JP2010047942A - Sound absorption structure, sound absorption structure group, and acoustic room - Google Patents

Sound absorption structure, sound absorption structure group, and acoustic room Download PDF

Info

Publication number
JP2010047942A
JP2010047942A JP2008211972A JP2008211972A JP2010047942A JP 2010047942 A JP2010047942 A JP 2010047942A JP 2008211972 A JP2008211972 A JP 2008211972A JP 2008211972 A JP2008211972 A JP 2008211972A JP 2010047942 A JP2010047942 A JP 2010047942A
Authority
JP
Japan
Prior art keywords
porous material
sound absorbing
sound
sound absorption
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008211972A
Other languages
Japanese (ja)
Other versions
JP5245641B2 (en
JP2010047942A5 (en
Inventor
Yasuhito Tanase
廉人 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2008211972A priority Critical patent/JP5245641B2/en
Priority to US12/537,929 priority patent/US20100044148A1/en
Priority to EP09010237A priority patent/EP2157567A2/en
Publication of JP2010047942A publication Critical patent/JP2010047942A/en
Publication of JP2010047942A5 publication Critical patent/JP2010047942A5/ja
Application granted granted Critical
Publication of JP5245641B2 publication Critical patent/JP5245641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound absorption structure for effectively making use of a closed-celled porous material as a sound absorption material which has elasticity, which does not have permeability, and which is originally low in sound absorption property. <P>SOLUTION: A in the figure indicates the property by an open-celled vibrator, and B in the figure indicates the property by a closed-celled vibrator. The open-celled porous material A indicates a property that a sound absorption rate increases when a tone-range becomes higher and that it decreases when the tone-range becomes lower. On the other hand, the frequency of the closed-celled porous material B, which becomes a peak of sound absorption, is at a relatively low frequency, and it turns out that the sound absorption rate of the closed-celled porous material B is high. That is to say, even a sound absorption structure 10 formed of the vibrator 30 of the closed-celled porous material exerts a sound absorption action. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、音を吸収する吸音構造体、吸音構造体群および音響室に関する。   The present invention relates to a sound absorbing structure that absorbs sound, a sound absorbing structure group, and an acoustic chamber.

一般に、音を吸音する吸音構造体のうち、吸音材に連続気泡の多孔質材料(例えば、グラスウール等)を用いたものにあっては、音波の粒子速度に比例して吸音力が発生するため、高音域においては高い吸音力を発揮するものの、低音域においては低い吸音力となっていた。従って、低音域においても高い吸音力を発生させようとすると、λ/4程度の厚さ(例えば、250Hzで34cm)が必要となり、小空間では設置が困難であった。
一方、板状または膜状の振動体と、この振動体の背後の空気層とにより音を吸収する吸音構造体において、低音域で高い吸音力を発生させようとすると、例えば厚さ4mm程度の合板を背後空気層45mmで配置し、空気層内部にグラスウールを充填すれば、吸音率のピークが250Hz程度の低音域に発現するが、この吸音率のピークは0.6程度に留まる。
In general, among sound absorbing structures that absorb sound, those using an open-cell porous material (for example, glass wool) as the sound absorbing material generate sound absorbing force in proportion to the particle velocity of the sound wave. Although the sound absorbing power is high in the high sound range, the sound absorbing power is low in the low sound range. Therefore, if a high sound absorption force is to be generated even in the low sound range, a thickness of about λ / 4 (for example, 34 cm at 250 Hz) is required, and installation in a small space is difficult.
On the other hand, in a sound absorbing structure that absorbs sound by a plate-like or film-like vibrating body and an air layer behind the vibrating body, when a high sound absorbing force is generated in a low sound range, the thickness is about 4 mm, for example. If a plywood is arranged with a back air layer of 45 mm and glass wool is filled inside the air layer, the sound absorption coefficient peak appears in the low frequency range of about 250 Hz, but this sound absorption coefficient peak remains at about 0.6.

特許文献1には、連続気泡の多孔質材料(発泡体)を用いた吸音材が開示されており、多孔質材料の吸音材を用いる場合に、連続気泡を用いることは良く知られている技術である。
一方、特許文献2に示す吸音材は、連続気泡の多孔質材料および独立気泡の多孔質材料からなり、通気量が0.1dm3/s以上となっている例が開示されている。この通気量が大きい場合には、多孔質材の表裏での音圧差が発生しなくなるため、板振動を励振することができなくなったり、板振動の吸音機構に基づく吸音効果が低減したりすることとなる。
Patent Document 1 discloses a sound-absorbing material using an open-cell porous material (foam), and it is a well-known technique to use open-cell when using a porous material. It is.
On the other hand, the sound-absorbing material disclosed in Patent Document 2 is made of an open-cell porous material and a closed-cell porous material, and discloses an example in which the air flow rate is 0.1 dm 3 / s or more. If this air flow rate is large, there will be no difference in sound pressure between the front and back of the porous material, so it will not be possible to excite plate vibration, or the sound absorption effect based on the sound absorption mechanism of plate vibration will be reduced. It becomes.

特開2003−316364号公報JP 2003-316364 A 特開2006−11412号公報JP 2006-11412 A

そこで、本発明は、上述した背景の下になされたものであり、弾性を有し且つ通気性を有していない、本来吸音特性が低い独立発泡の多孔質材料を、吸音材料として有効に活用することを目的とする。特に吸音構造の総厚(多孔質材と背後空気層の合計厚)が50mm程度の薄い吸音構造でも、低音域での吸音効果を発揮することを目的とする。   Therefore, the present invention has been made under the background described above, and effectively uses an independently foamed porous material that has elasticity and does not have air permeability, and originally has low sound absorption characteristics, as a sound absorption material. The purpose is to do. In particular, the object is to exhibit a sound absorbing effect in a low sound range even with a thin sound absorbing structure having a total thickness of the sound absorbing structure (total thickness of the porous material and the back air layer) of about 50 mm.

上述した課題を解決するために本発明が採用する吸音構造体の構造は、独立気泡の多孔質材料によって形成される振動体と、前記振動体の背後に画成される空気層と、を具備することを特徴とする。   The structure of the sound absorbing structure employed by the present invention to solve the above-described problems includes a vibrating body formed of a closed-cell porous material, and an air layer defined behind the vibrating body. It is characterized by doing.

本発明が採用する吸音構造体の別の構造は、独立気泡の多孔質材料および連続気泡の多孔質材料を重ね合わせて形成される振動体と、前記振動体のうち独立気泡の多孔質材料の背後に画成される空気層と、を具備することを特徴とする。   Another structure of the sound absorbing structure employed by the present invention is a vibrating body formed by superposing a closed-cell porous material and an open-cell porous material, and a closed-cell porous material of the vibrating body. And an air layer defined behind.

