JP2010051098A - Uninterruptible power supply switching device - Google Patents

Uninterruptible power supply switching device Download PDF

Info

Publication number
JP2010051098A
JP2010051098A JP2008213328A JP2008213328A JP2010051098A JP 2010051098 A JP2010051098 A JP 2010051098A JP 2008213328 A JP2008213328 A JP 2008213328A JP 2008213328 A JP2008213328 A JP 2008213328A JP 2010051098 A JP2010051098 A JP 2010051098A
Authority
JP
Japan
Prior art keywords
power supply
electromagnetic contactor
solenoid
semiconductor switch
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008213328A
Other languages
Japanese (ja)
Other versions
JP5220514B2 (en
Inventor
Akira Higano
明 日向野
Tomoji Zama
知司 座馬
Shigeyoshi Sakai
重嘉 酒井
Masahiro Sasaki
正博 佐々木
Mikihiko Miyake
幹彦 三宅
Kanji Yokoo
寛治 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKADA WORKS CO Ltd
Kandenko Co Ltd
AT Tokyo Corp
Original Assignee
TAKADA WORKS CO Ltd
Kandenko Co Ltd
AT Tokyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKADA WORKS CO Ltd, Kandenko Co Ltd, AT Tokyo Corp filed Critical TAKADA WORKS CO Ltd
Priority to JP2008213328A priority Critical patent/JP5220514B2/en
Publication of JP2010051098A publication Critical patent/JP2010051098A/en
Application granted granted Critical
Publication of JP5220514B2 publication Critical patent/JP5220514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an uninterruptible power supply switching device that achieves sure switching at a high speed within a 1/4 cycle by maximally reducing power loss to be generated while supplying power via a contact switch during regular power supply, and also, by starting power supply from a standby-side power supply after completely separating an abnormal-side power supply at a high speed during the occurrence of an abnormality in the power supply. <P>SOLUTION: The uninterruptible power supply switching device includes: a double-throw electromagnetic contactor 6 being a change-over switch between a regular-use side AC power supply 1 and a standby-side AC power supply 2; a solenoid electromagnetic contactor 30 connected in series between a common contact of the double-throw electromagnetic contactor 6 and a load 5; a semiconductor switch 10 connected between the regular-use side AC power supply 1 and the load 5 in parallel with the double-throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30; a semiconductor switch 20 connected between the standby-side AC power supply 2 and the load 5 in parallel with the double-throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30; an abnormal-voltage detection circuit 42; and a control circuit 40 for executing control of each part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2系統の交流電源から負荷に電力を供給する際に、その内の任意の一方の交流電源を選択して負荷に電力を供給するようにした電源切換装置に関するもので、特に常用側電源の停電などの異常時における待機側電源による給電への自動切換、及び、2系統電源が共に正常なときに給電系統を切換る手動切換のいずれの場合も、きわめて安全且つ高速に切換ることができるようにした無瞬断電源切換装置に関するものである。   The present invention relates to a power supply switching device in which, when power is supplied from two AC power sources to a load, any one of the AC power sources is selected and power is supplied to the load. In both cases of automatic switching to power supply by the standby power supply in the event of an abnormality such as a power failure of the side power supply, and manual switching that switches the power supply system when both power supplies are normal, switching is extremely safe and fast The present invention relates to an uninterruptible power supply switching device.

コンピュータ(情報処理)と通信の融合が始まって以来、情報通信システム、ネットワークシステムは今や産業、流通、交通、金融、放送・通信、セキュリティなどあらゆる場において急速にとどまることなく拡大しており、一旦トラブルが発生した場合の影響も計り知れなくなっている。これらのシステムを裏で支えている電源システムも又、24時間・365日無停止であることが要求されており、商用停電に備えての無停電電源装置、自家用発電設備、系統切換のための電源切換装置などを効率的に組み合わせた電源システムが導入されて来ているが、最近では、構成する個々の機器の故障やメンテナンスに際してさえ電力供給を一切止めることなく安全に確実に対処できる高速動作(1/4サイクル以内、従って、50Hzでは5msec.以内、60Hzでは4.16msec.以内)の無瞬断電源切換装置が要求されている。   Since the fusion of computers (information processing) and communications has begun, information communication systems and network systems are now expanding rapidly in all fields such as industry, distribution, transportation, finance, broadcasting / communications, and security. The effects of troubles are also immeasurable. The power supply system that supports these systems is also required to be 24 hours a day, 365 days a year without interruption, and is used for commercial power outages, uninterruptible power supplies, private power generation facilities, system switching Power supply systems that efficiently combine power supply switching devices have been introduced, but recently, high-speed operation that can safely and reliably cope with power supply failure without any interruption even during the breakdown or maintenance of individual components There is a need for an uninterruptible power supply switching device (within 1/4 cycle, and therefore within 5 msec. At 50 Hz and 4.16 msec. At 60 Hz).

このような中、従来よく知られている電源切換装置に以下のものがある。
図10は一般に知られる交流電源切換装置の一例であるが、切換スイッチとしては電磁接触器など有接点スイッチ3及び4が用いられている。 また、図11に示される高速形の双投式電磁接触器6が使われる場合もある。この方法は回路構成が簡単な故に信頼性も高いが、電磁接触器の動作時間が20〜50msec.と長いため、停電発生など常用側電源の異常時にそれを検知して自動的に健全な待機側電源へ切り換えた場合、負荷側の電力供給に20〜50msec.以上の瞬断時間を生じてしまい、情報通信機器をはじめFA機器など許容瞬断時間5〜10msec.以下の多くの負荷機器が停止したり、誤動作を生じるという不都合がある。
Under such circumstances, there are the following well-known power supply switching devices.
FIG. 10 shows an example of a generally known AC power supply switching device. As the switch, contact switches 3 and 4 such as an electromagnetic contactor are used. In some cases, a high-speed double-throw electromagnetic contactor 6 shown in FIG. 11 is used. This method has high reliability due to its simple circuit configuration, but the operation time of the magnetic contactor is as long as 20 to 50 msec. Therefore, when the power supply on the normal side is abnormal, such as when a power failure occurs, it is automatically detected and a healthy standby is performed. When switching to the side power supply, an instantaneous interruption time of 20 to 50 msec. Or more occurs in the power supply on the load side, and many load devices with an allowable instantaneous interruption time of 5 to 10 msec. There is an inconvenience of stopping or causing malfunction.

図12も同様に一般に知られる交流電源切換装置の別の一例であるが、切換スイッチ7及び8を半導体素子(例えばサイリスタ)で構成しているためスイッチとしてのオン/オフ動作時間が速く、常用側電源の異常検出(停電検出)の方法によっては、給電切換時間5msec.以下も可能である。また、一方の半導体スイッチのOFFの後に他方の半導体スイッチをONするので、2系統の電源間の横流も回避できる。しかしながら、この方法は切換スイッチが半導体であるが故に、通電電流による電圧降下が存在しワットロスを生じるため、半導体素子の冷却が装置寸法やコスト上の問題となるばかりでなく、運転コストにも影響する。 この問題は、数十アンペアまでの小容量切換器ではさほど問題ではないが、容量が大きくなるほど大きなデメリットとなる。   FIG. 12 is another example of a generally known AC power supply switching device. However, since the changeover switches 7 and 8 are composed of semiconductor elements (for example, thyristors), the on / off operation time as a switch is fast, and the switch is used regularly. Depending on the method of abnormality detection (power failure detection) of the side power supply, a power supply switching time of 5 msec. Or less is possible. Further, since the other semiconductor switch is turned on after one semiconductor switch is turned off, a cross current between the two power sources can be avoided. However, since the changeover switch is a semiconductor in this method, there is a voltage drop due to an energized current, resulting in a watt loss, so that cooling of the semiconductor element becomes a problem in terms of device size and cost, and also affects the operating cost. To do. This problem is not so much a problem with a small-capacity switch up to several tens of amperes, but becomes a big disadvantage as the capacity increases.

これに対し、前記の有接点スイッチを用いた切換装置と半導体スイッチを用いた切換装置の各々の特長を生かすべく、有接点スイッチと半導体スイッチの両方を組合せたハイブリッド方式の切換装置が提案されている。   On the other hand, in order to take advantage of each of the switching device using the contact switch and the switching device using the semiconductor switch, a hybrid switching device combining both the contact switch and the semiconductor switch has been proposed. Yes.

特許文献1のものはその一例であり、図13に示す。有接点スイッチである双投式電磁接触器6の主接点が常用側交流電源1側に接続されていて、負荷5に常用側交流電源1から給電されている状態では、双投式電磁接触器6の常用側交流電源1側の主接点及び待機側交流電源2の主接点と各々並列に接続されている半導体スイッチ10及び20は共にオフの状態にある。   The thing of patent document 1 is the example, and it shows in FIG. When the main contact of the double-throw electromagnetic contactor 6 that is a contact switch is connected to the normal-side AC power supply 1 side and the load 5 is fed from the normal-side AC power supply 1, the double-throw electromagnetic contactor The semiconductor switches 10 and 20 connected in parallel with the main contact on the common AC power supply 1 side of 6 and the main contact of the standby AC power supply 2 are both turned off.

常用側交流電源1から負荷に給電されているこの状態において、負荷への給電を待機側交流電源2からの給電に切り換えたい(計画切換の)場合、外部から切換指令信号が入力されると、まず双投式電磁接触器6の駆動コイルが励磁されて常用側交流電源1側に接続されていた主接点は開極動作を開始する。同時に常用側交流電源1側の半導体スイッチ10をオンさせる。双投式電磁接触器6の固有の動作時間後には主接点は常用側交流電源1から切り離されて、さらに一定時間(約10msec.)の後に待機側交流電源2側に接続される。   In this state where power is supplied to the load from the normal-side AC power supply 1, when it is desired to switch the power supply to the load to the power supply from the standby-side AC power supply 2 (plan switching), when a switching command signal is input from the outside, First, the drive coil of the double-throw electromagnetic contactor 6 is excited and the main contact connected to the normal-side AC power supply 1 side starts the opening operation. At the same time, the semiconductor switch 10 on the regular AC power supply 1 side is turned on. After the inherent operating time of the double-throw electromagnetic contactor 6, the main contact is disconnected from the normal-side AC power source 1 and connected to the standby-side AC power source 2 side after a certain time (about 10 msec.).

この双投式電磁接触器6の主接点が常用側交流電源1側にも待機側交流電源2側にも接続されていない時間帯の中間付近で、常用側交流電源1側の半導体スイッチ10をオフさせて、きわめて短い時間(例えば3μsec.)後に待機側交流電源2側の半導体スイッチ20をオンさせる。その後、双投式電磁接触器6の主接点が待機側交流電源2側に接続され、さらに所定の時間(双投式電磁接触器6の主接点接続時のチャタリング継続時間より十分長い時間)の後に待機側交流電源2側の半導体スイッチ20をオフさせる。   In the middle of the time zone when the main contact of this double-throw electromagnetic contactor 6 is not connected to the normal AC power supply 1 side or the standby AC power supply 2 side, the semiconductor switch 10 on the normal AC power supply 1 side is turned on. The semiconductor switch 20 on the standby side AC power supply 2 side is turned on after an extremely short time (for example, 3 μsec.). Thereafter, the main contact of the double-throw electromagnetic contactor 6 is connected to the standby AC power supply 2 side, and for a predetermined time (a time sufficiently longer than the chattering continuation time when the double-throw electromagnetic contactor 6 is connected). Later, the semiconductor switch 20 on the standby AC power supply 2 side is turned off.

しかしながら、この方式は、切換器の入力交流電源として接続されるUPS等のメンテナンスの際における計画切換の場合には、瞬断時間が数μsec.のほぼ完全な同期無瞬断切換が行われるが、常用側の交流電源の停電など電源異常時の自動切換においては、半導体スイッチを動作させず動作時間が長い双投式電磁接触器のみの切換になるため切換時間が約20msec.と長くなり得る。   However, in this method, in the case of planned switching at the time of maintenance such as UPS connected as an input AC power source of a switching device, almost complete synchronous uninterruptible switching with an instantaneous interruption time of several μsec is performed. In automatic switching in the event of a power failure such as a power failure of the AC power supply on the regular side, the switching time can be as long as about 20 msec. Because only the double-throw electromagnetic contactor with a long operating time is operated without operating the semiconductor switch. .

