JP2010053589A - Water-stopping method for ground having running water - Google Patents

Water-stopping method for ground having running water Download PDF

Info

Publication number
JP2010053589A
JP2010053589A JP2008219439A JP2008219439A JP2010053589A JP 2010053589 A JP2010053589 A JP 2010053589A JP 2008219439 A JP2008219439 A JP 2008219439A JP 2008219439 A JP2008219439 A JP 2008219439A JP 2010053589 A JP2010053589 A JP 2010053589A
Authority
JP
Japan
Prior art keywords
water
granular material
outlet
running water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219439A
Other languages
Japanese (ja)
Other versions
JP5139204B2 (en
Inventor
Katsushi Tamai
勝士 玉井
Takaaki Shimizu
孝昭 清水
Kyosuke Sato
恭輔 佐藤
Yoichi Hagiwara
洋一 萩原
Tomohide Oshita
知英 大下
Tomohiro Nakajima
朋宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008219439A priority Critical patent/JP5139204B2/en
Publication of JP2010053589A publication Critical patent/JP2010053589A/en
Application granted granted Critical
Publication of JP5139204B2 publication Critical patent/JP5139204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stopping welling up running water caused by the deterioration of post-processing materials, such as an old well and boring hole, and other reasons in an underground drilling work executed at a level lower than an underground water level, particularly a method for stopping running water on which ordinary chemical injection construction method is ineffective. <P>SOLUTION: The water-stopping method for a ground having running water is a method for stopping the running water welling up from a flooding hole of the ground. A granular material K having a material diameter and specific gravity large enough to be prevented from being carried away by the running water is supplied from flooding openings a, c, and d into flooding holes A, C, and D to fill them with the granular material K to suppress the energy, speed, and volume of running water. A chemical fluid is then injected into the area filled with the granular material K to cause the chemical fluid to gel or solidify in the space of the granular materials having a high specific gravity to close the flooding holes A, C, and D to stop running water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、地下水位より深い地下掘削工事において、古井戸やボーリング孔などの後処理材の劣化その他の原因で湧き出る流水を止める止水方法、特に通常の薬液注入工法の実施が用をなさない流水を止水する方法の技術分野に属する。   This invention does not make use of the water stop method, especially the usual chemical injection method, for stopping the flowing water that springs up due to deterioration of post-treatment materials such as old wells and boreholes in underground drilling work deeper than the groundwater level. It belongs to the technical field of methods for stopping running water.

地下水位より深い地下掘削工事では、古井戸やボーリング孔の後処理材の劣化等のため掘削底に地下水が溢れ出ることがある。こうした流水を止水する方法としては、従来、水ガラスや発泡ウレタンなどを主成分とする薬液の注入工法が実施されることが多い。薬液を使用した止水の止水メカニズムは、薬液が土粒子の隙間でゲル化、又は固化することにより出水孔を閉塞する現象による。
例えば下記の特許文献1〜3には、上記したような地盤の止水処理に有用な薬液と、同薬液を用いた薬液注入工法ないし止水方法が開示されている。
また、下記の特許文献4には、トンネルや下水道などの地下構造物から地下水が漏洩した場合の止水方法が開示されている。
In underground excavation work deeper than the groundwater level, groundwater may overflow to the excavation bottom due to deterioration of post-treatment materials such as old wells and boreholes. As a method for stopping such flowing water, conventionally, a chemical solution injection method mainly composed of water glass or foamed urethane is often performed. The water stopping mechanism using a chemical solution is based on a phenomenon in which the chemical solution gels or solidifies in the gaps between the soil particles, thereby closing the outlet holes.
For example, the following Patent Documents 1 to 3 disclose a chemical solution useful for water-stopping treatment of the ground as described above and a chemical solution injection method or a water-stop method using the chemical solution.
Moreover, the following patent document 4 discloses a water stopping method when groundwater leaks from an underground structure such as a tunnel or a sewer.

特開平7−324189号公報JP 7-324189 A 特開平7−138564号公報JP 7-138564 A 特開平8−3555号公報JP-A-8-3555 特開平8−158393号公報JP-A-8-158393

上記の特許文献1〜4に開示された薬液注入工法ないし止水方法もそれぞれ有用な施工法である。しかし、古井戸やボーリング孔の後処理材の劣化等が原因で発生する流水であって、出水孔の空隙が大きく、且つ流水の速度や水量が大きい場合には、薬液注入を行っても、薬液がゲル化、又は固化する以前に流水に流されてしまい、止水処理の効果が得られない事例も多くある。
このような場合の従来技術としては、重機類を使用して、出水口やその下に続く出水孔の大きさ(空隙寸法)よりもはるかに大きな直径(内径)のケーシングパイプ(スタンドパイプ)を、出水口及びその下の出水孔を大きく取り囲む配置で地盤中へ貫入して地下水位よりも高く立ち上げ、同ケーシングパイプ内に流水を満たし、滞留水の水頭により流水の動水勾配(出水孔の上下端における水位差を前記上下端間の距離で除した値)を小さくし、流水の速度や流量、勢いを抑制した後に薬液注入を行い止水する方法が実施されていた。
The chemical solution injection method or the water stop method disclosed in Patent Documents 1 to 4 are also useful construction methods. However, in the case of running water caused by deterioration of post-treatment materials such as old wells and boreholes, the gaps in the drainage holes are large, and when the speed and amount of running water are large, even if chemical injection is performed, There are many cases where the effect of the water stop treatment cannot be obtained because the chemical solution is poured into running water before gelation or solidification.
As a prior art in such a case, using a heavy machine, a casing pipe (stand pipe) with a diameter (inner diameter) much larger than the size of the water outlet and the water outlet hole (air gap dimension) that follows it. In the layout that surrounds the water outlet and the water outlet hole below it, it penetrates into the ground and rises higher than the groundwater level, fills the casing pipe with running water, and the running water gradient of the running water (water outlet hole) A value obtained by dividing the water level difference at the upper and lower ends by the distance between the upper and lower ends) and reducing the speed, flow rate, and momentum of the flowing water and then stopping the water by injecting the chemical solution has been implemented.

