JP2010273405A - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP2010273405A
JP2010273405A JP2009121210A JP2009121210A JP2010273405A JP 2010273405 A JP2010273405 A JP 2010273405A JP 2009121210 A JP2009121210 A JP 2009121210A JP 2009121210 A JP2009121210 A JP 2009121210A JP 2010273405 A JP2010273405 A JP 2010273405A
Authority
JP
Japan
Prior art keywords
uninterruptible power
power supply
power
load
uninterruptible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121210A
Other languages
Japanese (ja)
Other versions
JP5391825B2 (en
Inventor
Kazuyoshi Umezawa
一喜 梅沢
Toshihiro Katayama
統弘 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009121210A priority Critical patent/JP5391825B2/en
Publication of JP2010273405A publication Critical patent/JP2010273405A/en
Application granted granted Critical
Publication of JP5391825B2 publication Critical patent/JP5391825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the operation property of an uninterruptible power supply system equipped with a plurality of uninterruptible power units that operate, in parallel or two sets of uninterruptible power systems, consisting of uninterruptible power sources of independent operation and is equipped with a plurality of cross boards that perform power supply, from either of the two sets of uninterruptible power systems to a corresponding load. <P>SOLUTION: In the embodied uninterruptible power supply system, each of high-speed cross boards is constituted of two sets of thyristor switches, two CTs, and two sets of change-over control circuits to lessen the disturbance of a voltage across a load concerned, as compared with conventional types, by controlling a lapping period when power is supplied simultaneously from both uninterruptible power supply systems via the change-over control circuit not only at maintenance but also at normal switching of power supply path to the load by auxiliary CTs 71, 72 and 75, shunt resistors 73 and 74, arithmetic elements 76 and 78, resistors 77, 79 and PT80, a power arithmetic circuit 81, and a switch-off determining circuit 82, which constitute each of the two sets of change-over control circuits. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、並列運転した複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備えてなる無停電電源システムに関する。   The present invention comprises two uninterruptible power supply systems consisting of a plurality of uninterruptible power supplies operated in parallel or a single-machine uninterruptible power supply, and either one of the two uninterruptible power supply systems is connected to a corresponding load. The present invention relates to an uninterruptible power supply system including a plurality of switching boards for supplying power.

図8は、下記特許文献1の構成も含む、この種の無停電電源システムの従来例を示す回路構成図である。   FIG. 8 is a circuit configuration diagram showing a conventional example of this type of uninterruptible power supply system including the configuration of Patent Document 1 below.

この図において、10は商用電力系統などと自家発電設備とからなる1系電力系統、11〜14は1系無停電電源装置を形成する無停電電源(以下、UPS11〜UPS14と称するとともに、これらを総称して1系UPSとも称する)、この1系電力系統と1系UPSとにより1系無停電電源系統を形成している。同様に、20は商用電力系統などと自家発電設備とからなる2系電力系統、21〜24は2系無停電電源装置を形成する無停電電源(以下、UPS21〜UPS24と称するとともに、これらを総称して2系UPSとも称する)、この2系電力系統と2系UPSとにより2系無停電電源系統を形成している。また、31はこの無停電電源システム全体の運転システムを司るシステム制御回路である。   In this figure, 10 is a 1-system power system composed of a commercial power system and private power generation facilities, and 11 to 14 are uninterruptible power supplies (hereinafter referred to as UPS 11 to UPS 14) that form a 1-system uninterruptible power supply. This 1-system power system and 1-system UPS form a 1-system uninterruptible power supply system. Similarly, 20 is a two-system power system composed of a commercial power system and private power generation facilities, and 21 to 24 are uninterruptible power sources forming a two-system uninterruptible power supply (hereinafter referred to as UPS 21 to UPS 24, and these are generic names). The 2 system UPS and the 2 system UPS form a 2 system uninterruptible power system. Reference numeral 31 denotes a system control circuit that controls the operation system of the entire uninterruptible power supply system.

この1系無停電電源系統において、UPS11〜UPS14それぞれには1系電力系統10から直送給電を行うバイパス回路を備えているとともに、互いに並列運転する機能を備えている。同様に、2系無停電電源系統において、UPS21〜UPS24それぞれには2系電力系統20から直送給電を行うバイパス回路を備えているとともに、互いに並列運転する機能を備えている。   In this 1-system uninterruptible power supply system, each of the UPSs 11 to 14 includes a bypass circuit that performs direct power feeding from the 1-system power system 10 and also has a function of operating in parallel with each other. Similarly, in the 2 system uninterruptible power supply system, each of the UPS 21 to UPS 24 is provided with a bypass circuit that performs direct power feeding from the 2 system power system 20 and also has a function of operating in parallel with each other.

また、高速切換盤40は高速スイッチとしてのサイリスタスイッチ41,42と切換指令回路43とから形成され、負荷A(100)への給電を、システム制御回路31から切換指令回路43への指令により、1系無停電電源系統、または2系無停電電源系統から行うための機能を有する。同様に、高速切換盤50は高速スイッチとしてのサイリスタスイッチ51,52と切換指令回路53とから形成され、負荷B(200)への給電を、システム制御回路31から切換指令回路53への指令により、1系無停電電源系統、または2系無停電電源系統から行うための機能を有する。   The high-speed switching panel 40 is formed of thyristor switches 41 and 42 as high-speed switches and a switching command circuit 43, and supplies power to the load A (100) by a command from the system control circuit 31 to the switching command circuit 43. It has a function to perform from the 1 system uninterruptible power system or the 2 system uninterruptible power system. Similarly, the high-speed switching board 50 is formed of thyristor switches 51 and 52 as high-speed switches and a switching command circuit 53, and supplies power to the load B (200) by a command from the system control circuit 31 to the switching command circuit 53. It has a function to perform from the 1 system uninterruptible power system or the 2 system uninterruptible power system.

