JP2010048109A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2010048109A
JP2010048109A JP2008211076A JP2008211076A JP2010048109A JP 2010048109 A JP2010048109 A JP 2010048109A JP 2008211076 A JP2008211076 A JP 2008211076A JP 2008211076 A JP2008211076 A JP 2008211076A JP 2010048109 A JP2010048109 A JP 2010048109A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211076A
Other languages
Japanese (ja)
Inventor
Eiji Murase
栄二 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008211076A priority Critical patent/JP2010048109A/en
Publication of JP2010048109A publication Critical patent/JP2010048109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine in which the number of PM particles is reduced at the fuel injection by means of a fuel injection means for performing fuel injection to an inside of an intake passage. <P>SOLUTION: In the internal combustion engine 1, a fuel injection direction of a PFI injector 21 is allowed to be nearly parallel with an upper surface of an intake port 15. Besides, more than about a half of the fuel is subjected to injection to an upper region when dividing the intake port 15 into two regions of the upper and lower regions with the dividing plane passing the center of the intake valve 17. Thus, the number of the PM particles is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関に関し、特に、吸気通路内に向けて燃料を噴射する吸気通路噴射用インジェクタを備えた内燃機関に関する。   The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine provided with an intake passage injection injector that injects fuel into an intake passage.

機関吸気通路内に燃料を噴射するための吸気通路噴射用インジェクタと、機関燃焼室内に燃料を噴射するための筒内噴射用インジェクタとを具備した内燃機関が公知である。かかる内燃機関では、通常、PM粒子数は、吸気通路噴射用インジェクタで噴射した場合の方が、筒内噴射用インジェクタで噴射する場合に比して、著しく低減可能であるが、吸気通路噴射用インジェクタの噴射量が増加してくると、吸気通路噴射用インジェクタの噴射に起因するPM粒子数が著しく増加する場合がある。これは、吸気通路噴射用インジェクタの噴射量を制限する制御を行うことで改善されるが、PFI(Port Fuel Injection)の噴射方法が適切でない場合、上記制御を行っても改善されないか、または、吸気通路噴射用インジェクタの噴射量が少ない領域から吸気通路噴射用インジェクタの噴射に起因するPM粒子数が悪化する場合があるという問題がある。   2. Description of the Related Art An internal combustion engine having an intake passage injector for injecting fuel into an engine intake passage and an in-cylinder injector for injecting fuel into an engine combustion chamber is known. In such an internal combustion engine, the number of PM particles can usually be significantly reduced when injected with an intake manifold injector, compared with when injected with an in-cylinder injector. When the injection amount of the injector increases, the number of PM particles resulting from the injection of the intake manifold injector may increase significantly. This is improved by performing control to limit the injection amount of the intake manifold injector, but if the injection method of PFI (Port Fuel Injection) is not appropriate, it will not be improved even if the above control is performed, or There is a problem that the number of PM particles resulting from the injection of the intake manifold injector may deteriorate from a region where the injection quantity of the intake manifold injector is small.

また、特許文献1では、暖気後の燃料の気化を促進することを目的として、吸気弁中心若しくは下方に向けて燃料を噴射しているが、付着した燃料と気流方向との接触角が大きく流速も遅いため、大粒径粒子が生成され、冷間時にPM粒子数が増加するという問題がある。   Further, in Patent Document 1, for the purpose of promoting the vaporization of the fuel after warming up, the fuel is injected toward the center of the intake valve or downward, but the contact angle between the attached fuel and the airflow direction is large, and the flow velocity However, there is a problem that large particle size particles are generated and the number of PM particles increases when cold.

特開2005−90258号公報JP 2005-90258 A

本発明は、上記に鑑みてなされたものであり、吸気通路内に燃料を噴射する燃料噴射手段で燃料を噴射する場合のPM粒子数を低減することが可能な内燃機関を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an internal combustion engine capable of reducing the number of PM particles when fuel is injected by a fuel injection means for injecting fuel into an intake passage. And

上述した課題を解決し、目的を達成するために、本発明は、吸気通路内に燃料を噴射する燃料噴射手段を備えた内燃機関において、前記燃料噴射手段からの燃料の噴射方向を、吸気通路上面と略平行な方向とし、かつ、前記吸気通路をその上面および下面方向に2分割した場合の上面方向の領域に、燃料の略半分以上を噴射することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides an internal combustion engine having fuel injection means for injecting fuel into an intake passage, wherein the direction of fuel injection from the fuel injection means is changed to the intake passage. It is characterized in that approximately half or more of the fuel is injected into a region in the upper surface direction when the intake passage is divided into two in the upper surface and lower surface directions in a direction substantially parallel to the upper surface.