しかし、流水の速度や水量、勢いが一層大きくて、上記ケーシングパイプによる止水工事の実施が不可能な場合には、やむを得ず、地下掘削工事領域を流水の湧き出るままに水没させて動水勾配が小さくなるのを待ち、そうして流水の速度や水量が抑制された段階で薬液注入を行って止水する方法が実施されていた。   However, if the speed, amount, and momentum of the flowing water are even greater and it is impossible to implement the water stop work using the above casing pipe, it is unavoidable that the underground excavation work area will be submerged with the flowing water flowing out, resulting in a hydrodynamic gradient. A method of stopping the water by injecting a chemical solution at a stage where the speed and amount of flowing water were suppressed was waited until it became smaller.

ところが上記ケーシングパイプ(スタンドパイプ)を地盤中へ貫入して地下水位よりも高く立ち上げる止水方法は、ケーシングパイプを地盤中へ貫入するために大きな重機類を地下掘削工事領域へ搬入しなければならず、そうした重機類を用意できなければ、実施ができない。
また、地下掘削工事領域を流水の湧き出るまま水没させる方法は、流水が湧き出して流水の速度や水量が抑制されるまでの水没時間を待ち、その後に止水処理を行い、処理後に地下掘削工事領域に溜まった水を全部排水して地下掘削工事を再開できる環境を整える過程を踏まねばならず、その間に膨大な時間を必要とし、工期の大幅な遅延を余儀なくされるから、おいそれと採用、実施できる止水方法ではない。
However, the water stop method that penetrates the casing pipe (stand pipe) into the ground and rises higher than the groundwater level requires large heavy machinery to be carried into the underground excavation work area in order to penetrate the casing pipe into the ground. In fact, if such heavy machinery cannot be prepared, it cannot be implemented.
In addition, the method of submerging the underground excavation work area with the flowing water flowing out is to wait for the submerged time until the flowing water is discharged and the speed and volume of the flowing water are suppressed, and then stop the water treatment. It is necessary to go through the process of draining all the water accumulated in the area and preparing an environment where the underground excavation work can be resumed, and it takes a lot of time during that time, and a considerable delay in the construction period is required. It is not possible to stop water.

本発明の目的は、上述した従来技術の問題点を解決すること、特に地下掘削工事において地盤の出水孔から溢れ出る流水の速度や水量、勢いが大きく、通常の薬液注入工法の実施が用をなさない場合に効果的に実施できる止水方法を提供することである。
本発明の更なる目的は、薬液注入工法を応用した止水方法であって、大きな重機類は無用であるほか、薬液注入装置以外に特別な道具や機械装置を必要とせず、短期間に確実に薬液の効能を発揮させる環境を整えて止水処理の実効をあらしめる、流水がある地盤の止水方法を提供することである。
The object of the present invention is to solve the above-mentioned problems of the prior art, especially in underground excavation work, the speed, amount, and momentum of the water overflowing from the ground outlet are large, and the implementation of the usual chemical injection method is used. It is to provide a water stop method that can be effectively implemented when not done.
A further object of the present invention is a water stopping method applying a chemical solution injection method, which does not require large heavy machinery, and does not require any special tools or mechanical devices other than the chemical solution injection device. It is to provide a water stop method for ground where there is running water, in order to create an environment where the effect of the chemical solution is fully demonstrated and to show the effectiveness of the water stop treatment.

上記課題を解決するための手段として、請求項1に記載した発明に係る流水がある地盤の止水方法は、地盤の出水孔から溢れ出る流水を止水する方法において
流水に流されない粒径で高比重の粒状材を、出水口から出水孔へ供給し充填して流水の勢い、流速、流量を抑制し、しかる後に前記粒状材の充填領域へ薬液の注入を行い、前記高比重の粒状材の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水することを特徴とする。
As a means for solving the above-mentioned problem, the water stopping method for ground having flowing water according to the invention described in claim 1 is a particle size that is not allowed to flow into the flowing water in the method for stopping flowing water overflowing from the water discharge hole of the ground. The granular material with high specific gravity is supplied from the outlet to the outlet hole and filled to suppress the momentum, flow rate and flow rate of the flowing water, and then the chemical solution is injected into the granular material filling region, and the granular material with the high specific gravity is injected. It is characterized in that it is gelled or solidified in the gaps to block the inside of the outlet holes and stop the water.

請求項2に記載した発明は、請求項1に記載した流水がある地盤の止水方法において、
流水に流されない粒径で高比重の粒状材として、粒状材が流水から受ける力よりも自重が大きい比重の粒状材の選定は、粒状材の形状が球形である場合、次式により行うこと、
D≧[3/{2・(γー1)}]・i
但し、上記γは粒状材の比重、Dは粒状材の粒径、iは出水孔から溢れ出る流水の動水勾配であることを特徴とする。
請求項3に記載した発明は、請求項1に記載した流水がある地盤の止水方法において、
流水に流されず、且つ出水孔への充填性が良い粒状材として、出水孔の空隙よりも粒径が小さい鉄球を出水口から出水孔へ供給し、流水の勢い、流速、流量が低下するまで充填することを特徴とする。
請求項4に記載した発明は、請求項1に記載した流水がある地盤の止水方法において、
流水に流されず、且つ出水孔への充填性が良い粒状材として、出水孔の空隙よりも粒径が小さい鉄球を出水口から出水孔へ供給し、流水の勢い、流速、流量が低下するまで供給を続けて充填を進め、流水の勢い、流速、流量が低下したことを目視で確認した後に、薬液を、周辺地盤が不透水層である深度を含む鉄球充填領域へ注入して、前記鉄球及び土粒子の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水することを特徴とする。
The invention described in claim 2 is the water stop method for the ground with the flowing water according to claim 1,
As a granular material with a particle size that does not flow into the flowing water and a high specific gravity, the selection of the granular material with a specific gravity that is greater than the force that the granular material receives from the flowing water, if the shape of the granular material is spherical, the following formula,
D ≧ [3 / {2 · (γ−1)}] · i
Where γ is the specific gravity of the granular material, D is the particle size of the granular material, and i is the hydrodynamic gradient of the flowing water overflowing from the outlet hole.
The invention described in claim 3 is the water stop method of the ground with the flowing water according to claim 1,
As a granular material that does not flow into running water and has good fillability in the drainage holes, iron balls with a particle size smaller than the gaps in the drainage holes are supplied to the drainage holes from the outlet, and the momentum, flow rate, and flow rate of the flowing water decrease. It is characterized by filling until.
According to a fourth aspect of the present invention, there is provided a water stopping method for a ground having flowing water according to the first aspect,
As a granular material that does not flow into running water and has good fillability in the drainage holes, iron balls with a particle size smaller than the gaps in the drainage holes are supplied to the drainage holes from the outlet, and the momentum, flow rate, and flow rate of the flowing water decrease. Continue to supply until filling, and after visually confirming that the momentum, flow rate, and flow rate of running water have decreased, inject the chemical into the iron ball filling area including the depth where the surrounding ground is an impermeable layer. , And the gelled or solidified in the gap between the iron ball and the soil particles to block the inside of the water outlet and stop the water.