なお、高速切換盤40,50の何れかにおいて、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電切換えを、図示のサイリスタスイッチを用いて、高速に行わせることに備えて、前記無停電電源系統それぞれの出力電圧は互いに位相同期させている。   In either of the high-speed switching boards 40 and 50, for example, the power supply switching of the load corresponding to the system 2 uninterruptible power system from the system 1 uninterruptible power system can be performed at high speed using the illustrated thyristor switch. In preparation, the output voltages of the uninterruptible power supply systems are phase-synchronized with each other.

また上述のために、図8に示した無停電電源システムにおける構成要素それぞれは、周知の技術を用いて形成されている。   Moreover, for the above-mentioned, each component in the uninterruptible power supply system shown in FIG. 8 is formed using a well-known technique.

特開2007−306643号公報JP 2007-306643 A

この種の無停電電源システムにおいて、例えば、それぞれの負荷への給電を停止することなく、それぞれの無停電電源などのメンテナンスを行うためには、高速切換盤の何れかにおいて、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電を切換えることが要求される。   In this type of uninterruptible power supply system, for example, in order to perform maintenance of each uninterruptible power supply without stopping power supply to each load, for example, one system It is required to switch the power supply of the load corresponding to the uninterruptible power system 2 from the uninterruptible power system.

しかしながら、図8に示した従来の無停電電源システムでは、高速切換盤40,50の何れかにおいて、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電切換えを、図8に示したサイリスタスイッチとしての図9(a)に示す1系スイッチと2系スイッチとを用いて行うと、双方のスイッチ間に、図9(a)に示すように僅かなオーバーラップ期間を設けているのみであるために、このときの負荷の両端電圧であるこの無停電電源システムの出力電圧には、図9(a)に示すように大きな擾乱が生ずることがあった。   However, in the conventional uninterruptible power supply system shown in FIG. 8, in either of the high-speed switching panels 40 and 50, for example, the power supply switching of the load corresponding to the 2-system uninterruptible power system from the 1-system uninterruptible power system is performed. When the 1-system switch and the 2-system switch shown in FIG. 9A as the thyristor switch shown in FIG. 8 are used, a slight overlap period is provided between both switches as shown in FIG. 9A. As shown in FIG. 9A, a large disturbance may occur in the output voltage of the uninterruptible power supply system, which is the voltage across the load at this time.

すなわち、この電圧の擾乱は、図10に示すように負荷分担電力が急変し、従って、図9(a)に示すように2系無停電電源系統からの出力電流が急増し、その結果、2系無停電電源系統の配線インピーダンスによる電圧低下が発生することに起因している。   That is, this voltage disturbance causes the load sharing power to change abruptly as shown in FIG. 10, so that the output current from the uninterruptible power supply system 2 rapidly increases as shown in FIG. This is due to the voltage drop caused by the wiring impedance of the uninterruptible power system.

この発明の目的は、図9(b)に示すように負荷への給電経路を切換える際にも、無停電電源システムの出力電圧の擾乱をより軽減できる該システムを提供することにある。   An object of the present invention is to provide a system that can further reduce disturbance of the output voltage of the uninterruptible power supply system even when the power supply path to the load is switched as shown in FIG. 9B.

この第1の発明は、並列運転した複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備え、前記無停電電源系統それぞれの出力電圧は互いに位相同期させてなる無停電電源システムにおいて、
前記それぞれの切換盤により、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電経路を切換える際に、先ず、双方の給電経路から当該する負荷に同時給電する状態にし、このときからの負荷電力と、前記一方の無停電電源系統の分担電力の変化と、前記双方の無停電電源系統間の横流成分とに基づいて、前記同時給電する期間を制御するラップ期間制御機能を備えたことを特徴とする。
This first invention comprises two uninterruptible power supply systems comprising a plurality of uninterruptible power supplies operated in parallel or a single-machine uninterruptible power supply, and corresponds to either one of the two uninterruptible power supply systems. In the uninterruptible power supply system comprising a plurality of switching panels for supplying power to the load, the output voltages of the uninterruptible power supply systems being phase-synchronized with each other,
When switching the power supply path of the load corresponding to the other uninterruptible power system from each uninterruptible power system by the respective switching boards, first, the power is supplied to the corresponding load simultaneously from both power supply paths. A lap period control function for controlling the period of simultaneous power feeding based on the load power from time, the change in the shared power of the one uninterruptible power system, and the cross current component between the two uninterruptible power systems It is characterized by having.