また、常用側交流電源1及び待機側交流電源2共に健全な状態で、かつ両方の電源の位相が一致している条件での手動による計画切換の場合(手動同期無瞬断切換の場合)は、外部から切換指令信号が入力されると、両方の交流電源の電圧位相が双投式電磁接触器6の動作時間後には一致すると計算されるタイミングで、まず、双投式電磁接触器6の駆動コイルが励磁されて常用側交流電源1側に接続されていた主接点が開極動作を開始すると同時に常用側交流電源1側の半導体スイッチ10をオンさせる。次に双投式電磁接触器6の主接点が常用側交流電源1側から離れて、待機側交流電源2側に接触するまでの短い期間に常用側交流電源1側の半導体スイッチ10のオフと、その数μsec.後の待機側交流電源2側の半導体スイッチ20のオンが行われて常用側交流電源1から待機側交流電源2への同期無瞬断切換が行われるが、両方の電源の周波数差や双投式電磁接触器6の動作時間等、指定できない要素のために切換位相がランダムとなり、負荷電流がピークでの切換もあって、サージ発生や負荷側への悪影響の恐れがある。   In case of manual plan switching under the condition that both the normal side AC power supply 1 and the standby side AC power supply 2 are in a healthy state and the phases of both power sources are coincident (in the case of manual uninterruptible switching) When a switching command signal is input from the outside, the voltage phase of both AC power supplies is calculated to coincide after the operating time of the double throw electromagnetic contactor 6. When the drive coil is excited and the main contact connected to the working AC power supply 1 side starts the opening operation, the semiconductor switch 10 on the working AC power supply 1 side is turned on. Next, when the main contact of the double-throw type electromagnetic contactor 6 is separated from the service AC power supply 1 side and contacts the standby AC power supply 2 side, the semiconductor switch 10 on the service AC power supply 1 side is turned off. After several μsec., The semiconductor switch 20 on the standby AC power supply 2 side is turned on, and the synchronous uninterruptible switching from the normal AC power supply 1 to the standby AC power supply 2 is performed. The switching phase is random due to factors that cannot be specified, such as the frequency difference and the operating time of the double-throw electromagnetic contactor 6, and there is a possibility that surge will occur and the load side will be adversely affected due to switching at peak load current. .

また、特許文献2のものはハイブリッド方式の他の例であり、図14に示す。有接点スイッチである電磁接触器3の接点がオンの状態、電磁接触器4の接点がオフの状態、負荷5に接続されている半導体スイッチ(例えばサイリスタの逆並列接続構成)9がオフの状態、さらに上記半導体スイッチ9の他の一端が双投式電磁接触器15の主接点を介して交流電源2に接続されている状態、即ち負荷5には交流電源1から電磁接触器接点3を通して給電されている状態を示している。常用側の交流電源1に電圧低下などの電源異常が発生すると、電磁接触器3の接点をオフすべく動作させ、接点が開極方向に動いて2系統電源間の絶縁性能が十分に確保できるまでの時間後に、電磁接触器3の接点に流れる電流又は電圧の極性を検出して、半導体スイッチ9を構成する逆並列サイリスタの内、両電源間に横流が流れない方向の一方のサイリスタを点弧する。その後、電磁接触器3の接点に流れる電流がゼロになるのを待ち、さらに所定の確認時間の後に半導体スイッチ9を構成する逆並列接続サイリスタの両方共を点弧する。さらに、両サイリスタの点弧後所定時間を経て電磁接触器4の接点をオンさせる。   Moreover, the thing of patent document 2 is another example of a hybrid system, and is shown in FIG. The contact of the magnetic contactor 3 which is a contact switch is in the on state, the contact of the electromagnetic contactor 4 is in the off state, and the semiconductor switch (for example, a reverse-parallel connection configuration of thyristors) 9 connected to the load 5 is in the off state In addition, the other end of the semiconductor switch 9 is connected to the AC power source 2 via the main contact of the double-throw electromagnetic contactor 15, that is, the load 5 is fed from the AC power source 1 through the electromagnetic contactor contact 3. It shows the state being done. When a power supply abnormality such as a voltage drop occurs in the AC power supply 1 on the normal side, the contact of the electromagnetic contactor 3 is operated to be turned off, and the contact moves in the opening direction, so that sufficient insulation performance between the two power sources can be secured. After detecting the time, the polarity of the current or voltage flowing through the contact of the magnetic contactor 3 is detected, and one of the anti-parallel thyristors constituting the semiconductor switch 9 is turned on so that no cross current flows between the two power sources. Arc. Thereafter, it waits for the current flowing through the contact of the magnetic contactor 3 to become zero, and after a predetermined confirmation time, both of the antiparallel connected thyristors constituting the semiconductor switch 9 are ignited. Further, the contact of the electromagnetic contactor 4 is turned on after a predetermined time has elapsed after the both thyristors are lit.

しかしながら図14のこの方式によれば、交流電源1と交流電源2の電圧位相が異なり、半導体スイッチ9を構成する逆並列接続のサイリスタの内の、交流電源1と交流電源2の間に横流が流れない方向の一方のサイリスタを点弧しても、このサイリスタは順方向に電圧が印加されていないのでオンすることができず、結局は電磁接触器3の接点が開極して且つアーク電流が流れなくなって確認時間後に初めて半導体スイッチを構成する逆並列に接続されたサイリスタの両方共が点弧されて交流電源2からの給電が開始されることになり、切換時間としては交流電源1の異常検出時間と電磁接触器3の接点開局時間とその接点のアーク電流継続時間と確認時間の合計となって10msec.より長くなる。   However, according to this method of FIG. 14, the AC power supply 1 and the AC power supply 2 have different voltage phases, and a cross current is generated between the AC power supply 1 and the AC power supply 2 in the anti-parallel connection thyristor constituting the semiconductor switch 9. Even if one of the thyristors in the non-flowing direction is ignited, this thyristor cannot be turned on because no voltage is applied in the forward direction, and eventually the contact of the electromagnetic contactor 3 opens and the arc current Both of the thyristors connected in antiparallel for the first time after the confirmation time after the stop of the current flow are fired, and the power supply from the AC power supply 2 is started. The sum of the abnormality detection time, the contact opening time of the magnetic contactor 3, the arc current continuation time of the contact, and the confirmation time is longer than 10 msec.

特許第3420281号公報Japanese Patent No. 3420281 特許第3676638号公報Japanese Patent No. 3676638 特開2008−48474号公報JP 2008-48474 A

以上の従来技術を見て来たが、給電側交流電源異常の際に高速(1/4サイクル以内)で待機側交流電源に切換え、定常運用中の電力損失を極力抑制し、交流電源としては商用系統、自家発電機、UPSと種類を選ばず使用可能で、しかも、いかなる交流電源の異常モードでも両電源間に横流が流れないという高速電源切換装置の条件に合致する方式はいまだ存在していない。
上記のような高速電源切換装置が具備すべき条件を挙げると、以下のようになる。
1. 定常的な給電スイッチは有接点スイッチ(低電力損失)
2. 2系統の給電スイッチの同時オンは絶対にないこと。(横流防止)
3. したがって、有接点スイッチのオフ動作時間がきわめて短いこと。(高速切換)
4. 交流電源異常の検出時間が短いこと(高速切換)
We have seen the above prior art, but when the power supply side AC power supply malfunctions, switch to the standby side AC power supply at high speed (within 1/4 cycle) to suppress power loss during steady operation as much as possible. There is still a method that can be used regardless of the type of commercial system, private generator, UPS, and that meets the conditions of a high-speed power switching device that does not allow cross current flow between the two power sources in any AC power supply abnormal mode. Absent.
The conditions that the high-speed power supply switching apparatus as described above should have are as follows.
1. Regular power supply switch is a contact switch (low power loss)
2. Never simultaneously turn on the two power feed switches. (Cross current prevention)
3. Therefore, the OFF operation time of the contact switch is extremely short. (High speed switching)
4). AC power supply abnormality detection time is short (high-speed switching)

本発明は、前記の課題を解決すべくなされたものであり、定常給電中は有接点スイッチを介して給電を行うことで、発生する電力損失を極力少なくすると共に、電源の異常発生時には高速で異常側電源を切り離して、その後に待機側電源からの給電を開始するようにして切換を確実且つ高速に行うことができる無瞬断電源切換装置を提供するものである。   The present invention has been made in order to solve the above-mentioned problems, and during steady power feeding, power feeding is performed via a contact switch, so that the generated power loss is reduced as much as possible. It is an object of the present invention to provide an uninterruptible power supply switching device that can be switched reliably and at high speed by disconnecting an abnormal power supply and then starting power supply from a standby power supply.

請求項1の発明は、2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器と、この双投式電磁接触器のコモン接点と負荷の間に直列に接続された常閉型のソレノイド式電磁接触器とを設け、前記常用側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第1の半導体スイッチを設け、また、前記待機側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第2の半導体スイッチを設け、前記双投式電磁接触器とソレノイド式電磁接触器との間の線路に異常電圧検出回路を設け、前記双投式電磁接触器、ソレノイド式電磁接触器、第1の半導体スイッチ及び第2の半導体スイッチの制御を行う制御回路を設け、前記ソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が約3msec.であり、前記双投式電磁接触器の励磁から常用側交流電源の接点開極までの時間より短いものとし、前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記ソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチをオンさせ、前記ソレノイド式電磁接触器の主接点の開極が約3msec.で完了した後に前記第1の半導体スイッチをオフさせ、数μsec.後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記ソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成とした、無瞬断電源切換装置とした。また、この装置は待機側交流電源から常用側交流電源への切換も前記と同様に作用する構成であることは勿論である。なお、本書において、前記外部切換信号とは常用側交流電源及び待機側交流電源の両方が健全な場の外部切換信号を意味する。
The invention according to claim 1 is a power supply switching device that switches supply of power from one power supply to the other power supply when power is selectively supplied from two AC power supplies to a load.
A contact type double-throw electromagnetic contactor that is a changeover switch between two AC power sources, the normal AC power supply and standby AC power supply, and a series connection between the common contact of this double-throw electromagnetic contactor and the load And a first semiconductor connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the normal-side AC power supply and the load. And a second semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the standby AC power source and the load, An abnormal voltage detection circuit is provided in a line between the contactor and the solenoid type magnetic contactor, and controls the double throw type magnetic contactor, the solenoid type magnetic contactor, the first semiconductor switch, and the second semiconductor switch. A control circuit, and In the magnetic contactor, the main contact is always on and the time from solenoid excitation to main contact opening is about 3 msec. The control circuit performs a switching operation to the standby side AC power supply by exciting the double throw electromagnetic contactor in response to an external switching signal or a signal from the abnormal voltage detection circuit. At the same time, the solenoid type magnetic contactor is excited to start the opening operation of the main contact, and further, the first semiconductor switch is turned on, and the opening of the main contact of the solenoid type magnetic contactor is about After completion in 3 msec., The first semiconductor switch is turned off, and after a few μsec., The second semiconductor switch is turned on to start power feeding from the standby AC power source. Regular use of contactor After disconnecting from the side AC power supply, confirm that the solenoid contactor has been de-energized and the main contact has returned to the ON state, and that the double-throw electromagnetic contactor has been switched to the standby AC power supply. After that, the uninterruptible power supply switching device is configured to turn off the second semiconductor switch. Of course, this apparatus is configured to operate in the same manner as described above for switching from the standby AC power supply to the regular AC power supply. In the present document, the external switching signal means an external switching signal when both the normal AC power supply and the standby AC power supply are healthy.

請求項2の発明は、請求項1の発明において、前記ソレノイド式電磁接触器は、常時はバネの力で主接点をオンにし、ソレノイドの励磁によりアクチュエータが前記バネの力に抗して引っ張られて主接点がオフする構成とし、前記ソレノイドの励磁は電解コンデンサに充電された電荷の短時間一斉放電による直流励磁方式である無瞬断電源切換装置とした。   According to a second aspect of the present invention, in the first aspect of the invention, the solenoid-type electromagnetic contactor normally turns on the main contact with the force of a spring, and the actuator is pulled against the force of the spring by excitation of the solenoid. The main contact is turned off, and the solenoid is excited by a non-instantaneous power source switching device that is a direct current excitation method using short-time simultaneous discharge of electric charges charged in the electrolytic capacitor.

請求項3の発明は、請求項1又は2の発明において、前記第1の半導体スイッチ及び第2の半導体スイッチはそれぞれ自己消弧式特性を有する無瞬断電源切換装置とした。   According to a third aspect of the present invention, in the first or second aspect of the invention, the first semiconductor switch and the second semiconductor switch are each an uninterruptible power supply switching device having self-extinguishing characteristics.

