JP2010049001A - Image capturing apparatus - Google Patents

Image capturing apparatus Download PDF

Info

Publication number
JP2010049001A
JP2010049001A JP2008212699A JP2008212699A JP2010049001A JP 2010049001 A JP2010049001 A JP 2010049001A JP 2008212699 A JP2008212699 A JP 2008212699A JP 2008212699 A JP2008212699 A JP 2008212699A JP 2010049001 A JP2010049001 A JP 2010049001A
Authority
JP
Japan
Prior art keywords
focus
imaging
ircf
optical path
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212699A
Other languages
Japanese (ja)
Other versions
JP5178396B2 (en
Inventor
Shunsuke Chino
俊介 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008212699A priority Critical patent/JP5178396B2/en
Publication of JP2010049001A publication Critical patent/JP2010049001A/en
Application granted granted Critical
Publication of JP5178396B2 publication Critical patent/JP5178396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an image capturing apparatus capable of photographing an image free from defocus when observed, regardless of insertion and removal of an IRCF to/from an optical path. <P>SOLUTION: The image capturing apparatus includes: an imaging optical system including a focus lens; an imaging means for converting an image, formed by the imaging optical system, into an electrical video signal; a wavelength band selecting means insertable into or retractable from the optical path of the imaging optical system and used for selecting a specific wavelength band; an insertion and removal means for inserting the wavelength band selecting means into the optical path or retracting it therefrom; and a focusing means for driving the focus lens of the imaging optical system and focusing it. When the insertion and removal means inserts the wavelength band selecting means into the optical path or retracting it therefrom, the focusing means focuses the imaging optical system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮像光学系の光路中に赤外光除去フィルタを挿脱可能に装着し、可視光のみで撮影する場合と、赤外光を含んだ光で撮影する場合に好適な撮影装置に関するものである。   The present invention relates to an imaging apparatus suitable for mounting an infrared light removal filter in an optical path of an imaging optical system so as to be detachable and shooting with only visible light and shooting with light including infrared light. Is.

従来より物体像を得るための撮像装置は、入射光を結像する撮影レンズと、撮影レンズにより結像した光学像を電気信号に変換する撮像素子を有している。更に撮像素子から得られた電気信号に対し各種の信号処理を施すことにより所定の画像信号を得る信号処理手段とを有している。   2. Description of the Related Art Conventionally, an imaging apparatus for obtaining an object image has a photographing lens that forms incident light and an imaging element that converts an optical image formed by the photographing lens into an electrical signal. Furthermore, it has a signal processing means for obtaining a predetermined image signal by performing various kinds of signal processing on the electrical signal obtained from the image sensor.

通常、CCDセンサ又はCMOSセンサ等の撮像素子を一枚だけ用いた単板式のセンサを用いた撮像装置では、画素ごとに異なる色フィルタが設けられている。   Usually, in an image pickup apparatus using a single plate type sensor using only one image pickup element such as a CCD sensor or a CMOS sensor, a different color filter is provided for each pixel.

赤(R)、緑(G)、青(B)色光の色信号を得るには、R、G、B色光に対応する光の帯域を透過させる、R、G、B色の原色フィルタを用いる場合と、マジェンタ(Mg)、シアン(Cy)、イエロー(Ye)等の補色フィルタを用いる場合がある。   In order to obtain color signals of red (R), green (G), and blue (B) light, R, G, and B primary color filters that transmit light bands corresponding to R, G, and B color light are used. In some cases, complementary color filters such as magenta (Mg), cyan (Cy), and yellow (Ye) may be used.

上記のいずれの色フィルタも染料もしくは顔料を用いて目的の色を透過させるようにその分光透過特性が設計されている。これらの各色フィルタは近赤外領域でも一定の透過率を有する。   Each of the above color filters is designed to have a spectral transmission characteristic so as to transmit a target color using a dye or a pigment. Each of these color filters has a constant transmittance even in the near infrared region.

また、撮像素子の光電変換部は主にシリコン(Si)などの半導体で構成されている。このため、光電変換部の分光感度特性は波長の長い近赤外光まで感度を有している。よって、色フィルタを具備した撮像素子から得られた信号には近赤外領域の信号も含まれている。   In addition, the photoelectric conversion unit of the image sensor is mainly composed of a semiconductor such as silicon (Si). For this reason, the spectral sensitivity characteristic of the photoelectric conversion unit has sensitivity up to near infrared light having a long wavelength. Therefore, a signal obtained from an image sensor provided with a color filter includes a signal in the near infrared region.

一方、人間の色に対する感度特性である色覚特性および明るさに対する感度特性である比視感度特性はその感度が可視域といわれる波長380nmから波長780nmまでである。この感度特性では、波長700nmより長波長域ではほとんど感度がない。   On the other hand, the color vision characteristic, which is a sensitivity characteristic for human colors, and the relative visibility characteristic, which is a sensitivity characteristic for brightness, range from a wavelength of 380 nm to a wavelength of 780 nm. In this sensitivity characteristic, there is almost no sensitivity in a wavelength region longer than the wavelength of 700 nm.

そこで、多くの撮像装置では、色再現性を人間の色覚特性に合わせるため、撮像素子の前(光入射側)に近赤外領域の光線を通過させない視感度補正用の赤外光除去フィルタ(以後、IRCFと称する)を設けている。   Therefore, in many image pickup apparatuses, in order to match color reproducibility with human color vision characteristics, an infrared light removal filter for correcting visibility that does not allow light in the near infrared region to pass in front of the image sensor (on the light incident side) ( Hereinafter referred to as IRCF).