また第2の発明は、前記第1の発明の無停電電源システムにおいて、
前記ラップ期間制御機能は、前記同時給電中のそれぞれの無停電電源系統の出力電流を検出する電流検出手段と、この時の負荷電流を導出する電流導出手段と、前記負荷への出力電圧を検出する電圧検出手段と、前記出力電流と負荷電流と負荷電圧とに基づき負荷有効電力と横流有効電力と横流無効電力とを演算する電力演算回路と、前記負荷有効電力と横流有効電力と横流無効電力とに基づき前記同時給電する期間を終了させるスイッチオフ判定回路とから形成したことを特徴とする。
Moreover, 2nd invention is the uninterruptible power supply system of said 1st invention,
The wrap period control function detects current output means for detecting an output current of each uninterruptible power supply system during simultaneous power feeding, current derivation means for deriving a load current at this time, and detects an output voltage to the load Voltage detecting means, a power calculation circuit for calculating load active power, cross current active power and cross current reactive power based on the output current, load current and load voltage, load active power, cross current active power and cross current reactive power And a switch-off determination circuit for ending the simultaneous power supply period.

この発明によれば、無停電電源システムに前記ラップ期間制御機能を具備したことにより、メンテナンス時のみならず、通常時の負荷への給電経路を切換える際にも、従来に比して、負荷電圧の擾乱がより少ない無停電電源システムを提供することができる。   According to the present invention, since the uninterruptible power supply system is provided with the wrap period control function, the load voltage can be changed not only during maintenance, but also when switching the power supply path to the load during normal operation. An uninterruptible power supply system with less disturbance can be provided.

この発明の実施例を示す無停電電源システムの回路構成図Circuit configuration diagram of an uninterruptible power supply system showing an embodiment of the present invention 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図1の部分詳細フローチャートPart detailed flowchart of FIG. 図1の動作を説明する特性図Characteristic diagram for explaining the operation of FIG. 図1の動作を説明する特性図Characteristic diagram for explaining the operation of FIG. 図1の動作を説明する特性図Characteristic diagram for explaining the operation of FIG. 従来例を示す無停電電源システムの回路構成図Circuit diagram of uninterruptible power supply system showing conventional example 図8の動作を説明する波形図Waveform diagram explaining the operation of FIG. 図8の動作を説明する特性図Characteristic diagram for explaining the operation of FIG.

図1は、この発明の実施例を示す無停電電源システムの回路構成図であり、図8に示した従来例構成と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram of an uninterruptible power supply system showing an embodiment of the present invention. Components having the same functions as those of the conventional configuration shown in FIG. 8 are denoted by the same reference numerals.

すなわち図1において、1系UPS,2系UPSでは、従来と同様にUPS11〜UPS14およびUPS21〜UPS24は全て同一仕様,同一容量のUPSであり、1系UPS,2系UPSそれぞれの出力電圧は互いに位相同期させている。また、32はこの無停電電源システム全体の運転システムを司るシステム制御回路である。   That is, in FIG. 1, in the 1-system UPS and the 2-system UPS, the UPS 11 to UPS 14 and the UPS 21 to UPS 24 are all of the same specifications and capacity, and the output voltages of the 1-system UPS and the 2-system UPS are mutually different. The phase is synchronized. Reference numeral 32 denotes a system control circuit that controls the operation system of the entire uninterruptible power supply system.

さらに、高速切換盤44はサイリスタスイッチ41,42と、CT(変流器)45,46と、切換制御回路47,48とから形成され、システム制御回路32から切換制御回路47および切換制御回路48への指令により、負荷A(100)への給電を1系無停電電源系統または2系無停電電源系統から行うための高速スイッチの機能を有する。同様に、高速切換盤54はサイリスタスイッチ51,52と、CT55,56と、切換制御回路57,58とから形成され、システム制御回路32から切換制御回路57および切換制御回路58への指令により、負荷B(200)への給電を1系無停電電源系統または2系無停電電源系統から行うための高速スイッチの機能を有する。なお、この図では、高速スイッチの1例としてのサイリスタスイッチ41,42,51,52を示しているが、サイリスタと並列に遮断器を接続したハイブリットでもよいし、IGBTとしてもよい。   Further, the high-speed switching board 44 is formed by thyristor switches 41 and 42, CTs (current transformers) 45 and 46, and switching control circuits 47 and 48, and the system control circuit 32 to the switching control circuit 47 and the switching control circuit 48. In response to the command, a high-speed switch function for supplying power to the load A (100) from the 1-system uninterruptible power system or the 2-system uninterruptible power system is provided. Similarly, the high-speed switching board 54 is formed of thyristor switches 51 and 52, CT 55 and 56, and switching control circuits 57 and 58. In response to a command from the system control circuit 32 to the switching control circuit 57 and the switching control circuit 58, It has a high-speed switch function for supplying power to the load B (200) from the 1-system uninterruptible power system or the 2-system uninterruptible power system. In this figure, thyristor switches 41, 42, 51, and 52 are shown as an example of a high-speed switch. However, a hybrid in which a circuit breaker is connected in parallel with the thyristor may be used, or an IGBT may be used.

図2は、図1に示した無停電電源システムにおける高速切換盤44に係る詳細回路構成図である。   FIG. 2 is a detailed circuit configuration diagram relating to the high-speed switching board 44 in the uninterruptible power supply system shown in FIG.

この切換制御回路47,48それぞれには、補助CT71,72と分流抵抗73,74と補助CT75と演算素子76,78と抵抗77,79とPT(変圧器)80と、電力演算回路81と、スイッチオフ判定回路82とを備えている。   Each of the switching control circuits 47 and 48 includes auxiliary CTs 71 and 72, shunt resistors 73 and 74, auxiliary CT75, arithmetic elements 76 and 78, resistors 77 and 79, PT (transformer) 80, a power arithmetic circuit 81, And a switch-off determination circuit 82.

