plurality of lens surfaces of the lens to be measured.
  • An imaging camera that captures a plurality of formed images of the point light source; An inclination angle of the optical axis of the lens to be measured with respect to the reference axis direction based on the relative shift amount of the center position of each of the plurality of formed images of the plurality of point light sources captured by the imaging camera; And a lens tilt detection unit for detecting the tilt direction.
  • the plurality of point light sources are arranged at the vertices of a plurality of polygons.
  • a light source controller that controls one or more point light sources among the plurality of point light sources so as to be lit at an arbitrary timing is provided.
  • a plurality of lenses of the measurement target lens are irradiated with light from a plurality of point light sources arranged on a plane orthogonal to the reference axis at intervals from each other, and irradiated to the measurement target lens arranged on the reference axis.
  • the light of the lens to be measured is based on the relative shift amounts of the respective center positions of the plurality of formed images of the plurality of point light sources captured by the imaging camera.
  • FIG. 1 is a diagram showing a schematic configuration of a lens tilt detection apparatus according to a first embodiment of the present invention.
  • FIG. 2A is a schematic view of a light source in which LEDs as an example of a point light source are arranged so as to be at the apex of a quadrangle in the lens tilt detection apparatus.
  • FIG. 2B is a schematic cross-sectional view of an optical unit in which the lens tilt is detected by the lens tilt detection device.
  • FIG. 3A is a diagram showing the relationship between the eccentricity generated when the lens of the optical unit is tilted and the image.
  • FIG. 3B is a diagram showing a virtual image due to light diverging and reflecting from the upper surface of the convex meniscus lens and a virtual image due to light diverging and reflecting from the upper surface of the lens and from the lower surface.
  • FIG. 3C is a diagram showing a real image by light converged and reflected by the upper surface of the concave meniscus lens and a real image by light that has passed through the upper surface of the lens and converged and reflected by the lower surface.
  • FIG. 3D is a diagram showing a real image by light converged and reflected on the upper surface of the biconcave lens, and a virtual image by light diverged and reflected by the lower surface through the upper surface of the lens.
  • FIG. 3E shows an image when the first lens is a biconvex lens and the second lens is a concave meniscus lens.
  • FIG. 4A is a diagram illustrating an image of a light source when the lens is not inclined.
  • FIG. 4B is a diagram illustrating a state of an image of the light source when the lens holder is rotated counterclockwise.
  • FIG. 4C is a diagram showing a state of an image of a light source when the lens holder is rotated clockwise.
  • FIG. 5A is a diagram illustrating a state of an image of a light source when the aperture of the lens holder is formed so as to be shifted from the center of the lens.
  • FIG. 5B is a diagram showing a state of an image of a light source when the lens holder is rotated counterclockwise.
  • FIG. 5C is a diagram showing a state of an image of a light source when the lens holder is rotated clockwise.
  • FIG. 6A is a diagram for explaining the measurement of the tilt amount of the light receiving surface of the image sensor.
  • FIG. 6B is a diagram for explaining the measurement of the tilt amount of the optical unit using the lens tilt detection apparatus.
  • FIG. 6C is a diagram for describing a product inspection in which an imaging chart is captured to confirm imaging characteristics.
  • FIG. 7A is a schematic diagram of a light source in which LEDs of a lens tilt detection apparatus according to a second embodiment of the present invention are arranged so as to be at the apexes of a quadrangular shape and a pentagonal shape.
  • FIG. 7B is a schematic diagram of the light source when only the point light source arranged at the apex of the quadrangular is turned on.
  • FIG. 7C is a schematic diagram of the light source when only the point light source arranged at the vertex of the pentagon is turned on.
  • FIG. 8A is a diagram showing an image of the light source when the lens is not inclined in the configuration of the light source in which the point light sources are arranged in a square shape shown in FIG. 7B.
  • FIG. 8A is a diagram showing an image of the light source when the lens is not inclined in the configuration of the light source in which the point light sources are arranged in a square shape shown in FIG. 7B.
  • FIG. 8B is a diagram showing a state of an image of the light source when the lens holder is rotated counterclockwise in the light source when only the point light source arranged at the vertex of the rectangle shown in FIG. 7B is turned on.
  • FIG. 8C is a diagram showing a state of an image of the light source when the lens holder is rotated counterclockwise in the light source when only the point light source arranged at the vertex of the pentagon shown in FIG. 7C is turned on.
  • FIG. 9A is a diagram showing a state of an image of the light source of the first example in which only a designated portion of each point light source is turned on.
  • FIG. 9B is a diagram showing a state of an image of the light source of the second example in which only a designated portion of each point light source is turned on.
  • FIG. 9C is a diagram showing a state of an image of the light source of the third example in which only a designated portion of each point light source is turned on.
  • FIG. 9D is a diagram illustrating a state of an image of the light source of the fourth example in which only a designated portion of each point light source is turned on.
  • FIG. 1 shows a schematic configuration of a lens tilt detection apparatus according to a first embodiment of the present invention.
  • the lens tilt detection apparatus 1 includes a light source 2, an imaging camera 3, a signal processing unit 4, an image processing unit 5, an arithmetic processing unit 6, and a display unit 7. And.
  • the signal processing unit 4, the image processing unit 5 and the arithmetic processing unit 6 constitute a lens tilt detection unit.
  • the light source 2 is a light source in which a plurality of LEDs (Light Emitting Diodes) 21 as an example of a point light source are arranged, and is orthogonal to the reference axis (the optical axis m of the imaging camera 3).
  • the four LEDs 21 are arranged on the same plane so as to be the apexes of the quadrangle.
  • the light emitting element used for this light source 2 is not restricted to LED, A fluorescent tube, an electric light bulb, a laser beam, EL (Electro-Luminescence: Electro luminescence) etc. may be sufficient.
  • the number and arrangement of the LEDs may be different.
  • the optical unit 10 drives a lens group 41 (three-lens configuration in FIG. 1), a lens holder 42 to which the lens group 41 is attached, and the lens holder 42 up and down.
  • the actuator 43 for this is comprised.
  • the light from the light source 2 is applied to the optical unit 10 as shown in FIG.
  • the light from the light source 2 forms an image reflected by the upper surface S1 and an image reflected by the lower surface S2 of the first lens L1 of the lens group 41.
  • the imaging camera 3 causes the lens unit 31 to make this image incident on a CCD (Charge Coupled Device) 32 that is a light receiving element.
  • the lens unit 31 is an imaging system that forms an image of the reflected light of the lens group 41 of the optical unit 10.
  • the light source 2 irradiates light to the optical unit 10 side, but does not irradiate light to the imaging camera 3 side.
  • an image of the light source 2 reflected by the upper surface S1 and the lower surface S2 of the first lens L1 is captured.
  • the shape of the image of the light source 2 is determined based on the positional relationship among the CCD 32, the lens unit 31, the light source 2, the first lens L 1, and the specification settings of the imaging camera 3.
  • the output signal from the CCD 32 is sent to the signal processing unit 4, and the signal processing unit 4 generates a video signal corresponding to the light intensity of the received image and transmits it to the image processing unit 5. Then, the image processing unit 5 converts the received video signal into an image signal.
  • the signal processing unit 4 may be provided in the CCD 32 or in the arithmetic processing unit 6.
  • the image signal converted by the image processing unit 5 is output to an arithmetic processing unit 6 composed of a microcomputer, and the arithmetic processing unit 6 obtains the center position of the image.
  • the arithmetic processing unit 6 includes a center position calculation unit 6a for determining the center position of the image of the reflected light from the first lens L1 captured by the imaging camera 3, and the image of the reflected light determined by the center position calculation unit 6a. And a lens tilt calculator 6b that calculates the tilt of the first lens L1 based on the center position.
  • center of the image light intensity or the like may be obtained from the positional relationship of the point light sources by the calculation of the image processing unit 5, or a specific position other than the center position or the center of gravity may be obtained.
  • a PSD Position Sensitive Device
  • a signal processing unit that processes an output signal of the PSD is used instead of the image processing unit 5.
  • the calculation processing unit 6 calculates the tilt (tilt angle and tilt direction) of the first lens L1 by performing a calculation process based on the output signal of the CCD 32.
  • the display unit 7 employs a liquid crystal display or a CRT display.
  • a lens group 41 (shown in FIG. 2B) composed of a plurality of first to third lenses L1, L2, and L3 is normally assembled with high-precision tilt adjustment.
  • the first lens L1 is often a lens that greatly affects the optical performance. Therefore, the inclination of the optical axis of the first lens L1 affects the optical performance of the lens group 41.
  • This lens tilt detection method obtains the state of eccentricity that occurs when the first lens L1 tilts, and detects the tilt (tilt angle and tilt direction) of the first lens L1.
  • the first lens L1 is a biconvex lens
  • the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and the imaging camera is applied to the first lens L1.
  • a virtual image is formed at a point P1 on the opposite side to 3.
  • the light transmitted through the upper surface S1 of the first lens L1 and converged and reflected by the lower surface S2 forms a real image at a point P2 on the imaging camera 3 side with respect to the first lens L1.
  • an image is formed at a point P1 on the opposite side (back side) of the light source 2 with respect to the first lens L1, and the light source with respect to the first lens L1.
  • An image is formed at the point P2 on the second side (near side).
  • the depth of field of the imaging camera 3 is such that only the points P1 to P2 are observed simultaneously.
  • the depth of field is not sufficient from the point P1 to the point P2, there is no problem as long as an image capable of measuring the center of the image is obtained.
  • the first lens L1 is a convex meniscus lens as viewed from the illumination side
  • the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and is reflected at the point P1.
  • the light transmitted through the upper surface S1 of the first lens L1 is divergently reflected by the lower surface S2 of the first lens L1, and forms a virtual image at the point P2.
  • images taken at these points P1 and P2 are observed by the imaging camera 3, images are formed at points P1 and P2 on the opposite side (back side) of the light source 2 with respect to the first lens L1.
  • the first lens L1 is a concave meniscus lens as viewed from the illumination side
  • the light emitted from the light source 2 is first converged and reflected by the upper surface S1 of the first lens L1, and is reflected at the point P1.
  • Real image is possible.
  • the light transmitted through the upper surface S1 of the first lens L1 is converged and reflected by the lower surface S2 of the first lens L1, and forms a real image at the point P2.
  • images formed at these points P1 and P2 are observed by the imaging camera 3, images are formed at points P1 and P2 on the light source 2 side (near side) with respect to the first lens L1.
  • the first lens L1 is a biconcave lens
  • the light emitted from the light source 2 is first converged and reflected by the upper surface S1 of the first lens L1, and a real image is formed at the point P1.
  • the light transmitted through the upper surface S1 of the first lens L1 is divergently reflected by the lower surface S2 of the first lens L1, and forms a virtual image at the point P2.
  • images formed at these points P1 and P2 are observed by the imaging camera 3
  • an image is formed at a point P1 on the light source 2 side (near side) with respect to the first lens L1, and opposite to the light source 2 with respect to the first lens L1.
  • An image is formed at the point P2 on the back side (back side). In this manner, a reflection elephant from the front and back surfaces of one lens is formed on the optical axis m regardless of the shape of the lens.
  • the first lens L1 is a convex lens
  • the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and a virtual image is formed at the point P1.
  • the light transmitted through the upper surface S1 of the first lens L1 is converged and reflected by the lower surface S2 of the first lens L1, and forms a real image at the point P2.
  • the light transmitted through the first lens L1 converges and reflects on the upper surface S1 of the second lens L2, passes through the first lens L1, and forms a real image at the point P3.
  • the light transmitted through the second lens L2 is converged and reflected by the lower surface S4 of the second lens L2, passes through the first lens L1, and forms a real image at the point P4.
  • the depth of field W of the imaging camera 3 may be designed so that all images of P1 to P4 can be observed at one time, but it is desirable to design at least two images (W in FIG. 3E). Design example in which two points P1 and P2 can be observed at once).
  • the imaging camera 3 may focus on each image point sequentially and observe it sequentially.
  • FIG. 4A, FIG. 4B, and FIG. 4C show the state where these illumination images are lens tilted.
  • 4A, 4B, and 4C an image obtained by the CCD 32 (shown in FIG. 1) is shown in the upper part of the drawing, and the inclination state of the optical axes of the lens holder 42 and the first lens L1 is schematically shown in the lower part of the drawing. Shown in the figure.
  • FIG. 4A shows a case where the first lens L1 is not tilted.
  • the images R1 and R2 of the light source 2 (points P1 and P2 representing the center position) appear at the vertices of the square.
  • the optical surfaces (S1, S2) are decentered, and the decentered state is an image obtained by the imaging camera 3 (a point P1 representing the center position of the images R1, R2). , P2) can be detected from the relative positional relationship, and the tilt angle, tilt direction, and the like of the optical axis of the first lens L1 with respect to the optical axis m direction can be obtained by back calculation from the detected eccentric state.
  • the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the distance between the points P1 and P2 representing the center position of the image of the light source 2 the inclination angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the tilt correction of the first lens L1 can be performed by adjusting the images R1 and R2 of the light source 2 so as to be concentric and overlapping the points P1 and P2 representing the center position.
  • the inclination angle of the optical axis of the first lens L1 is detected by detecting the relative positional relationship between two or more images of the lens, and therefore the first mounted on the optical unit 10 where the lens outer shape cannot be seen. This is effective for the lens L1.
  • the images R1 and R2 are concentrically centered without being affected by the influence.
  • the points P1 and P2 representing the position overlap it can be determined that there is no lens tilt.
  • the optical surfaces (S1, S2) are decentered, and the decentered state can be detected from the relative positional relationship of the obtained image.
  • the angle of inclination of the optical axis of the first lens L1 with respect to the optical axis m direction can be obtained by calculating backward from the above state.
  • the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the distance between the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2 the inclination angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the description is given with the reflected image of only the first lens L1, but the same applies to the case where two or more images are obtained in the optical unit including two or more lenses.
  • the state where the images are concentric is a state where there is no lens tilt.
  • the tilt angle is detected by the sum of the differences between the center positions of the images, and the tilt direction is detected by detecting the direction in which each image is decentered when the tilt occurs. Can be recognized.
  • the assembly flow of the imaging camera module is executed by an instruction from a program in the arithmetic processing unit 6 (shown in FIG. 1).
  • This program is stored in a ROM (Read Only Memory) or RAM (Random Access Memory) (not shown) in the arithmetic processing unit 6.
  • an imaging sensor 9 for a camera module is set in an assembly device (not shown), and a reference axis (optical axis) is set by a tilt sensor 20 arranged on an assembly reference axis (optical axis m) of the assembly device.
  • the tilt amount (tilt angle) ⁇ 1 of the light receiving surface of the image sensor 9 with respect to m) is measured.
  • the optical unit 10 for the camera module is set in the assembling apparatus, and the lens inclination detecting apparatus 1 of the first embodiment arranged on the assembling reference axis (optical axis m) of the assembling apparatus,
  • the tilt amount (tilt angle) ⁇ 2 of the lens group 41 with respect to the reference axis (optical axis m) is measured.
  • the image sensor 9 is corrected from the tilt amount ⁇ 1 to the tilt amount ⁇ 2 of the lens group 41, the relative position is adjusted to the optical unit 10, and then the camera module is assembled.
  • the optical unit 10 is corrected from the tilt amount ⁇ 2 to the tilt amount ⁇ 1 of the image sensor and the relative position is adjusted to the image sensor 9, and then assembled to assemble the camera module.
  • the posture of the optical unit 10 is adjusted so that the tilt amount ⁇ 1 of the imaging sensor 9 is zero with respect to the reference axis (optical axis m) and the tilt amount ⁇ 2 of the lens group 41 is zero.
  • the camera module is assembled by assembling.
  • FIG. 6C the figure is assembled by the method of (1) above.
  • An imaging chart C arranged perpendicular to the axis m) is imaged to confirm imaging characteristics and perform product inspection.
  • the camera module can be assembled by correcting the tilt amount, and the camera module that becomes defective due to the lens tilt can be assembled. It is possible to reduce the manufacturing cost.
  • the lens tilt detection device and the lens tilt detection method of the first embodiment based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of LEDs 21 captured by the imaging camera 3, By detecting the tilt angle and the tilt direction of the optical axis of the first lens L1 to be measured with respect to the reference axis m direction, even if the first lens L1 to be measured is tilted, the light of the first lens L1 to be measured The inclination of the axis can be detected accurately.
  • [Second Embodiment] 7A to 7C show the light source 2 in which the LEDs 21 of the lens tilt detection apparatus according to the second embodiment of the present invention are arranged so as to be at the apexes of the quadrangular and pentagonal shapes.
  • the lens tilt detection device of the second embodiment has the same configuration as the lens tilt detection device of the first embodiment except for the light source 102, and FIG.
  • the lens tilt detection apparatus of the second embodiment in the light source 102 in which the LEDs 21 are arranged to be the apexes of the quadrangular and pentagon, a plurality of LEDs 21 are arranged at the apexes of the quadrangular.
  • the LED group and the LED group in which a plurality of LEDs 21 are arranged at the apex of the pentagon can be turned on separately.
  • the on / off of the LED 21 of the light source 102 is controlled by the arithmetic processing unit 6 (shown in FIG. 1) including a light source control unit, but a control unit having a function of controlling the light source may be provided separately.
  • the light emitting element used for the light source 102 is not limited to the LED, and may be a fluorescent tube, a light bulb, a laser beam, an EL, or the like. Further, the number and arrangement of the respective LEDs may be different.
  • the image is formed by reflecting the light on the upper surface of the lens and the light is reflected on the lower surface.
  • the formed images are extremely close to each other or when the images partially overlap, the coordinates of the images may not be detected accurately.
  • FIG. 7C by changing to a configuration in which only the LED group in which the LEDs 21 are arranged at the vertices of the pentagon is turned on, overlapping can be prevented and accurate detection can be performed.
  • the LEDs 21 are arranged on the same plane orthogonal to the reference axis (optical axis m) so as to be the apexes of the quadrangular and pentagonal shapes.
  • the lens tilt detection apparatus of the second embodiment it is possible to prevent a decrease in detection accuracy due to approaching or overlapping of images by using a plurality of lighting shapes of point light sources.
  • FIG. 8A shows an illumination image when the first lens L1 is not tilted in the configuration of the light source 102 shown in FIG. 7B.
  • FIG. 8B shows the lens holder 42 in the configuration of the light source 102 shown in FIG. The state of the illumination image when rotated clockwise is shown.
  • the image obtained by the CCD 32 has images R1 and R2 of the light source 102 at square positions with respect to the lens holder 42. (Points P1 and P2 representing the center position) appear.
  • FIG. 8C shows an illumination image when the lens holder 42 is rotated counterclockwise in the lit light source 102 shown in FIG. 7C.
  • the optical surface is decentered, and the decentered state is relative to the images (points P1, P2 representing the center positions of the images R1, R2) obtained by the imaging camera 3. Since it can be detected from the positional relationship, it is possible to calculate the tilt angle, tilt direction, and the like of the optical axis of the first lens L1 with respect to the optical axis m direction by calculating backward from the detected eccentric state.
  • the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the tilt angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
  • the tilt correction of the first lens L1 can be performed by adjusting the images R1 and R2 of the light source 102 so as to be concentric and overlapping the points P1 and P2 representing the respective center positions.
  • the lens tilt detection device of the second embodiment has the same effect as the lens tilt detection device of the first embodiment.
  • the plurality of LEDs 21 by arranging the plurality of LEDs 21 at the vertices of a plurality of polygons, two or more images necessary for detecting the lens tilt can be detected, and by using a plurality of LED groups as imaging targets. Even when some images of the light source cannot be detected accurately, the center position can be obtained (estimated) from the positional relationship of the other polygonal LED groups, and the detection accuracy of the lens tilt can be improved.
  • the lens inclination detection apparatus of this 2nd Embodiment has the structure same as the lens inclination detection apparatus of 1st Embodiment except the lighting control of the light source 2, and uses FIG.
  • the lens configuration of the optical unit 10 is a single lens configuration of the first lens L1.
  • the light source 2 is a light source in which LEDs are arranged as a point light source so as to have a quadrangular shape, and individual LEDs can be controlled to be lit separately.
  • the light emitting element used for this light source is not limited to the LED, but may be a fluorescent tube, a light bulb, a laser beam, an EL, or the like. Further, the number and arrangement of the respective LEDs may be different.
  • each LED is turned on individually or at a designated location, and the coordinates of the image are detected in each case.
  • the on / off of the LED of the light source 2 is controlled by the arithmetic processing unit 6 (shown in FIG. 1) including the light source control unit, but a control unit having a function of controlling the light source may be provided separately.
  • FIG. 9A one of the four LEDs of the light source 2 is turned on, and an image R1 formed by the upper surface S1 of the first lens L1 appears at the right apex of the small square (dotted line) in FIG. 9A.
  • An image R2 formed by the lower surface S2 of the first lens L1 appears at the left apex of the large rectangle (dotted line).
  • one of the four LEDs of the light source 2 (the LED on the opposite side of the LED lit in FIG. 9A) is turned on, and the second vertex of the small square (dotted line) in FIG.
  • An image R1 formed on the upper surface S1 of one lens L1 appears, and an image R2 formed on the lower surface S2 of the first lens L1 appears at the right apex of the large square (dotted line) in FIG. 9B.
  • FIG. 9C one of the four LEDs of the light source 2 (one of the other LEDs excluding the LED lit in FIGS. 9A and 9B) is lit, and the small square (dotted line) in FIG.
  • An image R1 formed by the upper surface S1 of the first lens L1 appears at the lower vertex
  • an image R2 formed by the lower surface S2 of the first lens L1 appears at the upper vertex of the large square (dotted line) in FIG. 9C.
  • FIG. 9D one of the four LEDs of the light source 2 (the LED on the opposite side of the LED lit in FIG. 9A) is lit, and the second top of the small square (dotted line) in FIG.
  • An image R1 formed on the upper surface S1 of one lens L1 appears, and an image R2 formed on the lower surface S2 of the first lens L1 appears at the lower vertex of the large square (dotted line) in FIG. 9D.
  • the images R1 and R2 formed by the upper surface S1 and the lower surface S2 of the first lens L1 are rotated by 180 ° and moved in the opposite direction to the lens tilt. Except for a large case, the coordinates can be detected without the two images R1 and R2 overlapping.
  • the lens tilt detection device of the third embodiment has the same effect as the lens tilt detection device of the first embodiment.
  • the lens inclination detection apparatus of the said 3rd Embodiment it is possible to prevent the fall of the detection accuracy by the approach of an image or an overlap by controlling lighting of several LED which comprises the light source 2 separately. Become.
  • the lighting control technology of the point light source of the lens tilt detection device of the third embodiment may be applied to the point light source of the lens tilt detection device of the second embodiment.
  • the lens tilt detection device of the present invention is A plurality of point light sources 21 arranged on the same plane perpendicular to the reference axis m and spaced from each other, and irradiating light to the lens to be measured arranged on the reference axis m; Reflected light from a plurality of lens surfaces of the measurement target lens L1, which is disposed on the side opposite to the measurement target lens L1 with respect to the plurality of point light sources 21 and so as to coincide with the reference axis m.
  • An imaging camera 3 that captures a plurality of formed images of the point light source 21 generated by The optical axis of the lens L1 to be measured with respect to the direction of the reference axis m based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources 21 imaged by the imaging camera 3.
  • a lens inclination detecting section (4, 5, 6) for detecting the inclination angle and the inclination direction.
  • the lens L1 to be measured with respect to the reference axis m direction is based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources 21 imaged by the imaging camera 3.
  • the tilt of the optical axis of the lens L1 to be measured can be accurately detected even if the lens L1 to be measured is tilted with respect to the direction of the reference axis m. it can.
  • the plurality of point light sources 21 are arranged at the vertices of a plurality of polygons.
  • the plurality of point light sources 21 by arranging the plurality of point light sources 21 at the vertices of a plurality of polygons, two or more images necessary for detecting the lens tilt can be detected, and a plurality of point light sources are to be imaged.
  • the center position can be obtained (estimated) from the positional relationship of other polygonal point light sources, and the lens tilt Detection accuracy can be improved.
  • a light source controller that controls one or more of the plurality of point light sources 21 so as to be lit at an arbitrary timing is provided.
  • two or more necessary for detecting the lens tilt by the light source control unit that controls one or two or more of the point light sources 21 so as to be lit at an arbitrary timing can be improved.
  • the lens tilt detection method of the present invention Light from a plurality of point light sources 21 arranged at intervals on a plane perpendicular to the reference axis is irradiated to the lens L1 to be measured arranged on the reference axis m, and the lens L1 to be measured is measured.
  • the reference axis m is based on the center position of the reflected light image on the first surface obtained by the center position calculation unit 6a and the center position of the reflected light image from another lens surface different from the first surface.
  • the tilt of the optical axis of the measurement target lens L1 can be accurately detected even if the measurement target lens L1 is tilted with respect to the reference axis m direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Lens Barrels (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