本発明が採用する吸音構造体の他の構造は、独立気泡の多孔質材料および通気性部材を重ね合わせて形成される振動体と、前記振動体のうち独立気泡の多孔質材料の背後に画成される空気層と、を具備することを特徴とする。   The other structure of the sound absorbing structure employed by the present invention includes a vibrating body formed by superposing a closed-cell porous material and a gas-permeable member, and a backside of the closed-cell porous material of the vibrating body. And an air layer formed.

上記構成において、前記独立気泡の多孔質材料は、その通気量が0.1dm3/s未満であることが望ましい。 The said structure WHEREIN: As for the said porous material of a closed cell, it is desirable for the air flow rate to be less than 0.1 dm < 3 > / s.

上述した課題を解決するために本発明が採用する吸音構造体群の構造は、上記記載の吸音構造体を複数組み合わせたことを特徴とする。   The structure of the sound absorbing structure group employed by the present invention to solve the above-described problems is characterized by combining a plurality of the above sound absorbing structures.

上述した課題を解決するために本発明が採用する音響室の構造は、上記記載の吸音構造体、または上記記載の吸音構造体群を有することを特徴する。   In order to solve the above-described problems, the structure of the acoustic chamber employed by the present invention is characterized by having the above-described sound absorbing structure or the above-described sound absorbing structure group.

本発明によれば、吸音構造体(板・膜振動型)において、弾性を有し且つ空気を遮断する独立気泡の多孔質材料を、空気層を覆う振動板に用いることにより、吸音特性を維持しつつ振動体の劣化を防止し、ひいては当該吸音構造体の信頼性を高めることができる。   According to the present invention, in a sound absorbing structure (plate / membrane vibration type), sound absorption characteristics are maintained by using a closed cell porous material that has elasticity and blocks air for the diaphragm that covers the air layer. However, the deterioration of the vibrating body can be prevented, and as a result, the reliability of the sound absorbing structure can be improved.

<吸音構造体の構成>
図1は本発明の実施形態に係る吸音構造体10の斜視図、図2は吸音構造体10の分解斜視図、図3は図1中の矢視III−III方向から見た縦断面図である。なお、図面においては、本実施形態の構成を分かりやすく図示するために、吸音構造体10の実際の寸法とは異ならせている。
図に示したように、吸音構造体10は、当該吸音構造体10の基台をなす筐体20と、この筐体20の開口部23を施蓋する振動体30と、筐体20と振動体30によって筐体20内に画成される空気層40と、を具備する。
<Configuration of sound absorbing structure>
1 is a perspective view of a sound absorbing structure 10 according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the sound absorbing structure 10, and FIG. 3 is a longitudinal sectional view as seen from the direction of arrows III-III in FIG. is there. In the drawings, the actual dimensions of the sound absorbing structure 10 are different from each other for easy understanding of the configuration of the present embodiment.
As shown in the figure, the sound absorbing structure 10 includes a housing 20 that forms the base of the sound absorbing structure 10, a vibrating body 30 that covers the opening 23 of the housing 20, and the vibration of the housing 20. And an air layer 40 defined in the housing 20 by the body 30.

筐体20は、矩形状で浅底の有底筒状に合成樹脂(例えば、ABS樹脂)で形成され、底板21、側壁22、開口部23を有する。底板21は、開口部23に対向する面に配置され、側壁22は、開口部23の周囲に配置される。振動体30は、弾性を有する高分子化合物(例えば、発泡シリコーン、発泡ウレタン、発泡ポリエチレン、発泡エチレンプロピレンゴム等)により正方形の板状に形成され、周縁が筐体20の開口部23に接着固定される。当該吸音構造体10の内部(振動体30の背後)には、筐体20の開口部23に振動体30が固定されることにより、密閉された空気層40が画成される。   The casing 20 is formed of a synthetic resin (for example, ABS resin) in a rectangular and shallow bottomed cylindrical shape, and includes a bottom plate 21, a side wall 22, and an opening 23. The bottom plate 21 is disposed on a surface facing the opening 23, and the side wall 22 is disposed around the opening 23. The vibrating body 30 is formed in a square plate shape from an elastic polymer compound (for example, foamed silicone, foamed urethane, foamed polyethylene, foamed ethylene propylene rubber, etc.), and the periphery is fixedly bonded to the opening 23 of the housing 20. Is done. Inside the sound absorbing structure 10 (behind the vibrating body 30), the vibrating body 30 is fixed to the opening 23 of the housing 20, whereby a sealed air layer 40 is defined.

なお、本実施形態においては、振動体30の形状は、板状ではなく膜状であってもよく、要は、振動体30は、力を加えると変形し、弾性により復元力を発生して振動する形状・部材であればよい。   In the present embodiment, the shape of the vibrating body 30 may be a film shape instead of a plate shape. In short, the vibrating body 30 is deformed when a force is applied and generates a restoring force by elasticity. Any shape or member that vibrates may be used.

ここで、板状とは、直方体(立体)に対して相対的に厚さが薄く2次元的な広がりを持つ形状であり、膜状(フィルム状、シート状)とは、板状よりもさらに相対的に厚さが薄く、張力により復元力を発生するものである。   Here, the plate shape is a shape having a relatively thin thickness and a two-dimensional extension with respect to a rectangular parallelepiped (solid), and the film shape (film shape, sheet shape) is more than the plate shape. It is relatively thin and generates a restoring force by tension.

さらに、前記振動体30は、該振動体30以外の筐体20に対して剛性が相対的に低い(ヤング率が低い、厚さが薄い、断面2次モーメントが小さい)、或いは機械インピーダンス(8×(曲げ剛性×面密度)1/2)が相対的に低い形状・部材で形成される。即ち、振動体30は、筐体20に対して弾性振動を起こし易くすることにより、振動体30により当該吸音構造体10の吸音作用を発揮するようになっている。 Further, the vibrating body 30 has relatively low rigidity with respect to the casing 20 other than the vibrating body 30 (low Young's modulus, thin thickness, small cross-sectional second moment), or mechanical impedance (8 × (bending rigidity × surface density) 1/2 ) is formed with a relatively low shape / member. In other words, the vibrating body 30 is configured to exhibit the sound absorbing action of the sound absorbing structure 10 by the vibrating body 30 by making the vibrating body 30 easily cause elastic vibration.

以上が、吸音構造体10の基本的構成であるが、本実施形態による吸音構造体10の特徴は、図3(a)に示すように、振動体30を独立気泡の多孔質材料50によって形成したことにある。この多孔質材料50は、その通気量が0.1dm3/s未満となり、空気の通過を遮断する。独立気泡の多孔質材料としては、例えば発泡シリコーン,発泡ポリエチレン,発泡エチレンプロピレンゴム(EPDM)等が用いられる。 The above is the basic configuration of the sound absorbing structure 10, but the sound absorbing structure 10 according to the present embodiment is characterized in that the vibrating body 30 is formed of a closed-cell porous material 50 as shown in FIG. It is to have done. The porous material 50 has an air flow rate of less than 0.1 dm 3 / s and blocks the passage of air. As the closed cell porous material, for example, foamed silicone, foamed polyethylene, foamed ethylene propylene rubber (EPDM) or the like is used.