本発明に係る内燃機関によれば、吸気通路内に燃料を噴射する燃料噴射手段を備えた内燃機関において、前記燃料噴射手段からの燃料の噴射方向を、吸気通路上面と略平行な方向とし、かつ、前記吸気通路の上面および下面方向に2分割した場合の上面方向の領域に、燃料の略半分以上を噴射することとしたので、吸気通路内に燃料を噴射する燃料噴射手段で燃料を噴射する場合のPM粒子数を低減することが可能な内燃機関を提供することが可能になるという効果を奏する。   According to the internal combustion engine of the present invention, in the internal combustion engine provided with the fuel injection means for injecting fuel into the intake passage, the fuel injection direction from the fuel injection means is a direction substantially parallel to the upper surface of the intake passage, In addition, since approximately half or more of the fuel is injected into the region in the upper surface direction when divided into the upper surface and the lower surface direction of the intake passage, the fuel is injected by the fuel injection means for injecting the fuel into the intake passage. There is an effect that it becomes possible to provide an internal combustion engine capable of reducing the number of PM particles in the case.

以下に、本発明に係る内燃機関の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。   Hereinafter, an embodiment of an internal combustion engine according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

(実施の形態1)
図1は、本発明の実施の形態1に係るエンジンの模式図、図2は、図1のPFIインジェクタの吸気ポートに対する噴射角度を説明するための模式図、図3はPFIインジェクタの燃料の噴射領域を説明するための模式図である。
(Embodiment 1)
1 is a schematic diagram of an engine according to Embodiment 1 of the present invention, FIG. 2 is a schematic diagram for explaining an injection angle with respect to an intake port of the PFI injector of FIG. 1, and FIG. 3 is a fuel injection of the PFI injector. It is a schematic diagram for demonstrating an area | region.

図1に示すエンジン1は、デュアルインジェクタ方式の内燃機関であり、当該エンジン1の気筒を構成するシリンダ11内には図の上下方向に往復動するピストン13が配設されており、ピストン13は図示しないコンロッドを介して図示しないクランク軸に連結されている。ピストン13の上方にはシリンダ11及びシリンダヘッド12にて区画された燃焼室14が形成されており、燃焼室14は、吸気弁17及び排気弁18を介して吸気ポート15及び排気ポート16に連通している。また、吸気ポート15には、吸気ポート15内に燃料を噴射するPFIインジェクタ21が設けられている。   An engine 1 shown in FIG. 1 is a dual-injector type internal combustion engine, and a piston 13 that reciprocates in the vertical direction in the drawing is disposed in a cylinder 11 that constitutes a cylinder of the engine 1. It is connected to a crankshaft (not shown) via a connecting rod (not shown). A combustion chamber 14 defined by a cylinder 11 and a cylinder head 12 is formed above the piston 13, and the combustion chamber 14 communicates with an intake port 15 and an exhaust port 16 via an intake valve 17 and an exhaust valve 18. is doing. The intake port 15 is provided with a PFI injector 21 that injects fuel into the intake port 15.

PFIインジェクタ21の噴射口は、図2に示すように、吸気ポート15の上面と略平行な方向に設けられており、PFIインジェクタ21は、吸気ポート15の上面と略平行な方向にかつその上面に接するように燃料を噴射し、かつ、噴射した燃料の略半分以上が、図3に示す、吸気弁17の中心を通り吸気ポート15の上面および下面方向に2分割した場合の上面側の領域A(吸気弁17および吸気ポート15の壁面)に噴射されるように構成されている。   As shown in FIG. 2, the injection port of the PFI injector 21 is provided in a direction substantially parallel to the upper surface of the intake port 15, and the PFI injector 21 is in a direction substantially parallel to the upper surface of the intake port 15 and its upper surface. The region on the upper surface side when the fuel is injected so as to be in contact with the fuel and approximately half or more of the injected fuel passes through the center of the intake valve 17 and is divided into the upper surface and the lower surface of the intake port 15 as shown in FIG. A is configured to be injected into A (the wall surfaces of the intake valve 17 and the intake port 15).