The device is equipped with: a plurality of point light sources (21) that are disposed with space therebetween upon a plane perpendicular to a reference axis (m) and that direct light upon a lens to be measured disposed on the reference axis (m); an imaging camera (3) that is disposed on the opposite side of the lens to be measured (L1) in relation to the plurality of point light sources (21) and such that the optical axis matches with the reference axis (m), and that captures a plurality of formed images of the point light sources (21) generated by means of reflected light from the plurality of lens surfaces of the lens to be measured (L1); and lens tilt detection units (4, 5, 6) that detect the inclination angle and inclination direction of the optical axis of the lens to be measured (L1) relative to the reference axis (m) direction on the basis of the relative deviation of the center position of each of the plurality of formed images of the plurality of point light sources (21) captured by the imaging camera (3). As a result, a lens tilt detection device and a lens tilt detection method are provided that can accurately detect the tilt of the optical axis of a lens even in the form of an optical unit in which the lens is embedded in a holder.

Description

レンズ傾き検出装置およびレンズ傾き検出方法Lens tilt detection apparatus and lens tilt detection method
 この発明は、レンズ傾き検出装置およびレンズ傾き検出方法に関し、光通信用レンズ、撮像系用レンズおよび光ディスク用レンズ等のレンズチルト調整に用いられるレンズ傾き検出装置およびレンズ傾き検出方法に関するものである。 The present invention relates to a lens tilt detection device and a lens tilt detection method, and relates to a lens tilt detection device and a lens tilt detection method used for lens tilt adjustment of an optical communication lens, an imaging system lens, an optical disk lens, and the like.
 携帯電話用のカメラモジュールでは、撮像素子のコンパクト化および非球面レンズの多様化により、レンズを光学ユニットに組込む際に、厳密な位置決め調整精度が要求されている。 In camera modules for mobile phones, due to the downsizing of the image sensor and the diversification of aspherical lenses, strict positioning adjustment accuracy is required when incorporating the lens into the optical unit.
 そこで、従来のレンズ傾き検出装置として、照明光をレンズに照射してレンズ面の反射像のずれからレンズホルダの基準面に対するレンズチルト角を換算することにより傾き調整するものがある(例えば、特開2010-54677号公報(特許文献1)参照)。 Therefore, as a conventional lens tilt detection device, there is a device that adjusts the tilt by irradiating illumination light to the lens and converting the lens tilt angle with respect to the reference surface of the lens holder from the deviation of the reflected image of the lens surface (for example, a special feature). No. 2010-54677 (Patent Document 1)).
特開2010-54677号公報JP 2010-54677 A
 ところで、レンズは、レンズユニットに組み込まれた後、レンズ駆動用のアクチュエータが搭載された光学ユニットとなる。このとき、光学ユニットの基準面に対してレンズが傾いて組付調整される場合も多く、光学ユニットの光軸に対してレンズが傾いており、この光学ユニットを撮像センサに調整なしで装着しても所望の性能を有するカメラモジュールを得ることができない。そのため、光学ユニットの状態でレンズの傾きを測定し、発生している傾きを調整することが必要となる。 By the way, the lens becomes an optical unit in which an actuator for driving the lens is mounted after being incorporated in the lens unit. At this time, the lens is often tilted and adjusted with respect to the reference plane of the optical unit, and the lens is tilted with respect to the optical axis of the optical unit, and this optical unit is attached to the image sensor without adjustment. However, a camera module having desired performance cannot be obtained. Therefore, it is necessary to measure the tilt of the lens in the state of the optical unit and adjust the generated tilt.
 上記レンズ傾き検出装置の技術を用いれば、レンズを組込むホルダに対するレンズの光軸の傾斜角度を調整することができるが、レンズの傾きの基準をレンズ外形あるいはレンズが接しているホルダの内径にする必要がある。このため、これらが見えないホルダに組込み済みの光学ユニット状態のものでは、レンズの傾きを正確に測定することができず、光学ユニットを撮像センサに組み込み調整することができないという問題がある。 By using the above-described lens tilt detection technique, the tilt angle of the optical axis of the lens with respect to the holder into which the lens is assembled can be adjusted. The lens tilt reference is set to the lens outer shape or the inner diameter of the holder in contact with the lens. There is a need. For this reason, in the state of the optical unit already incorporated in the holder in which these cannot be seen, there is a problem that the tilt of the lens cannot be measured accurately and the optical unit cannot be incorporated into the image sensor and adjusted.
 この発明は、上記問題に鑑み、ホルダにレンズが組み込まれた光学ユニットの状態でも、レンズの光軸の傾きを正確に検出できるレンズ傾き検出装置およびレンズ傾き検出方法を提供することを目的とするものである。 In view of the above problems, an object of the present invention is to provide a lens tilt detection device and a lens tilt detection method capable of accurately detecting the tilt of the optical axis of a lens even in a state of an optical unit in which a lens is incorporated in a holder. Is.
 上記課題を解決するため、この発明のレンズ傾き検出装置は、
 基準軸に直交する同一平面上に互いに間隔をあけて配置され、上記基準軸上に配置された測定対象のレンズに光を照射する複数の点光源と、
 上記複数の点光源に対して上記測定対象のレンズと反対の側かつ上記基準軸に光軸が一致するように配置され、上記測定対象のレンズの複数のレンズ面からの反射光により生成される上記点光源の複数の結像画像を撮像する撮像カメラと、
 上記撮像カメラにより撮像された上記複数の点光源の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、上記基準軸方向に対する上記測定対象のレンズの光軸の傾斜角度と傾斜方向を検出するレンズ傾き検出部と
を備えたことを特徴とする。
In order to solve the above problems, a lens tilt detection device of the present invention is
A plurality of point light sources arranged on the same plane perpendicular to the reference axis and spaced from each other, and irradiating light to the lens to be measured arranged on the reference axis;
It is arranged so that the optical axis coincides with the reference axis on the side opposite to the lens to be measured with respect to the plurality of point light sources, and is generated by reflected light from a plurality of lens surfaces of the lens to be measured. An imaging camera that captures a plurality of formed images of the point light source;
An inclination angle of the optical axis of the lens to be measured with respect to the reference axis direction based on the relative shift amount of the center position of each of the plurality of formed images of the plurality of point light sources captured by the imaging camera; And a lens tilt detection unit for detecting the tilt direction.
 また、一実施形態のレンズ傾き検出装置では、
 上記複数の点光源は、複数の多角形の頂点に配置されている。
Moreover, in the lens tilt detection device of one embodiment,
The plurality of point light sources are arranged at the vertices of a plurality of polygons.
 また、一実施形態のレンズ傾き検出装置では、
 上記複数の点光源のうちの1または2以上の点光源を任意のタイミングで点灯可能に制御する光源制御部を備えた。
Moreover, in the lens tilt detection device of one embodiment,
A light source controller that controls one or more point light sources among the plurality of point light sources so as to be lit at an arbitrary timing is provided.
 また、この発明のレンズ傾き検出方法では、
 基準軸に直交する平面上に互いに間隔をあけて配置された複数の点光源からの光を、上記基準軸上に配置された測定対象のレンズに照射し、上記測定対象のレンズの複数のレンズ面の第1面の反射光の像を、上記基準軸と光軸が一致する結像系により結像させる撮像カメラにより撮像する工程と、
 上記撮像カメラにより撮像された上記第1面の反射光の像の中心位置を中心位置演算部により求める工程と、
 上記レンズの第1面と異なる他のレンズ面からの反射光の像を上記結像系により結像させて、上記撮像カメラにより撮像する工程と、
 上記撮像カメラにより撮像された上記レンズの第1面と異なる他のレンズ面からの反射光の像の中心位置を上記中心位置演算部により求める工程と、
 上記中心位置演算部により求められた上記第1面の反射光の像の中心位置と上記第1面と異なる他のレンズ面からの反射光の像の中心位置に基づいて、上記基準軸方向に対する上記レンズの光軸の傾斜角度と傾斜方向をレンズ傾き演算部により演算する工程と
を含むことを特徴とする。
In the lens tilt detection method of the present invention,
A plurality of lenses of the measurement target lens are irradiated with light from a plurality of point light sources arranged on a plane orthogonal to the reference axis at intervals from each other, and irradiated to the measurement target lens arranged on the reference axis. Capturing an image of reflected light of the first surface of the surface with an imaging camera that forms an image with an imaging system in which the optical axis coincides with the reference axis;
Obtaining a center position of an image of the reflected light of the first surface imaged by the imaging camera by a center position calculation unit;
Forming an image of reflected light from another lens surface different from the first surface of the lens with the imaging system, and imaging with the imaging camera;
Obtaining a center position of an image of reflected light from another lens surface different from the first surface of the lens imaged by the imaging camera by the center position calculating unit;
Based on the center position of the reflected light image on the first surface and the center position of the reflected light image from another lens surface different from the first surface, which is obtained by the center position calculation unit, with respect to the reference axis direction. And a step of calculating a tilt angle and a tilt direction of the optical axis of the lens by a lens tilt calculator.
 以上より明らかなように、この発明によれば、撮像カメラにより撮像された複数の点光源の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、測定対象のレンズの光軸の傾斜角度と傾斜方向を検出することによって、レンズがホルダに組み込まれた光学ユニットの状態でも、レンズの光軸の傾きを正確に検出できるレンズ傾き検出装置およびレンズ傾き検出方法を実現することができる。 As is clear from the above, according to the present invention, the light of the lens to be measured is based on the relative shift amounts of the respective center positions of the plurality of formed images of the plurality of point light sources captured by the imaging camera. Realizing a lens tilt detection device and a lens tilt detection method capable of accurately detecting the tilt of the optical axis of a lens even in the state of an optical unit in which the lens is incorporated in a holder by detecting the tilt angle and tilt direction of the shaft Can do.
図1はこの発明の第1実施形態のレンズ傾き検出装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a lens tilt detection apparatus according to a first embodiment of the present invention. 図2Aは上記レンズ傾き検出装置において点光源の一例としてのLEDを4角形の頂点になるように配置した光源の模式図である。FIG. 2A is a schematic view of a light source in which LEDs as an example of a point light source are arranged so as to be at the apex of a quadrangle in the lens tilt detection apparatus. 図2Bは上記レンズ傾き検出装置によりレンズ傾きが検出される光学ユニットの断面模式図である。FIG. 2B is a schematic cross-sectional view of an optical unit in which the lens tilt is detected by the lens tilt detection device. 図3Aは上記光学ユニットのレンズがチルトした際に生じる偏心と像の関係を示す図である。FIG. 3A is a diagram showing the relationship between the eccentricity generated when the lens of the optical unit is tilted and the image. 図3Bは凸メニスカスレンズの上面で発散反射した光による虚像と、レンズの上面を透過し下面で発散反射した光による虚像を示す図である。FIG. 3B is a diagram showing a virtual image due to light diverging and reflecting from the upper surface of the convex meniscus lens and a virtual image due to light diverging and reflecting from the upper surface of the lens and from the lower surface. 図3Cは凹メニスカスレンズの上面で収束反射した光による実像と、レンズの上面を透過し下面で収束反射した光による実像を示す図である。FIG. 3C is a diagram showing a real image by light converged and reflected by the upper surface of the concave meniscus lens and a real image by light that has passed through the upper surface of the lens and converged and reflected by the lower surface. 図3Dは両凹レンズの上面で収束反射した光による実像と、レンズの上面を透過し下面で発散反射した光による虚像を示す図である。FIG. 3D is a diagram showing a real image by light converged and reflected on the upper surface of the biconcave lens, and a virtual image by light diverged and reflected by the lower surface through the upper surface of the lens. 図3Eは第1レンズが両凸レンズ、第2レンズが凹メニスカスレンズである場合の像を示す図である。FIG. 3E shows an image when the first lens is a biconvex lens and the second lens is a concave meniscus lens. 図4Aはレンズが傾斜していない場合の光源の像の様子を示す図である。FIG. 4A is a diagram illustrating an image of a light source when the lens is not inclined. 図4Bは上記レンズホルダを反時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 4B is a diagram illustrating a state of an image of the light source when the lens holder is rotated counterclockwise. 図4Cは上記レンズホルダを時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 4C is a diagram showing a state of an image of a light source when the lens holder is rotated clockwise. 図5Aはレンズホルダのアパーチャーがレンズ中心に対してずれて形成されている場合の光源の像の様子を示す図である。FIG. 5A is a diagram illustrating a state of an image of a light source when the aperture of the lens holder is formed so as to be shifted from the center of the lens. 図5Bは上記レンズホルダを反時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 5B is a diagram showing a state of an image of a light source when the lens holder is rotated counterclockwise. 図5Cは上記レンズホルダを時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 5C is a diagram showing a state of an image of a light source when the lens holder is rotated clockwise. 