ここで、比較のために、図4に独立気泡の多孔質材料と連続気泡の多孔質材料の断面を模式的に示す。
独立気泡の多孔質材料50は、図4(a)に示すように、部材内に形成される各気泡51は連通せずに殆どが重なり合わないで独立している。このため、独立気泡の多孔質材料は、一定の弾性を有し、振動板として一体に振動可能である。つまり、独立気泡の多孔質材料は、弾性を有し且つ通気性を持たない材料となる。
図4(a)では、気泡51が整列したように模式的に図示したが、ランダムに配置されてもよく、要は各気泡51が重なり合わないで、材料の表面と裏面間で空気が流通しない構造であればよい。
For comparison, FIG. 4 schematically shows a cross section of a closed-cell porous material and an open-cell porous material.
As shown in FIG. 4A, the closed-cell porous material 50 is independent of the bubbles 51 formed in the member without communicating with each other. For this reason, the closed-cell porous material has a certain elasticity and can vibrate integrally as a diaphragm. That is, the closed-cell porous material is a material that has elasticity and does not have air permeability.
In FIG. 4A, the air bubbles 51 are schematically illustrated as being aligned. However, the air bubbles may be randomly arranged, and in short, the air flows between the front and back surfaces of the material without overlapping the air bubbles 51. Any structure can be used.

一方、連続気泡の多孔質材料60は、図4(b)に示すように、部材内に形成される各気泡61は隣接して殆どが重なり合って連通する。このため、連続気泡の多孔質材料は、材質や気泡61の大きさにもよるが、スポンジのような質感を持つ。図4(b)では、気泡61が整列したように模式的に図示したが、ランダムに配置されてもよく、要は各気泡61が少なくとも隣り合う気泡61と連通して、材料の表面と裏面間で空気が流通する構造であればよい。   On the other hand, in the open-cell porous material 60, as shown in FIG. 4B, the respective bubbles 61 formed in the member are adjacent to each other and are almost overlapped to communicate with each other. For this reason, the open-cell porous material has a sponge-like texture, depending on the material and the size of the bubbles 61. In FIG. 4B, the air bubbles 61 are schematically illustrated as being aligned. However, the air bubbles 61 may be arranged at random. In short, each of the air bubbles 61 communicates with at least the adjacent air bubbles 61, and the front and back surfaces of the material. Any structure that allows air to flow between them may be used.

<吸音構造体の動作>
一般に、この種の吸音構造体においては、振動体のマス(質量(mass))成分と、空気層のバネ成分とによってバネマス系が形成される。
ここで、空気の密度をρ0[kg/m3]、音速をc0[m/s]、振動体の密度をρ[kg/m3]、振動体の厚さをt[m]、空気層の厚さをL[m]とすると、バネマス系の共振周波数f[Hz]は数式1のようなる。
<Operation of sound absorbing structure>
In general, in this type of sound absorbing structure, a spring mass system is formed by a mass component of a vibrating body and a spring component of an air layer.
Here, the density of air is ρ 0 [kg / m 3 ], the speed of sound is c 0 [m / s], the density of the vibrating body is ρ [kg / m 3 ], the thickness of the vibrating body is t [m], Assuming that the thickness of the air layer is L [m], the resonance frequency f [Hz] of the spring mass system is expressed by Equation 1.

Figure 2010047942
Figure 2010047942

また、吸音構造体において振動体が弾性を有して弾性振動をする場合には、弾性振動による屈曲系の性質が加わることになる。
振動体の形状が長方形で一辺の長さをa[m]、もう一辺の長さをb[m]、振動体のヤング率をE[N/m2]、振動体のポアソン比をσ[−]、p,qを正の整数とすると、以下の数式2に示すようにして板・膜振動型吸音構造体の共振周波数が求められる。そして、建築音響の分野においては、この求めた共振周波数を音響設計に利用している。
In addition, when the vibration body has elasticity in the sound absorbing structure, the bending property of the elastic vibration is added.
The shape of the vibrator is rectangular, the length of one side is a [m], the length of the other side is b [m], the Young's modulus of the vibrator is E [N / m 2 ], and the Poisson's ratio of the vibrator is σ [ −], P and q are positive integers, the resonance frequency of the plate / membrane vibration type sound absorbing structure is obtained as shown in the following formula 2. In the field of architectural acoustics, the obtained resonance frequency is used for acoustic design.

Figure 2010047942
上記数式2において、共振周波数fは、バネマス系に係る項(ρ00 2/ρtL)と屈曲系に係る項(バネマス系の項の後に直列に加えられている項)とを加算した値となっている。この数式2に示すように、吸音構造体においては、振動体のバネマス系と、弾性振動による屈曲系とが、吸音条件を決める重要な要素となっている。
Figure 2010047942
In Equation 2, the resonance frequency f is a value obtained by adding a term related to the spring mass system (ρ 0 c 0 2 / ρtL) and a term related to the bending system (term added in series after the term of the spring mass system). It has become. As shown in Formula 2, in the sound absorbing structure, the spring mass system of the vibrating body and the bending system due to elastic vibration are important factors that determine the sound absorbing conditions.

ここで、本実施形態による吸音構造体10においては、振動体30の外側から加わる音圧と空気層40側の音圧との差(即ち、振動体30の前後の音圧差)によって振動体30が弾性振動する。これにより、当該吸音構造体10に到達する音波のエネルギーは、この振動体30の振動により消費されて音が吸音されることになる。この際、振動体30は、前記数式2に示すようにして設定される共振周波数fを中心とした周波数の音を吸音することになる。   Here, in the sound absorbing structure 10 according to the present embodiment, the vibrating body 30 is based on the difference between the sound pressure applied from the outside of the vibrating body 30 and the sound pressure on the air layer 40 side (that is, the sound pressure difference before and after the vibrating body 30). Vibrates elastically. Thereby, the energy of the sound wave reaching the sound absorbing structure 10 is consumed by the vibration of the vibrating body 30 and the sound is absorbed. At this time, the vibrating body 30 absorbs a sound having a frequency centered on the resonance frequency f set as shown in Formula 2.