請求項4の発明は、2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器と、この双投式電磁接触器のコモン接点と負荷の間に直列に接続された常閉型のソレノイド式電磁接触器とを設け、前記常用側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第1の半導体スイッチを設け、また、前記待機側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第2の半導体スイッチを設け、前記双投式電磁接触器とソレノイド式電磁接触器との間の線路に異常電圧検出回路を設け、前記ソレノイド式電磁接触器に並列に自己消弧式特性を有する第3の半導体スイッチを接続して設け、前記双投式電磁接触器、ソレノイド式電磁接触器、第1の半導体スイッチ、第2の半導体スイッチ及び第3の半導体スイッチの制御を行う制御回路を設け、前記ソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が約3msec.であり、前記双投式電磁接触器の励磁から常用側交流電源の接点開極までの時間より短いものとし、前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記ソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、同じく同時に前記第3の半導体スイッチをオンさせ、約3msec.後の前記ソレノイド式電磁接触器の主接点の開極完了後に前記第3の半導体スイッチをオフさせ、数μsec.後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記ソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成とした、無瞬断電源切換装置とした。また、この装置は待機側交流電源から常用側交流電源への切換も前記と同様に作用する構成であることは勿論である。
The invention according to claim 4 is a power supply switching device for switching power supply from one power supply to the other power supply when power is selectively supplied to the load from two AC power supplies.
A contact type double-throw electromagnetic contactor that is a changeover switch between two AC power sources, the normal AC power supply and standby AC power supply, and a series connection between the common contact of this double-throw electromagnetic contactor and the load And a first semiconductor connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the normal-side AC power supply and the load. And a second semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the standby AC power source and the load, An abnormal voltage detection circuit is provided in a line between the contactor and the solenoid type magnetic contactor, and a third semiconductor switch having a self-extinguishing characteristic is connected in parallel to the solenoid type magnetic contactor. Throwing type electromagnetic contactor, solenoid type electric A control circuit for controlling the contactor, the first semiconductor switch, the second semiconductor switch, and the third semiconductor switch is provided. The solenoid-type electromagnetic contactor has a main contact that is always on, The time until the main contact is opened is about 3 msec., Which is shorter than the time from the excitation of the double-throw electromagnetic contactor to the contact opening of the normal-side AC power supply. Upon receiving a signal from the abnormal voltage detection circuit, the double-throw electromagnetic contactor is excited to start the switching operation to the standby AC power supply, and at the same time, the solenoid-type electromagnetic contactor is excited to open the main contact. At the same time, the third semiconductor switch is turned on, and after the opening of the main contact of the solenoid type magnetic contactor is completed after about 3 msec., The third semiconductor switch is turned off, and after several μsec. The second semiconductor switch is turned on to start power feeding from the standby AC power source, and then the double throw electromagnetic contactor is disconnected from the normal AC power source. After confirming that the main contact was returned to the on state by releasing the excitation and that the double-throw electromagnetic contactor was switched to the standby AC power supply, the second semiconductor switch was turned off. An uninterruptible power supply switching device was used. Of course, this apparatus is configured to operate in the same manner as described above for switching from the standby AC power supply to the regular AC power supply.

請求項5の発明は、2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器のコモン接点と負荷とを接続して設け、前記常用側交流電源と双投式電磁接触器との間に直列に接続した第1の常閉型のソレノイド式電磁接触器を設け、また、前記待機側交流電源と双投式電磁接触器との間に直列に接続した第2の常閉型のソレノイド式電磁接触器を設け、前記常用側交流電源と負荷との間に、前記第1のソレノイド式電磁接触器及び双投式電磁接触器と並列に接続された第1の半導体スイッチを設け、また、前記待機側交流電源と負荷との間に、前記第2のソレノイド式電磁接触器及び双投式電磁接触器と並列に接続された第2の半導体スイッチを設け、前記双投式電磁接触器と負荷との間の線路に異常電圧検出回路を設け、前記双投式電磁接触器、第1のソレノイド式電磁接触器、第2のソレノイド式電磁接触器、第1の半導体スイッチ及び第2の半導体スイッチの制御を行う制御回路を設け、前記第1及び第2のソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が約3msec.であり、前記双投式電磁接触器の励磁から常用側交流電源の接点開極までの時間より短いものとし、前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記第1のソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチをオンさせ、約3msec.後に前記第1のソレノイド式電磁接触器の主接点の開極が完了した後に前記第1の半導体スイッチをオフさせ、数μsec.後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記第1のソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成とした無瞬断電源切換装置とした。また、この装置は待機側交流電源から常用側交流電源への切換も前記と同様に作用する構成であることは勿論である。   The invention according to claim 5 is a power source switching device that switches power supply from one power source to the other power source when power is selectively supplied from two AC power sources to a load. A common contact of a contact-type double-throw electromagnetic contactor that is a changeover switch for two AC power supply systems of AC power supply and a load are connected to each other, and between the normal-side AC power supply and the double-throw electromagnetic contactor. And a second normally closed solenoid connected in series between the standby AC power source and the double throw electromagnetic contactor. An electromagnetic contactor, and a first semiconductor switch connected in parallel with the first solenoid contactor and the double throw electromagnetic contactor between the working AC power supply and the load, and The second solenoid between the standby AC power source and the load. A second semiconductor switch connected in parallel with the id type electromagnetic contactor and the double throw type electromagnetic contactor, an abnormal voltage detection circuit is provided on a line between the double throw type magnetic contactor and the load, A control circuit for controlling the throwing electromagnetic contactor, the first solenoid electromagnetic contactor, the second solenoid electromagnetic contactor, the first semiconductor switch, and the second semiconductor switch; In the solenoid type magnetic contactor, the main contact is always on, and the time from solenoid excitation to main contact opening is about 3 msec. From the excitation of the double throw electromagnetic contactor to the normal AC power supply The control circuit is shorter than the time until contact opening, and the control circuit excites the double-throw electromagnetic contactor in response to an external switching signal or a signal from the abnormal voltage detection circuit to switch to a standby AC power source. At the same time as starting The solenoid type magnetic contactor is excited to start the opening operation of the main contact, and the first semiconductor switch is turned on. After about 3 msec., The main contact of the first solenoid type magnetic contactor is opened. After the pole is completed, the first semiconductor switch is turned off, and after a few μsec., The second semiconductor switch is turned on to start power feeding from the standby AC power source, and then the double throw electromagnetic contact After the device is disconnected from the normal-side AC power source, the main contact is returned to the on-state by releasing the excitation of the first solenoid-type magnetic contactor, and the double-throw electromagnetic contactor is changed to the standby-side AC power source. After confirming the switching, the uninterruptible power supply switching device is configured to turn off the second semiconductor switch. Of course, this apparatus is configured to operate in the same manner as described above for switching from the standby AC power supply to the regular AC power supply.

また、請求項6の発明は、請求項1、2、3及び5のいずれかの発明において、前記制御回路は、常用側交流電源及び待機側交流電源の両方が健全な場合の外部切換信号による切換において、外部切換信号を受けた後、双投式電磁接触器及びソレノイド式電磁接触器の励磁開始及び第1の半導体スイッチへのオン動作開始を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、また、第1の半導体スイッチのオフ動作を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち下がりゼロクロス点の同期、又は負荷電流のゼロクロス点を検知してこれと同時に行う構成とした、無瞬断電源切換装置とした。   The invention according to claim 6 is the invention according to any one of claims 1, 2, 3, and 5, wherein the control circuit is based on an external switching signal when both the normal-side AC power supply and the standby-side AC power supply are healthy. In switching, after receiving an external switching signal, the excitation of the double throw type magnetic contactor and the solenoid type magnetic contactor and the start of the ON operation to the first semiconductor switch are respectively performed for the normal side AC power supply and the standby side AC power supply. The synchronization of the rising zero crossing point of the voltage waveform between the corresponding predetermined lines (for example, between RS) is detected and performed at the same time, and the off operation of the first semiconductor switch is performed with the normal AC power supply and the standby AC Non-instantaneous power switching device configured to synchronize the falling zero-crossing point of the voltage waveform between each corresponding line of the power supply (for example, between RSs) or detect the zero-crossing point of the load current simultaneously It was.

また、請求項7の発明は、請求項4の発明において、前記制御回路は、常用側交流電源及び待機側交流電源の両方が健全な場合の外部切換信号による切換において、外部切換信号を受けた後、双投式電磁接触器及びソレノイド式電磁接触器の励磁開始及び第3の半導体スイッチへのオン動作開始を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、また、第3の半導体スイッチのオフ動作を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち下がりゼロクロス点の同期、又は負荷電流のゼロクロス点を検知してこれと同時に行う構成とした、無瞬断電源切換装置とした。   According to a seventh aspect of the present invention, in the fourth aspect of the present invention, the control circuit receives an external switching signal in switching by the external switching signal when both the normal side AC power source and the standby side AC power source are healthy. After that, the excitation start of the double throw electromagnetic contactor and the solenoid electromagnetic contactor and the start of the ON operation to the third semiconductor switch are performed between the corresponding predetermined lines of the normal side AC power supply and the standby side AC power supply (for example, The synchronization of the rising zero crossing point of the voltage waveform (between RS) is detected and performed at the same time, and the third semiconductor switch is turned off at a predetermined line corresponding to each of the normal AC power supply and the standby AC power supply. An uninterruptible power supply switching device is configured to detect the zero-crossing point of the falling voltage waveform between the terminals (for example, between RSs) or detect the zero-crossing point of the load current and perform this simultaneously.

請求項1の発明においては、次の顕著な効果を得ることができる。
外部切換信号又は前記異常電圧検出回路からの切換指令信号により、ソレノイド式電磁接触器を励磁すると、約3msec.後に開極する。この主接点開極後、同じく前記切換指令信号によりオンさせていた第1の半導体スイッチをオフさせ、数μsec.後に第2の半導体スイッチをオンさせて待機側交流電源による給電を開始するので、前記切換指令信号から切換までが3msec.強という高速切換が実現できる。この切換動作では、第1の半導体スイッチがオフするまでは常用側交流電源給電が続き、数μsec.後の第2の半導体スイッチのオン以降は待機側交流電源給電に移るので、2系統の電源が健全な状態での手動による計画切換の場合は、断時間数μsec.の切換ができ、2系統の電源の位相同期を切換条件に加えることで、ほぼ完全な同期無瞬断切換が実現できる。また、常用側電源に停電や電圧低下が発生した自動切換の場合には、異常電圧検出回路による検出時間、1msec.を加えても4msec.強という高速切換が実現できる。さらに、切換時間をゼロ期間と定義づけるとすれば、例えば50%電圧低下での自働切換の切換時間は数μsec.と言うこともできる。従って、商用周波数50Hzでも60Hzでも1/4サイクル以内に電源切換ができ、無瞬断電源切換が可能である。
In the invention of claim 1, the following remarkable effects can be obtained.
When the solenoid type magnetic contactor is excited by an external switching signal or a switching command signal from the abnormal voltage detection circuit, the contact is opened after about 3 msec. After opening the main contact, the first semiconductor switch that was also turned on by the switching command signal is turned off, and the second semiconductor switch is turned on after several μsec. A high-speed switching of a little over 3 msec. From the switching command signal to the switching can be realized. In this switching operation, the normal AC power supply continues until the first semiconductor switch is turned off, and after the second semiconductor switch is turned on after several μsec. In the case of manual plan switching in a healthy state, it is possible to switch the disconnection time of several microseconds, and by adding the phase synchronization of the two power sources to the switching conditions, almost perfect synchronous uninterruptible switching can be realized. . In addition, in the case of automatic switching in which a power failure or voltage drop occurs in the utility power supply, high-speed switching of over 4 msec. Can be realized even if the detection time by the abnormal voltage detection circuit is 1 msec. Further, if the switching time is defined as a zero period, it can be said that the switching time for automatic switching at a 50% voltage drop, for example, is several μsec. Therefore, the power supply can be switched within 1/4 cycle at commercial frequencies of 50 Hz and 60 Hz, and uninterruptible power supply switching is possible.

また、切換の際は、常用側交流電源から負荷への回路をソレノイド式電磁接触器の主接点と第1の半導体スイッチで確実に遮断した後に、待機側交流電源からの給電経路をオンにしているので、2系統の交流電源間の横流が流れることはない。また、短期間の切換期間以外の定常時は、双投式電磁接触器及びソレノイド式電磁接触器の有接点による給電であるため、通電損失は小さい。
なお、請求項4及び5の発明についても切換時の動作はほぼ同じなので、同様の効果が得られる。
Also, when switching, after the circuit from the working AC power supply to the load is securely shut off by the main contact of the solenoid type magnetic contactor and the first semiconductor switch, the power supply path from the standby AC power supply is turned on. Therefore, the cross current between the two AC power sources does not flow. Moreover, since it is the electric power feeding by the contact of a double throw type electromagnetic contactor and a solenoid type electromagnetic contactor at the time of steady periods other than a short switching period, an energization loss is small.
Since the operations at the time of switching are substantially the same for the inventions of claims 4 and 5, the same effect can be obtained.

請求項2の発明では、請求項1の効果に加え、ソレノイド式電磁接触器は、常時はバネの力で主接点をオンにし、ソレノイドの励磁によりアクチュエータが前記バネの力に抗して引っ張られて主接点がオフする構成とし、これにより常時は電力が不要で経済的である。
また、交流電源でソレノイドを励磁する方式は、励磁投入時の交流電源の位相が特定できないため、励磁電圧がばらついて、初期の吸引力、ひいては動作時間にばらつきを生じるので、高速開極が必要な用途には適さない。一方、本発明の電解コンデンサに充電された電荷の一斉放電方式によれば、前記交流電源励磁方式の場合のような動作時間のばらつきを解消でき、常に安定した高速動作が得られる。本発明の構造及び励磁方法により、3msec.以内の高速開極時間が得られた。
In the invention of claim 2, in addition to the effect of claim 1, the solenoid-type electromagnetic contactor normally turns on the main contact by the force of the spring, and the actuator is pulled against the force of the spring by the excitation of the solenoid. Thus, the main contact is turned off, which eliminates the need for electric power and is economical.
In addition, the method of exciting the solenoid with an AC power supply cannot specify the phase of the AC power supply when the excitation is turned on, so the excitation voltage varies and the initial attractive force and thus the operating time varies, so high-speed opening is necessary. It is not suitable for various uses. On the other hand, according to the simultaneous discharge method of the electric charge charged in the electrolytic capacitor of the present invention, the variation in operation time as in the case of the AC power source excitation method can be eliminated, and a stable and high-speed operation can always be obtained. With the structure and excitation method of the present invention, a fast opening time within 3 msec. Was obtained.