排気弁18側の排気ポート16には、排気浄化触媒(図示せず)が設けられる。シリンダヘッド12には、燃焼室14に直接燃料を噴射するDI(Direct Injection)インジェクタ(筒内燃料噴射弁)20が装着されている。このDIインジェクタ20は、吸気ポート15側に位置して上下方向に所定角度傾斜して配置されている。このDIインジェクタ20は、燃焼室14に生成される吸気流動に燃料が乗るようにピストン13の頂面に向かって燃料を噴射可能である。更に、シリンダヘッド12には、燃焼室14の上方に位置して混合気に着火する点火プラグ19が装着されている。   An exhaust purification catalyst (not shown) is provided in the exhaust port 16 on the exhaust valve 18 side. The cylinder head 12 is equipped with a DI (Direct Injection) injector (in-cylinder fuel injection valve) 20 that directly injects fuel into the combustion chamber 14. The DI injector 20 is positioned on the intake port 15 side and is inclined at a predetermined angle in the vertical direction. The DI injector 20 is capable of injecting fuel toward the top surface of the piston 13 so that the fuel rides on the intake air flow generated in the combustion chamber 14. Further, the cylinder head 12 is provided with a spark plug 19 that is located above the combustion chamber 14 and ignites the air-fuel mixture.

DIインジェクタ20,PFIインジェクタ21、及び点火プラグ19の作動は、エンジンコントロールユニット(以下ECUという)10により制御され、このECU10には、図示しない各種センサ(クランク角センサ、アクセル開度センサ、エアフローメータ、水温センサ等)から、各種情報が入力されている。   The operations of the DI injector 20, the PFI injector 21, and the spark plug 19 are controlled by an engine control unit (hereinafter referred to as ECU) 10, which includes various sensors (crank angle sensor, accelerator opening sensor, air flow meter, not shown). Various information is input from a water temperature sensor or the like.

つぎに、上記構成のエンジン1のPFIインジェクタ21から噴射される燃料の挙動を説明する。PFIインジェクタ21は、吸気弁17が閉じている間に、吸気ポート15の上面と略平行な方向に当該上面に接するように燃料を噴射し、かつ、噴射した燃料の略半分以上が、吸気弁17の中心を通り吸気ポート15の上面および下面方向に2分割した場合の上面側の領域に噴射する。これにより、噴射された燃料は、吸気ポート15の上面と吸気弁17の上側に燃料が付着する。吸気行程では、吸気ポート15の上流の流れが速く、かつ、吸気弁17の上面や吸気ポート15の上面に付着した燃料液膜25bに対して浅い角度で吸入空気が流入するため、冷間時に燃焼室14内に燃料液滴25aとして流入した場合でも微粒化が促進され、PM粒子数が低減される。また、吸気ポート15の上面に接して噴射させることで、気流により燃料液膜25bから離脱して燃料液滴25aになる際、選択的な作用が働き大粒径の噴霧は生成されず小粒径の噴霧が生成され、若しくは、燃料液膜25bとして残留するため、PM粒子数が減少する。これに対して、従来技術では、暖気後の燃料の気化を促進することを目的として、通常、吸気弁中心若しくは下方(図3の領域B)に向けて、噴霧を噴射しているが、付着した燃料と気流方向との接触角が大きく流速も遅いため、大粒径粒子が生成され、冷間時にPM粒子数が増加する。   Next, the behavior of the fuel injected from the PFI injector 21 of the engine 1 having the above configuration will be described. While the intake valve 17 is closed, the PFI injector 21 injects fuel so as to be in contact with the upper surface in a direction substantially parallel to the upper surface of the intake port 15, and approximately half or more of the injected fuel is injected into the intake valve 15. It injects into the area | region of the upper surface side when passing through the center of 17 and dividing into 2 in the upper surface and lower surface direction of the intake port 15. As a result, the injected fuel adheres to the upper surface of the intake port 15 and the upper side of the intake valve 17. In the intake stroke, the flow upstream of the intake port 15 is fast, and the intake air flows at a shallow angle with respect to the fuel liquid film 25b attached to the upper surface of the intake valve 17 and the upper surface of the intake port 15. Even when the fuel droplets 25a flow into the combustion chamber 14, atomization is promoted and the number of PM particles is reduced. In addition, by spraying in contact with the upper surface of the intake port 15, when it is separated from the fuel liquid film 25b by the air flow to become the fuel droplets 25a, a selective action works and a large particle size spray is not generated. Since the spray with the diameter is generated or remains as the fuel liquid film 25b, the number of PM particles decreases. In contrast, in the prior art, spray is usually injected toward the center of the intake valve or downward (region B in FIG. 3) for the purpose of promoting vaporization of the fuel after warming up. Since the contact angle between the produced fuel and the airflow direction is large and the flow velocity is slow, large particles are generated, and the number of PM particles increases when cold.