本発明に係る流水がある地盤の止水方法は、地下水位より以深の地下掘削工事において古井戸やボーリング孔の後処理材の劣化等が原因で地盤の出水孔から地下水が溢れ出した場合で、しかも流水を止めるために薬液注入を行っても薬液が流水に流されて止水効果を得られないほど流水の速度や流量、勢いが大きい場合に有効な止水方法である。
本発明の止水メカニズムは、既往技術のように動水勾配を小さくして流水を抑制するのではなく、流水に流されず、出水孔への充填性が良い粒状材、例えば鉄球を出水口から供給して出水孔へ必要量の充填を行い、流水の勢い、流速、流量を薬液が流されない程度にまで抑制する。その抑制効果を掘削底の出水口からの流水の勢い、流速、流量を目視観測により確認した上で、前記粒状材の充填領域へ薬液注入を行い、粒状材および土粒子の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水する方法である。したがって、本発明の実施には、既往の薬液注入装置以外には、格別の道具類や機械装置などが無用である。しかも格別技術的熟練を要することなく、現場の出水に対しては誰でもが容易に迅速に実施でき、止水効果を得ることができる。しかも注入した薬液の効能を発揮させて出水孔内を根本的に閉塞させ止水するから、永続的な止水効果が得られ、地下掘削工事の速やかなる進捗を可能にし、工費の削減および工期の短縮に大きく寄与できるのである。
The method for stopping the ground with flowing water according to the present invention is when underground water overflows from the ground outlet due to deterioration of post-treatment materials of old wells and boreholes in underground excavation work deeper than the groundwater level. In addition, the water stopping method is effective when the speed, flow rate, and momentum of the flowing water are so large that the chemical solution is poured into the flowing water to stop the flowing water and the water stopping effect cannot be obtained.
The water stop mechanism of the present invention does not suppress the flow of water by reducing the gradient of water flow as in the prior art, but does not flow into the flow of water. Supply from the water port to fill the outlet hole with the required amount, and control the momentum, flow rate, and flow rate of the flowing water to such an extent that no chemicals are allowed to flow. The inhibitory effect is confirmed by visual observation of the momentum, flow velocity, and flow rate of the flowing water from the water outlet at the bottom of the excavation, and then the chemical solution is injected into the granular material filling region, and gelled in the gap between the granular material and the soil particles. Or it is the method of making it solidify and obstruct | occluding the inside of a water outlet hole, and stopping water. Therefore, in order to carry out the present invention, there is no need for special tools or mechanical devices other than the existing chemical liquid injector. Moreover, without requiring special technical skill, anyone can easily and quickly carry out on-site water discharge, and a water stop effect can be obtained. Moreover, since the injected chemical solution is fully effective and the water outlet is fundamentally blocked to stop the water, a permanent water stop effect can be obtained, enabling rapid progress of underground excavation work, reducing construction costs, and the construction period. It can greatly contribute to the shortening.

流水に流されない粒径で高比重の粒状材を、出水口から出水孔へ必要量供給し充填して流水の勢い、流速、流量を抑制する。そうして抑制の事実を確認した後に、前記粒状材の充填領域へ薬液の注入を行い、前記高比重の粒状材および土粒子の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水する。
前記流水に流されない粒径で高比重の粒状材の選定、即ち、粒状材が流水から受ける力よりも自重が大きい比重の粒状材の選定は、粒状材の形状が球形である場合には、次式により行う。
D≧[3/{2・(γー1)}]・i
但し、上記γは粒状材の比重、Dは粒状材の粒径、iは出水孔から溢れ出る流水の動水勾配である。動水勾配γとは、上述したように、出水孔の上下端における水位差を前記上下端間の距離で除した値である。
流水に流されず、且つ出水孔への充填性が良い粒状材として、出水孔の空隙よりも粒径が小さい鉄球を出水口から出水孔へ必要量供給し、流水の勢い、流速、流量が低下するまで充填する。かくして流水の勢い、流速、流量が、薬液を注入しても流されることなく、粒状材および土粒子の隙間でゲル化、又は固化すえう程度にまで低下したことを目視で確認した段階で、薬液を、周辺地盤が不透水層である深度を含む鉄球充填領域へ注入して、前記鉄球(および土粒子など)の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水する。
A granular material having a particle size and high specific gravity that is not flowed into running water is supplied from the outlet to the outlet hole and filled to reduce the momentum, flow rate, and flow rate of the flowing water. After confirming the fact of the suppression, a chemical solution is injected into the granular material filling region and gelled or solidified in the gap between the high specific gravity granular material and soil particles to block the inside of the water discharge hole and stop. Water.
Selection of a granular material having a particle size that does not flow into the flowing water and a high specific gravity, that is, selection of a granular material having a specific gravity greater than the force that the granular material receives from the flowing water, when the shape of the granular material is spherical, The following formula is used.
D ≧ [3 / {2 · (γ−1)}] · i
Where γ is the specific gravity of the granular material, D is the particle size of the granular material, and i is the hydrodynamic gradient of the flowing water overflowing from the outlet hole. The hydraulic gradient γ is a value obtained by dividing the water level difference at the upper and lower ends of the water outlet hole by the distance between the upper and lower ends as described above.
As a granular material that does not flow into running water and has good fillability to the water outlet, supply the required amount of iron balls having a particle size smaller than the gap of the water outlet from the outlet to the outlet. Fill until low. Thus, at the stage where it was visually confirmed that the momentum, flow velocity, and flow rate of the flowing water were reduced to such an extent that gelation or solidification could occur in the gaps between the granular material and the soil particles without flowing even when the chemical solution was injected. The chemical solution is injected into the iron ball filling area including the depth where the surrounding ground is an impermeable layer, and gelled or solidified in the gap between the iron balls (and soil particles, etc.) to block the inside of the water outlet and stop the water To do.