また、高速動作のためには、10〜20msec.の短時間ながら百アンペア程度の励磁電流を流す必要があり、交流電源直接励磁の場合は、切換器としての定格電流に加えて、この励磁電流分を上乗せする必要があるが、本発明の電解コンデンサ放電方式によれば、電解コンデンサの充電に必要なごく小さい電流が一定の時間必要なだけなので、交流電源の容量上乗せも不要となる。   In addition, for high-speed operation, it is necessary to pass an excitation current of about 100 amperes in a short time of 10 to 20 msec. In the case of direct AC power excitation, in addition to the rated current as a switch, this excitation current However, according to the electrolytic capacitor discharge method of the present invention, since only a very small current required for charging the electrolytic capacitor is required for a certain period of time, it is not necessary to add the capacity of the AC power supply.

また、請求項1、4及び5の回路構成での常用側交流電源給電から待機側交流電源給電への切換動作において、常用側交流電源の給電経路をできるだけ早く遮断するためには、常閉主接点を持つソレノイド式電磁接触器を励磁して主接点を開極させるが、負荷電流が流れている場合は、主接点の開極だけでなくアーク電流の遮断も必要である。そこで、本発明では、ソレノイド式電磁接触器の励磁と同時に、常用側交流電源と負荷を接続する第1の半導体スイッチをオンさせておいて、ソレノイド式電磁接触器の主接点の開極時のアーク電流を転流させることにより、前記主接点はアーク電流遮断を考慮する必要がなくなるため、オフ時の接点間距離を印加電圧の絶縁を確保できる範囲で最短にすることができ、よりシンプルな構造とすることができるので、より高速動作が実現できる。一方、常用側交流電源の給電経路をできるだけ早く遮断するという命題のためには、ソレノイド式電磁接触器の主接点がオフした後に、オン状態にある前記の第1の半導体スイッチをいち早くオフさせる必要がある。請求項3の発明の如く、第1の半導体スイッチを自己消弧式半導体とすることで簡単にその要件を満たすことができる。なお、第1の半導体スイッチのみならず第2の半導体スイッチも自己消弧特性を有することで、2系統の交流電源のいずれもが常用側交流電源及び待機側交流電源になり得、双方向の切換が可能となる。   In the switching operation from the normal-side AC power supply to the standby-side AC power supply in the circuit configurations of claims 1, 4 and 5, in order to shut off the power supply path of the normal-side AC power supply as soon as possible, the normally closed main The main contact is opened by exciting a solenoid type magnetic contactor having a contact. When a load current is flowing, it is necessary not only to open the main contact but also to interrupt the arc current. Therefore, in the present invention, at the same time as the excitation of the solenoid type magnetic contactor, the first semiconductor switch that connects the normal-side AC power supply and the load is turned on, and the main contact of the solenoid type magnetic contactor is opened. By commutating the arc current, the main contact does not need to consider the interruption of the arc current. Therefore, the distance between the contacts when off can be minimized as long as the insulation of the applied voltage can be secured. Since the structure can be obtained, higher speed operation can be realized. On the other hand, for the proposition to cut off the power supply path of the normal AC power supply as soon as possible, it is necessary to turn off the first semiconductor switch in the on state immediately after the main contact of the solenoid type magnetic contactor is turned off. There is. According to the third aspect of the present invention, the requirement can be satisfied easily by making the first semiconductor switch a self-extinguishing semiconductor. Note that not only the first semiconductor switch but also the second semiconductor switch has a self-extinguishing characteristic, so that either of the two systems of AC power supplies can be a normal AC power supply and a standby AC power supply. Switching is possible.

また、請求項4の発明は、請求項1の効果に加え、第1の半導体スイッチ及び第2の半導体スイッチを、自己消弧形の半導体にする必要がなく、自己消弧形半導体より過電流に強いサイリスタを使用することができ、第3の半導体スイッチのみ自己消弧形の半導体を使えばよく、コストが低減する。   In addition to the effect of claim 1, the invention of claim 4 does not require the first semiconductor switch and the second semiconductor switch to be self-extinguishing type semiconductors, and has an overcurrent than the self-extinguishing type semiconductor. It is sufficient to use a thyristor that is strong to the third semiconductor switch, and it is only necessary to use a self-extinguishing type semiconductor for the third semiconductor switch, which reduces the cost.

また、請求項6及び7の各発明は、前記の請求項の効果に加え、常用側交流電源及び待機側交流電源の両方が健全な場合の計画切換において、常用側交流電源及び待機側交流電源の各々の対応する所定の線間(例えばRS間)の電圧波形のゼロクロス同期点で第1の半導体スイッチ等の切換が行われるため、切換時における配線や負荷のインダクタンスによる電圧サージを最小に抑えることができる。また、特に、この切換のタイミングを負荷電流のゼロクロス点とすると、より高い効果を得られる。また、前記効果は単相電源の場合は特に顕著で、3相電源切換の場合でも1相はゼロクロス点で、他の2相は±120度点での切換となり、ピーク点での切換は避けられる。   In addition to the effects of the above claims, each of the inventions of claims 6 and 7 includes a normal-side AC power supply and a standby-side AC power supply in plan switching when both the normal-side AC power supply and the standby-side AC power supply are healthy. Since the switching of the first semiconductor switch or the like is performed at the zero crossing synchronization point of the voltage waveform between each corresponding predetermined line (for example, between RS), voltage surge due to wiring and load inductance at the time of switching is minimized. be able to. In particular, if the switching timing is the zero cross point of the load current, a higher effect can be obtained. In addition, the effect is particularly remarkable in the case of a single-phase power supply, and even in the case of switching to a three-phase power supply, one phase is switched at the zero cross point, and the other two phases are switched at ± 120 degrees, and switching at the peak point is avoided. It is done.

本発明は、2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換え装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器と、この双投式電磁接触器のコモン接点と負荷の間に直列に接続された常閉型のソレノイド式電磁接触器とを設け、前記常用側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第1の半導体スイッチを設け、また、前記待機側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第2の半導体スイッチを設け、前記双投式電磁接触器とソレノイド式電磁接触器との間の線路に異常電圧検出回路を設け、前記双投式電磁接触器、ソレノイド式電磁接触器、第1の半導体スイッチ及び第2の半導体スイッチの制御を行う制御回路を設け、前記ソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が約3msec.であり、前記双投式電磁接触器の励磁から常用側交流電源主接点開極までの時間より短いものとした。
The present invention provides a power supply switching device that switches power supply from one power supply to the other power supply when power is selectively supplied from two AC power supplies to a load.
A contact type double-throw electromagnetic contactor that is a changeover switch between two AC power sources, the normal AC power supply and standby AC power supply, and a series connection between the common contact of this double-throw electromagnetic contactor and the load And a first semiconductor connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the normal-side AC power supply and the load. And a second semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid-type electromagnetic contactor between the standby AC power source and the load, An abnormal voltage detection circuit is provided in a line between the contactor and the solenoid type magnetic contactor, and controls the double throw type magnetic contactor, the solenoid type magnetic contactor, the first semiconductor switch, and the second semiconductor switch. A control circuit, and In the magnetic contactor, the main contact is always on and the time from solenoid excitation to main contact opening is about 3 msec. It was shorter than the time until the opening.

また、前記制御回路は、常用側交流電源及び待機側交流電源の両方が健全な場合の計画切換において、外部切換信号からの信号を受けて、前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記ソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチをオンさせる動作開始を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、前記ソレノイド式電磁接触器の主接点の開極が完了し、前記双投式電磁接触器が常用側交流電源の接点から離れた後、前記第1の半導体スイッチをオフさせるが、この動作を常用側交流電源及び待機側交流電源の各々の対応する所定の線間の電圧波形の立ち下がりゼロクロス点の同期、又は負荷電流のゼロクロス点を検知してこれと同時に行い、その数μsec.後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が待機側交流電源に切換わった後、前記ソレノイド式電磁接触器の励磁を解いて主接点をオン状態に復帰させて、前記第2の半導体スイッチをオフさせる構成とした。また、前記異常電圧検出回路からの信号を受けた場合は、ゼロクロスパルスの検知はしないが、動作は前記とほぼ同じである。   Further, the control circuit receives a signal from an external switching signal in the planned switching when both the normal-side AC power supply and the standby-side AC power supply are healthy, and excites the double-throw electromagnetic contactor to standby the At the same time as the switching operation to the AC power supply is started, the solenoid type magnetic contactor is excited to start the opening operation of the main contact, and the operation start to turn on the first semiconductor switch is also performed. And the synchronization of the rising zero cross point of the voltage waveform between the corresponding predetermined lines of each of the standby AC power supplies is detected and performed simultaneously with this, the opening of the main contact of the solenoid type magnetic contactor is completed, and the dual After the throwing-type electromagnetic contactor leaves the contact point of the normal-side AC power source, the first semiconductor switch is turned off. This operation is performed between the corresponding predetermined lines of the normal-side AC power source and the standby-side AC power source. Voltage Detects the synchronization of the falling zero-cross point or the zero-cross point of the load current at the same time, and several seconds later, the second semiconductor switch is turned on and the load power supply from the standby AC power supply is started. Then, after the double-throw electromagnetic contactor is switched to the standby side AC power supply, the solenoid contactor is de-energized to return the main contact to the on state, and the second semiconductor switch is turned on. It was set as the structure turned off. When a signal is received from the abnormal voltage detection circuit, the zero cross pulse is not detected, but the operation is almost the same as described above.

これにより、停電や電圧低下の場合の異常電圧検出による電源切換や、計画電源切換の際、常用側交流電源から待機側交流電源への電源切換が、停電や電圧低下による負荷への影響がない無瞬断電源切換えが可能である。   As a result, the power supply switching from the normal AC power supply to the standby AC power supply does not affect the load due to the power outage or voltage drop when switching the power supply due to abnormal voltage detection in the event of a power failure or voltage drop Non-instantaneous power switching is possible.

以下、この発明の実施例を図について説明する。
図1はこの発明の概要を示す概略構成図である。
本発明の無瞬断電源切換装置は、常用側交流電源1と待機側交流電源2の切換スイッチである双投式電磁接触器6と、この双投式電磁接触器6のコモン接点と負荷5の間に直列に接続されたソレノイド式電磁接触器30と、前記常用側交流電源1と負荷5の間に、前記双投式電磁接触器6とソレノイド式電磁接触器30の直列回路と並列に接続された半導体スイッチ10と、待機側交流電源2と負荷5の間に前記双投式電磁接触器6とソレノイド式電磁接触器30の直列回路と並列に接続された半導体スイッチ20で構成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing the outline of the present invention.
The uninterruptible power supply switching device of the present invention includes a double-throw electromagnetic contactor 6 that is a changeover switch between the normal-side AC power supply 1 and the standby-side AC power supply 2, and the common contact and load 5 of the double-throw electromagnetic contactor 6. In parallel with the series circuit of the double-throw electromagnetic contactor 6 and the solenoid-type electromagnetic contactor 30 between the solenoid-type electromagnetic contactor 30 connected in series between the normal-side AC power supply 1 and the load 5. The semiconductor switch 10 is connected, and the semiconductor switch 20 is connected between the standby AC power supply 2 and the load 5 in parallel with the series circuit of the double-throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30. .

また、前記双投式電磁接触器6とソレノイド式電磁接触器30との間の線路に異常電圧検出回路42を設け、また、外部切換信号又は異常電圧検出回路42からの信号を受けて、前記双投式電磁接触器6、ソレノイド式電磁接触器30、半導体スイッチ10及び半導体スイッチ20の制御を行う制御回路40が設けられている。   In addition, an abnormal voltage detection circuit 42 is provided on the line between the double throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30, and an external switching signal or a signal from the abnormal voltage detection circuit 42 is received. A control circuit 40 for controlling the double throw electromagnetic contactor 6, the solenoid electromagnetic contactor 30, the semiconductor switch 10, and the semiconductor switch 20 is provided.

前記常閉型ソレノイド式電磁接触器30は、ソレノイドが励磁されていない定常時はその主接点が閉の状態にあって、ソレノイドが励磁されている間は主接点が開の状態になる。当該ソレノイド式電磁接触器30の開極時間を短くするため、構造に後述する工夫を施すことにより、開極時間=約3msec.という高速開極特性を実現した。   The normally closed solenoid type electromagnetic contactor 30 has a main contact in a closed state when the solenoid is not excited and is in an open state while the solenoid is excited. In order to shorten the opening time of the solenoid-type electromagnetic contactor 30, a high-speed opening characteristic of opening time = about 3 msec.