一方、多くの撮像装置には自動焦点調整機構が設けられている。自動焦点調整機構の1つとして、所定の駆動ステップで撮影レンズのフォーカスレンズを駆動し、所定の時間間隔で撮影レンズと撮像素子を介して得られる画像信号の高周波成分を抽出する。そして高周波成分の最大値を示す位置にフォーカスレンズを駆動させ、撮影レンズのピントを合わせる、所謂TVAF方式が知られている。   On the other hand, many image pickup apparatuses are provided with an automatic focus adjustment mechanism. As one of the automatic focus adjustment mechanisms, the focus lens of the photographing lens is driven at a predetermined driving step, and high frequency components of an image signal obtained via the photographing lens and the image sensor are extracted at predetermined time intervals. A so-called TVAF system is known in which a focus lens is driven to a position showing the maximum value of a high-frequency component, and a photographing lens is focused.

撮像装置として、例えば監視カメラ等のように色再現性よりも感度を重視する場合には、近赤外領域の光を利用する。このため、IRCFを光路中から退避させて撮像素子に近赤外光を受光させて、被写体を撮像している。   For example, in the case where sensitivity is more important than color reproducibility as an imaging device, light in the near infrared region is used. For this reason, the IRCF is retracted from the optical path, and near-infrared light is received by the image sensor to image the subject.

IRCFを光路中から挿脱すると、入光してくる波長やIRCFの厚さに相当する分だけ光路長が変化してしまう。   When the IRCF is inserted into and removed from the optical path, the optical path length changes by an amount corresponding to the wavelength of incoming light and the thickness of the IRCF.

したがって、IRCFの光路中からの挿脱によって撮影レンズの合焦位置が異なり、画像信号の高周波成分を検出するTVAF方式を用いた撮像装置では、最適なフォーカスレンズの駆動範囲が異なってくる。   Therefore, the focus position of the photographic lens differs depending on the insertion / removal of the IRCF from the optical path, and the optimum focus lens drive range differs in an imaging apparatus using the TVAF method that detects a high-frequency component of an image signal.

かかる問題点を解決するために、IRCFを光路中に挿入している場合と、挿入していない場合で、フォーカスレンズの位置、及びフォーカスレンズの駆動範囲を変更するようにした撮像装置が知られている(特許文献1)。
特開2002−221656号公報
In order to solve such a problem, an imaging apparatus is known in which the position of the focus lens and the drive range of the focus lens are changed depending on whether the IRCF is inserted into the optical path or not. (Patent Document 1).
JP 2002-221656 A

IRCFの光路中の有無でフォーカスレンズの駆動範囲を異ならせる機構を有する撮像装置は、TVAF方式により高精度な焦点検出が容易となる。   An imaging apparatus having a mechanism that varies the drive range of the focus lens depending on whether or not it is in the IRCF optical path facilitates highly accurate focus detection by the TVAF method.

特許文献1では、IRCFの光路中からの挿抜状況をレリーズスイッチが押されると同時に判断している。ビデオカメラのように連続的に撮影される撮像装置では、撮影中にIRCFが光路中から挿脱される場合がある。この場合にはIRCFの挿抜後、フォーカスレンズの移動及びフォーカスレンズの駆動範囲を設定するまでの間、ピントのずれた画像が撮影されてしまう。これは撮影上、あまり好ましくない。   In Patent Document 1, the insertion / extraction status of the IRCF from the optical path is determined simultaneously with the release switch being pressed. In an imaging device such as a video camera that continuously shoots, the IRCF may be inserted and removed from the optical path during shooting. In this case, an out-of-focus image is shot after the IRCF is inserted and removed until the focus lens moves and the focus lens drive range is set. This is not very preferable in terms of photography.

本発明はIRCFを光路中から挿抜しても、観察上ピントズレのないような映像を撮影することができる撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an image pickup apparatus that can take an image that is not out of focus in observation even when an IRCF is inserted into or removed from an optical path.

本発明の撮像装置は、フォーカスレンズを含む撮像光学系と
前記撮像光学系により結像した像を電気的映像信号に変換する撮像手段と、
前記撮像光学系の光路中に挿脱可能に設け、特定波長帯を選別する波長帯選別手段と、
前記波長帯選別手段を光路中から挿脱する挿脱手段と、
前記撮像光学系のフォーカスレンズを駆動させ、ピント調整を行うピント調整手段を有し、
前記挿脱手段による前記波長帯選別手段の光路中からの挿脱に伴い、前記ピント調整手段で前記撮像光学系のピント調整を行うことを特徴としている。
An imaging apparatus according to the present invention includes an imaging optical system including a focus lens, an imaging unit that converts an image formed by the imaging optical system into an electrical video signal,
A wavelength band selecting means that is detachably provided in the optical path of the imaging optical system, and that selects a specific wavelength band;
Inserting / removing means for inserting / removing the wavelength band selecting means from the optical path;
Focus adjustment means for driving the focus lens of the imaging optical system and performing focus adjustment;
In accordance with the insertion / removal of the wavelength band selection unit from the optical path by the insertion / removal unit, the focus adjustment unit adjusts the focus of the imaging optical system.

本発明によれば、IRCFを光路中から挿抜しても、観察上ピントズレのないような映像を撮影することができる撮像装置が得られる。   According to the present invention, it is possible to obtain an imaging apparatus that can capture an image that is not out of focus on observation even when the IRCF is inserted into and removed from the optical path.

以下に、本発明の撮像装置の実施の形態を添付の図面に基づいて詳細に説明する。   Embodiments of an imaging apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

本発明の撮像装置は、フォーカスレンズを含む撮像光学系により結像した像をCCD等の撮像手段で電気的映像信号に変換する。   The imaging apparatus of the present invention converts an image formed by an imaging optical system including a focus lens into an electrical video signal by an imaging means such as a CCD.