ここで、切換制御回路47における補助CT72の二次側と、切換制御回路48における補助CT72の二次側とが接続線で互いに結ばれていることにより、CT45,CT46に流れる電流の加算値、すなわち、負荷Aに流れる負荷電流が得られることとなり、従って、分流抵抗73,74、補助CT75、演算素子76、抵抗77からなる回路構成により、演算素子76の出力には前記負荷電流に対応した電圧値を得ることができる。さらに、演算素子78の出力にはCT45またはCT46に流れる電流値、すなわち、1系UPSまたは2系UPSの出力電流に対応した電圧値を得ることができる。   Here, since the secondary side of the auxiliary CT 72 in the switching control circuit 47 and the secondary side of the auxiliary CT 72 in the switching control circuit 48 are connected to each other by a connecting line, an added value of the current flowing in CT45 and CT46, That is, a load current flowing through the load A is obtained. Accordingly, the circuit configuration including the shunt resistors 73 and 74, the auxiliary CT 75, the arithmetic element 76, and the resistor 77 corresponds to the load current at the output of the arithmetic element 76. A voltage value can be obtained. Further, a current value flowing through CT45 or CT46, that is, a voltage value corresponding to the output current of the 1-system UPS or the 2-system UPS can be obtained as the output of the arithmetic element 78.

図3は、図2に示した切換制御回路47,48における電力演算回路81の詳細回路構成図である。   FIG. 3 is a detailed circuit configuration diagram of the power calculation circuit 81 in the switching control circuits 47 and 48 shown in FIG.

この電力演算回路81には、図2に示したPT80により得られる負荷Aの両端電圧であるこの無停電電源システムの出力電圧と前記負荷電流とから負荷有効電力を演算する負荷電力演算器81aと、前記負荷電流の1/2値を導出する乗算演算器81bと、この負荷電流の1/2値と前記出力電流との差、すなわち、この条件での横流電流を求める減算演算器81cと、この横流電流と前記出力電圧とから横流有効電力および横流無効電力を演算する横流電力演算器81dとを備えている。   The power calculation circuit 81 includes a load power calculator 81a for calculating the load active power from the output voltage of the uninterruptible power supply system, which is the voltage across the load A obtained by the PT 80 shown in FIG. , A multiplication calculator 81b for deriving a half value of the load current, a subtraction calculator 81c for obtaining a difference between the half value of the load current and the output current, that is, a cross current under this condition, A cross current power calculator 81d for calculating a cross current active power and a cross current reactive power from the cross current and the output voltage is provided.

上述のように、前記負荷電流の1/2値と前記出力電流との差をこの無停電電源システムにおける横流電流と定義しているのは、負荷への給電経路を切換える動作を開始し、双方の無停電電源系統の負荷分担電力がほぼ等しくなったとき、すなわち、切換先の前記出力電流が増加して前記負荷電流の1/2値になり、横流電流が零になったときに、この切換え動作を完了させることで、負荷電圧の擾乱がより少ない無停電電源システムを提供できるからである。   As described above, the difference between the half value of the load current and the output current is defined as the cross current in the uninterruptible power supply system. When the load sharing power of the uninterruptible power supply system becomes substantially equal, that is, when the output current at the switching destination increases to become half the load current and the cross current becomes zero, This is because an uninterruptible power supply system with less disturbance of the load voltage can be provided by completing the switching operation.

なお、図2に示した回路構成では無停電電源系統の1相分を示しており、従って、無停電電源系統が三相出力の場合には、切換制御回路47,48における構成要素71〜80それぞれを3組備えるとともに、電力演算回路81では三相電力演算を行って、負荷有効電力(三相電力値)と横流有効電力(三相電力値)と横流無効電力(三相電力値)とを出力すればよい。さらに、高速切換盤54も図2と同様の回路構成である。   The circuit configuration shown in FIG. 2 shows one phase of the uninterruptible power supply system. Therefore, when the uninterruptible power supply system has a three-phase output, the components 71 to 80 in the switching control circuits 47 and 48 are shown. The power calculation circuit 81 performs three-phase power calculation and includes load active power (three-phase power value), cross-current active power (three-phase power value), and cross-current reactive power (three-phase power value). Should be output. Further, the high-speed switching board 54 has the same circuit configuration as that of FIG.

以下に、高速切換盤44または高速切換盤44の何れかにおいて、例えば、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電を切換えるときの動作について、これらの高速切換盤に備えるスイッチオフ判定回路82の動作を説明する図4のフローチャートを参照しつつ、説明する。   In the following, regarding either the high-speed switching board 44 or the high-speed switching board 44, for example, the operation when switching the power supply of the load corresponding to the other uninterruptible power supply system from one uninterruptible power supply system will be described. The operation will be described with reference to the flowchart of FIG.

図5は、図1に示した無停電電源システムにおいて、1例として、負荷Aが1系無停電電源系統から給電されている状態から、負荷Aの給電を2系無停電電源系統に切換えるときの動作を説明するための特性図であり、1系無停電電源系統の配線インピーダンスと2系無停電電源系統の配線インピーダンスとがほぼ等しいときの切換状態を示している。   FIG. 5 shows an example of switching the power supply of the load A from the state in which the load A is supplied from the system 1 uninterruptible power system to the system 2 uninterruptible power system in the uninterruptible power system shown in FIG. FIG. 6 is a characteristic diagram for explaining the operation of FIG. 2 and shows a switching state when the wiring impedance of the 1-system uninterruptible power supply system and the wiring impedance of the 2-system uninterruptible power supply system are substantially equal.