図2は本発明の無瞬断電源切換装置に使用したソレノイド式電磁接触器30の説明図であり、35はソレノイド、36はソレノイド励磁でソレノイドにより後述のバネの力に抗して引き付けられるアクチュエータ、37はアクチュエータ36と連動する可動接点、38は固定接点、39は可動接点37を固定接点38に押し付けるバネである。ソレノイド式電磁接触器30は常時オン形の電磁接触器とし、常時は、バネ39により可動接点37が固定接点38に押し付けられていて、所定の通電電流特性を確保している。   FIG. 2 is an explanatory view of a solenoid type electromagnetic contactor 30 used in the uninterruptible power supply switching device of the present invention. 35 is a solenoid, and 36 is an actuator that is attracted against the spring force described later by solenoid excitation. , 37 is a movable contact that works in conjunction with the actuator 36, 38 is a fixed contact, and 39 is a spring that presses the movable contact 37 against the fixed contact 38. The solenoid-type electromagnetic contactor 30 is an always-on type electromagnetic contactor, and normally, the movable contact 37 is pressed against the fixed contact 38 by the spring 39 to ensure a predetermined energization current characteristic.

ソレノイド36が励磁されたときの接点開極時間をできるだけ速くするために、ソレノイドによるアクチュエータを引き付ける力がより強くなるよう、2組の開極接点間距離が接点間電圧の絶縁を十分に確保できる範囲内で可動接点のストロークLsを最小限の距離にしている。
なお、本発明による切換器の切換動作では、ソレノイド式電磁接触器の主接点は開極動作時とオン動作時共に半導体スイッチは並列に接続されてオン状態にあるので、アーク電流遮断を考慮する必要がないこと、及び、この主接点は切換動作期間中の数十msec.のごく短い時間のみオフで、それ以外の定常状態ではオン状態にあること、が開極接点間距離を短くできる要素になっている。
In order to make the contact opening time when the solenoid 36 is excited as fast as possible, the distance between the two sets of opening contacts can sufficiently secure the insulation between the contacts so that the force attracting the actuator by the solenoid becomes stronger. Within the range, the stroke Ls of the movable contact is set to the minimum distance.
In the switching operation of the switching device according to the present invention, the main contact of the solenoid type magnetic contactor is in the on state because the semiconductor switch is connected in parallel during both the opening operation and the on operation, so that the arc current interruption is considered. The fact that it is not necessary and that this main contact is off only for a very short time of several tens of milliseconds during the switching operation period and that it is in the on state in the other steady state is an element that can shorten the distance between the open contact points. It has become.

また、ソレノイド励磁は電解コンデンサに充電された電荷の短時間一斉放電による直流励磁方式を採用することにより、投入位相によって開極時間が大きくばらつく交流電源励磁に比して格段に安定した開極時間特性が確保できる。なお、切換スイッチとしての双投式電磁接触器6の瞬時励磁電源についても電解コンデンサ放電方式を採用して動作時間の安定性を確保している。加えて、この電解コンデンサ放電方式によれば、交流励磁方式の場合のように数十アンペア(A)から百アンペア(A)近くの瞬時励磁電流を負荷電流とは別に電源容量に見込む必要がなくなるというメリットもある。   In addition, the solenoid excitation uses a DC excitation method that uses a simultaneous simultaneous discharge of the electric charge charged to the electrolytic capacitor, so that the opening time is much more stable than AC power supply excitation, where the opening time varies greatly depending on the applied phase. Characteristics can be secured. Note that the electrolytic capacitor discharge method is also employed for the instantaneous excitation power source of the double throw electromagnetic contactor 6 as a changeover switch to ensure the stability of the operation time. In addition, according to this electrolytic capacitor discharge method, it is not necessary to estimate the instantaneous excitation current of several tens of amperes (A) to nearly 100 amperes (A) in the power source capacity separately from the load current as in the case of the AC excitation method. There is also a merit.

図3は、3相交流電源の異常電圧検出回路42の公知の一例である。
3相交流電源を変圧器42aで絶縁且つ降圧して、整流回路42bで全波整流したリップル電圧波形と直流基準電圧とをコンパレータ42cで比較して、前記全波整流リップル電圧波形が直流基準電圧より低下したときに3相交流電源に停電や電圧低下の異常が発生したと判定する回路である。この検出方法によれば、平滑回路が必要でなく電解コンデンサなど時間遅れ要素は使用しないためきわめて速い検出ができ、実測検出時間は0.5msec.以下である。
FIG. 3 is a known example of the abnormal voltage detection circuit 42 of the three-phase AC power supply.
A ripple voltage waveform obtained by insulating and stepping down a three-phase AC power source with a transformer 42a and full-wave rectified by a rectifier circuit 42b is compared with a DC reference voltage by a comparator 42c, and the full-wave rectified ripple voltage waveform is a DC reference voltage. It is a circuit that determines that a power failure or voltage drop abnormality has occurred in the three-phase AC power supply when the voltage drops further. According to this detection method, since a smoothing circuit is not required and a time delay element such as an electrolytic capacitor is not used, extremely fast detection can be performed, and the actual detection time is 0.5 msec. Or less.

図4の(イ)図から(ホ)図は本発明の装置の動作説明図である。
まず、手動による計画切換えの場合について説明する。図(イ)は常用側交流電源1から、双投式電磁接触器6及びソレノイド式電磁接触器30を介して負荷5に給電されている状態を示す。前記制御回路40に切換の外部指令があると、前記双投式電磁接触器6を励磁して待機側交流電源への切換動作を開始させる。と同時に前記ソレノイド式電磁接触器30を励磁して主接点の開極動作を開始させる。さらに、前記第1の半導体スイッチをオンさせる。そして、(ロ)図に示すように、まず、励磁から約3msec.後に前記ソレノイド式電磁接触器30の主接点の開極が完了する。その際、ソレノイド式電磁接触器30の主接点が開極する際のアーク電流は、ソレノイド式電磁接触器30の主接点の給電経路と並列の経路をなし、既にオン状態にある第1の半導体スイッチ10に転流するので、アークが生ぜず、スムーズに開極できる。
FIGS. 4A to 4E are diagrams for explaining the operation of the apparatus of the present invention.
First, the case of manual plan switching will be described. FIG. 1A shows a state in which power is supplied to the load 5 from the normal-side AC power source 1 through the double-throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30. When there is an external command for switching in the control circuit 40, the double throw electromagnetic contactor 6 is excited to start the switching operation to the standby AC power source. At the same time, the solenoid type magnetic contactor 30 is excited to start the opening operation of the main contact. Further, the first semiconductor switch is turned on. Then, as shown in (b), first, the opening of the main contact of the solenoid type magnetic contactor 30 is completed after about 3 msec. From the excitation. At that time, the arc current when the main contact of the solenoid type magnetic contactor 30 is opened forms a path in parallel with the power supply path of the main contact of the solenoid type magnetic contactor 30, and the first semiconductor that is already in the ON state. Since it is commutated to the switch 10, no arc is generated, and the electrode can be opened smoothly.

この時点での状態は、(ロ)図のままで、双投式電磁接触器6はまだ常用側交流電源1から離れていないが、ソレノイド式電磁接触器30の主接点がオフなので、負荷5と2系統の交流電源との有接点での経路は遮断状態にある。この後、双投式電磁接触器6が待機側交流電源2側に切換わってもソレノイド式電磁接触器30が励磁を解かれ主接点がオンに復帰するまでは有接点経路はオフが継続される。   The state at this time remains as shown in (b), and the double-throw electromagnetic contactor 6 has not yet moved away from the normal-side AC power supply 1, but the main contact of the solenoid electromagnetic contactor 30 is off, so the load 5 The path at the contact point between the two systems of AC power supplies is in a cut-off state. Thereafter, even if the double-throw electromagnetic contactor 6 is switched to the standby AC power supply 2 side, the contact path is kept off until the solenoid-type electromagnetic contactor 30 is de-energized and the main contact is turned on again. The

この時点では、負荷5には常用側交流電源1から第1の半導体スイッチ10を経て給電されているが、ここで、この第1の半導体スイッチ10をオフさせ、数μsec.後に第2の半導体スイッチ20をオンさせれば、常用側故竜電源1からの給電から待機側交流電源2からの給電に切換わる。この半導体スイッチ10と20の切換は、ソレノイド式電磁接触器30の主接点がオフである限りいつでも行うことができるので、ソレノイド式電磁接触器30の主接点の開極を確認した後でもよいし、2系統の交流電源が健全な状態での計画切換の場合には、2系統の電圧同期あるいは負荷電流のゼロクロス点を切換ポイントとして指定することもできる。また、この半導体スイッチ10と20の切換は、時間を追って推移する(ロ)図、(ハ)図及び(ニ)図のいずれの状態でもよく、(ホ)図のように双投式電磁接触器6が待機側交流電源に切換わり、ソレノイド式電磁接触器30が励磁を解かれて主接点がオン状態に復帰して、有接点経路での待機側交流電源2から負荷5への給電が開始された後に第2の半導体スイッチ20をオフさせる。以上の動作はいずれも、常用側交流電源1の給電から待機側交流電源2の給電への切換であるが、待機側から常用側への切換においても同じ動作となる。   At this time, the load 5 is supplied with power from the normal-side AC power supply 1 via the first semiconductor switch 10, but here, the first semiconductor switch 10 is turned off, and after several μsec. When the switch 20 is turned on, the power supply from the normal side late dragon power source 1 is switched to the power supply from the standby side AC power source 2. Since the switching between the semiconductor switches 10 and 20 can be performed at any time as long as the main contact of the solenoid type magnetic contactor 30 is off, it may be after the opening of the main contact of the solenoid type magnetic contactor 30 is confirmed. In the case of planned switching when the two systems of AC power supplies are healthy, the voltage synchronization of the two systems or the zero crossing point of the load current can be designated as the switching point. Further, the switching between the semiconductor switches 10 and 20 may be any of the states (B), (C), and (D) that change with time. As shown in FIG. The device 6 is switched to the standby side AC power source, the solenoid type magnetic contactor 30 is de-energized and the main contact is returned to the ON state, and the standby side AC power source 2 supplies power to the load 5 through the contact path. After the start, the second semiconductor switch 20 is turned off. All of the above operations are switching from power supply of the normal-side AC power supply 1 to power supply of the standby-side AC power supply 2, but the same operation is performed when switching from the standby side to the normal-side.

また、常用側交流電源1に停電等の電圧低下等の異常が発生した場合、図1の異常電圧検出回路42がこれを検知し、前記制御回路40を経て、双投式電磁接触器6及びソレノイド式電磁接触器30の励磁コイルを励磁し、また、第1の半導体スイッチ10をオンにする。その後、ソレノイド式電磁接触器30の主接点が完全に開極し、第1の半導体スイッチ単独での負荷5への給電状態になるが、常用側交流電源には停電或いは電圧低下が発生しているので、健全な待機側交流電源2による給電にできるだけ早く切換える必要があるため、ソレノイド式電磁接触器30の主接点が完全に開極した直後に第1の半導体スイッチ10をオフさせ、数μsec.後に第2の半導体スイッチ20をオンさせて待機側交流電源2から第2の半導体スイッチ20経由の給電に切換える。その後は計画切換の場合と同様に、図4の(ホ)図のように双投式電磁接触器6が待機側交流電源2に切換わり、ソレノイド式電磁接触器30が励磁を解かれて主接点がオン状態に復帰して、有接点経路での待機側交流電源2から負荷5への給電が開始された後に、第2の半導体スイッチ20をオフさせる。   Further, when an abnormality such as a voltage drop such as a power failure occurs in the normal-side AC power supply 1, the abnormal voltage detection circuit 42 in FIG. 1 detects this, and passes through the control circuit 40, and the double-throw electromagnetic contactor 6 and The exciting coil of the solenoid type magnetic contactor 30 is excited, and the first semiconductor switch 10 is turned on. After that, the main contact of the solenoid type electromagnetic contactor 30 is completely opened, and the first semiconductor switch alone is in a power supply state to the load 5, but a power failure or voltage drop occurs in the normal-side AC power supply. Therefore, since it is necessary to switch to the power supply by the healthy standby AC power source 2 as soon as possible, the first semiconductor switch 10 is turned off immediately after the main contact of the solenoid type electromagnetic contactor 30 is completely opened, and several μsec. Later, the second semiconductor switch 20 is turned on to switch from standby AC power supply 2 to power supply via the second semiconductor switch 20. Thereafter, as in the case of planned switching, the double throw electromagnetic contactor 6 is switched to the standby AC power source 2 as shown in FIG. The second semiconductor switch 20 is turned off after the contact is returned to the on state and power supply from the standby AC power supply 2 to the load 5 in the contacted path is started.