撮像光学系の光路中には特定波長帯(例えば赤外光)を選別する波長帯選別手段が挿脱手段によって光路中から挿脱される。   A wavelength band selecting means for selecting a specific wavelength band (for example, infrared light) is inserted into and removed from the optical path by the inserting / removing means in the optical path of the imaging optical system.

撮像光学系のフォーカスレンズを駆動させ、ピント調整を行うピント調整手段を有している。   Focus adjustment means for adjusting the focus by driving the focus lens of the imaging optical system is provided.

波長帯選別手段の光路中からの挿脱に伴い、ピント調整手段でフォーカスレンズを予め設定した位置に移動させたり、又はフォーカスレンズの駆動範囲を変更する等して撮像光学系のピント調整を行っている。   As the wavelength band selection unit is inserted into and removed from the optical path, the focus adjustment unit moves the focus lens to a preset position, or changes the focus lens drive range, etc., to adjust the focus of the imaging optical system. ing.

図1は、本発明の実施例1の要部構成図である。   FIG. 1 is a main part configuration diagram of Embodiment 1 of the present invention.

図1において、1は撮像レンズ(撮像光学系)である。2は赤外光除去フィルタ(IRCF)である。3はCCD(撮像手段)(撮像素子)である。撮像レンズ1から入射した被写体からの光は、CCD3の受光面上に像を結像する。   In FIG. 1, reference numeral 1 denotes an imaging lens (imaging optical system). Reference numeral 2 denotes an infrared light removal filter (IRCF). Reference numeral 3 denotes a CCD (imaging means) (imaging device). The light from the subject incident from the imaging lens 1 forms an image on the light receiving surface of the CCD 3.

4はAD変換部であり、CCD3からのアナログ信号をAD変換して、デジタル信号に変換する。5は映像信号処理部であり、AD変換部4からのデジタル化された信号に色変換、AE処理、WB処理を行う。   Reference numeral 4 denotes an AD conversion unit which AD-converts an analog signal from the CCD 3 and converts it into a digital signal. A video signal processing unit 5 performs color conversion, AE processing, and WB processing on the digitized signal from the AD conversion unit 4.

更に信号処理された映像の階調変換を行うγ処理など諸々の画像処理を行う。また、被写体のコントラスト値からAF(自動合焦)に使用されるAF情報Hを算出する。また、IRCF挿抜判定に使用される輝度情報Yを算出する。6は映像信号出力部であり、映像の出力を行う。   Further, various image processing such as γ processing for performing tone conversion of the signal-processed video is performed. Also, AF information H used for AF (automatic focusing) is calculated from the contrast value of the subject. Also, luminance information Y used for IRCF insertion / extraction determination is calculated. A video signal output unit 6 outputs video.

7はIRCF2が光路中に挿脱されているか否かを判定するIRCF挿脱判定部である。例えば映像信号処理部5にて算出された輝度情報Yを基に、IRCFの挿脱の判定を行う。   Reference numeral 7 denotes an IRCF insertion / removal determination unit that determines whether or not IRCF2 is inserted / removed in / from the optical path. For example, IRCF insertion / removal determination is performed based on the luminance information Y calculated by the video signal processing unit 5.

通常、輝度情報Yが十分大きい場合には、IRCF2を光路中に挿入し、近赤外領域の光を用いず撮影し、カラー映像を出力する。   Normally, when the luminance information Y is sufficiently large, the IRCF 2 is inserted into the optical path, the image is taken without using light in the near infrared region, and a color image is output.

輝度情報Yが小さくなると、CCD3が近赤外域にも感度を有することを利用し、IRCF2を光路長から抜き、撮影を行う。   When the luminance information Y becomes small, taking advantage of the fact that the CCD 3 also has sensitivity in the near infrared region, the IRCF 2 is extracted from the optical path length, and photographing is performed.

IRCF2を光路中から抜くことで、近赤外の光も受光し、感度の向上を行う。9はIRCF制御部であり、IRCF挿抜判定部7からの指示によりIRCF2の挿抜を行う。8はフォーカス処理部で、オートフォーカス(自動焦点検出)(以下、AF)時には映像信号処理部5で算出されたAF用の評価値であるAF情報Hを基に撮影レンズ1のピント調整を行う。   By removing IRCF2 from the optical path, near-infrared light is also received and sensitivity is improved. An IRCF control unit 9 inserts and removes IRCF 2 according to an instruction from the IRCF insertion / extraction determination unit 7. Reference numeral 8 denotes a focus processing unit, which performs focus adjustment of the photographing lens 1 based on AF information H that is an AF evaluation value calculated by the video signal processing unit 5 during autofocus (automatic focus detection) (hereinafter referred to as AF). .

また、マニュアルフォーカス(以下、MF)時には被写体距離情報Dにピントが合うように撮影レンズ1を駆動制御する。レンズ制御部10はフォーカス処理部8から指定されたレンズ位置情報に撮影レンズ1の合焦レンズ(フォーカスレンズ)を移動させる。   Further, during manual focus (hereinafter referred to as MF), the photographing lens 1 is driven and controlled so that the subject distance information D is in focus. The lens control unit 10 moves the focusing lens (focus lens) of the photographing lens 1 to the lens position information designated by the focus processing unit 8.

図2は図1のIRCF2の構成概略図である。20はIRCFであり、通常撮影時は撮影レンズ1を通った光がIRCF20を通り、CCD3に受光される。21は可視光及び赤外光の透過領域であり、ダミーガラス又は単なる空枠などから成り、IRCF20でカットされていた波長成分(赤外成分)も透過させる。   FIG. 2 is a schematic diagram of the configuration of the IRCF 2 in FIG. Reference numeral 20 denotes an IRCF. During normal photographing, light passing through the photographing lens 1 passes through the IRCF 20 and is received by the CCD 3. Reference numeral 21 denotes a transmission region of visible light and infrared light, which is made of a dummy glass or a simple empty frame and transmits a wavelength component (infrared component) cut by the IRCF 20.