図6Aは上記撮像センサの受光面のチルト量の測定について説明するための図である。FIG. 6A is a diagram for explaining the measurement of the tilt amount of the light receiving surface of the image sensor. 図6Bは上記レンズ傾き検出装置を用いた光学ユニットのチルト量の測定について説明するための図である。FIG. 6B is a diagram for explaining the measurement of the tilt amount of the optical unit using the lens tilt detection apparatus. 図6Cは撮像チャートを撮像して撮像特性を確認する製品検査について説明するための図である。FIG. 6C is a diagram for describing a product inspection in which an imaging chart is captured to confirm imaging characteristics. 図7Aはこの発明の第2実施形態のレンズ傾き検出装置のLEDを4角形と5角形の頂点になるように配置した光源の模式図である。FIG. 7A is a schematic diagram of a light source in which LEDs of a lens tilt detection apparatus according to a second embodiment of the present invention are arranged so as to be at the apexes of a quadrangular shape and a pentagonal shape. 図7Bは4角形の頂点に配置された点光源のみが点灯した場合の光源の模式図である。FIG. 7B is a schematic diagram of the light source when only the point light source arranged at the apex of the quadrangular is turned on. 図7Cは5角形の頂点に配置された点光源のみが点灯した場合の光源の模式図である。FIG. 7C is a schematic diagram of the light source when only the point light source arranged at the vertex of the pentagon is turned on. 図8Aは図7Bに示す四角形状に点光源を配置した光源の構成において、レンズが傾斜していない場合の光源の像の様子を示す図である。FIG. 8A is a diagram showing an image of the light source when the lens is not inclined in the configuration of the light source in which the point light sources are arranged in a square shape shown in FIG. 7B. 図8Bは図7Bに示す四角形の頂点に配置された点光源のみが点灯した場合の光源において、レンズホルダを反時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 8B is a diagram showing a state of an image of the light source when the lens holder is rotated counterclockwise in the light source when only the point light source arranged at the vertex of the rectangle shown in FIG. 7B is turned on. 図8Cは図7Cに示す5角形の頂点に配置された点光源のみが点灯した場合の光源において、レンズホルダを反時計回りに回転させた場合の光源の像の様子を示す図である。FIG. 8C is a diagram showing a state of an image of the light source when the lens holder is rotated counterclockwise in the light source when only the point light source arranged at the vertex of the pentagon shown in FIG. 7C is turned on. 図9Aは各点光源のうちの指定した箇所のみ点灯させた第1の例の光源の像の様子を示す図である。FIG. 9A is a diagram showing a state of an image of the light source of the first example in which only a designated portion of each point light source is turned on. 図9Bは各点光源のうちの指定した箇所のみ点灯させた第2の例の光源の像の様子を示す図である。FIG. 9B is a diagram showing a state of an image of the light source of the second example in which only a designated portion of each point light source is turned on. 図9Cは各点光源のうちの指定した箇所のみ点灯させた第3の例の光源の像の様子を示す図である。FIG. 9C is a diagram showing a state of an image of the light source of the third example in which only a designated portion of each point light source is turned on. 図9Dは各点光源のうちの指定した箇所のみ点灯させた第4の例の光源の像の様子を示す図である。FIG. 9D is a diagram illustrating a state of an image of the light source of the fourth example in which only a designated portion of each point light source is turned on.
 以下、この発明のレンズ傾き検出装置およびレンズ傾き検出方法を図示の実施の形態により詳細に説明する。 Hereinafter, the lens tilt detection apparatus and the lens tilt detection method of the present invention will be described in detail with reference to the illustrated embodiments.
 〔第1実施形態〕
 図1はこの発明の第1実施形態のレンズ傾き検出装置の概略構成を示している。
[First Embodiment]
FIG. 1 shows a schematic configuration of a lens tilt detection apparatus according to a first embodiment of the present invention.
 この第1実施形態のレンズ傾き検出装置1は、図1に示すように、光源2と、撮像カメラ3と、信号処理部4と、画像処理部5と、演算処理部6と、表示部7とを備えている。上記信号処理部4と画像処理部5と演算処理部6でレンズ傾き検出部を構成している。 As shown in FIG. 1, the lens tilt detection apparatus 1 according to the first embodiment includes a light source 2, an imaging camera 3, a signal processing unit 4, an image processing unit 5, an arithmetic processing unit 6, and a display unit 7. And. The signal processing unit 4, the image processing unit 5 and the arithmetic processing unit 6 constitute a lens tilt detection unit.
 上記光源2は、図2Aに示すように、点光源の一例としてのLED(Light Emitting Diode:発光ダイオード)21が複数配置された光源であり、基準軸(撮像カメラ3の光軸m)に直交する同一平面上において4つのLED21を4角形の頂点になるように配置している。なお、この光源2に用いる発光素子は、LEDに限られるものではなく、蛍光管、電球、レーザー光、EL(Electro Luminescence:エレクトロ・ルミネッセンス)などでもよい。また、LEDの数や配置は異なっていてもよい。 As shown in FIG. 2A, the light source 2 is a light source in which a plurality of LEDs (Light Emitting Diodes) 21 as an example of a point light source are arranged, and is orthogonal to the reference axis (the optical axis m of the imaging camera 3). The four LEDs 21 are arranged on the same plane so as to be the apexes of the quadrangle. In addition, the light emitting element used for this light source 2 is not restricted to LED, A fluorescent tube, an electric light bulb, a laser beam, EL (Electro-Luminescence: Electro luminescence) etc. may be sufficient. Moreover, the number and arrangement of the LEDs may be different.
 また、上記光学ユニット10は、図2Bに示すようにレンズ群41(図1では3枚レンズ構成)と、そのレンズ群41が装着されたレンズホルダ42と、そのレンズホルダ42を上下に駆動させるためのアクチュエータ43から構成されている。 Further, as shown in FIG. 2B, the optical unit 10 drives a lens group 41 (three-lens configuration in FIG. 1), a lens holder 42 to which the lens group 41 is attached, and the lens holder 42 up and down. The actuator 43 for this is comprised.
 上記光源2からの光は、図1に示すように光学ユニット10に照射される。そして、光源2からの光は、レンズ群41の第1レンズL1の上面S1で反射した像と下面S2で反射した像を形成する。撮像カメラ3は、この像をレンズユニット31によって受光素子であるCCD(Charge Coupled Device:電荷結合素子)32に入射させる。上記レンズユニット31は、光学ユニット10のレンズ群41の反射光の像を結像させる結像系である。 The light from the light source 2 is applied to the optical unit 10 as shown in FIG. The light from the light source 2 forms an image reflected by the upper surface S1 and an image reflected by the lower surface S2 of the first lens L1 of the lens group 41. The imaging camera 3 causes the lens unit 31 to make this image incident on a CCD (Charge Coupled Device) 32 that is a light receiving element. The lens unit 31 is an imaging system that forms an image of the reflected light of the lens group 41 of the optical unit 10.
 なお、光源2は、光学ユニット10側に光を照射するが、撮像カメラ3側には光を照射しない。 The light source 2 irradiates light to the optical unit 10 side, but does not irradiate light to the imaging camera 3 side.
 上記CCD32の撮像面上では、第1レンズL1の上面S1と下面S2で反射した光源2の像が撮像される。光源2の像の形状は、CCD32、レンズユニット31、光源2、第1レンズL1の位置関係、および撮像カメラ3の諸元設定に基づいて決定される。 On the imaging surface of the CCD 32, an image of the light source 2 reflected by the upper surface S1 and the lower surface S2 of the first lens L1 is captured. The shape of the image of the light source 2 is determined based on the positional relationship among the CCD 32, the lens unit 31, the light source 2, the first lens L 1, and the specification settings of the imaging camera 3.
 上記CCD32からの出力信号は、信号処理部4へ送られ、信号処理部4は受光した像の光強度に相当するビデオ信号を発生させ、画像処理部5に送信する。そして、画像処理部5において、受信したビデオ信号を画像信号に変換する。なお、信号処理部4は、CCD32内に設けても良いし、演算処理部6内に設けてもよい。画像処理部5で変換された画像信号は、マイクロコンピューターから構成される演算処理部6に出力され、演算処理部6で画像の中心位置を求める。 The output signal from the CCD 32 is sent to the signal processing unit 4, and the signal processing unit 4 generates a video signal corresponding to the light intensity of the received image and transmits it to the image processing unit 5. Then, the image processing unit 5 converts the received video signal into an image signal. The signal processing unit 4 may be provided in the CCD 32 or in the arithmetic processing unit 6. The image signal converted by the image processing unit 5 is output to an arithmetic processing unit 6 composed of a microcomputer, and the arithmetic processing unit 6 obtains the center position of the image.
 上記演算処理部6は、撮像カメラ3により撮像された第1レンズL1からの反射光の像の中心位置を求める中心位置演算部6aと、中心位置演算部6aにより求められた反射光の像の中心位置に基づいて、第1レンズL1の傾きを演算するレンズ傾き演算部6bとを有する。 The arithmetic processing unit 6 includes a center position calculation unit 6a for determining the center position of the image of the reflected light from the first lens L1 captured by the imaging camera 3, and the image of the reflected light determined by the center position calculation unit 6a. And a lens tilt calculator 6b that calculates the tilt of the first lens L1 based on the center position.
 なお、画像処理部5の演算によって点光源の位置関係から、画像光強度の重心などを求めてもよく、中心位置や重心以外の特定の位置を求めてもよい。 It should be noted that the center of the image light intensity or the like may be obtained from the positional relationship of the point light sources by the calculation of the image processing unit 5, or a specific position other than the center position or the center of gravity may be obtained.
 重心を求める場合には、CCD32のかわりにPSD(Position Sensitive Device:位置検出素子)を用いても良い。その場合、画像処理部5の代わりにPSDの出力信号を処理する信号処理部を用いる。 When obtaining the center of gravity, a PSD (Position Sensitive Device) may be used instead of the CCD 32. In this case, a signal processing unit that processes an output signal of the PSD is used instead of the image processing unit 5.
 上記演算処理部6は、CCD32の出力信号に基づいて演算処理を施すことにより、第1レンズL1の傾き(傾斜角度と傾斜方向)を算出する。 The calculation processing unit 6 calculates the tilt (tilt angle and tilt direction) of the first lens L1 by performing a calculation process based on the output signal of the CCD 32.
 そして、上記演算処理部6で得られた画像や演算結果を表示部7に表示する。なお、表示部7には、液晶ディスプレイやCRTディスプレイを採用する。 Then, the image and calculation result obtained by the calculation processing unit 6 are displayed on the display unit 7. The display unit 7 employs a liquid crystal display or a CRT display.
 また、通常複数の第1~第3レンズL1,L2,L3からなるレンズ群41(図2Bに示す)は高精度でチルト調整が行われて組み立てられている。その中でも特に第1レンズL1は、光学性能に大きく影響するレンズであることが多いため、第1レンズL1の光軸の傾きがレンズ群41の光学性能を左右する。 Further, a lens group 41 (shown in FIG. 2B) composed of a plurality of first to third lenses L1, L2, and L3 is normally assembled with high-precision tilt adjustment. In particular, the first lens L1 is often a lens that greatly affects the optical performance. Therefore, the inclination of the optical axis of the first lens L1 affects the optical performance of the lens group 41.
 そのため、次に、レンズ群41のチルト調整する指標とするための第1レンズL1の傾き(傾斜角度と傾斜方向)を検出するレンズ傾き検出方法について詳細に説明する。このレンズ傾き検出方法は、第1レンズL1が傾いた際に生じる偏心の状態を求め、第1レンズL1の傾き(傾斜角度と傾斜方向)を検出するものである。 Therefore, a lens tilt detection method for detecting the tilt (tilt angle and tilt direction) of the first lens L1 to be used as an index for adjusting the tilt of the lens group 41 will be described in detail. This lens tilt detection method obtains the state of eccentricity that occurs when the first lens L1 tilts, and detects the tilt (tilt angle and tilt direction) of the first lens L1.
 図3A~図3Dを用いて第1レンズL1の偏心と像の関係について説明する。 The relationship between the decentering of the first lens L1 and the image will be described with reference to FIGS. 3A to 3D.
 まず、図3Aに示すように、第1レンズL1が両凸レンズである場合、光源2から発した光は、まず第1レンズL1の上面S1で発散反射し、第1レンズL1に対して撮像カメラ3と反対の側の点P1に虚像ができる。次に、第1レンズL1の上面S1を透過し下面S2で収束反射した光は、第1レンズL1に対して撮像カメラ3側の点P2に実像を結像する。これらの点P1,P2にできる像を撮像カメラ3で観測すると、第1レンズL1に対して光源2と反対の側(奥側)の点P1に像ができ、第1レンズL1に対して光源2側(手前側)の点P2に像ができる。 First, as shown in FIG. 3A, when the first lens L1 is a biconvex lens, the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and the imaging camera is applied to the first lens L1. A virtual image is formed at a point P1 on the opposite side to 3. Next, the light transmitted through the upper surface S1 of the first lens L1 and converged and reflected by the lower surface S2 forms a real image at a point P2 on the imaging camera 3 side with respect to the first lens L1. When images taken at these points P1 and P2 are observed by the imaging camera 3, an image is formed at a point P1 on the opposite side (back side) of the light source 2 with respect to the first lens L1, and the light source with respect to the first lens L1. An image is formed at the point P2 on the second side (near side).
 このとき、撮像カメラ3の被写界深度は、点P1から点P2が同時に観測されるだけあることが望ましい。ただし、被写界深度が点P1から点P2まで十分なくても、像の中心が測定できるだけの画像が得られれば問題ない。 At this time, it is desirable that the depth of field of the imaging camera 3 is such that only the points P1 to P2 are observed simultaneously. However, even if the depth of field is not sufficient from the point P1 to the point P2, there is no problem as long as an image capable of measuring the center of the image is obtained.