また、図5は常用側交流電源1から待機側交流電源2の両方が健全な場合の、需要側交流電源1から待機側交流電源2への手動切換えの各部のタイムチャートである。外部指令信号による切換において、外部切換信号を受けた後、双投式電磁接触器6及びソレノイド式電磁接触器30の励磁開始、及び第1の半導体スイッチ10のオン動作開始を、常用側交流電源1及び待機側交流電源2の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、また、上記第1の半導体スイッチ10のオフ動作を、ソレノイド式電磁接触器30の主接点開極直後の常用側交流電源1及び待機側交流電源2の各々の対応する所定の線間(例えばRS間)の電圧波形の立ち下がりゼロクロス点の同期を検知してこれと同時に行う。この図において、常用側交流電源1側の半導体スイッチ10がオフになった後、待機側交流電源2側の半導体スイッチ20がオンになるまでの時間は、数μsec.である。   FIG. 5 is a time chart of each part of manual switching from the demand-side AC power supply 1 to the standby-side AC power supply 2 when both the normal-side AC power supply 1 and the standby-side AC power supply 2 are healthy. In the switching by the external command signal, after receiving the external switching signal, the excitation start of the double throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30 and the on operation start of the first semiconductor switch 10 are started. 1 and the synchronization of the rising zero crossing point of the voltage waveform between the corresponding predetermined lines of each of the standby AC power supply 2 (for example, between RSs) is detected and performed at the same time, and the first semiconductor switch 10 is turned off. The operation of the zero-crossing point of the falling of the voltage waveform between the corresponding predetermined lines (for example, between RSs) of each of the normal-side AC power supply 1 and the standby-side AC power supply 2 immediately after the main contact opening of the solenoid type magnetic contactor 30 is performed. Detect synchronization and do it at the same time. In this figure, after the semiconductor switch 10 on the regular AC power supply 1 side is turned off, the time until the semiconductor switch 20 on the standby AC power supply 2 side is turned on is several μsec.

これらのゼロクロス点での切換を可能にしたのは、本発明においてソレノイド式電磁接触器を採用したからである。
前記交流電源の電圧波形のゼロクロス点から次のゼロクロス点までは、商用周波数50Hzでは10msec.、60Hzでは8.3msec.である。ソレノイド式電磁接触器30は、前述のように、外部切換信号又は前記異常電圧検出回路からの信号を受けると約3msec.以内に開極するが、再度接点がオンするのに20〜30msec.かかる。従って、この間双投式電磁接触器6及びソレノイド式電磁接触器30のラインはオフすることとなり、この間に前記交流電源の電圧波形のゼロクロス点が2回来るため、次のゼロクロス点で第1の半導体スイッチ10のオフ切換が可能となる。一方、双投式電磁接触器6では、励磁して常用側交流電源1の接点が開極するのに10msec.近くかかり、接点が開いてから切換先の接点がオンするのに10msec.以下であるので、次のゼロクロス点で第1の半導体スイッチ10のオフ切換の前に双投式電磁接触器6が切換先の接点にオンすることとなり、二つのゼロクロス点の間で第1の半導体スイッチ10のオン切換及び第1の半導体スイッチ10のオフ切換ができない。このように前記ソレノイド式電磁接触器30の主接点の開極状態を利用して交流電源の二つのゼロクロス点で切換を行うことができる。
The switching at these zero cross points is made possible because the solenoid type electromagnetic contactor is employed in the present invention.
From the zero crossing point of the voltage waveform of the AC power supply to the next zero crossing point is 10 msec. At a commercial frequency of 50 Hz and 8.3 msec. At 60 Hz. As described above, when the solenoid type magnetic contactor 30 receives an external switching signal or a signal from the abnormal voltage detection circuit, it opens within about 3 msec., But it takes 20 to 30 msec. For the contact to turn on again. . Accordingly, during this time, the lines of the double throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30 are turned off, and the zero cross point of the voltage waveform of the AC power supply comes twice during this time. The semiconductor switch 10 can be switched off. On the other hand, in the double throw type magnetic contactor 6, it takes about 10 msec. To excite and open the contact of the working AC power source 1, and it takes less than 10 msec. Therefore, before the first semiconductor switch 10 is switched off at the next zero crossing point, the double throw electromagnetic contactor 6 is turned on at the switching destination contact, and the first semiconductor switch is between the two zero crossing points. 10 cannot be switched on and the first semiconductor switch 10 cannot be switched off. In this way, the switching can be performed at the two zero cross points of the AC power source by utilizing the open state of the main contact of the solenoid type magnetic contactor 30.

また、図6は、異常電圧検出時の常用側交流電源1から待機側交流電源2への自動切換えの各部のタイムチャートである。この場合は、常用側交流電源1が停電又は電圧低下等の異常なので、同期等の条件を待つ余裕はないため、異常電圧圧検出により双投式電磁接触器6及びソレノイド式電磁接触器30の励磁コイルを励磁し、また、第1の半導体スイッチ10をオンにする。その後、3msec.以内でソレノイド式電磁接触器30の主接点が完全に開極した直後に第1の半導体スイッチ10をオフさせ、数μsec.後に第2の半導体スイッチ20をオンさせて待機側交流電源2から第2の半導体スイッチ20経由の給電に切換える。常用側交流電源1の異常発生から、健全な待機側交流電源2から第2の半導体スイッチ20経由による給電までの時間は4msec.強以下である。   FIG. 6 is a time chart of each part of automatic switching from the normal AC power supply 1 to the standby AC power supply 2 when an abnormal voltage is detected. In this case, since the normal-side AC power supply 1 is abnormal such as a power failure or a voltage drop, there is no room for waiting for conditions such as synchronization. Therefore, the double-throw electromagnetic contactor 6 and the solenoid electromagnetic contactor 30 are detected by detecting abnormal voltage pressure. The exciting coil is excited and the first semiconductor switch 10 is turned on. Thereafter, the first semiconductor switch 10 is turned off immediately after the main contact of the solenoid-type electromagnetic contactor 30 is completely opened within 3 msec., And the second semiconductor switch 20 is turned on after several μsec. The power supply 2 is switched to power supply via the second semiconductor switch 20. The time from the occurrence of abnormality of the normal-side AC power supply 1 to the healthy power supply via the second semiconductor switch 20 from the standby AC power supply 2 is less than 4 msec.

図7は本発明の実施例2を示し、常用側交流電源1と待機側交流電源2の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器6のコモン接点と負荷5とを接続して設け、前記常用側交流電源1と双投式電磁接触器6との間に直列に接続した第1の常閉型のソレノイド式電磁接触器31を設け、また、前記待機側交流電源2と双投式電磁接触器6との間に直列に接続した第2の常閉型のソレノイド式電磁接触器32を設け、前記常用側交流電源1と負荷5との間に、前記第1のソレノイド式電磁接触器31及び双投式電磁接触器6と並列に接続された第1の半導体スイッチ10を設け、また、前記待機側交流電源2と負荷5との間に、前記第2のソレノイド式電磁接触器32及び双投式電磁接触器6と並列に接続された第2の半導体スイッチ20を設け、前記双投式電磁接触器6と負荷5との間の線路に異常電圧検出回路(図示省略)を設け、前記双投式電磁接触器6、第1のソレノイド式電磁接触器31、第2のソレノイド式電磁接触器32、第1の半導体スイッチ10及び第2の半導体スイッチ20の制御を行う制御回路(図示省略)を設けている。   FIG. 7 shows a second embodiment of the present invention, in which a common contact and a load of a contact type double-throw electromagnetic contactor 6 that is a changeover switch of two AC power sources of a normal AC power source 1 and a standby AC power source 2 are shown. 5 is provided, and a first normally closed solenoid electromagnetic contactor 31 connected in series between the normal-side AC power supply 1 and the double throw electromagnetic contactor 6 is provided, and the standby A second normally closed solenoid type electromagnetic contactor 32 connected in series between the side AC power source 2 and the double-throw electromagnetic contactor 6, and between the normal side AC power source 1 and the load 5, A first semiconductor switch 10 connected in parallel with the first solenoid type electromagnetic contactor 31 and the double throw type electromagnetic contactor 6 is provided, and between the standby AC power supply 2 and the load 5, the first semiconductor switch 10 is provided. The second solenoid type magnetic contactor 32 and the second throw type magnetic contactor 6 connected in parallel A conductor switch 20 is provided, an abnormal voltage detection circuit (not shown) is provided on the line between the double throw electromagnetic contactor 6 and the load 5, and the double throw electromagnetic contactor 6 and the first solenoid electromagnetic contact are provided. A control circuit (not shown) for controlling the device 31, the second solenoid type electromagnetic contactor 32, the first semiconductor switch 10 and the second semiconductor switch 20 is provided.

前記第1及び第2のソレノイド式電磁接触器31、32は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が約3msec.であり、前記双投式電磁接触器6の励磁から常用側交流電源1の接点開極までの時間より短いものとし、前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器6を励磁して待機側交流電源への切換動作を開始させると同時に前記第1のソレノイド式電磁接触器31を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチ10をオンさせ、前記第1のソレノイド式電磁接触器31の主接点の開極が完了した後に前記第1の半導体スイッチ10をオフさせ、数μsec.後に前記第2の半導体スイッチ20をオンさせて前記待機側交流電源2からの負荷給電を開始させ、その後、前記双投式電磁接触器6が常用側交流電源1から切り離された後に、前記第1のソレノイド式電磁接触器31の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器6が待機側交流電源2に切換わったことを確認後に、前記第2の半導体スイッチ20をオフさせる構成とした。また、待機側交流電源2から負荷5に給電されている状態の常用側交流電源1への切換の場合は、前記動作において、第2のソレノイド式電磁接触器32を励磁して主接点の開極をする。   In the first and second solenoid type electromagnetic contactors 31 and 32, the main contact is always on, and the time from solenoid excitation to main contact opening is about 3 msec. It is assumed that the time from the excitation of the device 6 to the contact opening of the working AC power supply 1 is shorter, and the control circuit receives the external switching signal or the signal from the abnormal voltage detection circuit and receives the signal from the double-throw electromagnetic contactor 6. At the same time as the switching operation to the standby side AC power supply is started, the first solenoid type electromagnetic contactor 31 is excited to start the opening operation of the main contact, and the first semiconductor switch 10 The first semiconductor switch 10 is turned off after the opening of the main contact of the first solenoid-type electromagnetic contactor 31 is completed, and the second semiconductor switch 20 is turned on after several μsec. The standby AC power After the load feeding from the power source 2 is started and then the double-throw electromagnetic contactor 6 is disconnected from the normal-side AC power supply 1, the main contact is released by releasing the excitation of the first solenoid-type electromagnetic contactor 31. The second semiconductor switch 20 is turned off after confirming that it has returned to the ON state and that the double throw electromagnetic contactor 6 has been switched to the standby AC power source 2. In the case of switching from the standby AC power supply 2 to the normal AC power supply 1 in a state where power is supplied to the load 5, in the above operation, the second solenoid electromagnetic contactor 32 is excited to open the main contact. Play the pole.

また、図8は、本発明の実施例3を示す。この実施例3は前記実施例1とほぼ同じ構成であり、ソレノイド式電磁接触器30に並列に第3の半導体スイッチ50を接続し、当該第3の半導体スイッチ50は自己消弧形のものとし、第1の半導体スイッチ7及び第2の半導体スイッチ8を自己消弧形でない半導体であるサイリスタとした。これにより、過電流に強く、また、コストダウンが図れる。   FIG. 8 shows a third embodiment of the present invention. The third embodiment has substantially the same configuration as the first embodiment, and a third semiconductor switch 50 is connected in parallel to the solenoid-type electromagnetic contactor 30. The third semiconductor switch 50 is of a self-extinguishing type. The first semiconductor switch 7 and the second semiconductor switch 8 are thyristors that are not self-extinguishing semiconductors. As a result, it is resistant to overcurrent and can reduce costs.