被写体輝度が小さいときには、近赤外光を利用し感度を上げるため、IRCF20を光路外に位置させ、透過領域21が光路中に位置するようにする。これにより、透過領域21を通って、CCD3に光束が集光するようにしている。   When the subject brightness is low, the IRCF 20 is positioned outside the optical path and the transmission region 21 is positioned in the optical path in order to increase sensitivity using near infrared light. Thereby, the light beam is condensed on the CCD 3 through the transmission region 21.

透過領域21には、IRCF20の厚み分、光路長が変わってしまわないように、IRCF20と同様の光路長(厚さ)を要するダミーガラスを入れておくのが良い。22はIRCF20を保持するIRCF枠(保持手段)である。   In the transmission region 21, it is preferable to put a dummy glass having an optical path length (thickness) similar to that of the IRCF 20 so that the optical path length is not changed by the thickness of the IRCF 20. An IRCF frame (holding means) 22 holds the IRCF 20.

図3はCCD3の分光特性およびIRCF部20の透過分光特性を表した説明図である。原色CCDの場合、R、G、Bが、カラーフィルタを加味した分光特性となっている。IRCFは近赤外よりも長波長側の光を除去する分光特性を有している。   FIG. 3 is an explanatory diagram showing the spectral characteristics of the CCD 3 and the transmission spectral characteristics of the IRCF section 20. In the case of a primary color CCD, R, G, and B have spectral characteristics that take color filters into account. IRCF has a spectral characteristic that removes light having a wavelength longer than that of the near infrared.

IRCF部20が光路中から抜かれることにより、IRCF部20で除去されていた波長約650[nm]より長波長側の光に対しても受光を行うため、感度をあげることができる。   By removing the IRCF unit 20 from the optical path, light is received even for light having a wavelength longer than the wavelength of about 650 [nm] that has been removed by the IRCF unit 20, so that sensitivity can be increased.

その逆に、近赤外光の影響によりR成分の感度が著しくあがるため、カラーバランスが崩れ、通常時はIRCF部20を光路中に挿入して撮影する。   On the contrary, the sensitivity of the R component is significantly increased due to the influence of near-infrared light, so that the color balance is lost, and the IRCF section 20 is normally inserted into the optical path for photographing.

次に、本発明におけるIRCF2の光路中からの抜出時の撮影レンズ1のピント調整について説明する。   Next, the focus adjustment of the taking lens 1 when the IRCF 2 is extracted from the optical path in the present invention will be described.

監視カメラのように昼夜問わず使用されるカメラにおいては、日中、明度が十分な場合には、IRCF2を光路中に挿入し、カラー映像の出力を行う。夜間になり、明度が不十分になってくると、ゲインによるノイズの影響から色再現性よりも感度を重視する。   In cameras that are used day and night, such as surveillance cameras, when the brightness is sufficient during the day, IRCF 2 is inserted into the optical path to output a color image. When lightness becomes insufficient at night, sensitivity is more important than color reproducibility due to the effect of noise due to gain.

その場合には、可視光に加えて近赤外領域の光を利用するため、IRCF2を光路外に退避させて撮像素子3に近赤外光を受光させる。   In that case, in order to use light in the near infrared region in addition to visible light, the IRCF 2 is retracted out of the optical path and the image sensor 3 receives near infrared light.

その際に、単にIRCF2を光路中より退避させるとIRCF2の光路長分だけピント位置が変化してしまう。このため、透過領域21にダミーガラスを挿入し、光路長をIRCF2の挿抜により変わらないようにしても良い。   At this time, if the IRCF 2 is simply retracted from the optical path, the focus position changes by the optical path length of the IRCF 2. For this reason, a dummy glass may be inserted into the transmission region 21 so that the optical path length is not changed by inserting / removing the IRCF 2.

ダミーガラスがない場合、光路長が変化してしまう。このため、ピントを合わせるために予め設定されているフォーカスレンズの位置又は駆動範囲を変化させたり光路長の変化分フォーカスレンズを追従させる必要がある。   When there is no dummy glass, the optical path length changes. For this reason, it is necessary to change the position or driving range of the focus lens set in advance for focusing or to follow the focus lens by the change in the optical path length.

このときの光路長の変化値は予めフォーカス処理部8に記憶させておく。この他、図1の構成に光源判定部11を設け、図7のように構成して、映像信号処理部5からの色情報をもとに光源の種類を推定することにより、光路長の変化分だけでなく、波長(照明光の分光特性)によるピント量を補正するようにしても良い。   The change value of the optical path length at this time is stored in the focus processing unit 8 in advance. In addition, the light source determination unit 11 is provided in the configuration of FIG. 1 and the configuration of the light source determination unit 11 is configured as shown in FIG. In addition to the minute, the focus amount based on the wavelength (the spectral characteristic of the illumination light) may be corrected.

監視カメラでマニュアルフォーカスにて被写体を撮影している場合、常時、所望の被写体距離のピントを維持していなければならない。IRCF2を光路中から所定時間を要した後にフォーカスの追従が行われると、IRCF2の挿抜とフォーカス追従の間、ピントを最良の位置に維持することができない期間が発生してしまう。   When shooting a subject with manual focus by a surveillance camera, it is necessary to always maintain the focus of a desired subject distance. If the focus tracking is performed after the IRCF 2 has taken a predetermined time from the optical path, a period during which the focus cannot be maintained at the best position occurs between the insertion and removal of the IRCF 2 and the focus tracking.