次に、本発明を図示した実施例に基づいて説明する。
先ず図1は、地下水位Wより以深に及ぶ地下掘削工事において、地盤等に地下水が湧き出す流水の発生現象(又は原因)の事例を概念的に例示している。図中の符号Aは古井戸Bの後処理材の劣化などが原因で発生した出水孔を示し、aはその出水口を示している。Cはボーリング孔の後処理不良が原因で発生した出水孔を示し、cはその出水口を示している。Dは遮水壁(山留め壁)Eの背面に発生した水道による出水孔を示し、dはその出水口を示している。その他、実際には更に様々な原因、現象で出水孔が発生して地下水が湧き出すことは経験的に知られている通りである。
Next, the present invention will be described based on the illustrated embodiment.
First, FIG. 1 conceptually illustrates an example of a phenomenon (or cause) of flowing water in which groundwater springs up to the ground or the like in underground excavation work deeper than the groundwater level W. A symbol A in the figure indicates a water outlet generated due to deterioration of the post-treatment material of the old well B, and a indicates a water outlet. C indicates a water outlet generated due to poor post-treatment of the bore hole, and c indicates the water outlet. D indicates a water discharge hole by the water supply generated on the back surface of the impermeable wall (mountain wall) E, and d indicates the water outlet. In addition, it has been empirically known that water holes are actually generated due to various causes and phenomena, and groundwater flows out.

図2は、上記古井戸Bの後処理材の劣化等が原因で発生した出水孔Aについて、本発明の方法により止水処理を実施する場合に、実測した環境および施工条件を概念的に示している。
図2の実施例に示す古井戸Bは、地中の不透水層Gを貫通して、その下に存在する帯水層Fへ届く深さ(図示例では地下43m)に設置されている。一方で、地下水位Wは、地盤環境の有様として、図2の例では地下18メートルであった。図示例の地下掘削工事は既に地下23メートルまで進んでおり、古井戸Bに沿う出水孔Aから大量の地下水が大きな流速と流量で溢れ出しており、その水流は薬液を注入しても流されてしまい、ゲル化又は固化を期待できない条件下にある。
FIG. 2 conceptually shows the actually measured environment and construction conditions when water stoppage treatment is performed by the method of the present invention for the water outlet A generated due to deterioration of the post-treatment material of the old well B, etc. ing.
The old well B shown in the embodiment of FIG. 2 is installed at a depth that penetrates the underground impermeable layer G and reaches the aquifer F existing thereunder (43 m in the illustrated example). On the other hand, the groundwater level W was 18 meters underground in the example of FIG. The underground excavation work in the example shown in the figure has already progressed to 23 meters underground, and a large amount of groundwater overflows from the water outlet A along the old well B with a large flow velocity and flow rate. Therefore, it is in a condition where gelation or solidification cannot be expected.

上記流水の発生に対して、本発明による止水方法を実施する手順としては、先ず流水の流速および流量並びに出水口aの空隙大きさを計測し把握することから始めた。
上記したように、地下水位Wの深さは地下18メートルで、現在の掘削底面の深さが地下23mであることは、工事に関する実測値として既知であった。よって、これらの既知条件に基づいて、出水孔Aの上下端における水位差(被圧水位)h(図示例では5mとなる。)、および出水孔Aの上下端間の距離H(図示例では20m)は算定により容易に把握できた。
その結果、流水の動水勾配iは、i=h/H、の式から次のように求められた。即ち、上記の実測値に基づくと、i=5/20=0.25であった。
また、出水口aの空隙大きさは実測することで知得できたので、その結果、出水口aから投入可能な粒状材の寸法(外径など)をおおよそ把握できた。
The procedure for carrying out the water stop method according to the present invention for the generation of the above-mentioned flowing water began by first measuring and grasping the flow velocity and flow rate of the flowing water and the gap size of the outlet port a.
As described above, the depth of the groundwater level W is 18 meters underground, and the current depth of the bottom of excavation is 23 meters underground is known as an actual measurement value related to construction. Therefore, based on these known conditions, the water level difference (pressure level) h (5 m in the illustrated example) at the upper and lower ends of the water outlet A, and the distance H (in the illustrated example) between the upper and lower ends of the outlet hole A. 20m) was easily grasped by calculation.
As a result, the running water gradient i of the running water was determined as follows from the equation i = h / H. That is, i = 5/20 = 0.25 based on the above measured values.
Moreover, since the gap | interval size of the water outlet a was able to be acquired by actually measuring, as a result, the dimension (outside diameter etc.) of the granular material which can be thrown in from the water outlet a was roughly grasped.