この場合、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器6を励磁して待機側交流電源2への切換動作を開始させると同時に前記ソレノイド式電磁接触器30を励磁して主接点の開極動作を開始させ、同じく同時に前記第3の半導体スイッチ50をオンさせ、前記ソレノイド式電磁接触器30の主接点の開極が完了直後に前記第3の半導体スイッチ50をオフさせ、数μsec.後に前記第2の半導体スイッチ8をオンさせて前記待機側交流電源2からの負荷給電を開始させ、その後、前記双投式電磁接触器6が常用側交流電源1から切り離された後に、前記ソレノイド式電磁接触器30の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器6が待機側交流電源2に切換わったことを確認の後に、前記第2の半導体スイッチ8をオフさせる構成とした。また、待機側交流電源2から負荷5に給電されている状態の常用側交流電源1への切換の場合は、前記動作において、第3の半導体スイッチ50をオフさせ、数μsec.後に前記第1の半導体スイッチ7をオンさせて前記待機側交流電源2からの負荷給電を開始させる。   In this case, upon receiving an external switching signal or a signal from the abnormal voltage detection circuit, the double throw electromagnetic contactor 6 is excited to start the switching operation to the standby AC power supply 2 and at the same time the solenoid electromagnetic contactor. 30 to start the opening operation of the main contact and simultaneously turn on the third semiconductor switch 50, and the third semiconductor immediately after the opening of the main contact of the solenoid type magnetic contactor 30 is completed. The switch 50 is turned off and the second semiconductor switch 8 is turned on after a few μsec. To start the load power supply from the standby side AC power source 2, and then the double throw electromagnetic contactor 6 is used on the normal side AC power source After being disconnected from 1, the excitation of the solenoid type magnetic contactor 30 is released and the main contact is returned to the ON state, and the double throw type electromagnetic contactor 6 is switched to the standby AC power supply 2 Confirmation Later, a structure for turning off the second semiconductor switch 8. In the case of switching from the standby AC power supply 2 to the normal AC power supply 1 in a state where power is supplied to the load 5, in the above operation, the third semiconductor switch 50 is turned off and the first semiconductor switch is turned on after several μsec. The semiconductor switch 7 is turned on to start load power supply from the standby AC power supply 2.

次に、図9は本発明の応用例を示し、常用側交流電源1と待機側交流電源2の切換スイッチである双投式電磁接触器6と、この双投式電磁接触器6のコモン接点と負荷5の間に直列に接続されたソレノイド式電磁接触器30を設け、このソレノイド式電磁接触器30に並列に第3の半導体スイッチ50を接続し、常用側交流電源1と待機側交流電源2の切換スイッチである双投式電磁接触器15を、前記双投式電磁接触器6及びソレノイド式電磁接触器30と並列に設け、前記双投式電磁接触器15と負荷5との間に直列に第4の半導体スイッチ9を設けたもので、常時、双投式電磁接触器6は常用側交流電源1の接点に、また、双投式電磁接触器15は待機側交流電源2の接点に接続されている。これにより、第4の半導体スイッチ9を一回路にし、コスト低減を図るものである。   Next, FIG. 9 shows an application example of the present invention, in which a double-throw electromagnetic contactor 6 that is a changeover switch between the normal-side AC power supply 1 and the standby-side AC power supply 2 and a common contact of the double-throw electromagnetic contactor 6. The solenoid type magnetic contactor 30 connected in series between the power supply 5 and the load 5 is provided, and the third semiconductor switch 50 is connected in parallel to the solenoid type magnetic contactor 30 so that the normal side AC power supply 1 and the standby side AC power supply are connected. A double-throw electromagnetic contactor 15, which is a changeover switch 2, is provided in parallel with the double-throw electromagnetic contactor 6 and the solenoid-type electromagnetic contactor 30, and between the double-throw electromagnetic contactor 15 and the load 5. A fourth semiconductor switch 9 is provided in series. The double-throw electromagnetic contactor 6 is always the contact of the normal-side AC power supply 1 and the double-throw electromagnetic contactor 15 is the contact of the standby-side AC power supply 2. It is connected to the. As a result, the fourth semiconductor switch 9 is integrated into one circuit to reduce the cost.

本発明の実施例1の装置の概略構成図である。It is a schematic block diagram of the apparatus of Example 1 of this invention. 本発明の実施例1の装置に使用するソレノイド式電磁接触器の構成側面図である。(イ)図は主接点が閉の状態を示し、(ロ)図は主接点が開の状態を示す。It is a structure side view of the solenoid type magnetic contactor used for the apparatus of Example 1 of this invention. (A) The figure shows a state in which the main contact is closed, and (b) the figure shows a state in which the main contact is open. 本発明の実施例1の装置に使用する、3相交流電源の異常電圧検出回路の構成図である。It is a block diagram of the abnormal voltage detection circuit of the three-phase alternating current power supply used for the apparatus of Example 1 of this invention. (イ) 図から(ホ)図は、本発明の実施例の装置の概略動作説明図である。(A) FIGS. (E) to (e) are schematic operation explanatory views of an apparatus according to an embodiment of the present invention. 本発明の実施例1の交流電源1から交流電源2への手動切換のタイムチャート図である。It is a time chart figure of manual switching from AC power supply 1 of Example 1 of the present invention to AC power supply 2. FIG. 本発明の実施例1の交流電源1から交流電源2への自動切換のタイムチャート図である。It is a time chart figure of automatic switching from AC power supply 1 of Example 1 of the present invention to AC power supply 2. FIG. 本発明の実施例2の装置の概略構成図である。It is a schematic block diagram of the apparatus of Example 2 of this invention. 本発明の実施例3の装置の概略構成図である。It is a schematic block diagram of the apparatus of Example 3 of this invention. 本発明の応用例の装置の概略構成図である。It is a schematic block diagram of the apparatus of the application example of this invention. 従来の交流電源切換装置の概略構成図である。It is a schematic block diagram of the conventional AC power supply switching device. 従来他の交流電源切換装置の概略構成図である。It is a schematic block diagram of other conventional AC power supply switching devices. 従来のさらに他の交流電源切換装置の概略構成図である。It is a schematic block diagram of the further another alternating current power supply switching apparatus. 特許文献1の交流電源切換装置の概略構成図である。It is a schematic block diagram of the alternating current power supply switching device of patent document 1. 特許文献2の交流電源切換装置の概略構成図である。It is a schematic block diagram of the alternating current power supply switching device of patent document 2.

符号の説明Explanation of symbols

1 常用側交流電源 2 待機側交流電源
3 有接点スイッチ 4 有接点スイッチ
5 負荷 6 双投式電磁接触器
7 切換スイッチ 8 切換スイッチ
9 半導体スイッチ 10 半導体スイッチ
15 双投式電磁接触器 20 半導体スイッチ
30 ソレノイド式電磁接触器 31 ソレノイド式電磁接触器
32 ソレノイド式電磁接触器 35 ソレノイド
36 アクチュエータ 37 可動接点
38 固定接点 39 バネ
40 制御回路 42 異常電圧検出回路
42a 変圧器 42b 整流回路
42c コンパレータ
DESCRIPTION OF SYMBOLS 1 Normal side AC power supply 2 Standby side AC power supply 3 Reed switch 4 Reed switch 5 Load 6 Double throw electromagnetic contactor 7 Change switch 8 Change switch 9 Semiconductor switch 10 Semiconductor switch 15 Double throw electromagnetic contactor 20 Semiconductor switch 30 Solenoid electromagnetic contactor 31 Solenoid electromagnetic contactor 32 Solenoid electromagnetic contactor 35 Solenoid 36 Actuator 37 Movable contact 38 Fixed contact 39 Spring 40 Control circuit 42 Abnormal voltage detection circuit 42a Transformer 42b Rectifier circuit 42c Comparator

Claims (7)