そのため、IRCF2の挿抜に連動してフォーカスを追従するのが良い。さらに、IRCF2の挿抜によるピントの最良位置の維持のためのフォーカスの追従動作がユーザー(撮影者)の目に付いてしまう可能性がある。   Therefore, it is preferable to follow the focus in conjunction with the insertion / extraction of IRCF2. Further, there is a possibility that the focus follow-up operation for maintaining the best focus position by inserting / removing the IRCF 2 may be noticed by the user (photographer).

本実施例において、例えば図4のようなシーンを撮影していた場合、IRCF2の挿抜において、図5のような撮像手段3の撮像画面上をIRCF枠22の一部が通過する瞬間が存在する。そこでIRCF2に連動して、かつ、IRCF枠22が撮影画面内を通過している時間内でフォーカスレンズを追従させる。   In this embodiment, for example, when a scene as shown in FIG. 4 is shot, there is a moment when a part of the IRCF frame 22 passes on the imaging screen of the imaging means 3 as shown in FIG. . Therefore, the focus lens is caused to follow in conjunction with IRCF2 and within a time during which the IRCF frame 22 passes through the imaging screen.

本実施例ではIRCF20を保持するIRCF枠22(保持手段)の少なくとも一部が撮像手段の撮像画面を通過中にピント調整手段により予め設定されたピント調整を行っている。   In this embodiment, at least a part of the IRCF frame 22 (holding means) that holds the IRCF 20 performs the focus adjustment set in advance by the focus adjustment means while passing through the imaging screen of the imaging means.

特に本実施例では、IRCF枠(保持手段)22が撮像画面3を通過する時間(第1の時間)より長くIRCF20が光路中からの挿脱に要する時間(第2の時間)よりも短い時間でピント調整を行っている。   In particular, in this embodiment, the IRCF frame (holding means) 22 is longer than the time required for passing the imaging screen 3 (first time) and shorter than the time required for the IRCF 20 to be inserted into and removed from the optical path (second time). To adjust the focus.

これにより、IRCF2の挿抜によるピントズレをなくし、さらにピントのボケた画像からピントの合った画像までの変化が遅くなるためユーザー(撮影者)に気付かれずフォーカスの追従を行うことができる。   As a result, the focus shift due to the insertion / extraction of the IRCF 2 is eliminated, and the change from the image that is out of focus to the image that is in focus is delayed, so that the focus can be followed without being noticed by the user (photographer).

次に、図6のフローチャートを用いて、マニュアルフォーカス時、IRCF2の挿抜によるフォーカスについて説明する。被写体の輝度情報Yが低下してきて、閾値Ythよりも輝度情報Yが小さくなると、IRCF挿脱判定部7にて、IRCF2の抜出の指示がIRCF制御部9に送られ、IRCF2が光路中から抜出される。その際に、IRCF2が抜かれた情報もIRCF挿脱判定部7からフォーカス処理部8に送られる(S601)。   Next, focusing by IRCF2 insertion / extraction during manual focusing will be described using the flowchart of FIG. When the luminance information Y of the subject decreases and the luminance information Y becomes smaller than the threshold Yth, the IRCF insertion / removal determination unit 7 sends an IRCF2 extraction instruction to the IRCF control unit 9, and the IRCF2 is removed from the optical path. Extracted. At this time, the information from which IRCF2 is removed is also sent from the IRCF insertion / removal determination unit 7 to the focus processing unit 8 (S601).

フォーカス処理部8は、IRCF制御部9からのIRCF2の位置情報を基にIRCF枠22が撮影画面通過中か判断する(S602)。   The focus processing unit 8 determines whether the IRCF frame 22 is passing the imaging screen based on the IRCF2 position information from the IRCF control unit 9 (S602).

この際、IRCF制御部9のIRCF2の位置情報を基に判断しなくても、IRCF挿抜判定部7からIRCF2の挿抜指示からの時間をカウントして、IRCF枠22が撮影画面中通過中か否かを判断しても構わない。   At this time, even if the IRCF control unit 9 does not make a determination based on the IRCF2 position information, the time from the IRCF2 insertion / removal instruction from the IRCF insertion / removal determination unit 7 is counted to determine whether the IRCF frame 22 is passing through the imaging screen. You may judge whether.

S602にてIRCF枠22が撮影画面通過中の場合、撮影レンズ1を構成するフォーカスレンズを追従し、IRCF2を挿脱した分のピント補正を行う。また、IRCF枠22の挿抜状況によりフォーカスレンズの駆動範囲を異ならせている場合、IRCF2の挿抜に連動して、フォーカスレンズの駆動範囲を変更することもある。   If the IRCF frame 22 is passing the shooting screen in S602, the focus lens that constitutes the shooting lens 1 is followed, and focus correction corresponding to the insertion / removal of the IRCF 2 is performed. In addition, when the driving range of the focus lens is varied depending on the insertion / removal state of the IRCF frame 22, the driving range of the focus lens may be changed in conjunction with the insertion / removal of the IRCF2.

上記のように、IRCF2の駆動に伴い、フォーカスレンズを追従することによりIRCF2の駆動によるピントズレを補正することができる。   As described above, the focus shift caused by driving the IRCF2 can be corrected by following the focus lens as the IRCF2 is driven.

さらに、IRCF枠22の撮影画面通過中にフォーカスレンズを追従させることにより、フォーカスレンズの追従によるピント移動動作をユーザーに気づかれず行え、違和感のない映像を観察することができる。   Further, by causing the focus lens to follow while the IRCF frame 22 passes through the photographing screen, the focus movement operation by the focus lens can be performed without being noticed by the user, and an uncomfortable image can be observed.

本発明の実施例2の形態を説明する。   Embodiment 2 of the present invention will be described.

実施例2の構成図は、図1の実施例1と同様であるため説明は割愛する。   The configuration of the second embodiment is the same as that of the first embodiment shown in FIG.