システム制御回路32から切換制御回路47および切換制御回路48への指令として、先ず、切換制御回路48ではスイッチオン指令を受信してサイリスタスイッチ42をオンさせるとともに、切換制御回路47ではスイッチオフ指令を受信して(図4、ステップS1、分岐Y)、このときの1系無停電電源系統の負担電力値を切換制御回路47の電力演算回路81からの出力値から求める(ステップS2)。   As commands from the system control circuit 32 to the switching control circuit 47 and the switching control circuit 48, first, the switching control circuit 48 receives the switch-on command and turns on the thyristor switch 42, and the switching control circuit 47 issues a switch-off command. Received (FIG. 4, step S1, branch Y), the burden power value of the 1-system uninterruptible power supply system at this time is obtained from the output value from the power calculation circuit 81 of the switching control circuit 47 (step S2).

なお、この負担電力値は電力演算回路81からの出力の負荷有効電力の1/2から、電力演算回路81からの出力の横流有効電力を減算演算することで得られる。   The burden power value is obtained by subtracting the cross current active power output from the power calculation circuit 81 from ½ of the load active power output from the power calculation circuit 81.

次に、ステップS3では、ステップS2で得られた負担電力値の前回値との変化を監視し、図5に示すように、1系無停電電源系統の負担電力は減少状態に入っていることから(分岐Y)、ステップS4に移る。   Next, in step S3, the change of the burden power value obtained in step S2 with the previous value is monitored, and as shown in FIG. 5, the burden power of the 1-system uninterruptible power supply system is in a decreasing state. (Branch Y), the process proceeds to step S4.

ステップS4では、ステップS2で得られた負担電力値が所定の判定値、例えば、電力演算回路81からの出力の負荷有効電力の1/2に、この負荷有効電力の10%を加えた値、すなわち、負荷有効電力の0.6倍程度に設定した判定値以下になっているときには(分岐Y)、ステップS7に移り、サイリスタスイッチ41をオフさせて、ステップS8で後述のタイマをリセットする。その結果、双方の無停電電源系統の負荷分担電力がほぼ等しくなったとき、図5に示すように、この切換え動作を完了させることで、負荷電圧の擾乱がより少なくすることができる。   In step S4, the burden power value obtained in step S2 is a predetermined determination value, for example, a value obtained by adding 10% of the load active power to ½ of the load active power output from the power calculation circuit 81, That is, when the value is equal to or less than the determination value set to about 0.6 times the load active power (branch Y), the process proceeds to step S7, the thyristor switch 41 is turned off, and a timer described later is reset in step S8. As a result, when the load sharing power of both uninterruptible power supply systems becomes substantially equal, as shown in FIG. 5, the disturbance of the load voltage can be further reduced by completing this switching operation.

なお、ステップS4では、ステップS2で得られた負担電力値が前記判定値まで減少してないときは(分岐N)、後述のステップS5,S6に移る。   In step S4, when the burden electric power value obtained in step S2 has not decreased to the determination value (branch N), the process proceeds to steps S5 and S6 described later.

図6は、図1に示した無停電電源システムにおいて、1例として、負荷Aが1系無停電電源系統から給電されている状態から、負荷Aの給電を2系無停電電源系統に切換えるときの動作を説明するための特性図であり、2系無停電電源系統の配線インピーダンスが2系無停電電源系統の配線インピーダンスより大きかったときの切換状態を示している。   FIG. 6 shows an example of switching the power supply of the load A from the state where the load A is supplied from the system 1 uninterruptible power system to the system 2 uninterruptible power system in the uninterruptible power system shown in FIG. FIG. 6 is a characteristic diagram for explaining the operation of FIG. 2 and shows a switching state when the wiring impedance of the 2-system uninterruptible power supply system is larger than the wiring impedance of the 2-system uninterruptible power supply system.

システム制御回路32から切換制御回路47および切換制御回路48への指令として、先ず、切換制御回路48ではスイッチオン指令を受信してサイリスタスイッチ42をオンさせるとともに、切換制御回路47ではスイッチオフ指令を受信して(ステップS1,分岐Y)、このときの1系無停電電源系統の負担電力値を切換制御回路47の電力演算回路81からの出力値から求める(ステップS2)。   As commands from the system control circuit 32 to the switching control circuit 47 and the switching control circuit 48, first, the switching control circuit 48 receives the switch-on command and turns on the thyristor switch 42, and the switching control circuit 47 issues a switch-off command. Received (step S1, branch Y), the burden power value of the 1-system uninterruptible power supply system at this time is obtained from the output value from the power calculation circuit 81 of the switching control circuit 47 (step S2).

次に、ステップS3では、ステップS2で得られた負担電力値の前回値との変化を監視し、図6に示すように、1系無停電電源系統の負担電力は減少状態に入っていることから(分岐Y)、ステップS4に移る。   Next, in step S3, the change of the burden power value obtained in step S2 with the previous value is monitored, and as shown in FIG. 6, the burden power of the 1-system uninterruptible power supply system is in a decreasing state. (Branch Y), the process proceeds to step S4.