次に、上記のように求めた動水勾配iに基づき、投入する粒状材が流水から受ける力の大きさを、下記する算定方式で求めた。
図3に例示したように、粒状材Kが球形(又は水滴形の粒状材でも同じ。)の場合、この粒状材Kが流水から受ける力Pの大きさは、次のよう把握できる。因みに、粒状材の形状が球形であると、無用な引っ掛かりがないので、出水孔内における粒状材の充填率の向上に有効な材として選定される。
上記球形の粒状材Kの水中における自重量をQとし、流水によって粒状材Kが受ける力をPとするときは、次の「式1」が成り立つ。もっともこの場合、粒状材Kの水中における自重量Qと流水によって粒状材Kが受ける力Pとの関係は、粒状材Kが流水によって流されないための条件として、Q≧Pであることが前提条件となる。
[式1]
(γーγ)・V≧f{V(i)}・S
但し、γは粒状材の密度(g/cm)、γは出水孔内の水流の密度(g/cm)、 Vは粒状材の体積(cm)、V(i)は流水によって粒状材が受ける速度(cm/分)で、f{V(i)}は流水によって粒状材Kが受ける圧力(g/cm)、Sは粒状材の投影面積で、粒径Dとの関係は、S=π・(1/2D)である。
Next, based on the hydrodynamic gradient i determined as described above, the magnitude of the force that the granular material to be input receives from the flowing water was determined by the following calculation method.
As illustrated in FIG. 3, when the granular material K is spherical (or the same for a water droplet-shaped granular material), the magnitude of the force P that the granular material K receives from flowing water can be grasped as follows. Incidentally, if the shape of the granular material is spherical, there is no unnecessary catch, so it is selected as an effective material for improving the filling rate of the granular material in the water outlet.
When the weight of the spherical granular material K in water is Q and the force received by the granular material K by running water is P, the following “Expression 1” is established. In this case, however, the relationship between the weight Q of the granular material K in the water and the force P received by the granular material K by flowing water is a precondition that Q ≧ P as a condition for preventing the granular material K from flowing by flowing water. It becomes.
[Formula 1]
(Γ−γ W ) · V ≧ f {V (i)} · S
Where γ is the density of the granular material (g / cm 3 ), γ W is the density of the water flow in the outlet hole (g / cm 3 ), V is the volume of the granular material (cm 3 ), and V (i) is The speed (cm / min) that the granular material receives, f {V (i)} is the pressure (g / cm 2 ) that the granular material K receives by flowing water, S is the projected area of the granular material, and the relationship with the particle size D Is S = π · (1 / 2D) 2 .

上記の「式1」により、流水によって粒状材Kが受ける力Pの大きさが判明すると、流水に流されない粒径で高比重の粒状材の選定は、「次式2」により把握できる。
[式2]
D≧3・i/{2(γー1)}
但し、Dは粒状材の粒径で、γは粒状材の密度(g/cm)、iは動水勾配であることは上記のとおりである。
When the magnitude of the force P applied to the granular material K by the flowing water is found from the above “Expression 1”, the selection of the granular material having a particle size and high specific gravity that is not flowed into the flowing water can be grasped by “Expression 2”.
[Formula 2]
D ≧ 3 · i / {2 (γ−1)}
However, D is the particle size of the granular material, γ is the density of the granular material (g / cm 3 ), and i is the hydrodynamic gradient as described above.

上記の「式2」に基づいて、動水勾配iと粒状材の比重および粒径Dの関係を求めグラフ化したものが図4である。そして、投入する粒状材の最小粒径を求めてグラフ化したものが図5である。
図4によれば、流水が粒状材へ与える圧力Pが連続的とみなせるので、流水に流されない粒状材の粒径Dは、動水勾配iと粒状材の密度によって評価できることがわかる。即ち、図4によれば、上記段落番号[0014]の実測値から算定した動水勾配i=0.25に対する一般論として、粒状材が比重xの物質Xの最小粒径はDxと把握され、同様に比重yの物質Yの最小粒径はDyと把握された。
また、図5は更に具体的に、特性線Z1は、比重γが7.85の鉄材に関する最小粒径を求めたグラフで、特性線Z2は比重γが2.65の土粒子に関する最小粒径を求めたグラフである。
したがって、図5中に▲印で付記した粒径1.9mmの珪砂は、特性線Z2より以下なので、動水勾配i=0.25の流水のでは流されてしまい、前記流水に充填する粒状材としては適さないことが明らかである。
一方、巷間パチンコ球として知られる粒径11mmの鉄球は、やはり図5中に●印で付記したように特性線Z1よりもはるか上位に位置するから、上記動水勾配i=0.25の流水によっては流されず、同流水へ充填する粒状材として十分に適することが明らかと評価できる。
FIG. 4 is a graph showing the relationship between the hydrodynamic gradient i, the specific gravity of the granular material, and the particle size D, based on the above “Formula 2”. FIG. 5 is a graph showing the minimum particle diameter of the granular material to be input.
According to FIG. 4, since the pressure P which flowing water gives to a granular material can be considered as continuous, it turns out that the particle size D of the granular material which is not flowed into flowing water can be evaluated with the dynamic water gradient i and the density of a granular material. That is, according to FIG. 4, as a general theory with respect to the hydraulic gradient i = 0.25 calculated from the actually measured value of the paragraph number [0014], the minimum particle diameter of the substance X having a specific gravity x is grasped as Dx. Similarly, the minimum particle diameter of the substance Y having a specific gravity y was determined to be Dy.
Further, FIG. 5 is a graph in which the characteristic line Z1 is a graph obtained by obtaining the minimum particle diameter regarding the iron material having a specific gravity γ of 7.85, and the characteristic line Z2 is the minimum particle diameter regarding soil particles having the specific gravity γ of 2.65. It is the graph which calculated | required.
Accordingly, the silica sand having a particle diameter of 1.9 mm marked with a ▲ mark in FIG. 5 is less than the characteristic line Z2, and thus is washed away with running water having a dynamic gradient i = 0.25, and the granular material filled in the running water is shown in FIG. It is clear that it is not suitable as a material.
On the other hand, an iron ball having a particle diameter of 11 mm, known as an intercostal pachinko sphere, is also positioned far above the characteristic line Z1 as indicated by the ● mark in FIG. It can be clearly evaluated that it is sufficiently suitable as a granular material not filled with running water and filled into the running water.