次に、実施例2におけるIRCF2の光路中からの抜出時の撮影レンズ1のピント調整について説明する。   Next, focus adjustment of the taking lens 1 when the IRCF 2 is extracted from the optical path in the second embodiment will be described.

監視カメラのように昼夜問わず使用されるカメラにおいては、日中、明度が十分な場合には、IRCF2を光路中に挿入し、カラー映像の出力を行う。夜間になり、明度が不十分になってくると、ゲインによるノイズの影響から色再現性よりも感度を重視する。   In cameras that are used day and night, such as surveillance cameras, when the brightness is sufficient during the day, IRCF 2 is inserted into the optical path to output a color image. When lightness becomes insufficient at night, sensitivity is more important than color reproducibility due to the effect of noise due to gain.

その場合には、可視光に加えて近赤外領域の光を利用するため、IRCF2を光路外へ退避させて撮像素子3に近赤外光を受光させる。   In that case, in order to use light in the near infrared region in addition to visible light, the IRCF 2 is withdrawn out of the optical path and the image sensor 3 receives near infrared light.

その際に、IRCF2の光路長分だけ撮影光路長が変化するため、透過領域21にダミーガラスを挿入し、光路長をIRCF2の挿抜により変わらないようにしている。ダミーガラスがない場合、光路長が変化してしまう。このため、ピントを合わせるためにフォーカスレンズの駆動範囲を変化させる、および光路長の変化分だけフォーカスレンズを追従させる必要がある。   At this time, since the photographing optical path length changes by the optical path length of IRCF2, a dummy glass is inserted into the transmission region 21 so that the optical path length is not changed by insertion / extraction of IRCF2. When there is no dummy glass, the optical path length changes. Therefore, it is necessary to change the driving range of the focus lens in order to focus, and to follow the focus lens by the change in the optical path length.

監視カメラで外部からの操作でマニュアルフォーカスにて被写体を撮影している場合は、常時、所望の被写体距離のピントを維持していなければならない。IRCF2を抜いて所定時間を要した後にフォーカスレンズの追従が行われると、IRCF2の挿抜とフォーカス追従の間、ピントを維持できない期間が発生してくる。   When a subject is photographed with manual focus by an operation from the outside with a surveillance camera, the focus of a desired subject distance must always be maintained. If tracking of the focus lens is performed after IRCF2 is removed and a predetermined time is required, a period during which the focus cannot be maintained occurs between insertion and removal of IRCF2 and focus tracking.

そのため、IRCF2の光路中からの挿抜に連動して予め設定した位置にフォーカスレンズを追従している。   Therefore, the focus lens follows the preset position in conjunction with the insertion / extraction of the IRCF 2 from the optical path.

さらに、IRCF2の挿入によるピント維持のためのフォーカスレンズの追従がユーザーの目に付いてしまう可能性がある。そのため、フォーカスレンズの追従時のフォーカス速度を十分遅くすることにより、徐々に画像が良くなるように変化させる。これによれば、フォーカス追従の瞬間的な動きをなくして、フォーカス調整がユーザーに気付かれることなく行うことができる。   Furthermore, there is a possibility that the focus lens tracking for maintaining the focus by inserting the IRCF 2 may be noticed by the user. Therefore, the image is gradually changed so as to be improved by sufficiently slowing the focus speed when the focus lens follows. According to this, it is possible to eliminate the instantaneous movement of the focus follow-up and perform the focus adjustment without being noticed by the user.

ここで、フォーカス追従時のフォーカス速度について説明する。IRCF枠22が画面上に見え始め、IRCF枠22が画面から見えなくなるまで要する時間はおおよそ10V〜60Vかかり、人がIRCF2の通過を認識できるだけの時間がかかっている。ここで、1Vは1/60秒である。   Here, the focus speed at the time of following the focus will be described. The time required until the IRCF frame 22 starts to appear on the screen and the IRCF frame 22 disappears from the screen is approximately 10 V to 60 V, and it takes time for a person to recognize the passage of the IRCF 2. Here, 1V is 1/60 second.

フォーカスの追従に要するフォーカスレンズの移動量はIRCF2の移動量に比べ、十分小さい。IRCF枠22の移動に要する以上の時間をかけてフォーカスの追従を行うような速度で追従されることにより、フォーカス追従の動きによる画像の急激な変化をユーザーに気付かれないようにすることができる。   The amount of movement of the focus lens required to follow the focus is sufficiently smaller than the amount of movement of IRCF2. By following at such a speed as to follow the focus over the time required for the movement of the IRCF frame 22, it is possible to prevent the user from noticing a sudden change in the image due to the movement of the focus following. .

ただ、その後、IRCF20および透過領域21が入りきるまでにさらに時間を要する。IRCF20および透過領域21が入りきるまでの時間を要して駆動してしまっては、IRCF20の挿抜が終わったにも関わらず、フォーカスが追従しきれていない状態になってしまう。   However, after that, it takes more time until the IRCF 20 and the transmission region 21 enter. If the IRCF 20 and the transmission region 21 are driven for a long time until they enter, the focus may not be able to follow even though the insertion and removal of the IRCF 20 is completed.

そのため、IRCF枠(保持手段)22の移動に要する時間(第1の時間)以上(よりも長く)でかつIRCF20の挿抜終了に要する時間(第2の時間)以下(よりも短い)でフォーカス追従するのが望ましい。   Therefore, the focus follow-up is longer than the time required for the movement of the IRCF frame (holding means) 22 (first time) (longer) and shorter than the time required for completion of insertion / removal of the IRCF 20 (second time) (shorter). It is desirable to do.

また、マニュアルフォーカス(手動ピント調整手段)でのピント調整に使用されるフォーカス速度はピント面に画像が止められるように十分遅い速度で移動させている。   Further, the focus speed used for focus adjustment in manual focus (manual focus adjustment means) is moved at a sufficiently slow speed so that the image is stopped on the focus surface.