<実施形態における吸音構造体の効果>
本実施形態における吸音構造体の効果を、図5〜図7による吸音特性の図に基づいて説明する。この特性線図は、実際の実験結果をグラフ化したものであり、実験対象となる吸音構造体に対し、周波数を適宜可変にした音を当てた際の、吸収率を垂直入射吸音率として記録したものです。
図5〜図7は、振動体に連続気泡のウレタン10mm厚を使用した吸音構造体、振動体に独立気泡の発泡シリコーン10mm厚を使用した吸音構造体による実験結果を示している。
図5は、振動体の背後に形成した空気層の厚さを10mm厚とした場合の実験結果であり、図6は、空気層の厚さを20mm厚とした場合の実験結果であり、図7は、空気層の厚さを30mm厚とした場合の実験結果である。図中のAは、連続気泡の振動体による特性を示し、図中のBは、独立気泡の振動体による特性を示している。
<Effect of sound absorbing structure in embodiment>
The effect of the sound absorbing structure in the present embodiment will be described based on the sound absorbing characteristics shown in FIGS. This characteristic diagram is a graph of actual experimental results, and records the absorption rate as the normal incident absorption rate when a sound with a variable frequency is applied to the sound absorption structure to be tested. It is what I did.
FIG. 5 to FIG. 7 show the results of an experiment using a sound absorbing structure using open-cell urethane 10 mm thick as the vibrating body and a sound-absorbing structure using closed-cell foamed silicone 10 mm thick as the vibrating body.
FIG. 5 shows the experimental results when the thickness of the air layer formed behind the vibrating body is 10 mm, and FIG. 6 shows the experimental results when the thickness of the air layer is 20 mm. 7 is an experimental result when the thickness of the air layer is 30 mm. A in the figure shows the characteristics of the open-cell vibrating body, and B in the figure shows the characteristics of the closed-cell vibrating body.

図5〜図7のAとBとを見ると、連続気泡の多孔質材料(A)においては、高音域ほど吸音率が増大する特性を示し、低音域での吸音率が小さいのに対し、独立気泡の多孔質材料(B)においては、吸音のピークとなる周波数が比較的低い周波数にあり、その吸音率も大きな値を示すことが分かる。つまり、独立気泡の多孔質材料で振動体30を形成した吸音構造体10であっても、吸音作用を発揮している。なお、独立気泡の密度は250kg/m3、連続気泡の密度は35kg/m3となる。 5A to 7B, the open-cell porous material (A) shows a characteristic that the sound absorption coefficient increases as the high sound range, whereas the sound absorption coefficient in the low sound range is small. In the closed-cell porous material (B), it can be seen that the frequency at which the sound absorption peak is at a relatively low frequency, and the sound absorption coefficient also shows a large value. That is, even the sound absorbing structure 10 in which the vibrating body 30 is formed of a closed-cell porous material exhibits a sound absorbing action. The density of closed cells is 250 kg / m 3 and the density of open cells is 35 kg / m 3 .

さらに、図8〜図10は、振動体に連続気泡のウレタン10mm厚を使用した吸音構造体、振動体に独立気泡のEPDM(エチレンプロピレンゴム)10mm厚を使用した吸音構造体による実験結果を示している。図8は空気層の厚さを10mm厚、図9は空気層の厚さを20mm厚、図10は空気層の厚さを30mm厚とした場合の実験結果である。また、図中のAは、連続気泡の振動体による特性を示し、図中のBは、独立気泡の振動体による特性を示している。
この独立気泡のEPDMを振動体に用いた吸音構造体であっても、図5〜図7に示す特性と同様に、吸音のピークとなる周波数が比較的低い周波数にあり、その吸音率も大きな値を示すことが分かる。
Further, FIGS. 8 to 10 show the experimental results of a sound absorbing structure using an open cell 10 mm thick urethane as the vibrating body and a sound absorbing structure using a closed cell EPDM (ethylene propylene rubber) 10 mm thick as the vibrating body. ing. FIG. 8 shows the experimental results when the air layer thickness is 10 mm, FIG. 9 shows the air layer thickness of 20 mm, and FIG. 10 shows the air layer thickness of 30 mm. Further, A in the figure indicates the characteristics of the open-cell vibrating body, and B in the figure indicates the characteristics of the closed-cell vibrating body.
Even in the sound absorbing structure using the closed-cell EPDM as the vibrating body, the frequency at which the sound absorption peak is at a relatively low frequency, as in the characteristics shown in FIGS. It can be seen that the value is shown.

このように、独立気泡の多孔質材料50を振動体30に用いた場合にあっては、振動体30と空気層40の合計厚が50mm以下の薄い吸音構造体であっても、比較的低い音域を吸音することが可能となる。
しかも、独立気泡の多孔質材料50は、空気の通過を遮断するため、当該吸音構造体10を塵埃の比較的多い音場に設置した場合であっても、振動体30が空気層40への空気の流入を阻止することになる。この結果、塵埃によって空気層40内が汚れるのを防止することができる。
また、独立気泡の多孔質材料50は、その構造から、空気や湿気の材料内への浸入を防止することができるため、振動体30の耐久性を高め、ひいては当該吸音構造体10の信頼性を高めることができる。
As described above, when the closed-cell porous material 50 is used for the vibrating body 30, even a thin sound absorbing structure having a total thickness of the vibrating body 30 and the air layer 40 of 50 mm or less is relatively low. It is possible to absorb the sound range.
Moreover, since the closed-cell porous material 50 blocks the passage of air, even when the sound absorbing structure 10 is installed in a sound field with a relatively large amount of dust, the vibrating body 30 is not exposed to the air layer 40. This will prevent the inflow of air. As a result, it is possible to prevent the air layer 40 from being contaminated by dust.
In addition, the closed-cell porous material 50 can prevent the intrusion of air or moisture into the material due to its structure, so that the durability of the vibrating body 30 is improved, and as a result, the reliability of the sound absorbing structure 10 is improved. Can be increased.

一方、独立気泡の多孔質材料50は、連続気泡の多孔質材料60に比べて製造コストが低いため、当該吸音構造体10のコストを低廉安価に押さえることができる。また、独立気泡の多孔質材料50は、連続気泡の多孔質材料60に比べて裁断等の加工がし易いため、生産性を高めることができる等、種々の効果を奏する。   On the other hand, since the closed-cell porous material 50 is lower in manufacturing cost than the open-cell porous material 60, the cost of the sound absorbing structure 10 can be reduced at a low cost. In addition, the closed-cell porous material 50 is easier to process, such as cutting, than the open-cell porous material 60, and thus has various effects such as increased productivity.

<変形例>
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、他の様々な形態で実施可能である。例えば、上述の実施形態を以下のように変形して本発明を実施してもよい。
<変形例1>
前記実施形態では、振動体30に独立気泡の多孔質材料50を用いた場合を例示したが、本発明はこれに限らず、振動体に独立気泡の多孔質材料50を用いた種々の構成が可能である。
<Modification>
As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, It can implement with another various form. For example, the present invention may be implemented by modifying the above-described embodiment as follows.
<Modification 1>
In the embodiment, the case where the closed cell porous material 50 is used for the vibrating body 30 is illustrated, but the present invention is not limited to this, and various configurations using the closed cell porous material 50 for the vibrating body are possible. Is possible.