 また、図3Bに示すように、第1レンズL1が照明側から見て凸メニスカスレンズである場合、光源2から発した光は、まず第1レンズL1の上面S1で発散反射し、点P1に虚像ができる。次に、第1レンズL1の上面S1を透過した光は、第1レンズL1の下面S2で発散反射し、点P2に虚像を結像する。これらの点P1,P2にできる像を撮像カメラ3で観測すると、第1レンズL1に対して光源2と反対の側(奥側)の点P1,P2に像ができる。 Further, as shown in FIG. 3B, when the first lens L1 is a convex meniscus lens as viewed from the illumination side, the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and is reflected at the point P1. You can make a virtual image. Next, the light transmitted through the upper surface S1 of the first lens L1 is divergently reflected by the lower surface S2 of the first lens L1, and forms a virtual image at the point P2. When images taken at these points P1 and P2 are observed by the imaging camera 3, images are formed at points P1 and P2 on the opposite side (back side) of the light source 2 with respect to the first lens L1.
 なお、点P1と点P1の光軸mに沿った方向の位置関係は、第1レンズL1のレンズ面(S1,S2)の曲率によって決まるが、本発明では重要ではない。 In addition, although the positional relationship of the direction along the optical axis m of the point P1 and the point P1 is decided by the curvature of the lens surface (S1, S2) of the 1st lens L1, it is not important in this invention.
 また、図3Cに示すように、第1レンズL1が照明側から見て凹メニスカスレンズである場合、光源2から発した光は、まず第1レンズL1の上面S1で収束反射し、点P1に実像ができる。次に、第1レンズL1の上面S1を透過した光は、第1レンズL1の下面S2で収束反射し、点P2に実像を結像する。これらの点P1,P2にできる像を撮像カメラ3で観測すると、第1レンズL1に対して光源2側(手前側)の点P1,P2に像ができる。 Further, as shown in FIG. 3C, when the first lens L1 is a concave meniscus lens as viewed from the illumination side, the light emitted from the light source 2 is first converged and reflected by the upper surface S1 of the first lens L1, and is reflected at the point P1. Real image is possible. Next, the light transmitted through the upper surface S1 of the first lens L1 is converged and reflected by the lower surface S2 of the first lens L1, and forms a real image at the point P2. When images formed at these points P1 and P2 are observed by the imaging camera 3, images are formed at points P1 and P2 on the light source 2 side (near side) with respect to the first lens L1.
 また、図3Dに示すように、第1レンズL1が両凹レンズである場合、光源2から発した光は、まず第1レンズL1の上面S1で収束反射し、点P1に実像ができる。次に、第1レンズL1の上面S1を透過した光は、第1レンズL1の下面S2で発散反射し、点P2に虚像を結像する。これらの点P1,P2にできる像を撮像カメラ3で観測すると、第1レンズL1に対して光源2側(手前側)の点P1に像ができ、第1レンズL1に対して光源2と反対の側(奥側)の点P2に像ができる。このように、レンズの形状に関係なく1枚のレンズの表面と裏面からの反射象が光軸m上に形成される。 As shown in FIG. 3D, when the first lens L1 is a biconcave lens, the light emitted from the light source 2 is first converged and reflected by the upper surface S1 of the first lens L1, and a real image is formed at the point P1. Next, the light transmitted through the upper surface S1 of the first lens L1 is divergently reflected by the lower surface S2 of the first lens L1, and forms a virtual image at the point P2. When images formed at these points P1 and P2 are observed by the imaging camera 3, an image is formed at a point P1 on the light source 2 side (near side) with respect to the first lens L1, and opposite to the light source 2 with respect to the first lens L1. An image is formed at the point P2 on the back side (back side). In this manner, a reflection elephant from the front and back surfaces of one lens is formed on the optical axis m regardless of the shape of the lens.
 また、第1レンズL1以外の複数のレンズがある場合も、それぞれのレンズの面からの反射光による像が生成されることになり、撮像カメラ3で被写界深度内の像が観測できる。 In addition, even when there are a plurality of lenses other than the first lens L1, an image by reflected light from the surface of each lens is generated, and an image within the depth of field can be observed by the imaging camera 3.
 例えば、図3Eに示すように、第1レンズL1が両凸レンズ、第2レンズL2が凹メニスカスレンズである場合、光源2の像は点P1~P4に生成される。 For example, as shown in FIG. 3E, when the first lens L1 is a biconvex lens and the second lens L2 is a concave meniscus lens, an image of the light source 2 is generated at points P1 to P4.
 図3Eでは、第1レンズL1が凸レンズである場合、光源2から発した光は、まず第1レンズL1の上面S1で発散反射し、点P1に虚像ができる。次に、第1レンズL1の上面S1を透過した光は、第1レンズL1の下面S2で収束反射し、点P2に実像を結像する。さらに、第1レンズL1を透過した光は、第2レンズL2の上面S1で収束反射して第1レンズL1を透過し、点P3に実像を結像する。また、第2レンズL2を透過した光は、第2レンズL2の下面S4で収束反射して第1レンズL1を透過し、点P4に実像を結像する。 In FIG. 3E, when the first lens L1 is a convex lens, the light emitted from the light source 2 is first divergently reflected by the upper surface S1 of the first lens L1, and a virtual image is formed at the point P1. Next, the light transmitted through the upper surface S1 of the first lens L1 is converged and reflected by the lower surface S2 of the first lens L1, and forms a real image at the point P2. Further, the light transmitted through the first lens L1 converges and reflects on the upper surface S1 of the second lens L2, passes through the first lens L1, and forms a real image at the point P3. The light transmitted through the second lens L2 is converged and reflected by the lower surface S4 of the second lens L2, passes through the first lens L1, and forms a real image at the point P4.
 このとき、撮像カメラ3の被写界深度WはP1~P4のすべての像を一度に観測できる設計であれば良いが、少なくとも2つ以上の像が観測できる設計が望ましい(図3EではWはP1,P2の2点が一度に観測できる設計例)。 At this time, the depth of field W of the imaging camera 3 may be designed so that all images of P1 to P4 can be observed at one time, but it is desirable to design at least two images (W in FIG. 3E). Design example in which two points P1 and P2 can be observed at once).
 また、被写界深度Wが小さく2点以上一度に観測できない場合は、撮像カメラ3で各像点に順次ピントを合わせ、逐次観測していってもよい。 Also, when the depth of field W is small and two or more points cannot be observed at a time, the imaging camera 3 may focus on each image point sequentially and observe it sequentially.
 次に、これらの照明の像がレンズチルトした場合の様子を図4A,図4B,図4Cに示している。図4A,図4B,図4Cにおいて、図中上部にCCD32(図1に示す)で得られた画像を示し、図中下部にレンズホルダ42と第1レンズL1の光軸の傾斜状況を断面模式図で示す。 Next, FIG. 4A, FIG. 4B, and FIG. 4C show the state where these illumination images are lens tilted. 4A, 4B, and 4C, an image obtained by the CCD 32 (shown in FIG. 1) is shown in the upper part of the drawing, and the inclination state of the optical axes of the lens holder 42 and the first lens L1 is schematically shown in the lower part of the drawing. Shown in the figure.
 図4Aは第1レンズL1が傾斜していない場合を示す。このときにCCD32で得られる画像には、四角形の頂点に光源2の像R1,R2(中心位置を表す点P1,P2)が現れる。 FIG. 4A shows a case where the first lens L1 is not tilted. In the image obtained by the CCD 32 at this time, the images R1 and R2 of the light source 2 (points P1 and P2 representing the center position) appear at the vertices of the square.
 この状態から、図4Bに示すように、W1の方向(反時計方向)にレンズホルダ42を回転させると、光源2の像R1,R2の中心位置を表す点P1,P2は、図中左右にずれて観測される。 From this state, as shown in FIG. 4B, when the lens holder 42 is rotated in the direction W1 (counterclockwise), the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2 are left and right in the drawing. Observed.
 次に、図4Cに示すように、W2(時計方向)の方向にレンズホルダ42を回転させると、光源2の像R1,R2の中心位置を表す点P1,P2は、図中左右逆方向にずれて観測される。 Next, as shown in FIG. 4C, when the lens holder 42 is rotated in the direction of W2 (clockwise), the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2 are reversed in the horizontal direction in the figure. Observed.
 このように、第1レンズL1が傾くと光学面(S1,S2)は偏心することとなり、その偏心の状態は、撮像カメラ3で得られた画像(像R1,R2の中心位置を表す点P1,P2)の相対位置関係から検出することができるので、検出した偏心の状態から逆算して、光軸m方向に対する第1レンズL1の光軸の傾斜角度や傾斜方向等を求めることができる。 As described above, when the first lens L1 is tilted, the optical surfaces (S1, S2) are decentered, and the decentered state is an image obtained by the imaging camera 3 (a point P1 representing the center position of the images R1, R2). , P2) can be detected from the relative positional relationship, and the tilt angle, tilt direction, and the like of the optical axis of the first lens L1 with respect to the optical axis m direction can be obtained by back calculation from the detected eccentric state.
 すなわち、CCD32の画像から、光源2の像R1,R2の中心位置を表す点P1,P2のずれ方向を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜方向を検出でき、光源2の像の中心位置を表す点P1,P2の距離を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜角度を検出することができる。 That is, by detecting the shift direction of the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2 from the image of the CCD 32, the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected. By detecting the distance between the points P1 and P2 representing the center position of the image of the light source 2, the inclination angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
 したがって、第1レンズL1の傾き補正は、光源2の像R1,R2が同心円上になって中心位置を表す点P1,P2が重なるように調整することで行うことができる。 Therefore, the tilt correction of the first lens L1 can be performed by adjusting the images R1 and R2 of the light source 2 so as to be concentric and overlapping the points P1 and P2 representing the center position.
 これは、レンズの2つ以上の像の相対位置関係を検出することにより第1レンズL1の光軸の傾斜角度を検出しているため、レンズ外形が見えない光学ユニット10に搭載された第1レンズL1に対して有効である。 This is because the inclination angle of the optical axis of the first lens L1 is detected by detecting the relative positional relationship between two or more images of the lens, and therefore the first mounted on the optical unit 10 where the lens outer shape cannot be seen. This is effective for the lens L1.
 また、図5Aのようにレンズホルダ42のアパーチャーAPが第1レンズL1の中心に対してずれている場合に対しても、その影響を受けることなく、像R1,R2が同心円上になって中心位置を表す点P1,P2が重なるときはレンズチルトがない状態であると判断できる。 Further, even when the aperture AP of the lens holder 42 is displaced from the center of the first lens L1 as shown in FIG. 5A, the images R1 and R2 are concentrically centered without being affected by the influence. When the points P1 and P2 representing the position overlap, it can be determined that there is no lens tilt.
 一方、図5Bに示すように、W1の方向(反時計方向)にレンズホルダ42を回転させると、アパーチャーAPの位置に関係なく光源2の像の中心位置を表す点P1,P2は、図中左右にずれて観測される。 On the other hand, as shown in FIG. 5B, when the lens holder 42 is rotated in the direction W1 (counterclockwise), points P1 and P2 representing the center position of the image of the light source 2 are shown in the figure regardless of the position of the aperture AP. Observed from left to right.
 次に、図5Cに示すように、W2の方向(時計方向)にレンズホルダ42を回転させると、光源2の像の中心位置を表す点P1,P2は、図中左右逆方向にずれて観測される。 Next, as shown in FIG. 5C, when the lens holder 42 is rotated in the direction W2 (clockwise), the points P1 and P2 representing the center position of the image of the light source 2 are shifted and observed in the opposite directions in the figure. Is done.
 このように、第1レンズL1が傾くと、光学面(S1,S2)は偏心することとなり、その偏心の状態は、得られた画像の相対位置関係から検出することができるので、検出した偏心の状態から逆算して、光軸m方向に対する第1レンズL1の光軸の傾斜角度等を求めることができる。 As described above, when the first lens L1 is tilted, the optical surfaces (S1, S2) are decentered, and the decentered state can be detected from the relative positional relationship of the obtained image. The angle of inclination of the optical axis of the first lens L1 with respect to the optical axis m direction can be obtained by calculating backward from the above state.
 すなわち、CCD32の画像から、光源2の像R1,R2の中心位置を表す点P1,P2のずれ方向を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜方向を検出でき、光源2の像R1,R2の中心位置を表す点P1,P2の距離を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜角度を検出することができる。 That is, by detecting the shift direction of the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2 from the image of the CCD 32, the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected. By detecting the distance between the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 2, the inclination angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
 なお、上記第1実施形態では、第1レンズL1のみの反射画像での説明を行ったが、レンズが2枚以上で構成された光学ユニットにおいて、2個以上の画像が得られる場合でも同様に画像が同心円上になる状態がレンズチルトのない状態であり、それぞれの画像の中心位置の差分和により傾斜角度が検出され、チルト発生によりそれぞれの画像が偏芯する方向を検出することで傾斜方向を認識できる。 In the first embodiment, the description is given with the reflected image of only the first lens L1, but the same applies to the case where two or more images are obtained in the optical unit including two or more lenses. The state where the images are concentric is a state where there is no lens tilt. The tilt angle is detected by the sum of the differences between the center positions of the images, and the tilt direction is detected by detecting the direction in which each image is decentered when the tilt occurs. Can be recognized.