そのため、マニュアルフォーカスでのピント調整に使用されるフォーカス速度よりもIRCFの光路中からの挿脱に伴うフォーカス追従におけるフォーカスレンズのフォーカス速度を遅く設定している。   For this reason, the focus lens focus speed is set slower than the focus speed used for focus adjustment in manual focus in focus follow-up accompanying insertion / removal of the IRCF in the optical path.

即ち手動ピント調整手段により、撮像光学系のフォーカスレンズを駆動させる速度に比べてIRCFの光路中からの挿脱に伴いピント調整を行うときの撮像光学系のフォーカスレンズの速度を低速としている。   That is, the speed of the focus lens of the imaging optical system when the focus adjustment is performed with the insertion / removal of the IRCF from the optical path is made slower than the speed of driving the focus lens of the imaging optical system by the manual focus adjustment means.

上記のように、フォーカス追従時の速度を十分遅く設定することにより、フォーカスレンズ移動によるピント移動動作をユーザーに気づかれず行え、違和感のない映像とすることができる。   As described above, by setting the speed at the time of following the focus sufficiently low, the focus movement operation by moving the focus lens can be performed without being noticed by the user, and an uncomfortable image can be obtained.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

例えば赤外光除去フィルター(IRCF)の代わりに色フィルタ、紫外線除去フィルタ等を用いても良い。   For example, a color filter, an ultraviolet light removal filter, or the like may be used instead of the infrared light removal filter (IRCF).

本発明の実施例1の構成図Configuration diagram of Embodiment 1 of the present invention 図1のIRCFの構成図Configuration of IRCF in FIG. 図1のCCDの分光特性およびIRCFの透過特性の説明図Explanatory diagram of the spectral characteristics of the CCD and the transmission characteristics of the IRCF in FIG. IRCF挿入時の撮像素子面上での撮影シーンの一例の説明図Explanatory drawing of an example of the imaging | photography scene on the image pick-up element surface at the time of IRCF insertion IRCF枠通過中の撮像素子面上での撮影シーンの一例の説明図Explanatory drawing of an example of the imaging | photography scene on the image pick-up element surface during IRCF frame passage 本発明の実施例1の制御フロー図FIG. 1 is a control flow diagram of Embodiment 1 of the present invention. 本発明の実施例の他の形態の構成図The block diagram of the other form of the Example of this invention

符号の説明Explanation of symbols

1 撮影光学系
2 赤外光除去フィルタ(IRCF)
3 撮像手段
4 AD変換部
5 映像信号処理部
6 映像信号出力部
7 IRCF挿脱判定部
8 フォーカス処理部
9 IRCF制御部
10 レンズ制御部
11 光源判定部
22 保持手段
20 IRCF
21 ダミーガラス
1 Imaging optical system 2 Infrared light removal filter (IRCF)
3 Imaging means 4 AD conversion section 5 Video signal processing section 6 Video signal output section 7 IRCF insertion / removal determination section 8 Focus processing section 9 IRCF control section 10 Lens control section 11 Light source determination section 22 Holding means 20 IRCF
21 Dummy glass

Claims (5)

フォーカスレンズを含む撮像光学系と
前記撮像光学系により結像した像を電気的映像信号に変換する撮像手段と、
前記撮像光学系の光路中に挿脱可能に設け、特定波長帯を選別する波長帯選別手段と、
前記波長帯選別手段を光路中から挿脱する挿脱手段と、
前記撮像光学系のフォーカスレンズを駆動させ、ピント調整を行うピント調整手段を有し、
前記挿脱手段による前記波長帯選別手段の光路中からの挿脱に伴い、前記ピント調整手段で前記撮像光学系のピント調整を行うことを特徴とする撮像装置。
An imaging optical system including a focus lens; and an imaging means for converting an image formed by the imaging optical system into an electrical video signal;
A wavelength band selecting means that is detachably provided in the optical path of the imaging optical system, and that selects a specific wavelength band;
Inserting / removing means for inserting / removing the wavelength band selecting means from the optical path;
Focus adjustment means for driving the focus lens of the imaging optical system and performing focus adjustment;
An image pickup apparatus, wherein the focus adjustment unit performs focus adjustment of the image pickup optical system when the wavelength band selection unit is inserted into and removed from the optical path by the insertion / removal unit.
前記波長帯選別手段の光路中からの挿脱に伴い、前記フォーカスレンズの駆動範囲を変更することを特徴とする請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the driving range of the focus lens is changed in accordance with insertion / removal of the wavelength band selection unit from the optical path. 前記波長帯選別手段を保持する保持手段を有し、
前記保持手段の少なくとも一部が前記撮像手段の撮像画面を通過中に前記ピント調整手段により予め設定されたピント調整を行うことを特徴とする請求項1又は2に記載の撮像装置。
Holding means for holding the wavelength band selecting means;
The imaging apparatus according to claim 1, wherein at least a part of the holding unit performs a focus adjustment preset by the focus adjustment unit while passing through an imaging screen of the imaging unit.
前記波長帯選別手段を保持する保持手段を有し、
前記保持手段が前記撮像手段の撮像画面を通過に要する第1の時間よりも長く、
前記波長帯選別手段の光路中からの挿脱に要する第2の時間よりも短い時間で前記ピント調整手段で前記撮像光学系のピント調整を行うことを特徴とする請求項1又は2に記載の撮像装置。
Holding means for holding the wavelength band selecting means;
Longer than the first time required for the holding means to pass through the imaging screen of the imaging means,
The focus adjustment of the imaging optical system is performed by the focus adjustment unit in a time shorter than a second time required for insertion / removal of the wavelength band selection unit from the optical path. Imaging device.
外部からの操作により前記撮像光学系のピント調整を行う手動ピント調整手段を有し、
前記手動ピント調整手段により、前記撮像光学系のフォーカスレンズを駆動させる速度に比べて
前記波長帯選別手段の光路中からの挿脱に伴い前記ピント調整を行うときの前記撮像光学系のフォーカスレンズの速度を低速とすることを特徴とする請求項1又は2に記載の撮像装置。
Manual focus adjustment means for adjusting the focus of the imaging optical system by an external operation;
Compared to the speed at which the focus lens of the imaging optical system is driven by the manual focus adjustment unit, the focus lens of the imaging optical system when performing the focus adjustment in accordance with the insertion / removal of the wavelength band selection unit from the optical path. The imaging apparatus according to claim 1, wherein the speed is low.
JP2008212699A 2008-08-21 2008-08-21 Imaging device Active JP5178396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212699A JP5178396B2 (en) 2008-08-21 2008-08-21 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212699A JP5178396B2 (en) 2008-08-21 2008-08-21 Imaging device