ステップS4では、ステップS2で得られた負担電力値が前記判定値まで減少してないときは(分岐N)、後述のステップS5、S6での処理結果としてステップS7の処理が行われなければ(S5,分岐N、S6,分岐N)、ステップS2に戻る。   In step S4, when the burden electric power value obtained in step S2 has not decreased to the determination value (branch N), the process in step S7 is not performed as a process result in steps S5 and S6 described later ( S5, branch N, S6, branch N), the process returns to step S2.

上述のステップS2からステップS7の経路を繰り返している状態でのステップS3において、図6に示すように、上述の双方の無停電電源系統の配線インピーダンスの相違に起因して、分担電力値の変化が無くなると(分岐N)、ステップS9に移る。   In step S3 in a state in which the route from step S2 to step S7 is repeated, as shown in FIG. 6, the change in the shared power value is caused by the difference in the wiring impedance between the two uninterruptible power systems. When there is no more (branch N), it moves to step S9.

このステップS9では、この切換え動作を開始し、初めて、このステップS9に入った時には(分岐N)、ステップS10に移り、図6に示す安定時間(40ミリ秒程度)を計測するためのタイマを起動させ、また、前記タイマが既に計測動作を開始しているときには(分岐Y)、ステップS11に移る。   In this step S9, this switching operation is started, and when this step S9 is entered for the first time (branch N), the process proceeds to step S10 and a timer for measuring the stable time (about 40 milliseconds) shown in FIG. 6 is set. If the timer has already started the measurement operation (branch Y), the process proceeds to step S11.

ステップS11では、前記タイマが安定時間に達しているときには(分岐Y)、ステップS7に移り、サイリスタスイッチ41をオフさせて、ステップS8で前記タイマをリセットすることで、図6に示すように、この切換え動作を完了させ、このときの負荷電圧の擾乱もより少なくすることができる。   In step S11, when the timer has reached the stable time (branch Y), the process proceeds to step S7, the thyristor switch 41 is turned off, and the timer is reset in step S8, as shown in FIG. This switching operation is completed, and the disturbance of the load voltage at this time can be further reduced.

なお、ステップS11で、前記タイマが安定時間に達していないときには(分岐N)、後述のステップS5、S6での処理結果としてステップS7の処理が行われなければ(S5,分岐N、S6,分岐N)、ステップS2に戻る。   If the timer has not reached the stable time in step S11 (branch N), the process in step S7 is not performed as a result of processing in steps S5 and S6 described later (S5, branch N, S6, branch). N) Return to step S2.

図7は、図1に示した無停電電源システムにおいて、1例として、負荷Aが1系無停電電源系統から給電されている状態から、負荷Aの給電を2系無停電電源系統に切換えるときの動作を説明するための特性図であり、切換時に、1系無停電電源系統から2系無停電電源系統に電力が注入された場合での切換状態を示している。   FIG. 7 shows an example of switching the power supply of the load A from the state where the load A is supplied from the system 1 uninterruptible power system to the system 2 uninterruptible power system in the uninterruptible power system shown in FIG. FIG. 6 is a characteristic diagram for explaining the operation of FIG. 2, and shows a switching state when electric power is injected from the 1-system uninterruptible power supply system to the 2-system uninterruptible power supply system at the time of switching.

システム制御回路32から切換制御回路47および切換制御回路48への指令として、先ず、切換制御回路48ではスイッチオン指令を受信してサイリスタスイッチ42をオンさせるとともに、切換制御回路47ではスイッチオフ指令を受信して(ステップS1,分岐Y)、このときの1系無停電電源系統の負担電力値を切換制御回路47の電力演算回路81からの出力値から求める(ステップS2)。   As commands from the system control circuit 32 to the switching control circuit 47 and the switching control circuit 48, first, the switching control circuit 48 receives the switch-on command and turns on the thyristor switch 42, and the switching control circuit 47 issues a switch-off command. Received (step S1, branch Y), the burden power value of the 1-system uninterruptible power supply system at this time is obtained from the output value from the power calculation circuit 81 of the switching control circuit 47 (step S2).

次に、ステップS3では、ステップS2で得られた負担電力値の前回値との変化を監視し、図7に示すように、1系無停電電源系統の負担電力は増加状態に入っていることから(分岐Y)、ステップS4に移る。   Next, in step S3, the change of the burden power value obtained in step S2 with the previous value is monitored, and as shown in FIG. 7, the burden power of the 1-system uninterruptible power supply system is in an increasing state. (Branch Y), the process proceeds to step S4.

この増加状態は、何らかの要因により、1系無停電電源系統の出力電圧と2系無停電電源系統の出力電圧との間に位相差および電圧差電力が発生した状態にあり、1系無停電電源系統から2系無停電電源系統に有効電力が注入されていることに起因するものである。   This increased state is a state in which a phase difference and a voltage difference power are generated between the output voltage of the 1-system uninterruptible power system and the output voltage of the 2-system uninterruptible power system due to some factor. This is due to the fact that active power is being injected from the system into the 2-system uninterruptible power supply system.