以上の検討結果を踏まえ、図2に示した実施例について、上記した動水勾配i=0.25の流水に流されないことが判明した粒径11mmの鉄球を粒状材として使用した止水方法の実施例を、以下に説明する。
上記したように出水口aの空隙の大きさを実測した測定値と、同地盤の掘削底から直下の不透水層Gを経て帯水層Fに至るまでの距離(図示例の場合では20m)を積算して求められた概算量だけ、粒径11mmの鉄球を用意した。そして、同鉄球を出水口aから供給して出水孔Aの中へ必要なだけ充填した。鉄球の充填作業は、出水口aの空隙の大きさを実測して得られた空隙へ適用可能な形状、大きさの注出口を備え、且つ適度に大きい鉄球収容量を備えた、例えば漏斗付きの供給容器を使用して、できるだけ迅速に確実に出水口aへ鉄球を供給して、充填作業の時間の短縮化を図った。その結果、鉄球は流水の勢いに流されることなく出水孔内へ順次降下してゆき、鉄球の充填量が増す程に、流水の水勢、流速、流量などは徐々に低下した。もっとも、流水の勢い、流速、流量が低下した段階では、上記粒径が1.9mmの珪砂なども鉄球と併せて供給して充填を進め、鉄球の隙間を珪砂で埋めて空隙の閉塞効果を高め、流水の勢いを急速に効果的に抑制することに努めた。
Based on the above examination results, in the embodiment shown in FIG. 2, a water stopping method using an iron ball having a particle diameter of 11 mm, which has been found not to be poured into flowing water having the above-described dynamic water gradient i = 0.25, as a granular material. Examples of this will be described below.
As described above, the measured value of the size of the gap at the outlet a and the distance from the bottom of the ground to the aquifer F through the impermeable layer G directly below (20 m in the example shown) An iron ball having a particle diameter of 11 mm was prepared in an approximate amount obtained by integrating the values. And the iron ball was supplied from the water outlet a and filled in the water outlet A as required. The filling operation of the iron ball is provided with a shape and size spout that can be applied to the gap obtained by actually measuring the size of the gap of the water outlet a, and with an appropriately large iron ball capacity, for example, Using a supply container with a funnel, the iron ball was supplied to the outlet a as quickly and surely as possible to shorten the filling work time. As a result, the iron balls gradually descended into the water discharge holes without being swept away by the force of the flowing water, and as the filling amount of the iron balls increased, the water flow, flow velocity, flow rate, etc. gradually decreased. However, when the momentum, flow rate, and flow rate of the flowing water are reduced, silica sand with a particle size of 1.9 mm is supplied together with the iron ball to proceed with filling, and the gap between the iron balls is filled with silica sand to close the gap. Efforts were made to increase the effectiveness and quickly control the momentum of running water.

上記のようにして、鉄球を、出水口aから供給してゆき、出水孔Aの中へ予め想定した相当量の鉄球を充填した段階で、流水の勢い、流速、流量が目に見えて低下した。その変化は、要するに鉄球が図2の出水孔Aの空隙中を流水に負けず降下してゆき、不透水層Gより下方の帯水層Fに至る底部(下端部A’)まで到達して、同出水孔Aの下端部A’から上方へ一定の高さまでその空隙を鉄球が埋め尽くす充填効果が得られたことに他ならない。   As described above, the iron ball is supplied from the water outlet a, and the momentum, the flow velocity, and the flow rate of the flowing water are visible at the stage where the equivalent amount of the iron ball is filled in the water outlet A. Declined. In short, the iron ball descends in the gap of the water outlet A in FIG. 2 without losing water and reaches the bottom (lower end A ′) reaching the aquifer F below the impermeable layer G. Thus, the filling effect that the iron balls completely fill the gap from the lower end A ′ of the water discharge hole A up to a certain height is obtained.

上記の充填効果は、作業者が出水口aで見る流水の勢い、流速、流量の低下として確認、把握できるので、当業者の経験則として、通常の薬液注入工法の実施の効果があると当業者に経験的に見極められるまで流水の勢いが低下した状況を見定めた段階で、公知の薬液注入工法を実施した。即ち、薬液注入工法の実施に必要な機械装置Mを予め用意して、その薬液注入管の先端ノズルNを、上記出水孔Aの下端部A’の近傍位置、換言すれば、本発明でいう「粒状材の充填領域」(請求項1)、更に具体的には「周辺地盤が不透水層である深度を含む鉄球充填領域」(請求項4)と推定できる該当場所へ届かせて、例えば既往の水ガラス、或いは発泡ウレタンなどを主成分とする薬液を必要量注入した。
この薬液注入の実施要領と手法、および薬液注入量や薬液材種などは、既往の薬液注入工法で熟知されているとおりに実施する。
因みに、本実施例で使用した薬液は、(株)菱晃社製の水ガラス系のエヌタイト−5S(溶液型超瞬結タイプで、ゲルタイム3秒(実測値)、7日圧縮強度が5Kgf/cm)を先ず使用し、次いで同社の水ガラス系のエヌタイト−GS(懸濁型瞬結タイプで、ゲルタイム25秒(実測値)、7日圧縮強度が70Kgf/cm)を使用した。
The above-mentioned filling effect can be confirmed and grasped as a drop in the momentum, flow rate, and flow rate of the flowing water that the operator sees at the outlet a. Therefore, as a rule of thumb for those skilled in the art, there is an effect of implementing a normal chemical injection method. A well-known chemical solution injection method was carried out at the stage where the momentum of running water was reduced until it was empirically determined by a contractor. That is, a mechanical device M necessary for carrying out the chemical solution injection method is prepared in advance, and the tip nozzle N of the chemical solution injection tube is positioned near the lower end A ′ of the water outlet A, in other words, in the present invention. “Particle filling area” (Claim 1), more specifically, “Iron ball filling area including the depth where the surrounding ground is an impermeable layer” (Claim 4) can be estimated, For example, a necessary amount of a chemical solution mainly containing existing water glass or urethane foam was injected.
The chemical injection method and method, the chemical injection amount, the chemical material type, and the like are performed as well known in the existing chemical injection method.
Incidentally, the chemical solution used in this example is a water glass-based entite-5S manufactured by Ryohin Co., Ltd. (solution type ultra-instantaneous type, gel time 3 seconds (actual measured value), 7-day compressive strength 5 kgf / cm 2 ) was used first, followed by the company's water glass-based enutite-GS (suspension type instantaneous setting type, gel time 25 seconds (actual measurement value), 7-day compressive strength 70 kgf / cm 2 ).