以上説明したように、実施の形態1によれば、PFIインジェクタ21の燃料噴射方向を、吸気ポート15の上面と略平行な方向とし、かつ、吸気弁17の中心を通り吸気ポート15の上面および下面方向に2分割した場合の上面側の領域に、燃料の略半分以上が噴射されるようにしているので、PM粒子数を低減することが可能となる。   As described above, according to the first embodiment, the fuel injection direction of the PFI injector 21 is set to a direction substantially parallel to the upper surface of the intake port 15 and passes through the center of the intake valve 17 and the upper surface of the intake port 15 and Since approximately half or more of the fuel is injected into the region on the upper surface side when divided into two in the lower surface direction, the number of PM particles can be reduced.

(実施の形態2)
図4〜図7を参照して、実施の形態2に係る内燃機関を説明する。図4は、本発明の実施の形態2に係るエンジンの模式図である。図4において、図1と同等機能を有する部位には、同一符号を付し共通する部分の説明は省略する。図4に示す実施の形態2に係るエンジン1は、PFI21の燃料噴射角度(方向)が変更可能に構成されており、PFI21の噴射角度を変更する噴射角度変更機構30と、吸気ポート15内の気流の方向を制御する気流制御弁40と、吸気弁温度を検出する吸気弁温度検出手段50とを備えている。
(Embodiment 2)
An internal combustion engine according to Embodiment 2 will be described with reference to FIGS. FIG. 4 is a schematic diagram of an engine according to Embodiment 2 of the present invention. 4, parts having the same functions as those in FIG. 1 are denoted by the same reference numerals, and description of common parts is omitted. The engine 1 according to Embodiment 2 shown in FIG. 4 is configured so that the fuel injection angle (direction) of the PFI 21 can be changed, and an injection angle changing mechanism 30 that changes the injection angle of the PFI 21, and an intake port 15 An airflow control valve 40 for controlling the direction of airflow and an intake valve temperature detecting means 50 for detecting the intake valve temperature are provided.

噴射角度変更機構30は、ラック30aとピニオン30bからなるラックピニオン機構で構成されている。ECU10は、ラック30aの位置を駆動制御してPFIインジェクタ21の燃料噴射角度を制御している。ラック30aの移動に伴ってピニオン30bが従動回転し、ピニオン30bに固定されているPFIインジェクタ21の燃料噴射角度を変更することができる。気流制御弁40はECU10によって駆動制御され、その角度が変更される。吸気弁温度検出手段50は吸気弁17の吸気弁温度を検出して、ECU10に出力する。   The injection angle changing mechanism 30 includes a rack and pinion mechanism that includes a rack 30a and a pinion 30b. The ECU 10 controls the fuel injection angle of the PFI injector 21 by drivingly controlling the position of the rack 30a. As the rack 30a moves, the pinion 30b is driven to rotate, and the fuel injection angle of the PFI injector 21 fixed to the pinion 30b can be changed. The airflow control valve 40 is driven and controlled by the ECU 10, and its angle is changed. The intake valve temperature detection means 50 detects the intake valve temperature of the intake valve 17 and outputs it to the ECU 10.