図3(b)は、独立気泡の多孔質材料50の表側(音波の入射側)に連続気泡の多孔質材料60を積層した振動体31を用いた吸音構造体の縦断面図を示している。そして、この振動体31は、独立気泡の多孔質材料50の背面に空気層40が来るように、筐体20に固定される。
図3(c)は、独立気泡の多孔質材料50の表側(音波の入射側)にメッシュ、クロス、植毛等の繊維性の通気性部材70を積層した振動体32を用いた吸音構造体の縦断面図を示している。そして、この振動体32は、独立気泡の多孔質材料50の背面に空気層40が来るように、筐体20に固定される。
このように構成される吸音構造体とすると、前記実施形態の吸音効果を得ることができる。しかも、振動体30の表側に連続気泡の多孔質材料60或いは通気性部材70を配置したから、音がこの部材に吸収される作用も付加することができる。
FIG. 3B shows a longitudinal cross-sectional view of a sound absorbing structure using a vibrating body 31 in which an open-cell porous material 60 is laminated on the front side (acoustic wave incident side) of the closed-cell porous material 50. . And this vibrating body 31 is fixed to the housing | casing 20 so that the air layer 40 may come to the back surface of the porous material 50 of a closed cell.
FIG. 3C shows a sound absorbing structure using a vibrating body 32 in which a fibrous air-permeable member 70 such as mesh, cloth, flocking, etc. is laminated on the front side (acoustic wave incident side) of the porous material 50 of closed cells. A longitudinal sectional view is shown. And this vibrating body 32 is fixed to the housing | casing 20 so that the air layer 40 may come to the back surface of the porous material 50 of a closed cell.
With the sound absorbing structure configured as described above, the sound absorbing effect of the embodiment can be obtained. In addition, since the open-cell porous material 60 or the air-permeable member 70 is disposed on the front side of the vibrating body 30, it is also possible to add an action in which sound is absorbed by this member.

さらに、上記例に限るものではなく、振動体は、独立気泡の多孔質材料50に連続気泡の多孔質材料60を3層以上に積層したものであっても、通気性部材70、連続気泡の多孔質材料60、独立気泡の多孔質材料50の順に積層したものであってもよく、要は、独立気泡の多孔質材料50が使用して、外部と空気層40との間で空気を遮断する構造となればよい。   Furthermore, the present invention is not limited to the above example, and the vibrating body may be one in which the open-cell porous material 50 is laminated with three or more layers of the open-cell porous material 60, and the air-permeable member 70, the open-cell The porous material 60 and the closed-cell porous material 50 may be laminated in this order. In short, the closed-cell porous material 50 is used to block air between the outside and the air layer 40. What is necessary is just to become a structure to do.

<変形例2>
このように構成される吸音構造体においては、バネマス系による共振周波数と、板の弾性による弾性振動による屈曲系の共振周波数との関連性については、前記数式2によって一義的に決められるものの、実際には十分に解明されておらず、低音域で高い吸音力を発揮する吸音構造体の構造が確立されていないのが実情である。
<Modification 2>
In the sound absorbing structure configured as described above, the relationship between the resonance frequency of the spring mass system and the resonance frequency of the bending system due to the elastic vibration due to the elasticity of the plate is uniquely determined by Equation 2, but actually In fact, the structure of a sound-absorbing structure that exhibits high sound-absorbing power in the low sound range has not been established.

そこで、発明者達は鋭意実験を行った結果、屈曲系の基本振動周波数の値をfa、バネマス系の共振周波数の値をfbとし場合、以下の数式3の関係を満足するように、上記パラメータを設定する。これにより、屈曲系の基本振動が背後の空気層のバネ成分と連成して、バネマス系の共振周波数と屈曲系の基本周波数との間の帯域に振幅の大きな振動が励振されて(屈曲系共振周波数fa<吸音ピーク周波数f<バネマス系基本周波数fb)、吸音率が高くなるという事実を検証した。

Figure 2010047942
Therefore, the inventors conducted intensive experiments, and as a result, when the value of the fundamental vibration frequency of the bending system is fa and the value of the resonance frequency of the spring mass system is fb, the above parameters are satisfied so as to satisfy the relationship of Equation 3 below. Set. As a result, the fundamental vibration of the bending system is coupled with the spring component of the air layer behind, and a vibration having a large amplitude is excited in the band between the resonance frequency of the spring mass system and the fundamental frequency of the bending system (the bending system). The fact that the resonance frequency fa <the sound absorption peak frequency f <the spring mass system fundamental frequency fb) and the sound absorption rate is high was verified.
Figure 2010047942

さらに、以下の数式4に設定する場合、吸音ピークの周波数がバネマス系の共振周波数より十分に小さくなる。この場合、低次の弾性振動のモードにより屈曲系の基本周波数がバネマス系の共振周波数より十分に小さく、300[Hz]以下の周波数の音を吸音する吸音構造として適していることも検証した。

Figure 2010047942
このように、上記した数式3,4の条件を満足するように各種パラメータを設定することにより、吸音のピークとなる周波数を低くした吸音構造体が構成できる。 Furthermore, when the following Expression 4 is set, the frequency of the sound absorption peak is sufficiently smaller than the resonance frequency of the spring mass system. In this case, it was also verified that the fundamental frequency of the bending system is sufficiently smaller than the resonance frequency of the spring mass system due to the mode of low-order elastic vibration, and is suitable as a sound absorbing structure that absorbs sound having a frequency of 300 [Hz] or less.
Figure 2010047942
As described above, by setting various parameters so as to satisfy the conditions of the above-described Expressions 3 and 4, it is possible to configure a sound absorbing structure in which the frequency at which the sound absorption is peaked is lowered.

<変形例3>
さらに、吸音構造体10の構成は、矩形状の筐体20、筐体20の開口部23を閉塞する振動体30と、筐体20内に画成される空気層40と、を具備する構成としたが、本発明による筐体の形状は矩形状に円形状、多角形状であっても、振動体30に対して振動条件を変更するための集中質量を、振動体30の中央部に設けるようにしてもよい。
<Modification 3>
Furthermore, the configuration of the sound absorbing structure 10 includes a rectangular casing 20, a vibrating body 30 that closes the opening 23 of the casing 20, and an air layer 40 defined in the casing 20. However, even if the shape of the housing according to the present invention is rectangular, circular, or polygonal, a concentrated mass for changing the vibration conditions for the vibrating body 30 is provided at the center of the vibrating body 30. You may do it.

吸音構造体10は、先にも説明した通り、バネマス系と屈曲系で吸音メカニズムが形成されている。ここで、発明者達は、振動体30の面密度を変えた際の共振周波数における吸音率の実験を行った。   As described above, the sound absorbing structure 10 has a sound absorbing mechanism formed of a spring mass system and a bending system. Here, the inventors conducted an experiment of the sound absorption coefficient at the resonance frequency when the surface density of the vibrating body 30 was changed.