 次に、図1に示すレンズ傾き検出装置を用いて、この発明のレンズ傾き検出方法を実施する撮像カメラモジュールの組立てについて説明する。撮像カメラモジュールの組立てフローは、演算処理部6(図1に示す)におけるプログラムからの指示で実行される。このプログラムは、演算処理部6における図示しないROM(リード・オンリー・メモリー)やRAM(ランダム・アクセス・メモリー)に記憶されている。 Next, the assembly of the imaging camera module that implements the lens tilt detection method of the present invention using the lens tilt detection apparatus shown in FIG. 1 will be described. The assembly flow of the imaging camera module is executed by an instruction from a program in the arithmetic processing unit 6 (shown in FIG. 1). This program is stored in a ROM (Read Only Memory) or RAM (Random Access Memory) (not shown) in the arithmetic processing unit 6.
 図6Aに示すように、まず、カメラモジュール用の撮像センサ9を図示しない組立て装置にセットし、組み立て装置の組み立て基準軸(光軸m)上に配置したチルトセンサ20により、基準軸(光軸m)に対する撮像センサ9の受光面のチルト量(傾斜角度)α1を測定する。 As shown in FIG. 6A, first, an imaging sensor 9 for a camera module is set in an assembly device (not shown), and a reference axis (optical axis) is set by a tilt sensor 20 arranged on an assembly reference axis (optical axis m) of the assembly device. The tilt amount (tilt angle) α1 of the light receiving surface of the image sensor 9 with respect to m) is measured.
 次に、図6Bのようにカメラモジュール用の光学ユニット10を組立て装置にセットし、組み立て装置の組み立て基準軸(光軸m)上に配置したこの第1実施形態のレンズ傾き検出装置1により、基準軸(光軸m)に対するレンズ群41のチルト量(傾斜角度)α2を測定する。 Next, as shown in FIG. 6B, the optical unit 10 for the camera module is set in the assembling apparatus, and the lens inclination detecting apparatus 1 of the first embodiment arranged on the assembling reference axis (optical axis m) of the assembling apparatus, The tilt amount (tilt angle) α2 of the lens group 41 with respect to the reference axis (optical axis m) is measured.
 上記の測定結果に従い、(1)カメラモジュールとしては撮像センサ9をチルト量α1からレンズ群41のチルト量α2に修正して、光学ユニット10に相対的な位置調整をした後、組み付けてカメラモジュールを組み立てる、
 あるいは、(2)光学ユニット10をチルト量α2から撮像センサのチルト量α1に修正して撮像センサ9に相対的な位置調整をした後、組み付けてカメラモジュールを組み立てる、
 あるいは、(3)基準軸(光軸m)に対して撮像センサ9のチルト量α1が0になるように修正し、レンズ群41のチルト量α2が0になるように光学ユニット10の姿勢を修正し、修正された撮像センサ4と光学ユニット10の相対的な位置調整をした後、組み付けてカメラモジュールを組み立てる。
According to the above measurement results, (1) As a camera module, the image sensor 9 is corrected from the tilt amount α1 to the tilt amount α2 of the lens group 41, the relative position is adjusted to the optical unit 10, and then the camera module is assembled. Assemble,
Alternatively, (2) the optical unit 10 is corrected from the tilt amount α2 to the tilt amount α1 of the image sensor and the relative position is adjusted to the image sensor 9, and then assembled to assemble the camera module.
Alternatively, (3) the posture of the optical unit 10 is adjusted so that the tilt amount α1 of the imaging sensor 9 is zero with respect to the reference axis (optical axis m) and the tilt amount α2 of the lens group 41 is zero. After the correction and the relative position adjustment between the corrected image sensor 4 and the optical unit 10, the camera module is assembled by assembling.
 以上の(1),(2),(3)のいずれかにより組み立てられたカメラモジュールに対して、図6C(図は上記(1)の方法で組み立てられた場合)のように基準軸(光軸m)に対して垂直に配置された撮像チャートCを撮像して撮像特性を確認して製品検査を行う。 With respect to the camera module assembled by any one of the above (1), (2), (3), the reference axis (light) as shown in FIG. 6C (the figure is assembled by the method of (1) above). An imaging chart C arranged perpendicular to the axis m) is imaged to confirm imaging characteristics and perform product inspection.
 このようにして、レンズ群41のチルト量(傾斜角度)が事前に測定できていれば、そのチルト量を補正してカメラモジュールを組み立てることができ、レンズチルトが原因で不良となるカメラモジュールを削減することができ、製造コストを大幅に削減することが可能となる。 In this way, if the tilt amount (tilt angle) of the lens group 41 can be measured in advance, the camera module can be assembled by correcting the tilt amount, and the camera module that becomes defective due to the lens tilt can be assembled. It is possible to reduce the manufacturing cost.
 上記第1実施形態のレンズ傾き検出装置およびレンズ傾き検出方法によれば、撮像カメラ3により撮像された複数のLED21の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、基準軸m方向に対する測定対象の第1レンズL1の光軸の傾斜角度と傾斜方向を検出することによって、測定対象の第1レンズL1が傾斜していても、測定対象の第1レンズL1の光軸の傾きを正確に検出することができる。 According to the lens tilt detection device and the lens tilt detection method of the first embodiment, based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of LEDs 21 captured by the imaging camera 3, By detecting the tilt angle and the tilt direction of the optical axis of the first lens L1 to be measured with respect to the reference axis m direction, even if the first lens L1 to be measured is tilted, the light of the first lens L1 to be measured The inclination of the axis can be detected accurately.
 〔第2実施形態〕
 図7A~図7Cはこの発明の第2実施形態のレンズ傾き検出装置のLED21を4角形と5角形の頂点になるように配置した光源2を示している。なお、この第2実施形態のレンズ傾き検出装置は、光源102を除いて第1実施形態のレンズ傾き検出装置と同一の構成をしており、図1を援用する。
[Second Embodiment]
7A to 7C show the light source 2 in which the LEDs 21 of the lens tilt detection apparatus according to the second embodiment of the present invention are arranged so as to be at the apexes of the quadrangular and pentagonal shapes. The lens tilt detection device of the second embodiment has the same configuration as the lens tilt detection device of the first embodiment except for the light source 102, and FIG.
 この第2実施形態のレンズ傾き検出装置は、図7Aに示すように、LED21を4角形と5角形の頂点になるように配置した光源102において、4角形の頂点に複数のLED21が配置されたLED群と5角形の頂点に複数のLED21が配置されたLED群とを別々に点灯できる。ここで、光源102のLED21のオンオフを制御するのは、光源制御部を含む演算処理部6(図1に示す)であるが、別に光源を制御する機能を有する制御部を備えてもよい。 In the lens tilt detection apparatus of the second embodiment, as shown in FIG. 7A, in the light source 102 in which the LEDs 21 are arranged to be the apexes of the quadrangular and pentagon, a plurality of LEDs 21 are arranged at the apexes of the quadrangular. The LED group and the LED group in which a plurality of LEDs 21 are arranged at the apex of the pentagon can be turned on separately. Here, the on / off of the LED 21 of the light source 102 is controlled by the arithmetic processing unit 6 (shown in FIG. 1) including a light source control unit, but a control unit having a function of controlling the light source may be provided separately.
 なお、光源102に用いる発光素子はLEDに限られるものではなく、蛍光管、電球、レーザー光、ELなどでもよい。また、それぞれのLEDの数、配置が異なっていてもよい。 Note that the light emitting element used for the light source 102 is not limited to the LED, and may be a fluorescent tube, a light bulb, a laser beam, an EL, or the like. Further, the number and arrangement of the respective LEDs may be different.
 図7Bに示す光源102のように、4角形の頂点にLED21が配置されたLED群のみが点灯した構成では、レンズの上面で光が反射して形成された像と下面で光が反射して形成された像とが極端に近い場合やその像同士が一部重なる場合、像の座標を正確に検出できない場合がある。これに対して、図7Cに示すように、5角形の頂点にLED21が配置されたLED群のみが点灯した構成に変更することで重なりを防ぎ、正確な検出を行うことが可能となる。 In the configuration in which only the LED group in which the LEDs 21 are arranged at the apexes of the square is turned on as in the light source 102 shown in FIG. 7B, the image is formed by reflecting the light on the upper surface of the lens and the light is reflected on the lower surface. When the formed images are extremely close to each other or when the images partially overlap, the coordinates of the images may not be detected accurately. On the other hand, as shown in FIG. 7C, by changing to a configuration in which only the LED group in which the LEDs 21 are arranged at the vertices of the pentagon is turned on, overlapping can be prevented and accurate detection can be performed.
 なお、上記光源102は、基準軸(光軸m)に直交する同一平面上においてLED21を4角形と5角形の頂点になるように配置している。 In the light source 102, the LEDs 21 are arranged on the same plane orthogonal to the reference axis (optical axis m) so as to be the apexes of the quadrangular and pentagonal shapes.
 このように、上記第2実施形態のレンズ傾き検出装置によれば、点光源の点灯形状を複数用いることで、像の接近や重なりによる検出精度の低下を防ぐことが可能となる。 As described above, according to the lens tilt detection apparatus of the second embodiment, it is possible to prevent a decrease in detection accuracy due to approaching or overlapping of images by using a plurality of lighting shapes of point light sources.
 図8Aは図7Bに示す光源102の構成において、第1レンズL1が傾斜していない場合の照明の像の様子を示し、図8Bは図7Bに示す光源102の構成において、レンズホルダ42を反時計回りに回転させた場合の照明の像の様子を示している。 FIG. 8A shows an illumination image when the first lens L1 is not tilted in the configuration of the light source 102 shown in FIG. 7B. FIG. 8B shows the lens holder 42 in the configuration of the light source 102 shown in FIG. The state of the illumination image when rotated clockwise is shown.
 図8Aに示すように、図7Bに示す点灯状態の光源102において、CCD32(図1に示す)で得られる画像には、レンズホルダ42に対しての四角形の位置に光源102の像R1,R2(中心位置を表す点P1,P2)が現れる。 As shown in FIG. 8A, in the light source 102 in the lit state shown in FIG. 7B, the image obtained by the CCD 32 (shown in FIG. 1) has images R1 and R2 of the light source 102 at square positions with respect to the lens holder 42. (Points P1 and P2 representing the center position) appear.
 この状態から、図8Bに示すように、W1の方向(反時計方向)にレンズホルダ42を回転させると、光源102の像R1,R2の中心位置を表す点P1,P2は、図中左右にずれて観測される。 From this state, as shown in FIG. 8B, when the lens holder 42 is rotated in the direction W1 (counterclockwise), the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 102 are left and right in the figure. Observed.
 また、図8Cは図7Cに示す点灯状態の光源102において、レンズホルダ42を反時計回りに回転させた場合の照明の像の様子を示している。 FIG. 8C shows an illumination image when the lens holder 42 is rotated counterclockwise in the lit light source 102 shown in FIG. 7C.
 図8Cに示すように、W1(反時計方向)の方向にレンズホルダ42を回転させると、光源102の像R1,R2の中心位置を表す点P1,P2は、図中左右にずれて観測される。 As shown in FIG. 8C, when the lens holder 42 is rotated in the direction of W1 (counterclockwise), the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 102 are observed shifted to the left and right in the drawing. The
 このように、第1レンズL1が傾くと光学面は偏心することとなり、その偏心の状態は、撮像カメラ3で得られた画像(像R1,R2の中心位置を表す点P1,P2)の相対位置関係から検出することができるので、検出した偏心の状態から逆算して、光軸m方向に対する第1レンズL1の光軸の傾斜角度や傾斜方向等を求めることができる。 As described above, when the first lens L1 is tilted, the optical surface is decentered, and the decentered state is relative to the images (points P1, P2 representing the center positions of the images R1, R2) obtained by the imaging camera 3. Since it can be detected from the positional relationship, it is possible to calculate the tilt angle, tilt direction, and the like of the optical axis of the first lens L1 with respect to the optical axis m direction by calculating backward from the detected eccentric state.
 すなわち、CCD32の画像から、光源102の像R1,R2の中心位置を表す点P1,P2のずれ方向を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜方向を検出でき、光源102の像の中心位置を表す点P1,P2の距離を検出することで、光軸m方向に対する第1レンズL1の光軸の傾斜角度を検出することができる。 That is, by detecting the shift direction of the points P1 and P2 representing the center positions of the images R1 and R2 of the light source 102 from the image of the CCD 32, the inclination direction of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected. By detecting the distance between the points P1 and P2 representing the center position of the image of the light source 102, the tilt angle of the optical axis of the first lens L1 with respect to the optical axis m direction can be detected.
 したがって、第1レンズL1の傾き補正は、光源102の像R1,R2が同心円上になって夫々の中心位置を表す点P1,P2が重なるように調整することで行うことができる。 Therefore, the tilt correction of the first lens L1 can be performed by adjusting the images R1 and R2 of the light source 102 so as to be concentric and overlapping the points P1 and P2 representing the respective center positions.
 上記第2実施形態のレンズ傾き検出装置は、第1実施形態のレンズ傾き検出装置と同様の効果を有する。 The lens tilt detection device of the second embodiment has the same effect as the lens tilt detection device of the first embodiment.
 また、上記複数のLED21を複数の多角形の頂点に配置することによって、レンズチルトを検出するために必要な2つ以上の像が検出でき、撮像対象として、複数のLED群を使用することで、光源の一部の像が正確に検出できない場合でも、それ以外の多角形のLED群の位置関係から中心位置を求める(推測する)ことが可能であり、レンズチルトの検出精度を向上できる。 Further, by arranging the plurality of LEDs 21 at the vertices of a plurality of polygons, two or more images necessary for detecting the lens tilt can be detected, and by using a plurality of LED groups as imaging targets. Even when some images of the light source cannot be detected accurately, the center position can be obtained (estimated) from the positional relationship of the other polygonal LED groups, and the detection accuracy of the lens tilt can be improved.
 〔第3実施形態〕
 次に、この発明の第3実施形態のレンズ傾き検出装置について説明する。なお、この第2実施形態のレンズ傾き検出装置は、光源2の点灯制御を除いて第1実施形態のレンズ傾き検出装置と同一の構成をしており、図1を援用する。ここで、説明をわかりやすくするため、光学ユニット10のレンズ構成は、第1レンズL1の1枚構成とする。
[Third Embodiment]
Next, a lens tilt detection apparatus according to a third embodiment of the invention will be described. In addition, the lens inclination detection apparatus of this 2nd Embodiment has the structure same as the lens inclination detection apparatus of 1st Embodiment except the lighting control of the light source 2, and uses FIG. Here, for easy understanding, the lens configuration of the optical unit 10 is a single lens configuration of the first lens L1.