図5は、ECU10により実行されるPM粒子数低減制御を説明するためのフローチャートである。同図において、まず、ECU10は、吸気弁温度とPFI噴射量を算出する(ステップS1)。つぎに、ECU10は、吸気弁温度≦閾値Th1であるか否かを判断する(ステップS2)。ECU10は、吸気弁温度≦閾値Th1でない場合には(ステップS2の「No」)、リターンする一方、吸気弁温度≦閾値Th1である場合には(ステップS2の「Yes」)、ECU10は、PFI噴射量≧閾値Th2であるか否かを判断する(ステップS3)。ECU10は、PFI噴射量≧閾値Th2でない場合には(ステップS3の「No」)、リターンする一方、ECU10は、PFI噴射量≧閾値Th2である場合には(ステップS3の「Yes」)、PFIインジェクタ21の燃料噴射角制御を実行する(ステップS4)。   FIG. 5 is a flowchart for explaining the PM particle number reduction control executed by the ECU 10. In the figure, first, the ECU 10 calculates the intake valve temperature and the PFI injection amount (step S1). Next, the ECU 10 determines whether or not the intake valve temperature ≦ the threshold value Th1 (step S2). If the intake valve temperature ≦ threshold Th1 is not satisfied (“No” in step S2), the ECU 10 returns. If the intake valve temperature ≦ threshold Th1 is satisfied (“Yes” in step S2), the ECU 10 It is determined whether or not the injection amount ≧ threshold value Th2 (step S3). The ECU 10 returns when PFI injection amount ≧ threshold Th2 is not satisfied (“No” in step S3), while the ECU 10 returns PFI when PFI injection amount ≧ threshold Th2 is satisfied (“Yes” in step S3). The fuel injection angle control of the injector 21 is executed (step S4).

具体的には、燃料噴射角制御では、ECU10は、PFI噴射量と吸気弁温度に基づいて、PFI噴射量・吸気弁温度/噴射角マップを参照して、PFIインジェクタ21の噴射角度を算出し、PFIインジェクタ21の噴射角度が算出した燃料噴射角度になるように噴射角度変更機構40を制御する。   Specifically, in the fuel injection angle control, the ECU 10 calculates the injection angle of the PFI injector 21 with reference to the PFI injection amount / intake valve temperature / injection angle map based on the PFI injection amount and the intake valve temperature. The injection angle changing mechanism 40 is controlled so that the injection angle of the PFI injector 21 becomes the calculated fuel injection angle.

図6は、PFI噴射量・吸気弁温度/噴射角マップの一例を示す図である。同図に示すように、PFI噴射量・吸気弁温度/噴射角マップは、PFI噴射量および吸気弁温度を変数として、実験またはシミュレーションで算出した好適な噴射角度が0°〜MAXの間で段階的に登録されている。ここで、噴射角度=0°はベース噴射角、噴射角度=MAXは、噴霧の上端と吸気ポート15の上面が略平行となる噴霧角である。PFI噴射量が多いほど、また、吸気弁温度が低いほど噴射角度を大きく(上向き)設定する。   FIG. 6 is a diagram illustrating an example of a PFI injection amount / intake valve temperature / injection angle map. As shown in the figure, the PFI injection amount / intake valve temperature / injection angle map is a step in which a suitable injection angle calculated by experiment or simulation is between 0 ° and MAX with the PFI injection amount and the intake valve temperature as variables. Registered. Here, the injection angle = 0 ° is the base injection angle, and the injection angle = MAX is the spray angle at which the upper end of the spray and the upper surface of the intake port 15 are substantially parallel. The larger the PFI injection amount and the lower the intake valve temperature, the larger (upward) the injection angle is set.

つぎに、ECU10は、気流制御弁40の制御を実行する(ステップS5)。具体的には、ECU10は、PFI噴射量と吸気弁温度に基づいて、PFI噴射量・吸気弁温度/気流制御弁角度マップを参照して、気流制御弁40の角度を算出し、気流制御弁40の角度が算出した角度になるように制御する。   Next, the ECU 10 executes control of the airflow control valve 40 (step S5). Specifically, the ECU 10 calculates the angle of the airflow control valve 40 based on the PFI injection amount and the intake valve temperature with reference to the PFI injection amount / intake valve temperature / airflow control valve angle map, and the airflow control valve Control is performed so that the angle of 40 becomes the calculated angle.

図7は、PFI噴射量・吸気弁温度/気流制御弁角度マップの一例を示す図である。同図に示すように、PFI噴射量・吸気弁温度/気流制御弁角度マップは、PFI噴射量および吸気弁温度を変数として、実験またはシミュレーションで算出した好適な気流制御弁40の角度が0°〜MAXの間で段階的に登録されている。ここで、気流制御弁40の角度θ=0°はベース気流制御弁角度であり、角度θが大きいほど吸気ポート15の上側の気流が速くなる。PFI噴射量が多いほど、また、吸気弁温度が低いほど気流制御弁40の角度を大きく(吸気ポート15の上側への流れを早くする側)設定する。   FIG. 7 is a diagram illustrating an example of a PFI injection amount / intake valve temperature / airflow control valve angle map. As shown in the figure, the PFI injection amount / intake valve temperature / airflow control valve angle map has a 0 ° angle of a suitable airflow control valve 40 calculated by experiment or simulation using the PFI injection amount and the intake valve temperature as variables. It is registered in stages between ~ MAX. Here, the angle θ = 0 ° of the airflow control valve 40 is the base airflow control valve angle, and the airflow above the intake port 15 becomes faster as the angle θ is larger. The larger the PFI injection amount and the lower the intake valve temperature, the larger the angle of the airflow control valve 40 is set (the side that accelerates the flow toward the upper side of the intake port 15).

以上説明したように、実施の形態2によれば、ECU10は、PFI噴射量と吸気弁温度とに基づいて、噴射角度変更機構30を介して、PFIインジェクタ21の噴射角度を変更することとしたので、暖機後の気化も促進させることが可能となる。   As described above, according to the second embodiment, the ECU 10 changes the injection angle of the PFI injector 21 via the injection angle changing mechanism 30 based on the PFI injection amount and the intake valve temperature. Therefore, it is possible to promote vaporization after warm-up.

また、ECU10は、PFI噴射量と吸気弁温度とに基づいて、気流制御弁40の角度を変更することとしたので、燃料の微粒化効果を促進させることが可能となる。   In addition, since the ECU 10 changes the angle of the airflow control valve 40 based on the PFI injection amount and the intake valve temperature, the fuel atomization effect can be promoted.

以上のように、本発明に係る内燃機関は、吸気通路噴射用インジェクタを備えた内燃機関および吸気通路噴射用インジェクタと筒内噴射用インジェクタとを具備した内燃機関に有用である。   As described above, the internal combustion engine according to the present invention is useful for an internal combustion engine provided with an intake manifold injector and an internal combustion engine provided with an intake manifold injector and an in-cylinder injector.

本発明の実施の形態1に係るエンジンの模式図である。It is a schematic diagram of the engine which concerns on Embodiment 1 of this invention. 図1のPFIインジェクタの吸気ポートに対する噴射角度を説明するための模式図である。It is a schematic diagram for demonstrating the injection angle with respect to the intake port of the PFI injector of FIG. PFIインジェクタの燃料の噴射領域を説明するための模式図である。It is a schematic diagram for demonstrating the fuel injection area | region of a PFI injector. 本発明の実施の形態2に係るエンジンの模式図である。It is a schematic diagram of the engine which concerns on Embodiment 2 of this invention. ECUにより実行されるPM粒子数低減制御を説明するためのフローチャートである。It is a flowchart for demonstrating PM particle number reduction control performed by ECU. PFI噴射量・吸気弁温度/噴射角マップの一例を示す図である。It is a figure which shows an example of a PFI injection quantity and intake valve temperature / injection angle map. PFI噴射量・吸気弁温度/気流制御弁角度マップの一例を示す図である。It is a figure which shows an example of a PFI injection amount and intake valve temperature / airflow control valve angle map.

符号の説明Explanation of symbols

1 エンジン
10 ECU
15 吸気ポート
17 吸気弁
20 DIインジェクタ
21 PFIインジェクタ
30 噴射角度変更機構
40 気流制御弁
50 吸気弁温度検出手段
1 engine 10 ECU
DESCRIPTION OF SYMBOLS 15 Intake port 17 Intake valve 20 DI injector 21 PFI injector 30 Injection angle change mechanism 40 Airflow control valve 50 Intake valve temperature detection means

Claims (4)

吸気通路内に燃料を噴射する燃料噴射手段を備えた内燃機関において、
前記燃料噴射手段からの燃料の噴射方向を、吸気通路上面と略平行な方向とし、かつ、前記吸気通路の上面および下面方向に2分割した場合の上面方向の領域に、燃料の略半分以上を噴射することを特徴とする内燃機関。
In an internal combustion engine provided with fuel injection means for injecting fuel into the intake passage,
The direction of fuel injection from the fuel injection means is a direction substantially parallel to the upper surface of the intake passage, and approximately half or more of the fuel is in a region in the upper surface direction when divided into the upper surface and the lower surface direction of the intake passage. An internal combustion engine that performs injection.
吸気弁の温度を検出する吸気弁温度検出手段と、
前記燃料噴射手段の燃料噴射量と前記吸気弁温度検出手段で検出した吸気弁の温度とに基づいて、前記燃料噴射手段の燃料噴射角度を変更する燃料噴射角度変更手段と、
を備えたことを特徴とする請求項1に記載の内燃機関。
An intake valve temperature detecting means for detecting the temperature of the intake valve;
Fuel injection angle changing means for changing the fuel injection angle of the fuel injection means based on the fuel injection amount of the fuel injection means and the temperature of the intake valve detected by the intake valve temperature detection means;
The internal combustion engine according to claim 1, further comprising:
吸気通路内の気流を制御する気流制御弁と、
前記燃料噴射手段の燃料噴射量と前記吸気弁温度検出手段で検出した吸気弁の温度とに基づいて、前記気流制御弁の角度を変更する気流制御弁角度変更手段と、
を備えたことを特徴とする請求項1または請求項2に記載の内燃機関。
An airflow control valve for controlling the airflow in the intake passage;
Airflow control valve angle changing means for changing the angle of the airflow control valve based on the fuel injection amount of the fuel injection means and the temperature of the intake valve detected by the intake valve temperature detection means;
The internal combustion engine according to claim 1, further comprising:
筒内に燃料を噴射する第2の燃料噴射手段を備えたことを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関。   The internal combustion engine according to any one of claims 1 to 3, further comprising second fuel injection means for injecting fuel into the cylinder.
JP2008211076A 2008-08-19 2008-08-19 Internal combustion engine Pending JP2010048109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211076A JP2010048109A (en) 2008-08-19 2008-08-19 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211076A JP2010048109A (en) 2008-08-19 2008-08-19 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010048109A true JP2010048109A (en) 2010-03-04

Family

ID=42065390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211076A Pending JP2010048109A (en) 2008-08-19 2008-08-19 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010048109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223063A (en) * 2009-03-23 2010-10-07 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223063A (en) * 2009-03-23 2010-10-07 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5195890B2 (en) Fuel injection valve and internal combustion engine
JP2006258028A5 (en)
JP2007107436A (en) Cylinder direct injection engine, its control device, and injector
JP6340752B2 (en) Flow control device in combustion chamber
JP6927084B2 (en) Internal combustion engine
JP4743183B2 (en) Fuel injection control device
JP4821750B2 (en) Fuel injection timing control device for piston reciprocating internal combustion engine
JP2015117602A (en) Control system of spark ignition type internal combustion engine
JP6311797B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2010048109A (en) Internal combustion engine
JP2012087706A (en) Cylinder injection engine and control device therefor
JP6299819B2 (en) Control unit for direct injection engine
JP2010174639A (en) Fuel injection control device for internal combustion engine
JP6402753B2 (en) Combustion chamber structure of direct injection engine
JP2009102997A (en) Spark ignition internal combustion engine
JP2017172492A (en) Fuel injection device of internal combustion engine
JP6148155B2 (en) Control system for compression ignition internal combustion engine
WO2016075784A1 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2007291887A (en) Cylinder direct injection gasoline engine
JP6750321B2 (en) Control device for internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
JP6942068B2 (en) Fuel injection control method and fuel injection device for spark-ignition internal combustion engine
JP2012215136A (en) Control device of cylinder injection type internal combustion engine
JP2008202465A (en) Fuel injection control device of internal combustion engine