ステップS4では、ステップS2で得られた負担電力値が増加していることから(分岐N)、ステップS5に移り、この負担電力値が図7に示すように判定値を越えたとき、すなわち、このときの電力演算回路81からの横流有効電力値が、電力演算回路81からの負荷有効電力値を越えた状態、または、横流有効電力値がマイナスとなり、その絶対値が前記負荷有効電力値の10%に相当する値になると(分岐Y)、ステップS7に移り、サイリスタスイッチ41をオフさせて、ステップS8で前記タイマをリセットする。   In step S4, since the burden power value obtained in step S2 has increased (branch N), the process moves to step S5, and when this burden power value exceeds the determination value as shown in FIG. At this time, the cross current active power value from the power calculation circuit 81 exceeds the load active power value from the power calculation circuit 81, or the cross current active power value is negative, and the absolute value thereof is the load active power value. When the value corresponds to 10% (branch Y), the process proceeds to step S7, the thyristor switch 41 is turned off, and the timer is reset in step S8.

その結果、1系無停電電源系統と2系無停電電源系統とのラップ期間が長くなることに伴う、それぞれのUPS内部での中間直流電圧が上昇するなどの異常事態を回避することができる。   As a result, it is possible to avoid an abnormal situation such as an increase in the intermediate DC voltage inside each UPS due to a long lap period between the 1-system uninterruptible power system and the 2-system uninterruptible power system.

なお切換状態を図示しないが、ステップS2〜S5の経路、または、ステップS2,S3,S9〜S11,S5の経路を経た後のステップS6では、このときの電力演算回路81からの横流無効電力値が所定の基準値、例えば、このときの負荷有効電力値の10%に相当する値を越えた状態になると(分岐Y)、ステップS7に移り、サイリスタスイッチ41をオフさせて、ステップS8で前記タイマをリセットする。   Although the switching state is not illustrated, in step S6 after passing through the path of steps S2 to S5 or the paths of steps S2, S3, S9 to S11, and S5, the cross-flow reactive power value from the power calculation circuit 81 at this time Is over a predetermined reference value, for example, a value corresponding to 10% of the load active power value at this time (branch Y), the process proceeds to step S7, the thyristor switch 41 is turned off, and in step S8 the above-mentioned Reset the timer.

この処理は、何らかの要因により、1系無停電電源系統の出力電圧と2系無停電電源系統の出力電圧との間に位相差および電圧差電力が発生した状態にあり、1系無停電電源系統と2系無停電電源系統との間で無効電力の授受が発生し、この状態が長くなることに伴う異常事態を回避するために行うものである。   This processing is in a state where a phase difference and voltage difference power are generated between the output voltage of the 1-system uninterruptible power system and the output voltage of the 2-system uninterruptible power system for some reason, and the 1-system uninterruptible power system In order to avoid an abnormal situation that occurs when reactive power is exchanged between the system 2 and the uninterruptible power supply system 2 and this state becomes longer.

この発明の無停電電源システムによれば、CT45,46,55,56と切換制御回路47,48,57,58とを備えたことにより、メンテナンス時のみならず、通常時の負荷への給電経路を切換える際にも、従来に比して、負荷電圧の擾乱がより少ない無停電電源システムを提供することができる。   According to the uninterruptible power supply system of the present invention, since the CT 45, 46, 55, and 56 and the switching control circuits 47, 48, 57, and 58 are provided, the power supply path to the load at the normal time as well as during maintenance is provided. When switching between, the uninterruptible power supply system with less disturbance of the load voltage can be provided as compared with the prior art.

10…1系電力系統、11〜14…無停電電源、20…2系電力系統、21〜24…無停電電源、31,32…システム制御回路、40,44,50,54…高速切換盤、41,42,51,52…サイリスタスイッチ、43,53…切換指令回路、45,46,55,56…CT、47,48,57,58…切換制御回路、71,72…補助CT、73,74…分流抵抗、75…補助CT、76,78…演算素子、77,79…抵抗、80…PT、81…電力演算器、82…スイッチオフ判定回路。   DESCRIPTION OF SYMBOLS 10 ... 1 system power system, 11-14 ... Uninterruptible power supply, 20 ... 2 system power system, 21-24 ... Uninterruptible power supply, 31, 32 ... System control circuit, 40, 44, 50, 54 ... High speed switching board, 41, 42, 51, 52 ... thyristor switch, 43, 53 ... switching command circuit, 45, 46, 55, 56 ... CT, 47, 48, 57, 58 ... switching control circuit, 71, 72 ... auxiliary CT, 73, 74 ... Shunt resistance, 75 ... Auxiliary CT, 76, 78 ... Arithmetic element, 77, 79 ... Resistance, 80 ... PT, 81 ... Power calculator, 82 ... Switch-off determination circuit.

Claims (2)