 この第3実施形態では、光源2は、点光源としてLEDを4角形になるように配置し、個々のLEDを別々に点灯制御可能とした光源とする。この光源に用いる発光素子はLEDに限られるものではなく、蛍光管、電球、レーザー光、ELなどでもよい。また、それぞれのLEDの数、配置が異なっていてもよい。 In the third embodiment, the light source 2 is a light source in which LEDs are arranged as a point light source so as to have a quadrangular shape, and individual LEDs can be controlled to be lit separately. The light emitting element used for this light source is not limited to the LED, but may be a fluorescent tube, a light bulb, a laser beam, an EL, or the like. Further, the number and arrangement of the respective LEDs may be different.
 この第3実施形態のレンズ傾き検出装置は、図9A~図9Dに示すように、各LEDを個別もしくは指定した箇所のみ点灯させ、それぞれの場合に像の座標を検出する。ここで、光源2のLEDのオンオフを制御するのは、光源制御部を含む演算処理部6(図1に示す)であるが、別に光源を制御する機能を有する制御部を備えてもよい。 In the lens tilt detection apparatus of the third embodiment, as shown in FIGS. 9A to 9D, each LED is turned on individually or at a designated location, and the coordinates of the image are detected in each case. Here, the on / off of the LED of the light source 2 is controlled by the arithmetic processing unit 6 (shown in FIG. 1) including the light source control unit, but a control unit having a function of controlling the light source may be provided separately.
 図9Aでは、光源2の4つのLEDのうちの1つが点灯して、図9Aの小さい四角形(点線)の右側の頂点に第1レンズL1の上面S1で形成される像R1が現れ、図9Aの大きい四角形(点線)の左側の頂点に第1レンズL1の下面S2で形成される像R2が現れる。 In FIG. 9A, one of the four LEDs of the light source 2 is turned on, and an image R1 formed by the upper surface S1 of the first lens L1 appears at the right apex of the small square (dotted line) in FIG. 9A. An image R2 formed by the lower surface S2 of the first lens L1 appears at the left apex of the large rectangle (dotted line).
 また、図9Bでは、光源2の4つのLEDのうちの1つ(図9Aで点灯したLEDの対角にあるLED)が点灯して、図9Bの小さい四角形(点線)の左側の頂点に第1レンズL1の上面S1で形成される像R1が現れ、図9Bの大きい四角形(点線)の右側の頂点に第1レンズL1の下面S2で形成される像R2が現れる。 In FIG. 9B, one of the four LEDs of the light source 2 (the LED on the opposite side of the LED lit in FIG. 9A) is turned on, and the second vertex of the small square (dotted line) in FIG. An image R1 formed on the upper surface S1 of one lens L1 appears, and an image R2 formed on the lower surface S2 of the first lens L1 appears at the right apex of the large square (dotted line) in FIG. 9B.
 また、図9Cでは、光源2の4つのLEDのうちの1つ(図9A,図9Bで点灯したLEDを除く他のLEDの1つ)が点灯して、図9Cの小さい四角形(点線)の下側の頂点に第1レンズL1の上面S1で形成される像R1が現れ、図9Cの大きい四角形(点線)の上側の頂点に第1レンズL1の下面S2で形成される像R2が現れる。 In FIG. 9C, one of the four LEDs of the light source 2 (one of the other LEDs excluding the LED lit in FIGS. 9A and 9B) is lit, and the small square (dotted line) in FIG. An image R1 formed by the upper surface S1 of the first lens L1 appears at the lower vertex, and an image R2 formed by the lower surface S2 of the first lens L1 appears at the upper vertex of the large square (dotted line) in FIG. 9C.
 また、図9Dでは、光源2の4つのLEDのうちの1つ(図9Aで点灯したLEDの対角にあるLED)が点灯して、図9Dの小さい四角形(点線)の上側の頂点に第1レンズL1の上面S1で形成される像R1が現れ、図9Dの大きい四角形(点線)の下側の頂点に第1レンズL1の下面S2で形成される像R2が現れる。 Further, in FIG. 9D, one of the four LEDs of the light source 2 (the LED on the opposite side of the LED lit in FIG. 9A) is lit, and the second top of the small square (dotted line) in FIG. An image R1 formed on the upper surface S1 of one lens L1 appears, and an image R2 formed on the lower surface S2 of the first lens L1 appears at the lower vertex of the large square (dotted line) in FIG. 9D.
 図9A~図9Dにおいて、第1レンズL1の上面S1と下面S2で形成される像R1,R2は180°回転しており、レンズチルトに対して逆方向に移動することから、チルト量が極めて大きい場合を除いて2つの像R1,R2が重なることがなく座標を検出することが可能である。 9A to 9D, the images R1 and R2 formed by the upper surface S1 and the lower surface S2 of the first lens L1 are rotated by 180 ° and moved in the opposite direction to the lens tilt. Except for a large case, the coordinates can be detected without the two images R1 and R2 overlapping.
 上記第3実施形態のレンズ傾き検出装置は、上記第1実施形態のレンズ傾き検出装置と同一の効果を有する。 The lens tilt detection device of the third embodiment has the same effect as the lens tilt detection device of the first embodiment.
 また、上記第3実施形態のレンズ傾き検出装置によれば、光源2を構成する複数のLEDの点灯を個別に制御することで、像の接近や重なりによる検出精度の低下を防ぐことが可能となる。 Moreover, according to the lens inclination detection apparatus of the said 3rd Embodiment, it is possible to prevent the fall of the detection accuracy by the approach of an image or an overlap by controlling lighting of several LED which comprises the light source 2 separately. Become.
 なお、上記第3実施形態のレンズ傾き検出装置の点光源の点灯制御の技術を上記第2実施形態のレンズ傾き検出装置の点光源に適用してもよい。 Note that the lighting control technology of the point light source of the lens tilt detection device of the third embodiment may be applied to the point light source of the lens tilt detection device of the second embodiment.
 この発明の具体的な実施の形態について説明したが、この発明は上記第1~第3実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention have been described, the present invention is not limited to the first to third embodiments, and various modifications can be made within the scope of the present invention.
 この発明のレンズ傾き検出装置は、
 基準軸mに直交する同一平面上に互いに間隔をあけて配置され、上記基準軸m上に配置された測定対象のレンズに光を照射する複数の点光源21と、
 上記複数の点光源21に対して上記測定対象のレンズL1と反対の側かつ上記基準軸mに光軸が一致するように配置され、上記測定対象のレンズL1の複数のレンズ面からの反射光により生成される上記点光源21の複数の結像画像を撮像する撮像カメラ3と、
 上記撮像カメラ3により撮像された上記複数の点光源21の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、上記基準軸m方向に対する上記測定対象のレンズL1の光軸の傾斜角度と傾斜方向を検出するレンズ傾き検出部(4,5,6)と
を備えたことを特徴とする。
The lens tilt detection device of the present invention is
A plurality of point light sources 21 arranged on the same plane perpendicular to the reference axis m and spaced from each other, and irradiating light to the lens to be measured arranged on the reference axis m;
Reflected light from a plurality of lens surfaces of the measurement target lens L1, which is disposed on the side opposite to the measurement target lens L1 with respect to the plurality of point light sources 21 and so as to coincide with the reference axis m. An imaging camera 3 that captures a plurality of formed images of the point light source 21 generated by
The optical axis of the lens L1 to be measured with respect to the direction of the reference axis m based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources 21 imaged by the imaging camera 3. And a lens inclination detecting section (4, 5, 6) for detecting the inclination angle and the inclination direction.
 上記構成によれば、撮像カメラ3により撮像された複数の点光源21の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、基準軸m方向に対する測定対象のレンズL1の光軸の傾斜角度と傾斜方向を検出することによって、基準軸m方向に対して測定対象のレンズL1が傾斜していても、測定対象のレンズL1の光軸の傾きを正確に検出することができる。 According to the above configuration, the lens L1 to be measured with respect to the reference axis m direction is based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources 21 imaged by the imaging camera 3. By detecting the tilt angle and tilt direction of the optical axis, the tilt of the optical axis of the lens L1 to be measured can be accurately detected even if the lens L1 to be measured is tilted with respect to the direction of the reference axis m. it can.
 また、一実施形態のレンズ傾き検出装置では、
 上記複数の点光源21は、複数の多角形の頂点に配置されている。
Moreover, in the lens tilt detection device of one embodiment,
The plurality of point light sources 21 are arranged at the vertices of a plurality of polygons.
 上記実施形態によれば、複数の点光源21を複数の多角形の頂点に配置することによって、レンズチルトを検出するために必要な2つ以上の像が検出でき、撮像対象として複数の点光源群を使用することで、光源の一部の像が正確に検出できない場合でも、それ以外の多角形の点光源群の位置関係から中心位置を求める(推測する)ことが可能であり、レンズチルトの検出精度を向上できる。 According to the above embodiment, by arranging the plurality of point light sources 21 at the vertices of a plurality of polygons, two or more images necessary for detecting the lens tilt can be detected, and a plurality of point light sources are to be imaged. By using a group, even if some images of the light source cannot be detected accurately, the center position can be obtained (estimated) from the positional relationship of other polygonal point light sources, and the lens tilt Detection accuracy can be improved.
 また、一実施形態のレンズ傾き検出装置では、
 上記複数の点光源21のうちの1または2以上の点光源21を任意のタイミングで点灯可能に制御する光源制御部を備えた。
Moreover, in the lens tilt detection device of one embodiment,
A light source controller that controls one or more of the plurality of point light sources 21 so as to be lit at an arbitrary timing is provided.
 上記実施形態によれば、複数の点光源21のうちの1または2以上の点光源21を任意のタイミングで点灯可能に制御する光源制御部によって、レンズチルトを検出するために必要な2つ以上の像が検出でき、複数の点光源21の点灯箇所を適切に選択することで、特徴的な像をレンズ面に投影することができ、レンズチルトの検出精度を向上できる。 According to the embodiment, two or more necessary for detecting the lens tilt by the light source control unit that controls one or two or more of the point light sources 21 so as to be lit at an arbitrary timing. Thus, a characteristic image can be projected onto the lens surface by appropriately selecting the lighting locations of the plurality of point light sources 21, and the detection accuracy of the lens tilt can be improved.
 また、この発明のレンズ傾き検出方法では、
 基準軸に直交する平面上に互いに間隔をあけて配置された複数の点光源21からの光を、上記基準軸m上に配置された測定対象のレンズL1に照射し、上記測定対象のレンズL1の複数のレンズ面の第1面の反射光の像を、上記基準軸mと光軸が一致する結像系により結像させる撮像カメラ3により撮像する工程と、
 上記撮像カメラ3により撮像された上記第1面の反射光の像の中心位置を中心位置演算部6aにより求める工程と、
 上記レンズL1の第1面と異なる他のレンズ面からの反射光の像を上記結像系により結像させて、上記撮像カメラにより撮像する工程と、
 上記撮像カメラ3により撮像された上記レンズの第1面と異なる他のレンズ面からの反射光の像の中心位置を上記中心位置演算部6aにより求める工程と、
 上記中心位置演算部6aにより求められた上記第1面の反射光の像の中心位置と上記第1面と異なる他のレンズ面からの反射光の像の中心位置に基づいて、上記基準軸m方向に対する上記レンズL1の光軸の傾斜角度と傾斜方向をレンズ傾き演算部6bにより演算する工程と
を含むことを特徴とする。
In the lens tilt detection method of the present invention,
Light from a plurality of point light sources 21 arranged at intervals on a plane perpendicular to the reference axis is irradiated to the lens L1 to be measured arranged on the reference axis m, and the lens L1 to be measured is measured. Imaging a reflected light image of the first surface of the plurality of lens surfaces with an imaging camera 3 that forms an image with an imaging system in which the optical axis coincides with the reference axis m;
Obtaining a center position of the reflected light image of the first surface imaged by the imaging camera 3 by a center position calculation unit 6a;
Forming an image of reflected light from another lens surface different from the first surface of the lens L1 by the imaging system, and capturing the image by the imaging camera;
Obtaining a center position of an image of reflected light from another lens surface different from the first surface of the lens imaged by the imaging camera 3 by the center position calculation unit 6a;
The reference axis m is based on the center position of the reflected light image on the first surface obtained by the center position calculation unit 6a and the center position of the reflected light image from another lens surface different from the first surface. And a step of calculating a tilt angle and a tilt direction of the optical axis of the lens L1 with respect to a direction by a lens tilt calculation unit 6b.
 上記構成によれば、撮像カメラ3により撮像された複数の点光源21の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、測定対象のレンズL1の光軸の傾斜角度と傾斜方向を検出することによって、基準軸m方向に対して測定対象のレンズL1が傾斜していても、測定対象のレンズL1の光軸の傾きを正確に検出することができる。 According to the above configuration, the tilt angle of the optical axis of the lens L1 to be measured based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources 21 captured by the imaging camera 3. By detecting the tilt direction, the tilt of the optical axis of the measurement target lens L1 can be accurately detected even if the measurement target lens L1 is tilted with respect to the reference axis m direction.
 1…レンズ傾き検出装置
 2,102…光源
 3…撮像カメラ
 4…信号処理部
 5…画像処理部
 6…演算処理部
 6a…中心位置演算部
 6b…レンズ傾き演算部
 7…表示部
 9…撮像センサ
 10…光学ユニット
 20…チルトセンサ
 21…LED
 31…レンズユニット
 32…CCD
 41…レンズ群
 42…レンズホルダ
 43…アクチュエータ
DESCRIPTION OF SYMBOLS 1 ... Lens inclination detection apparatus 2,102 ... Light source 3 ... Imaging camera 4 ... Signal processing part 5 ... Image processing part 6 ... Calculation processing part 6a ... Center position calculation part 6b ... Lens inclination calculation part 7 ... Display part 9 ... Imaging sensor DESCRIPTION OF SYMBOLS 10 ... Optical unit 20 ... Tilt sensor 21 ... LED
31 ... Lens unit 32 ... CCD
41 ... lens group 42 ... lens holder 43 ... actuator