上記の工程を経た結果、充填した鉄球Kおよび珪砂の隙間で薬液がゲル化、又は固化Uして、出水孔Aの空隙が全面的に閉塞され流水をほぼ完全に止めることができた。
その止水処理の実情を図6に示した。図6は、出願人が、上記本発明の止水方法を実施した場所の地盤を、掘削工事の完了後に掘削した現場写真である。図6によれば、上記したように供給した鉄球Kが出水孔Aの空隙を埋め尽くし、充填した鉄球Kおよび土粒子などの隙間で、注入した薬液Uがゲル化、又は固化して出水孔内を閉塞していた事実、状況を確認できたのである。即ち、粒状材である鉄球Kの充填領域へ深く注入された薬液Uは、流れを抑制された水の緩やかな流水に沿って移動しつつ出水孔Aの高さ方向に鉄球Kおよび珪砂の隙間へ広範囲に行き渡り、同隙間でゲル化、又は固化して出水孔Aの空隙を効果的に閉塞した現象を呈しており、この止水効果は恒久化することが確認された。
As a result of the above steps, the chemical solution gelled or solidified U in the gap between the filled iron ball K and the silica sand, and the gap of the outlet hole A was totally blocked, and the running water could be stopped almost completely.
The actual situation of the water stop treatment is shown in FIG. FIG. 6 is a photograph of the site where the applicant excavated the ground where the water stop method of the present invention was implemented after excavation work was completed. According to FIG. 6, the iron balls K supplied as described above fill the gaps in the outlet holes A, and the injected chemical U is gelled or solidified in the gaps between the filled iron balls K and soil particles. The fact that the inside of the water outlet was blocked, the situation could be confirmed. That is, the chemical U deeply injected into the filled region of the iron ball K, which is a granular material, moves along the gentle flowing water of the water whose flow is suppressed and moves in the height direction of the outlet hole A in the height direction of the outlet ball A and the silica sand. It was confirmed that the water stoppage effect was made permanent by exhibiting a phenomenon in which the gaps of the water discharge holes A were effectively closed by gelling or solidifying in the gaps.

本発明による流水がある地盤の止水方法は、図2のような古井戸の後処理材が劣化したなどが原因の出水に限らず、図1に示したボーリング孔Cの後処理材の劣化などによる出水の止水処理、或いは遮水壁E(山留め壁)の背面に生じた水道による出水などの止水方法としても、充填材を出水口から供給し充填可能であれば、全く同様に実施することができる。
また、使用する粒状材の材質や粒径にしても、図4、図5に基づいて説明した手法で求めて選定した、流水に流されない比重と粒径であれば、上記鉄球に限らず、出水口から供給して充填することが可能な他の粒状材料、例えば新旧を問わず、鉄製のボルトやナット(特に袋ナットが好適)、ビス類、更には鉄筋その他の鉄材の切れ端など、或いは砕石や砂利なども多種多様に使用することができる。
The water stoppage method for the ground with running water according to the present invention is not limited to water discharge due to deterioration of the post-treatment material of the old well as shown in FIG. 2, but the deterioration of the post-treatment material of the borehole C shown in FIG. As for the water stoppage method such as water stoppage treatment by water discharge or water discharge by the tap water generated on the back of the impermeable wall E (mountain wall), if the filling material can be supplied from the water outlet and can be filled, it is exactly the same Can be implemented.
Moreover, even if it is the material and particle size of the granular material to be used, if it is the specific gravity and particle size which are not calculated | required by the method demonstrated based on FIG. 4, FIG. , Other granular materials that can be supplied and filled from the water outlet, for example, old and new, iron bolts and nuts (especially cap nuts are preferred), screws, and even rebar and other pieces of iron Or crushed stone and gravel can be used in a wide variety.

以上に、本発明を図示した実施例に基づいて説明したが、本発明は、上述した実施例に限定されるものではない。いわゆる当業者が必要に応じて行う設計変更や、応用の範囲内で様々な態様で実施することが可能であり、それらを包含する。   As mentioned above, although this invention was demonstrated based on the Example shown in figure, this invention is not limited to the Example mentioned above. A so-called person skilled in the art can carry out various modifications within the scope of design changes and applications that are necessary, and includes them.

地下掘削工事において地盤等に流水が発生する事例を概念的に示した断面図である。It is sectional drawing which showed notionally the example which a flowing water generate | occur | produces in the ground etc. in underground excavation construction. 古井戸の後処理材の劣化等が原因で発生した出水孔に関する止水方法の実施例を概念的に示した断面図である。It is sectional drawing which showed notionally the Example of the water stop method regarding the water outlet generated by the deterioration of the post-treatment material of an old well, etc. 球形の粒状材が流水により受ける力の関係を示す説明図である。It is explanatory drawing which shows the relationship of the force which a spherical granular material receives with flowing water. 流水の動水勾配と充填する粒状材の比重、粒径の関係を示すグラフである。It is a graph which shows the relationship between the specific gravity of the flowing water gradient, the granular material with which it fills, and a particle size. 粒状材の材質(鉄と土粒子)に関する流水の動水勾配と最小粒径との関係を示すグラフである。It is a graph which shows the relationship between the hydrodynamic gradient and the minimum particle diameter of flowing water regarding the material (iron and earth particle) of a granular material. 本発明の止水メカニズムを地盤掘削写真で示した説明図である。It is explanatory drawing which showed the water stop mechanism of this invention with the ground excavation photograph.

符号の説明Explanation of symbols

A、C、D 出水孔
K 粒状材(鉄球)
a、c、d 出水口
U ゲル化又は固化した薬液
A, C, D Water outlet K Granular material (Iron ball)
a, c, d Water outlet U Gelled or solidified chemical solution

Claims (4)