並列運転した複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備え、前記無停電電源系統それぞれの出力電圧は互いに位相同期させてなる無停電電源システムにおいて、
前記それぞれの切換盤により、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電経路を切換える際に、
先ず、双方の給電経路から当該する負荷に同時給電する状態にし、このときからの負荷電力と、前記一方の無停電電源系統の分担電力の変化と、前記双方の無停電電源系統間の横流成分とに基づいて、前記同時給電する期間を制御するラップ期間制御機能を備えたことを特徴とする無停電電源システム。
Two sets of uninterruptible power systems consisting of multiple uninterruptible power supplies operated in parallel or single-unit uninterruptible power supplies, and switching to supply power to the corresponding load from either one of these two uninterruptible power systems In the uninterruptible power supply system comprising a plurality of panels, the output voltages of the uninterruptible power supply systems being phase-synchronized with each other,
When switching the power supply path of the load corresponding to the other uninterruptible power supply system from one uninterruptible power supply system by the respective switching boards,
First, power is supplied simultaneously to the corresponding load from both power supply paths, the load power from this time, the change in the shared power of the one uninterruptible power system, and the cross current component between the two uninterruptible power systems Based on the above, an uninterruptible power supply system comprising a lap period control function for controlling the period of simultaneous power feeding.
請求項1に記載の無停電電源システムにおいて、
前記ラップ期間制御機能は、
前記同時給電中のそれぞれの無停電電源系統の出力電流を検出する電流検出手段と、この時の負荷電流を導出する電流導出手段と、前記負荷への出力電圧を検出する電圧検出手段と、前記出力電流と負荷電流と負荷電圧とに基づき負荷有効電力と横流有効電力と横流無効電力とを演算する電力演算回路と、前記負荷有効電力と横流有効電力と横流無効電力とに基づき前記同時給電する期間を終了させるスイッチオフ判定回路とから形成したことを特徴とする無停電電源システム。
In the uninterruptible power supply system according to claim 1,
The lap period control function is:
Current detecting means for detecting the output current of each uninterruptible power supply system during simultaneous power feeding, current deriving means for deriving a load current at this time, voltage detecting means for detecting an output voltage to the load, and A power calculation circuit that calculates load active power, cross current active power, and cross current reactive power based on output current, load current, and load voltage, and the simultaneous power supply based on the load active power, cross current active power, and cross current reactive power An uninterruptible power supply system formed from a switch-off determination circuit for ending a period.
JP2009121210A 2009-05-19 2009-05-19 Uninterruptible power supply system Active JP5391825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121210A JP5391825B2 (en) 2009-05-19 2009-05-19 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121210A JP5391825B2 (en) 2009-05-19 2009-05-19 Uninterruptible power supply system

Publications (2)

Publication Number Publication Date
JP2010273405A true JP2010273405A (en) 2010-12-02
JP5391825B2 JP5391825B2 (en) 2014-01-15

Family

ID=43420987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121210A Active JP5391825B2 (en) 2009-05-19 2009-05-19 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP5391825B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505457A (en) * 2011-01-12 2014-02-27 ザ・ボーイング・カンパニー Reconfigurable AC interface for smart microgrids
JP5459395B2 (en) * 2010-04-30 2014-04-02 富士通株式会社 Uninterruptible power supply, method of using the same, and server system
JP2014176247A (en) * 2013-03-12 2014-09-22 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP2016525336A (en) * 2013-07-18 2016-08-22 アイネット・レジストリー、 エルエルシーAiNET Registry, LLC System and method for efficient power supply and backup

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746777A (en) * 1993-06-25 1995-02-14 Aichi Denki Seisakusho:Kk Method and apparatus for power supply changeover without instantaneous service interruption
JP2007306643A (en) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd Uninterruptible power supply system
JP2010051098A (en) * 2008-08-21 2010-03-04 Kandenko Co Ltd Uninterruptible power supply switching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746777A (en) * 1993-06-25 1995-02-14 Aichi Denki Seisakusho:Kk Method and apparatus for power supply changeover without instantaneous service interruption
JP2007306643A (en) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd Uninterruptible power supply system
JP2010051098A (en) * 2008-08-21 2010-03-04 Kandenko Co Ltd Uninterruptible power supply switching device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459395B2 (en) * 2010-04-30 2014-04-02 富士通株式会社 Uninterruptible power supply, method of using the same, and server system
JP2014505457A (en) * 2011-01-12 2014-02-27 ザ・ボーイング・カンパニー Reconfigurable AC interface for smart microgrids
JP2014176247A (en) * 2013-03-12 2014-09-22 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP2016525336A (en) * 2013-07-18 2016-08-22 アイネット・レジストリー、 エルエルシーAiNET Registry, LLC System and method for efficient power supply and backup

Also Published As

Publication number Publication date
JP5391825B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6190059B2 (en) Uninterruptible power system
JP4462230B2 (en) Uninterruptible power supply system
JPWO2013118271A1 (en) Parallel power storage system and control method thereof
JP5391825B2 (en) Uninterruptible power supply system
JP4542540B2 (en) Uninterruptible power supply system and inverter circuit
JP5131403B1 (en) Uninterruptible power supply system
JP6772645B2 (en) Inverter device
JP3950340B2 (en) System switching device
JP2018093558A (en) Electric power conversion system
US10361639B1 (en) Power supply apparatus
JP2014036472A (en) Cross flow suppression device in parallel system of uninterruptible power supply
JP4379608B2 (en) Control method of uninterruptible power supply system
JP2004023922A (en) Voltage compensating circuit for parallelly operated inverter
US20230208185A1 (en) Uninterruptible power supply apparatus
JP2019115179A (en) Instantaneous voltage drop compensation device and instantaneous voltage drop compensation system
JP5818152B2 (en) DC power supply system
JP2010220424A (en) Uninterruptible power supply system
JP4483102B2 (en) Parallel operation control method for voltage type inverter
JP3956794B2 (en) Parallel operation current detector for uninterruptible power supply and current detection method
US20120175957A1 (en) Arrangement for an uninterruptible power supply
JP5324151B2 (en) Uninterruptible power supply system
US9124128B2 (en) Arrangement for an uninterruptible power supply
US9130399B2 (en) Arrangement for an uninterruptible power supply
JP7075844B2 (en) Uninterruptible power system
JP2008154403A (en) Operation control unit for uninterruptible power supply system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250