Publications (2)

Publication Number Publication Date
JP2010049001A true JP2010049001A (en) 2010-03-04
JP5178396B2 JP5178396B2 (en) 2013-04-10

Family

ID=42066136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212699A Active JP5178396B2 (en) 2008-08-21 2008-08-21 Imaging device

Country Status (1)

Country Link
JP (1) JP5178396B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220902A (en) * 2011-04-14 2012-11-12 Canon Inc Imaging device
CN102819168A (en) * 2011-06-06 2012-12-12 佳能株式会社 Imaging apparatus, control method for the imaging apparatus, lens unit, and control method for the lens unit
WO2013015145A1 (en) * 2011-07-22 2013-01-31 三洋電機株式会社 Information acquiring apparatus and object detecting apparatus
JP2013222065A (en) * 2012-04-17 2013-10-28 Hitachi Ltd Imaging device
JP2020091328A (en) * 2018-12-03 2020-06-11 キヤノン株式会社 Image capturing apparatus and control method thereof, and calculation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482773A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Automatic focusing device
JPH11289487A (en) * 1998-04-02 1999-10-19 Sony Corp Image pickup device
JP2002221656A (en) * 2001-01-26 2002-08-09 Olympus Optical Co Ltd Focusing device
JP2003241078A (en) * 2002-02-22 2003-08-27 Canon Inc Optical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482773A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Automatic focusing device
JPH11289487A (en) * 1998-04-02 1999-10-19 Sony Corp Image pickup device
JP2002221656A (en) * 2001-01-26 2002-08-09 Olympus Optical Co Ltd Focusing device
JP2003241078A (en) * 2002-02-22 2003-08-27 Canon Inc Optical equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220902A (en) * 2011-04-14 2012-11-12 Canon Inc Imaging device
CN102819168A (en) * 2011-06-06 2012-12-12 佳能株式会社 Imaging apparatus, control method for the imaging apparatus, lens unit, and control method for the lens unit
US9389392B2 (en) 2011-06-06 2016-07-12 Canon Kabushiki Kaisha Imaging apparatus, control method for the imaging apparatus, lens unit, and control method for the lens unit
CN102819168B (en) * 2011-06-06 2016-08-24 佳能株式会社 Picture pick-up device and control method, lens unit and control method thereof
WO2013015145A1 (en) * 2011-07-22 2013-01-31 三洋電機株式会社 Information acquiring apparatus and object detecting apparatus
CN103597316A (en) * 2011-07-22 2014-02-19 三洋电机株式会社 Information acquiring apparatus and object detecting apparatus
JP2013222065A (en) * 2012-04-17 2013-10-28 Hitachi Ltd Imaging device
CN103379273A (en) * 2012-04-17 2013-10-30 株式会社日立制作所 Imaging device
US9113095B2 (en) 2012-04-17 2015-08-18 Hitachi Industry & Control Solutions, Ltd. Imaging device with the autofocus
JP2020091328A (en) * 2018-12-03 2020-06-11 キヤノン株式会社 Image capturing apparatus and control method thereof, and calculation method
JP7169863B2 (en) 2018-12-03 2022-11-11 キヤノン株式会社 Imaging device, its control method, and calculation method

Also Published As

Publication number Publication date
JP5178396B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5942444B2 (en) Digital camera
JP4973273B2 (en) Digital camera
TWI423664B (en) Imaging apparatus and exposure control method
JP4366768B2 (en) Digital camera and computer-readable recording medium
US7586535B2 (en) Camera having a detection circuit for detecting operational interval T between the half-press operation and full-press operation
JP5178396B2 (en) Imaging device
JP4997043B2 (en) Imaging apparatus, method and program
JP6330474B2 (en) Image processing apparatus, image processing apparatus control method, and imaging apparatus
JP4337161B2 (en) Digital camera and computer-readable recording medium
JP4106774B2 (en) Digital camera
JP6482247B2 (en) FOCUS ADJUSTMENT DEVICE, IMAGING DEVICE, FOCUS ADJUSTMENT DEVICE CONTROL METHOD, AND PROGRAM
JP2009033386A (en) Photographing device and method
JP5515795B2 (en) Imaging apparatus and imaging method
JP2005244423A (en) Photographing apparatus
JP5440585B2 (en) Digital camera
JP5320937B2 (en) Focus detection apparatus and imaging apparatus
JP2014211589A (en) Focus adjustment device and imaging device
JP6729574B2 (en) Image processing apparatus and image processing method
JP6045188B2 (en) Imaging device
JP2018013794A (en) Imaging device
JP5682358B2 (en) Imaging device
JP5664440B2 (en) Imaging device
JP2005091456A (en) Digital camera
JP6128193B2 (en) Imaging device
JP5790011B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R151 Written notification of patent or utility model registration

Ref document number: 5178396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03