図11は、空気層40の縦と横の大きさが100mm×100mmで厚さが10mmの筐体20に振動体30(大きさが100mm×100mm、厚さ0.85mm)を固着し、中央部(大きさが20mm×20mm、厚さ0.85mm)の面密度を変化させた際の吸音構造体10の垂直入射吸音率のシミュレート結果を示した図である。なお、シミュレート手法は、JIS A 1405−2(音響管による吸音率及びインピーダンスの測定−第2部:伝達関数法)に従って、上記吸音構造体10を配置した音響室の音場を有限要素法により求め、その伝達関数より吸音特性を算出した。   FIG. 11 shows that the vibrating body 30 (size: 100 mm × 100 mm, thickness: 0.85 mm) is fixed to the casing 20 having a vertical and horizontal size of 100 mm × 100 mm and a thickness of 10 mm. It is the figure which showed the simulation result of the normal incidence sound absorption coefficient of the sound-absorbing structure 10 at the time of changing the surface density of a part (a magnitude | size is 20 mm x 20 mm, thickness 0.85mm). In addition, the simulation method is based on JIS A 1405-2 (measurement of sound absorption coefficient and impedance by an acoustic tube—Part 2: transfer function method), and the sound field of the acoustic room in which the sound absorbing structure 10 is arranged is determined by a finite element method. The sound absorption characteristics were calculated from the transfer function.

具体的には、中央部の面密度を、(1)399.5[g/m2]、(2)799[g/m2]、(3)1199[g/m2]、(4)1598[g/m2]、(5)2297[g/m2]とし、周縁部材の面密度を799[g/m2]とし、振動体30の平均密度を、(1)783[g/m2]、(2)799[g/m2]、(3)815[g/m2]、(4)831[g/m2]、(5)863[g/m2]とした場合のシミュレーション結果である。
シミュレートの結果を見ると、300〜500[Hz]の間と、700[Hz]付近において吸音率が高くなっている。
Specifically, the surface density of the central part is (1) 399.5 [g / m 2 ], (2) 799 [g / m 2 ], (3) 1199 [g / m 2 ], (4) 1598 [g / m 2 ], (5) 2297 [g / m 2 ], the surface density of the peripheral member is 799 [g / m 2 ], and the average density of the vibrating body 30 is (1) 783 [g / m 2 ]. m 2 ], (2) 799 [g / m 2 ], (3) 815 [g / m 2 ], (4) 831 [g / m 2 ], (5) 863 [g / m 2 ] This is a simulation result.
Looking at the simulation results, the sound absorption rate is high between 300 and 500 [Hz] and in the vicinity of 700 [Hz].

700[Hz]付近で吸音率が高くなっているのは、振動体30のマス成分と空気層40のバネ成分によって形成されるバネマス系の共振によるものである。吸音構造体10においては上記バネマス系の共振周波数での吸音率をピークとし音が吸音されており、中央部の面密度大きくしても、振動体30全体のマスは大きく変わらないので、バネマス系の共振周波数も大きく変わらないことが分かる。   The reason why the sound absorption coefficient is high in the vicinity of 700 [Hz] is due to resonance of the spring mass system formed by the mass component of the vibrating body 30 and the spring component of the air layer 40. In the sound absorbing structure 10, the sound is absorbed with the sound absorption coefficient at the resonance frequency of the spring mass system as a peak, and even if the surface density of the central portion is increased, the mass of the entire vibrating body 30 does not change greatly. It can be seen that the resonance frequency does not change significantly.

また、300〜500[Hz]の間で吸音率が高くなっているのは、振動体30の屈曲振動によって形成される屈曲系の共振によるものである。吸音構造体10においては、屈曲系の共振周波数での吸音率が低音域側のピークとして表れており、中央部の面密度を大きくしてゆくと屈曲系の共振周波数だけが低くなっていることが分かる。   Further, the sound absorption coefficient between 300 and 500 [Hz] is high due to the resonance of the bending system formed by the bending vibration of the vibrating body 30. In the sound absorbing structure 10, the sound absorption rate at the resonance frequency of the bending system appears as a peak on the low frequency range side, and only the resonance frequency of the bending system decreases as the surface density at the center increases. I understand.

一般に、屈曲系の共振周波数は、振動体30の弾性振動を支配する運動方程式で決定され、振動体30の密度(面密度)に反比例する。また、前記共振周波数は、固有振動の腹(振幅が極大値となる場合)の密度により大きく影響される。このため、上記シミュレーションでは、1×1の固有モードの腹となる領域を中央部で異なる面密度に形成したので、屈曲系の共振周波数が変化したものである。   In general, the resonance frequency of the bending system is determined by an equation of motion governing the elastic vibration of the vibrating body 30 and is inversely proportional to the density (surface density) of the vibrating body 30. The resonance frequency is greatly influenced by the density of the antinodes of natural vibration (when the amplitude is a maximum value). For this reason, in the simulation described above, the region that becomes the antinode of the 1 × 1 eigenmode is formed at different surface densities in the central portion, so that the resonance frequency of the bending system is changed.

このように、シミュレーション結果は、中央部の面密度を周縁部の面密度より大きくすると、吸音のピークとなる周波数のうち、低音域側の吸音率のピークがさらに低音域側へ移動することを表している。従って、中央部の面密度を変更することにより吸音のピークとなる周波数の一部をさらに低音域側または高音域側に移動(シフト)させることができることを表している。   Thus, the simulation results show that when the surface density of the central part is made larger than the surface density of the peripheral part, the peak of the sound absorption coefficient on the low frequency side of the frequency that becomes the peak of sound absorption moves further to the low frequency side. Represents. Therefore, it is shown that by changing the surface density of the central portion, a part of the frequency at which the sound absorption is peaked can be moved (shifted) further to the low sound region side or the high sound region side.

上述した吸音構造体10においては、中央部の面密度を変えるだけで、吸音される音のピークの周波数を変える(シフトさせる)ことができるため、振動体30を吸音構造体10全体と同じ素材で板状に形成し、吸音構造体10全体の質量を重くして吸音する音を変更する場合と比較して、吸音構造体10全体の質量を大きく変えることなく吸音させる音を低くできる。   In the sound absorbing structure 10 described above, since the frequency of the peak of the sound to be absorbed can be changed (shifted) simply by changing the surface density of the central portion, the vibration body 30 is made of the same material as the entire sound absorbing structure 10. Compared with the case where the sound absorption sound is changed by increasing the mass of the entire sound absorbing structure 10 and changing the sound absorbing sound, the sound to be absorbed can be lowered without greatly changing the mass of the entire sound absorbing structure 10.

さらに、吸音構造体10の空気層40内には、多孔質吸音材(例えば、発泡樹脂、フェルト,ポリエステルウール等の綿状繊維)を充填することにより、吸音率のピーク値を増加させてもよい。   Furthermore, even if the sound absorption coefficient peak value is increased by filling the air layer 40 of the sound absorbing structure 10 with a porous sound absorbing material (for example, foamed resin, felt, cotton wool such as polyester wool). Good.