2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器と、この双投式電磁接触器のコモン接点と負荷の間に直列に接続された常閉型のソレノイド式電磁接触器とを設け、
前記常用側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第1の半導体スイッチを設け、
また、前記待機側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第2の半導体スイッチを設け、
前記双投式電磁接触器とソレノイド式電磁接触器との間の線路に異常電圧検出回路を設け、
前記双投式電磁接触器、ソレノイド式電磁接触器、第1の半導体スイッチ及び第2の半導体スイッチの制御を行う制御回路を設け、
前記ソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が前記双投式電磁接触器の励磁から主接点開極までの時間より短いものとし、
前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記ソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチをオンさせ、前記ソレノイド式電磁接触器の主接点の開極が完了した後に前記第1の半導体スイッチをオフさせ、直後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記ソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成としたことを特徴とする、無瞬断電源切換装置。
In a power supply switching device that switches power supply from one power supply to the other power supply when selectively supplying power to a load from two AC power supplies,
A contact type double-throw electromagnetic contactor that is a changeover switch between two AC power sources, the normal AC power supply and standby AC power supply, and a series connection between the common contact of this double-throw electromagnetic contactor and the load Provided with a normally closed solenoid type magnetic contactor,
A first semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid electromagnetic contactor is provided between the normal-side AC power supply and the load,
In addition, a second semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid electromagnetic contactor is provided between the standby AC power supply and the load.
An abnormal voltage detection circuit is provided on the line between the double throw electromagnetic contactor and the solenoid electromagnetic contactor,
A control circuit for controlling the double throw electromagnetic contactor, the solenoid electromagnetic contactor, the first semiconductor switch, and the second semiconductor switch;
In the solenoid type magnetic contactor, the main contact is always on, and the time from solenoid excitation to main contact opening is shorter than the time from excitation of the double throw electromagnetic contactor to main contact opening. ,
The control circuit receives an external switching signal or a signal from the abnormal voltage detection circuit to excite the double-throw electromagnetic contactor to start a switching operation to a standby AC power source and at the same time, the solenoid electromagnetic contactor To start the opening operation of the main contact, turn on the first semiconductor switch, and turn off the first semiconductor switch after the opening of the main contact of the solenoid type magnetic contactor is completed. Immediately after that, the second semiconductor switch is turned on to start power feeding from the standby AC power source, and after the double-throw electromagnetic contactor is disconnected from the normal AC power source, the solenoid type After confirming that the magnetic contactor has been de-energized and that the main contact has returned to the ON state, and that the double-throw electromagnetic contactor has been switched to the standby AC power supply, turn off the second semiconductor switch Characterized by being a configuration in which, uninterruptible power switching device.
前記ソレノイド式電磁接触器は、常時はバネの力で主接点をオンにし、ソレノイドの励磁によりアクチュエータが前記バネの力に抗して引っ張られて主接点がオフする構成とし、前記ソレノイドの励磁は電解コンデンサに充電された電荷の短時間一斉放電による直流励磁方式としたことを特徴とする、請求項1に記載の無瞬断電源切換装置。   The solenoid-type electromagnetic contactor is configured such that the main contact is normally turned on by the force of a spring, and the main contact is turned off by the actuator being pulled against the spring force by excitation of the solenoid. 2. The uninterruptible power supply switching device according to claim 1, wherein a direct current excitation method is used in which electric charges charged in the electrolytic capacitor are simultaneously discharged for a short time. 前記第1の半導体スイッチ及び第2の半導体スイッチはそれぞれ自己消弧式特性を有することを特徴とする、請求項1又は2に記載の無瞬断電源切換装置。   3. The uninterruptible power supply switching device according to claim 1, wherein each of the first semiconductor switch and the second semiconductor switch has a self-extinguishing characteristic. 2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器と、この双投式電磁接触器のコモン接点と負荷の間に直列に接続された常閉型のソレノイド式電磁接触器とを設け、
前記常用側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第1の半導体スイッチを設け、
また、前記待機側交流電源と負荷との間に、前記双投式電磁接触器及びソレノイド式電磁接触器と並列に接続された第2の半導体スイッチを設け、
前記双投式電磁接触器とソレノイド式電磁接触器との間の線路に異常電圧検出回路を設け、
前記ソレノイド式電磁接触器に並列に自己消弧式特性を有する第3の半導体スイッチを接続して設け、
前記双投式電磁接触器、ソレノイド式電磁接触器、第1の半導体スイッチ、第2の半導体スイッチ及び第3の半導体スイッチの制御を行う制御回路を設け、
前記ソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が前記双投式電磁接触器の励磁から主接点開極までの時間より短いものとし、
前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記ソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、同じく同時に前記第3の半導体スイッチをオンさせ、さらに、前記ソレノイド式電磁接触器の主接点の開極が完了後に前記第3の半導体スイッチをオフさせ、直後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記ソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成としたことを特徴とする、無瞬断電源切換装置。
In a power supply switching device that switches power supply from one power supply to the other power supply when selectively supplying power to a load from two AC power supplies,
A contact type double-throw electromagnetic contactor that is a changeover switch between two AC power sources, the normal AC power supply and standby AC power supply, and a series connection between the common contact of this double-throw electromagnetic contactor and the load Provided with a normally closed solenoid type magnetic contactor,
A first semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid electromagnetic contactor is provided between the normal-side AC power supply and the load,
In addition, a second semiconductor switch connected in parallel with the double-throw electromagnetic contactor and the solenoid electromagnetic contactor is provided between the standby AC power supply and the load.
An abnormal voltage detection circuit is provided on the line between the double throw electromagnetic contactor and the solenoid electromagnetic contactor,
A third semiconductor switch having a self-extinguishing characteristic is connected in parallel to the solenoid type magnetic contactor,
A control circuit for controlling the double throw electromagnetic contactor, the solenoid electromagnetic contactor, the first semiconductor switch, the second semiconductor switch, and the third semiconductor switch;
In the solenoid type magnetic contactor, the main contact is always on, and the time from solenoid excitation to main contact opening is shorter than the time from excitation of the double throw electromagnetic contactor to main contact opening. ,
The control circuit receives an external switching signal or a signal from the abnormal voltage detection circuit to excite the double-throw electromagnetic contactor to start a switching operation to a standby AC power source and at the same time, the solenoid electromagnetic contactor And the third semiconductor switch is turned on at the same time, and after the opening of the main contact of the solenoid type magnetic contactor is completed, the third semiconductor switch is turned on. Immediately after that, the second semiconductor switch is turned on to start power feeding from the standby AC power source, and then the double throw electromagnetic contactor is disconnected from the normal AC power source, and then the solenoid After confirming that the main contact has returned to the ON state by releasing the excitation of the electromagnetic contactor, and that the double-throw electromagnetic contactor has been switched to the standby AC power source, the second semiconductor switch Characterized in that the arrangement for turning off the uninterruptible power switching device.
2系統の交流電源から選択的に負荷に電力を供給する際に、電力の供給を一方の電源から他方の電源に切換える電源切換装置において、
常用側交流電源と待機側交流電源の2系統の交流電源の切換スイッチである有接点型の双投式電磁接触器のコモン接点と負荷とを接続して設け、
前記常用側交流電源と双投式電磁接触器との間に直列に接続した第1の常閉型のソレノイド式電磁接触器を設け、また、前記待機側交流電源と双投式電磁接触器との間に直列に接続した第2の常閉型のソレノイド式電磁接触器を設け、
前記常用側交流電源と負荷との間に、前記第1のソレノイド式電磁接触器及び双投式電磁接触器と並列に接続された第1の半導体スイッチを設け、
また、前記待機側交流電源と負荷との間に、前記第2のソレノイド式電磁接触器及び双投式電磁接触器と並列に接続された第2の半導体スイッチを設け、
前記双投式電磁接触器と負荷との間の線路に異常電圧検出回路を設け、
前記双投式電磁接触器、第1のソレノイド式電磁接触器、第2のソレノイド式電磁接触器、第1の半導体スイッチ及び第2の半導体スイッチの制御を行う制御回路を設け、
前記第1及び第2のソレノイド式電磁接触器は、常時は主接点がオン状態にあり、ソレノイド励磁から主接点開極までの時間が前記双投式電磁接触器の励磁から主接点開極までの時間より短いものとし、
前記制御回路は、外部切換信号又は前記異常電圧検出回路からの信号を受けて前記双投式電磁接触器を励磁して待機側交流電源への切換動作を開始させると同時に前記第1のソレノイド式電磁接触器を励磁して主接点の開極動作を開始させ、さらに、前記第1の半導体スイッチをオンさせ、前記第1のソレノイド式電磁接触器の主接点の開極が完了した後に前記第1の半導体スイッチをオフさせ、直後に前記第2の半導体スイッチをオンさせて前記待機側交流電源からの負荷給電を開始させ、その後、前記双投式電磁接触器が常用側交流電源から切り離された後に、前記第1のソレノイド式電磁接触器の励磁を解いて主接点がオン状態に復帰したこと、及び前記双投式電磁接触器が待機側交流電源に切換わったことを確認の後、前記第2の半導体スイッチをオフさせる構成としたことを特徴とする、無瞬断電源切換装置。
In a power supply switching device that switches power supply from one power supply to the other power supply when selectively supplying power to a load from two AC power supplies,
Connect the common contact of the contact type double-throw electromagnetic contactor that is a changeover switch of two AC power sources, the normal AC power source and the standby AC power source, and the load.
A first normally closed solenoid electromagnetic contactor connected in series between the normal-side AC power supply and the double-throw electromagnetic contactor; and the standby-side AC power supply and the double-throw electromagnetic contactor; A second normally closed solenoid type electromagnetic contactor connected in series between
A first semiconductor switch connected in parallel with the first solenoid-type electromagnetic contactor and the double-throw-type electromagnetic contactor is provided between the normal-side AC power supply and the load,
In addition, a second semiconductor switch connected in parallel with the second solenoid electromagnetic contactor and the double throw electromagnetic contactor is provided between the standby AC power supply and the load,
An abnormal voltage detection circuit is provided on the line between the double-throw electromagnetic contactor and the load,
A control circuit for controlling the double throw electromagnetic contactor, the first solenoid contactor, the second solenoid contactor, the first semiconductor switch, and the second semiconductor switch;
In the first and second solenoid type electromagnetic contactors, the main contact is normally on, and the time from solenoid excitation to main contact opening is from the double throw electromagnetic contactor excitation to main contact opening. Shorter than
The control circuit receives an external switching signal or a signal from the abnormal voltage detection circuit and excites the double throw electromagnetic contactor to start a switching operation to a standby AC power source, and at the same time, the first solenoid type The magnetic contactor is excited to start the opening operation of the main contact, the first semiconductor switch is turned on, and the opening of the main contact of the first solenoid type magnetic contactor is completed. The first semiconductor switch is turned off, and immediately after that, the second semiconductor switch is turned on to start load power supply from the standby side AC power source. Thereafter, the double throw electromagnetic contactor is disconnected from the normal side AC power source. After confirming that the main contact has returned to the on state by releasing the excitation of the first solenoid type magnetic contactor and that the double throw type magnetic contactor has been switched to the standby side AC power source, Said second half Characterized by being configured to turn off the body switch, uninterruptible power switching device.
前記制御回路は、外部切換信号を受けた後、双投式電磁接触器及びソレノイド式電磁接触器の励磁開始及び第1の半導体スイッチへのオン動作開始を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、また、第1の半導体スイッチのオフ動作を、ソレノイド式電磁接触器の主接点の開極直後の常用側交流電源及び待機側交流電源の各々の対応する線間の電圧波形の立ち下がりゼロクロス点の同期、又は負荷電流のゼロクロス点を検知してこれと同時に行う構成としたことを特徴とする、請求項1、2、3及び5のいずれかに記載の無瞬断電源切換装置。   After receiving the external switching signal, the control circuit starts the excitation of the double-throw type electromagnetic contactor and the solenoid type electromagnetic contactor and starts the ON operation to the first semiconductor switch. The synchronization of the rising zero-crossing point of the voltage waveform between each corresponding predetermined line is detected and simultaneously performed, and the first semiconductor switch is turned off to open the main contact of the solenoid type magnetic contactor It is characterized in that it is configured to synchronize the falling zero cross point of the voltage waveform between the corresponding lines of the normal AC power supply and the standby AC power supply immediately after that, or to detect the zero cross point of the load current and perform it simultaneously with this. The uninterruptible power supply switching device according to any one of claims 1, 2, 3, and 5. 前記制御回路は、外部切換信号を受けた後、双投式電磁接触器及びソレノイド式電磁接触器の励磁開始及び第3の半導体スイッチへのオン動作開始を、常用側交流電源及び待機側交流電源の各々の対応する所定の線間の電圧波形の立ち上がりゼロクロス点の同期を検知してこれと同時に行い、また、第3の半導体スイッチのオフ動作を、ソレノイド式電磁接触器の主接点の開極直後の常用側交流電源及び待機側交流電源の各々の対応する線間の電圧波形の立ち下がりゼロクロス点の同期、又は負荷電流のゼロクロス点を検知してこれと同時に行う構成としたことを特徴とする、請求項4に記載の無瞬断電源切換装置。   After receiving the external switching signal, the control circuit starts the excitation of the double-throw type electromagnetic contactor and the solenoid type electromagnetic contactor and starts the ON operation to the third semiconductor switch. The synchronization of the rising zero cross point of the voltage waveform between each corresponding predetermined line is detected and performed simultaneously with this, and the third semiconductor switch is turned off to open the main contact of the solenoid type magnetic contactor It is characterized in that it is configured to synchronize the falling zero cross point of the voltage waveform between the corresponding lines of the normal AC power supply and the standby AC power supply immediately after that, or to detect the zero cross point of the load current and perform it simultaneously with this. The uninterruptible power supply switching device according to claim 4.
JP2008213328A 2008-08-21 2008-08-21 Uninterruptible power switching device Active JP5220514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213328A JP5220514B2 (en) 2008-08-21 2008-08-21 Uninterruptible power switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213328A JP5220514B2 (en) 2008-08-21 2008-08-21 Uninterruptible power switching device

Publications (2)

Publication Number Publication Date
JP2010051098A true JP2010051098A (en) 2010-03-04
JP5220514B2 JP5220514B2 (en) 2013-06-26

Family

ID=42067707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213328A Active JP5220514B2 (en) 2008-08-21 2008-08-21 Uninterruptible power switching device

Country Status (1)

Country Link
JP (1) JP5220514B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273405A (en) * 2009-05-19 2010-12-02 Fuji Electric Systems Co Ltd Uninterruptible power supply system
WO2013107003A1 (en) * 2012-01-18 2013-07-25 Cummins Power Generation Ip, Inc. Transfer switch
KR101804096B1 (en) 2017-05-30 2018-01-11 시그마전기 주식회사 Power switchover circuit
CN107850628A (en) * 2015-08-04 2018-03-27 住友电气工业株式会社 Input voltage method for detecting abnormality and supply unit
JP2020096510A (en) * 2018-11-30 2020-06-18 株式会社別川製作所 Power supply system and power supply method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354374A (en) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd Hybrid switch
JPH0536336A (en) * 1991-07-30 1993-02-12 Fuji Electric Co Ltd Three-phase hybrid switch, and method and device for starting three-phase star-delta
JPH07201266A (en) * 1993-11-26 1995-08-04 Fuji Electric Co Ltd Hybrid switch
JPH07296699A (en) * 1994-04-25 1995-11-10 Fuji Electric Co Ltd Hybrid switch
JP2000299988A (en) * 1999-04-09 2000-10-24 Kanto Auto Works Ltd Commercial power supply equipment for motor vehicle
JP3420281B2 (en) * 1993-06-01 2003-06-23 大阪瓦斯株式会社 Power supply switching device and switching device
JP2007207777A (en) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp Polarized electromagnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354374A (en) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd Hybrid switch
JPH0536336A (en) * 1991-07-30 1993-02-12 Fuji Electric Co Ltd Three-phase hybrid switch, and method and device for starting three-phase star-delta
JP3420281B2 (en) * 1993-06-01 2003-06-23 大阪瓦斯株式会社 Power supply switching device and switching device
JPH07201266A (en) * 1993-11-26 1995-08-04 Fuji Electric Co Ltd Hybrid switch
JPH07296699A (en) * 1994-04-25 1995-11-10 Fuji Electric Co Ltd Hybrid switch
JP2000299988A (en) * 1999-04-09 2000-10-24 Kanto Auto Works Ltd Commercial power supply equipment for motor vehicle
JP2007207777A (en) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp Polarized electromagnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN1003506035; *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273405A (en) * 2009-05-19 2010-12-02 Fuji Electric Systems Co Ltd Uninterruptible power supply system
WO2013107003A1 (en) * 2012-01-18 2013-07-25 Cummins Power Generation Ip, Inc. Transfer switch
CN104221249A (en) * 2012-01-18 2014-12-17 康明斯发电Ip公司 Transfer switch
US10326303B2 (en) 2012-01-18 2019-06-18 Cummins Power Generation Ip, Inc. Transfer switch
CN107850628A (en) * 2015-08-04 2018-03-27 住友电气工业株式会社 Input voltage method for detecting abnormality and supply unit
US10481184B2 (en) 2015-08-04 2019-11-19 Sumitomo Electric Industries, Ltd. Input-voltage-abnormality detection method and power source device
CN107850628B (en) * 2015-08-04 2020-03-03 住友电气工业株式会社 Input voltage abnormality detection method and power supply device
KR101804096B1 (en) 2017-05-30 2018-01-11 시그마전기 주식회사 Power switchover circuit
JP2020096510A (en) * 2018-11-30 2020-06-18 株式会社別川製作所 Power supply system and power supply method

Also Published As

Publication number Publication date
JP5220514B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP6184391B2 (en) Air conditioner
US9337689B2 (en) Power supply system and method for controlling the same
US10044220B2 (en) Uninterruptible power-supply system
CN101232202B (en) Double power supply converting switch device
JP4476980B2 (en) Non-instantaneous switching device
US20170163088A1 (en) Uninterruptible power source
JP5220514B2 (en) Uninterruptible power switching device
CN109264517A (en) A kind of brake controller of elevator and method
JP5486400B2 (en) Power saving line interactive uninterruptible power supply
JP2011524732A (en) Circuit configuration with power input and operation method for controlling power input circuit
CN101478176A (en) Backup electric power system
JP5809029B2 (en) Uninterruptible power system
US6969927B1 (en) Power switching apparatus
US10224742B2 (en) High efficiency uninterruptible power supply with near loss-less ultrafast electromechanical switching
JP2003123569A (en) Direct current vacuum circuit breaker
CN113795995B (en) System and method for sharing a hybrid transfer switch
WO2011060280A2 (en) A method and apparatus for controlling the powering of a transformer
CN202059209U (en) Power supply device
JP2014156963A (en) Air conditioner
CN108307651B (en) Air conditioning apparatus
US10253742B2 (en) Motor starter
JP2008167532A (en) Semiconductor power conversion device
JP4999639B2 (en) Uninterruptible power system
EP4033657A1 (en) De-exciting system for inductive circuits
CN218161918U (en) Hybrid dual-power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5220514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250