Claims (4)

  1.  基準軸に直交する同一平面上に互いに間隔をあけて配置され、上記基準軸上に配置された測定対象のレンズに光を照射する複数の点光源(21)と、
     上記複数の点光源(21)に対して上記測定対象のレンズ(L1)と反対の側かつ上記基準軸に光軸が一致するように配置され、上記測定対象のレンズ(L1)の複数のレンズ面からの反射光により生成される上記点光源(21)の複数の結像画像を撮像する撮像カメラ(3)と、
     上記撮像カメラ(3)により撮像された上記複数の点光源(21)の複数の結像画像の夫々の中心位置の相対的なずれ量に基づいて、上記基準軸方向に対する上記測定対象のレンズ(L1)の光軸の傾斜角度と傾斜方向を検出するレンズ傾き検出部(4,5,6)と
    を備えたことを特徴とするレンズ傾き検出装置。
    A plurality of point light sources (21) that are arranged on the same plane perpendicular to the reference axis and spaced from each other, and irradiate light to the lens to be measured arranged on the reference axis;
    The plurality of point light sources (21) are arranged on the side opposite to the lens (L1) to be measured and the optical axis coincides with the reference axis, and the plurality of lenses of the lens (L1) to be measured An imaging camera (3) that captures a plurality of formed images of the point light source (21) generated by reflected light from the surface;
    Based on the relative shift amounts of the center positions of the plurality of formed images of the plurality of point light sources (21) imaged by the imaging camera (3), the lens to be measured with respect to the reference axis direction ( A lens tilt detection device comprising a lens tilt detector (4, 5, 6) for detecting the tilt angle and tilt direction of the optical axis of L1).
  2.  請求項1に記載のレンズ傾き検出装置において、
     上記複数の点光源(21)は、複数の多角形の頂点に配置されていることを特徴とするレンズ傾き検出装置。
    The lens tilt detection apparatus according to claim 1,
    The lens tilt detection device, wherein the plurality of point light sources (21) are arranged at vertices of a plurality of polygons.
  3.  請求項1または2に記載のレンズ傾き検出装置において、
     上記複数の点光源(21)のうちの1または2以上の点光源を任意のタイミングで点灯可能に制御する光源制御部を備えたことを特徴とするレンズ傾き検出装置。
    In the lens inclination detection apparatus according to claim 1 or 2,
    A lens tilt detection apparatus comprising: a light source control unit configured to control one or two or more point light sources of the plurality of point light sources (21) to be lit at an arbitrary timing.
  4.  基準軸に直交する平面上に互いに間隔をあけて配置された複数の点光源(21)からの光を、上記基準軸上に配置された測定対象のレンズ(L1)に照射し、上記測定対象のレンズ(L1)の複数のレンズ面の第1面の反射光の像を、上記基準軸と光軸が一致する結像系により結像させる撮像カメラ(3)により撮像する工程と、
     上記撮像カメラ(3)により撮像された上記第1面の反射光の像の中心位置を中心位置演算部(6a)により求める工程と、
     上記レンズ(L1)の第1面と異なる他のレンズ面からの反射光の像を上記結像系により結像させて、上記撮像カメラ(3)により撮像する工程と、
     上記撮像カメラ(3)により撮像された上記レンズ(L1)の第1面と異なる他のレンズ面からの反射光の像の中心位置を上記中心位置演算部(6a)により求める工程と、
     上記中心位置演算部(6a)により求められた上記第1面の反射光の像の中心位置と上記第1面と異なる他のレンズ面からの反射光の像の中心位置に基づいて、上記基準軸方向に対する上記レンズ(L1)の光軸の傾斜角度と傾斜方向をレンズ傾き演算部により演算する工程と
    を含むことを特徴とするレンズ傾き検出方法。
    The measurement target lens (L1) arranged on the reference axis is irradiated with light from a plurality of point light sources (21) arranged at intervals on a plane orthogonal to the reference axis, and the measurement target Imaging a reflected light image of the first surface of the plurality of lens surfaces of the lens (L1) with an imaging camera (3) that forms an image with an imaging system in which the optical axis coincides with the reference axis;
    Obtaining a center position of an image of the reflected light of the first surface imaged by the imaging camera (3) by a center position calculation unit (6a);
    A step of forming an image of reflected light from another lens surface different from the first surface of the lens (L1) by the imaging system and capturing the image by the imaging camera (3);
    A step of obtaining a center position of an image of reflected light from another lens surface different from the first surface of the lens (L1) imaged by the imaging camera (3) by the center position calculation unit (6a);
    Based on the center position of the reflected light image of the first surface obtained by the center position calculation unit (6a) and the center position of the reflected light image from another lens surface different from the first surface, the reference A lens tilt detection method comprising: calculating a tilt angle and a tilt direction of the optical axis of the lens (L1) with respect to an axial direction by a lens tilt calculation unit.
PCT/JP2013/083159 2013-03-21 2013-12-11 Lens tilt detection device and lens tilt detection method WO2014147902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-058670 2013-03-21
JP2013058670A JP2014182354A (en) 2013-03-21 2013-03-21 Lens inclination detection apparatus and lens inclination detection method

Publications (1)

Publication Number Publication Date
WO2014147902A1 true WO2014147902A1 (en) 2014-09-25

Family

ID=51579613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083159 WO2014147902A1 (en) 2013-03-21 2013-12-11 Lens tilt detection device and lens tilt detection method

Country Status (2)

Country Link
JP (1) JP2014182354A (en)
WO (1) WO2014147902A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709495A (en) * 2017-01-22 2017-05-24 广东小天才科技有限公司 Image area centering method and device
GB2555643A (en) * 2016-11-08 2018-05-09 Nokia Technologies Oy Determining an intersection location of an optical axis of a lens with a camera sensor
CN113701997A (en) * 2021-07-23 2021-11-26 歌尔光学科技有限公司 Optical lens eccentricity testing system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841636B (en) * 2016-03-17 2017-08-25 中国计量学院 Optical axis and object plane measuring for verticality method based on parts moving linearly error compensation
TWI625557B (en) * 2017-07-11 2018-06-01 大立光電股份有限公司 Annular optical element, imaging lens module and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177292A (en) * 2001-12-13 2003-06-27 Sharp Corp Lens adjusting device and method
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2007017431A (en) * 2005-06-07 2007-01-25 Fujinon Corp Eccentricity amount measuring method
JP2007093293A (en) * 2005-09-27 2007-04-12 Pentax Corp Optical system for objective lens inclination adjustment
JP2010054677A (en) * 2008-08-27 2010-03-11 Konica Minolta Opto Inc Method and device for adjusting tilt of lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177292A (en) * 2001-12-13 2003-06-27 Sharp Corp Lens adjusting device and method
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2007017431A (en) * 2005-06-07 2007-01-25 Fujinon Corp Eccentricity amount measuring method
JP2007093293A (en) * 2005-09-27 2007-04-12 Pentax Corp Optical system for objective lens inclination adjustment
JP2010054677A (en) * 2008-08-27 2010-03-11 Konica Minolta Opto Inc Method and device for adjusting tilt of lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555643A (en) * 2016-11-08 2018-05-09 Nokia Technologies Oy Determining an intersection location of an optical axis of a lens with a camera sensor
CN106709495A (en) * 2017-01-22 2017-05-24 广东小天才科技有限公司 Image area centering method and device
CN113701997A (en) * 2021-07-23 2021-11-26 歌尔光学科技有限公司 Optical lens eccentricity testing system and method
CN113701997B (en) * 2021-07-23 2024-05-14 歌尔光学科技有限公司 Optical lens eccentricity test system and method

Also Published As

Publication number Publication date
JP2014182354A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
CN110045386B (en) Method and system for optical alignment of light detection and ranging
JP6286148B2 (en) Image sensor positioning apparatus and method
US10302749B2 (en) LIDAR optics alignment systems and methods
US10767991B2 (en) Laser scanner
US10088569B2 (en) Optical system for tracking a target
JP6541365B2 (en) Posture detection device and data acquisition device
JP6616077B2 (en) Measuring device and 3D camera
US9213228B2 (en) Device and method for measuring a camera
JP4644540B2 (en) Imaging device
CN105607074B (en) A kind of beacon adaptive optics system based on pulse laser
WO2014147902A1 (en) Lens tilt detection device and lens tilt detection method
KR20100133409A (en) Reference sphere detecting device, reference sphere position detecting device, and three-dimensional coordinate measuring device
TW201205033A (en) Shape measuring device and calibrating method
CN104034258A (en) Galvanometer Scanned Camera With Variable Focus And Method
US20140160267A1 (en) Image Pickup Apparatus
CN108139205B (en) Optical element characteristic measuring device
JP2015108582A (en) Three-dimensional measurement method and device
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP7077166B2 (en) How to operate the lens characteristic measuring device and the lens characteristic measuring device
JP2014089257A (en) Lens tilt detection device, lens tilt detection method, and camera module assembly method using lens tilt detection device
JPH08114498A (en) Luminous intensity distribution characteristic measuring instrument
JP2019215305A (en) Eyeball detection apparatus and image display device
JP2020052004A (en) Lens measuring device
JP2015153432A (en) Method for manufacturing optical unit and adjustment device of optical unit
JP2019109153A (en) Surveying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879158

Country of ref document: EP

Kind code of ref document: A1