<変形例4>
また、本発明においては、吸音構造体群を形成する場合、上述した実施形態または変形例のいずれか一種類の吸音構造体を複数組み合わせて吸音構造体群とするだけでなく、例えば、吸音特性の異なった吸音構造体を組み合わせたり、3種類以上の吸音特性の異なった吸音構造体を組み合わせたりするというように、異なった吸音特性を有する吸音構造体を組み合わせて吸音構造体群としてもよい。
<Modification 4>
Further, in the present invention, when the sound absorbing structure group is formed, not only the sound absorbing structure group is formed by combining a plurality of sound absorbing structures of any one of the above-described embodiments or modifications, but for example, a sound absorbing characteristic Sound absorbing structures having different sound absorbing characteristics may be combined to form a sound absorbing structure group, such as combining sound absorbing structures having different sound absorption characteristics, or combining sound absorbing structures having three or more different sound absorbing characteristics.

また、本発明に係る吸音構造体および吸音構造体を組み合わせた吸音構造体群は、音響特性を制御する各種の音響室に配置することが可能である。ここで、各種音響室とは、防音室、ホール、劇場、音響機器のリスニングルーム、会議室等の居室、車両など各種輸送機器の空間、スピーカや楽器などの筐体などである。   Further, the sound absorbing structure according to the present invention and the sound absorbing structure group obtained by combining the sound absorbing structures can be disposed in various acoustic chambers that control acoustic characteristics. Here, the various acoustic rooms include soundproof rooms, halls, theaters, listening rooms for audio equipment, living rooms such as conference rooms, spaces for various transport equipment such as vehicles, and housings for speakers and musical instruments.

実施形態による吸音構造体の斜視図である。It is a perspective view of the sound absorption structure by an embodiment. 実施形態による吸音構造体の分解斜視図である。It is a disassembled perspective view of the sound absorption structure by embodiment. 図1の矢視III−III方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the arrow III-III direction of FIG. 独立気泡の多孔質材料、連続気泡の多孔質材料を模式的に示す断面図である。It is sectional drawing which shows typically the porous material of a closed cell, and the porous material of an open cell. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 実施形態による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by embodiment. 変形例(3)による特性を示す特性線図である。It is a characteristic diagram which shows the characteristic by a modification (3).

符号の説明Explanation of symbols

10・・・吸音構造体、20・・・筐体、21・・・底板、22・・・側壁、23・・・開口部、30,31,32・・・振動体、40・・・空気層、50・・・独立気泡の多孔質材料、51,61・・・気泡、60・・・連続気泡の多孔質材料、70・・・通気性部材。 DESCRIPTION OF SYMBOLS 10 ... Sound absorption structure, 20 ... Housing, 21 ... Bottom plate, 22 ... Side wall, 23 ... Opening, 30, 31, 32 ... Vibrating body, 40 ... Air Layer, 50 ... closed-cell porous material, 51, 61 ... bubble, 60 ... open-cell porous material, 70 ... breathable member.

Claims (6)

独立気泡の多孔質材料によって形成される振動体と、
前記振動体の背後に画成される空気層と、を具備する
ことを特徴とする吸音構造体。
A vibrator formed of a closed-cell porous material;
An air layer defined behind the vibrating body.
独立気泡の多孔質材料および連続気泡の多孔質材料を重ね合わせて形成される振動体と、
前記振動体のうち独立気泡の多孔質材料の背後に画成される空気層と、を具備する
ことを特徴とする吸音構造体。
A vibrator formed by superposing a closed-cell porous material and an open-cell porous material;
An air layer defined behind a closed-cell porous material of the vibrating body.
独立気泡の多孔質材料および通気性部材を重ね合わせて形成される振動体と、
前記振動体のうち独立気泡の多孔質材料の背後に画成される空気層と、を具備する
ことを特徴とする吸音構造体。
A vibrator formed by stacking a closed-cell porous material and a breathable member;
An air layer defined behind a closed-cell porous material of the vibrating body.
請求項1乃至3のいずれか1に記載の吸音構造体において、
前記独立気泡の多孔質材料は、その通気量が0.1dm3/s未満である
ことを特徴とする吸音構造体。
The sound absorbing structure according to any one of claims 1 to 3,
The sound absorbing structure, wherein the closed cell porous material has an air flow rate of less than 0.1 dm 3 / s.
請求項1乃至4のいずれか1に記載の吸音構造体を複数組み合わせた
ことを特徴とする吸音構造体群。
A sound absorbing structure group comprising a plurality of the sound absorbing structures according to any one of claims 1 to 4.
請求項1乃至4のいずれか1に記載の吸音構造体、または請求項5記載の吸音構造体群を有する
ことを特徴する音響室。
An acoustic chamber comprising the sound absorbing structure according to any one of claims 1 to 4 or the sound absorbing structure group according to claim 5.
JP2008211972A 2008-08-20 2008-08-20 Sound absorbing structure Expired - Fee Related JP5245641B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008211972A JP5245641B2 (en) 2008-08-20 2008-08-20 Sound absorbing structure
US12/537,929 US20100044148A1 (en) 2008-08-20 2009-08-07 Sound absorbing structure using closed-cell porous medium
EP09010237A EP2157567A2 (en) 2008-08-20 2009-08-07 Sound absorbing structure using closed-cell porous medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211972A JP5245641B2 (en) 2008-08-20 2008-08-20 Sound absorbing structure

Publications (3)

Publication Number Publication Date
JP2010047942A true JP2010047942A (en) 2010-03-04
JP2010047942A5 JP2010047942A5 (en) 2011-09-22
JP5245641B2 JP5245641B2 (en) 2013-07-24

Family

ID=41395109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211972A Expired - Fee Related JP5245641B2 (en) 2008-08-20 2008-08-20 Sound absorbing structure

Country Status (3)