地盤の出水孔から溢れ出る流水を止水する方法において
流水に流されない粒径で高比重の粒状材を、出水口から出水孔へ供給し充填して流水の勢い、流速、流量を抑制し、しかる後に前記粒状材の充填領域へ薬液の注入を行い、前記高比重の粒状材の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水することを特徴とする、流水がある地盤の止水方法。
In the method of stopping running water that overflows from the ground outlet, the granular material with a particle size that does not flow into the running water is supplied from the outlet to the outlet and filled to reduce the momentum, flow rate, and flow rate of the flowing water, After that, a chemical solution is injected into the granular material filling region and gelled or solidified in the gap of the high specific gravity granular material to block the inside of the outlet hole and stop the water. Water stop method.
流水に流されない粒径で高比重の粒状材として、粒状材が流水から受ける力よりも自重が大きい比重の粒状材の選定は、粒状材の形状が球形である場合、次式により行うこと、
D≧[3/{2・(γー1)}]・i
但し、上記γは粒状材の比重、Dは粒状材の粒径、iは出水孔から溢れ出る流水の動水勾配であることを特徴とする、請求項1に記載した流水がある地盤の止水方法。
As a granular material with a particle size that does not flow into the flowing water and a high specific gravity, the selection of the granular material with a specific gravity that is greater than the force that the granular material receives from the flowing water, if the shape of the granular material is spherical, the following formula,
D ≧ [3 / {2 · (γ−1)}] · i
Wherein γ is the specific gravity of the granular material, D is the particle size of the granular material, and i is the hydrodynamic gradient of the flowing water overflowing from the outlet hole. Water way.
流水に流されず、且つ出水孔への充填性が良い粒状材として、出水孔の空隙よりも粒径が小さい鉄球を出水口から出水孔へ供給し、流水の勢い、流速、流量が低下するまで充填することを特徴とする、請求項1に記載した流水がある地盤の止水方法。   As a granular material that does not flow into running water and has good fillability in the drainage holes, iron balls with a particle size smaller than the gaps in the drainage holes are supplied from the outlet to the drainage holes, and the momentum, flow rate, and flow rate of the flowing water decrease. It fills until it does, The water stop method of the ground with the flowing water of Claim 1 characterized by the above-mentioned. 流水に流されず、且つ出水孔への充填性が良い粒状材として、出水孔の空隙よりも粒径が小さい鉄球を出水口から出水孔へ供給し、流水の勢い、流速、粒径が低下するまで供給を続けて充填を進め、流水の勢い、流速、流量が低下したことを目視で確認した後に、薬液を、周辺地盤が不透水層である深度を含む鉄球充填領域へ注入して、前記鉄球及び土粒子の隙間でゲル化、又は固化させて出水孔内を閉塞させ止水することを特徴とする、請求項1に記載した流水がある地盤の止水方法。   As a granular material that does not flow into running water and has good filling properties in the water outlet, an iron ball having a particle size smaller than that of the water outlet is supplied from the outlet to the outlet, and the momentum, flow rate, and particle size of the flowing water are reduced. Continue to supply until the pressure decreases, and after visually confirming that the momentum, flow rate, and flow rate of the flowing water have decreased, inject the chemical into the iron ball filling area including the depth where the surrounding ground is an impermeable layer. The water stopping method for ground with running water according to claim 1, wherein gelling or solidifying is performed in the gap between the iron balls and soil particles to block the inside of the water outlet hole and stop the water.
JP2008219439A 2008-08-28 2008-08-28 Stop water method for ground with running water Active JP5139204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219439A JP5139204B2 (en) 2008-08-28 2008-08-28 Stop water method for ground with running water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219439A JP5139204B2 (en) 2008-08-28 2008-08-28 Stop water method for ground with running water

Publications (2)

Publication Number Publication Date
JP2010053589A true JP2010053589A (en) 2010-03-11
JP5139204B2 JP5139204B2 (en) 2013-02-06

Family

ID=42069784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219439A Active JP5139204B2 (en) 2008-08-28 2008-08-28 Stop water method for ground with running water

Country Status (1)

Country Link
JP (1) JP5139204B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462592A (en) * 1987-09-01 1989-03-09 Takenaka Komuten Co Plug for cutoff construction of inundation and spring water in intermediate section of boring pit and method of cutoff construction
JPH0366827A (en) * 1989-08-03 1991-03-22 Nippon Steel Chem Co Ltd High specific gravity filler and filling method therefor
JP2000282036A (en) * 1999-03-30 2000-10-10 Sumitomo Osaka Cement Co Ltd Plastic injection material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462592A (en) * 1987-09-01 1989-03-09 Takenaka Komuten Co Plug for cutoff construction of inundation and spring water in intermediate section of boring pit and method of cutoff construction
JPH0366827A (en) * 1989-08-03 1991-03-22 Nippon Steel Chem Co Ltd High specific gravity filler and filling method therefor
JP2000282036A (en) * 1999-03-30 2000-10-10 Sumitomo Osaka Cement Co Ltd Plastic injection material

Also Published As

Publication number Publication date
JP5139204B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
CN104453913B (en) A kind of Shaft Stopes front pre-grouting method
Modoni et al. Theoretical modelling of jet grouting
CN105201448B (en) Block water slip casting method for blocking in a kind of high-pressure high-flow water gushing channelway
Wang et al. Jet grouting practice: an overview
CN107747312B (en) Method for drilling and grouting construction of gravel stratum
CN108086296B (en) Dynamic and static combined grouting foundation reinforcing construction method
CN108999195B (en) It is a kind of block the larger water burst of deep-foundation side wall stratum in the safe grouting construction process of step heap weir formula
CN107816051B (en) Pressure-bearing property phreatic aquifer deep basal pit combination well dewatering construction method
CN108193606A (en) A kind of means of defence of local scour near pier
CN108222043A (en) A kind of curtain gushes husky processing method and curtain gushes husky processing pipe
CN110130936A (en) It dashes forward in a kind of shield tunneling process and meets the construction method of untreated solution cavity or crack
CN106894428A (en) A kind of multi layer waterproof method for blocking of mass raft foundation dewatering well
CN109385992A (en) The construction method of pore-forming in artificial Backfilled Stone Layer
CN106761532A (en) Leak drilling sealing aggregate filter cuts the application method of device
Shen et al. Improvement efficacy of RJP method in Shanghai soft deposit
CN106013177B (en) A kind of pile foundation meets the processing method and plugging structure of karst into hole drill
JP5139204B2 (en) Stop water method for ground with running water
JP5737747B2 (en) Well structure and method for constructing well structure
CN107013236A (en) The vertical karst plugging device in space and method for blocking
CN110984137A (en) Bridge cast-in-situ bored pile construction method
CN110206561A (en) Disease in Tunnel Base point processing method
CN102979105A (en) Underground water control method of wellhole grouting and seepage insulation
JP6895842B2 (en) Ground improvement method
CN110630187B (en) Method for preventing fracture of underground hydrographic drilling orifice pipe
CN104278660B (en) The earth and rockfill dam of the direct fixed strengthening of the horizontal coiled pipe delamination pour slurry method of construction of building a dam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3