Country Link
US (1) US20100044148A1 (en)
EP (1) EP2157567A2 (en)
JP (1) JP5245641B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020003A (en) * 2011-07-08 2013-01-31 Taisei Corp Sound absorber
CN104464709A (en) * 2014-11-03 2015-03-25 江苏大学 Variable-damping mechanical impedance combined sound absorption structure
JP2017197914A (en) * 2016-04-25 2017-11-02 清水建設株式会社 Sound absorbing structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326472B2 (en) * 2007-10-11 2013-10-30 ヤマハ株式会社 Sound absorption structure
EP2085962A2 (en) * 2008-02-01 2009-08-05 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing properties
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property
DE102009007891A1 (en) * 2009-02-07 2010-08-12 Willsingh Wilson Resonance sound absorber in multilayer design
JP5847715B2 (en) * 2010-07-15 2016-01-27 日本音響エンジニアリング株式会社 Open air layer vibration reduction structure
CN103072588B (en) * 2011-12-13 2016-04-13 隋富生 For the micropunch transparent panel sound absorber of high speed train glass partition and door
CN104751836A (en) * 2015-03-03 2015-07-01 北京市劳动保护科学研究所 Magnetic negative-stiffness sound absorption device and method
US9390700B1 (en) * 2015-03-10 2016-07-12 Awi Licensing Llc Laminate acoustic panel
US9615165B2 (en) * 2015-08-07 2017-04-04 Sound Solutions International Co., Ltd. Loudspeaker device having foam insert to improve gas distribution in sound adsorber material
US9630575B2 (en) * 2015-09-30 2017-04-25 GM Global Technology Operations LLC Panel assembly with noise attenuation system
WO2018150828A1 (en) * 2017-02-16 2018-08-23 富士フイルム株式会社 Sound proof structure
CN108915301A (en) * 2018-07-03 2018-11-30 章娱信息科技(上海)有限公司 Playroom
CN109388886B (en) * 2018-10-09 2022-10-28 山东理工大学 Method for calculating sound absorption coefficient of porous material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180593A (en) * 1983-03-31 1984-10-13 三菱製鋼株式会社 Low frequency sound absorbor
JPH03293409A (en) * 1990-04-11 1991-12-25 Shinko Kosen Kogyo Kk Sound absorbing, screening and isolating panel
JP2004341470A (en) * 2003-04-22 2004-12-02 Taisei Corp Sound absorbing plate
JP2006328763A (en) * 2005-05-25 2006-12-07 Iida Sangyo Kk Wall body and wall structure

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214411A (en) * 1978-01-16 1980-07-29 The Fanwall Corporation Panel and joint system and transparent acoustic barriers employing same
DE3220023C2 (en) * 1982-05-27 1993-05-27 Cellofoam Deutschland Gmbh, 7950 Biberach Sound-absorbing flow channel and method for its manufacture
CH686667A5 (en) * 1992-09-23 1996-05-31 Rieter Automotive Int Ag Vibrationsdaempfende headliner construction.
US5369701A (en) * 1992-10-28 1994-11-29 At&T Corp. Compact loudspeaker assembly
US5368500A (en) * 1993-01-04 1994-11-29 Dedering; Charles E. Closure for electric plug
DE4414566C2 (en) * 1994-04-27 1997-11-20 Freudenberg Carl Fa Air silencer
US6789645B1 (en) * 1999-06-09 2004-09-14 The Dow Chemical Company Sound-insulating sandwich element
JP2002082671A (en) * 2000-09-06 2002-03-22 Nichias Corp Sound absorbing structure
JP2002180845A (en) * 2000-12-12 2002-06-26 Nichias Corp Soundproof cover for automobile engine
EP1365388A4 (en) * 2001-01-23 2006-07-26 Kasai Kogyo Kk Soundproof material for vehicle and method of manufacturing the material
JP3664441B2 (en) 2002-02-20 2005-06-29 昭和電線電纜株式会社 Foam, sound absorbing material using the same, and method for producing the same
US7445839B2 (en) * 2003-08-08 2008-11-04 Sekisui Plastics Co., Ltd. Foam sheet for car interior member, and car interior member
US20050215295A1 (en) * 2004-03-29 2005-09-29 Arneson Theodore R Ambulatory handheld electronic device
JP4167673B2 (en) 2004-05-28 2008-10-15 昭和電線デバイステクノロジー株式会社 Membrane sound absorbing structure
US20080135332A1 (en) * 2004-09-03 2008-06-12 Kobe Corporate Research Laboratories In Kobe Steel Double Wall Structure
US7602933B2 (en) * 2004-09-28 2009-10-13 Westone Laboratories, Inc. Conformable ear piece and method of using and making same
US20080164093A1 (en) * 2005-03-17 2008-07-10 Swcc Showa Device Technology Co., Ltd. Sound Absorbing Material and Structure Using the Same
DE602007006736D1 (en) * 2006-10-18 2010-07-08 Yamaha Corp Sound-absorbing body
JP2008211972A (en) 2007-02-28 2008-09-18 Iseki & Co Ltd Operating device of seedling planting machine
JP5326472B2 (en) * 2007-10-11 2013-10-30 ヤマハ株式会社 Sound absorption structure
EP2085962A2 (en) * 2008-02-01 2009-08-05 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing properties
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180593A (en) * 1983-03-31 1984-10-13 三菱製鋼株式会社 Low frequency sound absorbor
JPH03293409A (en) * 1990-04-11 1991-12-25 Shinko Kosen Kogyo Kk Sound absorbing, screening and isolating panel
JP2004341470A (en) * 2003-04-22 2004-12-02 Taisei Corp Sound absorbing plate
JP2006328763A (en) * 2005-05-25 2006-12-07 Iida Sangyo Kk Wall body and wall structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020003A (en) * 2011-07-08 2013-01-31 Taisei Corp Sound absorber
CN104464709A (en) * 2014-11-03 2015-03-25 江苏大学 Variable-damping mechanical impedance combined sound absorption structure
JP2017197914A (en) * 2016-04-25 2017-11-02 清水建設株式会社 Sound absorbing structure

Also Published As

Publication number Publication date
JP5245641B2 (en) 2013-07-24
EP2157567A2 (en) 2010-02-24
US20100044148A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5245641B2 (en) Sound absorbing structure
JP5056385B2 (en) Sound absorber
JP5326472B2 (en) Sound absorption structure
JP5402025B2 (en) Sound absorption structure and acoustic room
JP2009198902A (en) Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method
JP5493378B2 (en) Sound absorbing structure
CN108457393B (en) Sound absorbing structure for anechoic chamber and anechoic chamber comprising same
JP5446134B2 (en) Sound absorbing structure
JP5332495B2 (en) Sound absorption structure
JP5597913B2 (en) Sound absorbing structure
JP2009167702A (en) Sound absorbing body and its manufacturing method
JP5315861B2 (en) Car body structure and instrument panel
JP5543705B2 (en) Sound absorbing structure
JP5286949B2 (en) Sound absorption structure
JP5262800B2 (en) Sound absorbing structure
Ohga et al. Wideband piezoelectric rectangular loudspeakers using a tuck shaped PVDF bimorph
JP2010097145A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
JP2009055605A (en) Damped loudspeaker unit and loudspeaker system
JP2009145740A (en) Sound absorber, sound absorber group and acoustic room
JP2009204836A (en) Sound absorption structure, sound absorption structure group, sound box, method of adjusting sound structure and noise reduction method
JP2008122933A (en) Sound absorbing body
JP2015132743A (en) Upside-improved translucent-type film vibration sound absorption/insulation wall
JP2010097146A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
JP2022144613A (en) Sound absorption material and manufacturing method thereof
JP2010242346A (en) Soundproof panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees