JP2010047257A - Mode switching controller for hybrid vehicle - Google Patents

Mode switching controller for hybrid vehicle Download PDF

Info

Publication number
JP2010047257A
JP2010047257A JP2009267222A JP2009267222A JP2010047257A JP 2010047257 A JP2010047257 A JP 2010047257A JP 2009267222 A JP2009267222 A JP 2009267222A JP 2009267222 A JP2009267222 A JP 2009267222A JP 2010047257 A JP2010047257 A JP 2010047257A
Authority
JP
Japan
Prior art keywords
engine
clutch
mode
generator
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267222A
Other languages
Japanese (ja)
Other versions
JP4877383B2 (en
Inventor
Kaori Yajima
香織 谷嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009267222A priority Critical patent/JP4877383B2/en
Publication of JP2010047257A publication Critical patent/JP2010047257A/en
Application granted granted Critical
Publication of JP4877383B2 publication Critical patent/JP4877383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mode switching controller capable of controlling mode switching from hybrid (HEV) mode into electric running (EV) mode in a manner for preventing an engine from racing. <P>SOLUTION: The mode switching controller is constituted to give an order for releasing a first clutch when the time elapsed from the time t2 when an order for switching mode from HEV to EV is given becomes the first predetermined time TM1 (t3) by measuring the elapsed time and give an order for stopping the engine when the time elapsed becomes the second predetermined time TM2 (t5). The first predetermined time TM1 and the second predetermined time TM2 are set to release the first clutch after engine torque Te during engine operation disappears (Te=0) due to the stop of the engine. Consequently, it is possible to guarantee that the first clutch is released after the engine torque Te disappears when switching mode from HEV to EV, thereby reliably eliminating the occurrence of a sense of incongruity of racing of the engine due to too early release of the first clutch. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジン以外にモータ/ジェネレータからの動力によっても走行することができ、モータ/ジェネレータからの動力のみにより走行する電気走行(EV)モードと、エンジンおよびモータ/ジェネレータの双方からの動力により走行可能なハイブリッド走行(HEV)モードとを有するハイブリッド車両に関し、
特に、後者のHEVモードでの走行中にエンジン出力が不要になって前者のEVモードへ切り替えるに際して要求されるエンジンの停止をショックなく滑らかに行わせるためのモード切り替え制御装置に関するものである。
The present invention can be driven not only by the engine but also by power from the motor / generator, and by electric power (EV) mode in which the vehicle travels only by power from the motor / generator, and by power from both the engine and the motor / generator. Regarding a hybrid vehicle having a hybrid running (HEV) mode capable of running,
In particular, the present invention relates to a mode switching control device for smoothly stopping the engine, which is required when switching to the former EV mode because the engine output becomes unnecessary during traveling in the latter HEV mode without shock.

上記のようなハイブリッド車両に用いるハイブリッド駆動装置としては従来、様々な型式のものが提案されているが、そのうちの1つとして、特許文献1に記載のごときものが知られている。
このハイブリッド駆動装置は、エンジン回転を変速機に向かわせる軸に結合して、これらエンジンおよび変速機間にモータ/ジェネレータを具え、エンジンおよびモータ/ジェネレータ間を切り離し可能に結合する第1クラッチを有すると共に、モータ/ジェネレータおよび変速機出力軸間を切り離し可能に結合する第2クラッチをトルクコンバータの代わりに有した構成になるものである。
Conventionally, various types of hybrid drive apparatuses used in the hybrid vehicle as described above have been proposed. As one of them, the one described in Patent Document 1 is known.
The hybrid drive device includes a first clutch that is coupled to a shaft that directs engine rotation to a transmission, includes a motor / generator between the engine and the transmission, and that removably couples the engine and the motor / generator. In addition, instead of the torque converter, the motor / generator and the transmission output shaft are detachably coupled to each other.

かかるハイブリッド駆動装置を具えたハイブリッド車両は、第1クラッチを解放すると共に第2クラッチを締結する場合、モータ/ジェネレータからの動力のみにより走行する電気走行(EV)モードとなり、第1クラッチおよび第2クラッチをともに締結する場合、エンジンおよびモータ/ジェネレータの双方からの動力により走行可能なハイブリッド走行(HEV)モードとなり得る。   When the hybrid vehicle having such a hybrid drive device disengages the first clutch and engages the second clutch, the hybrid vehicle is in an electric travel (EV) mode that travels only by the power from the motor / generator, and the first clutch and the second clutch When both the clutches are engaged, a hybrid running (HEV) mode that can run with power from both the engine and the motor / generator can be set.

かかるハイブリッド車両においては、後者のHEVモードでの走行中、踏み込んでいたアクセルペダルの戻し操作により要求駆動力が低下し、モータ/ジェネレータのみでこの要求駆動力を実現することができることとなったためエンジン出力が不要になった場合などでは、当該HEVモードから前者のEVモードへ切り替えることになる。
このモード切り替えに当たっては、第1クラッチを解放すると共にエンジンを停止させながら当該モード切り替えを行う必要がある。
In such a hybrid vehicle, the required driving force is reduced by the return operation of the accelerator pedal that was stepped on during the latter HEV mode, and this required driving force can be realized only by the motor / generator. When the output becomes unnecessary, the HEV mode is switched to the former EV mode.
In switching the mode, it is necessary to release the first clutch and switch the mode while stopping the engine.

しかし、当該モード切り替えに際して必要な上記第1クラッチの解放およびエンジンの停止を、モード切り替えが違和感なく滑らかに行われるよう遂行させる技術について従来、特許文献1も含めて好適な提案がなされていなかった。   However, no suitable proposal has been made, including Patent Document 1, regarding a technique for performing the mode switching that is required for the mode switching and the engine stop so that the mode switching is smoothly performed without a sense of incongruity. .

特開平11−082260号公報Japanese Patent Laid-Open No. 11-082260

そのため、上記HEVモードからEVモードへのモード切り替えに際して必要な、第1クラッチの解放タイミング制御およびエンジンの停止タイミング制御に関し、以下の問題を生ずる。   Therefore, the following problems occur with respect to the release timing control of the first clutch and the stop timing control of the engine, which are necessary when switching the mode from the HEV mode to the EV mode.

つまり、HEV→EVモード切り替え時に行うべき第1クラッチの解放およびエンジンの停止のうち、第1クラッチの解放はクラッチ作動油の温度変化や経時劣化などにより解放タイミングにバラツキを生じ、またエンジンの停止も、温度変化や経時摩耗などによるフリクション変化でエンジン停止タイミングにバラツキを生じる。   In other words, among the first clutch release and engine stop that should be performed when switching from HEV to EV mode, the release of the first clutch causes variations in the release timing due to changes in the temperature of the clutch hydraulic fluid, deterioration over time, etc. However, the engine stop timing varies due to friction changes due to temperature changes and wear over time.

その結果、第1クラッチの解放タイミングがエンジンの停止タイミングよりも遅れて、第1クラッチの伝達トルク容量がエンジントルクよりも大きい間に、エンジンを例えばフューエルカット(燃料供給停止)により停止させると、エンジン停止時のトルク変動が第1クラッチを経て後方の駆動車輪へ伝達され、エンジン停止ショックが発生するという問題を生ずる。   As a result, if the engine is stopped by, for example, fuel cut (fuel supply stop) while the release timing of the first clutch is delayed from the engine stop timing and the transmission torque capacity of the first clutch is larger than the engine torque, Torque fluctuations when the engine is stopped are transmitted to the rear drive wheels via the first clutch, causing a problem that an engine stop shock occurs.

また逆に、第1クラッチの解放タイミングがエンジンの停止タイミングよりも早く、エンジンが上記のフューエルカット中であっても未だ停止に至らず正駆動トルクを発生している間に第1クラッチの伝達トルク容量が当該エンジントルクよりも小さくなると、エンジンが正駆動トルクにより空吹けを生じてしまい、運転者に違和感を与えるという問題を生ずる。   Conversely, the first clutch release timing is earlier than the engine stop timing, and even if the engine is in the above fuel cut, the first clutch is not yet stopped and generates positive drive torque. When the torque capacity is smaller than the engine torque, the engine is blown by the positive drive torque, causing a problem that the driver feels uncomfortable.

本発明は、上記の問題のうち特に後者の問題、つまり第1クラッチの解放タイミングがエンジンの停止タイミングよりも早くて、エンジンが未だ正駆動トルクを発生している間に第1クラッチの伝達トルク容量がエンジントルクよりも小さくなり、そのためエンジンが空吹けて運転者に違和感を与えるという問題を解消したハイブリッド車両のモード切り替え制御装置を提案することを目的とする。   The present invention relates to the latter problem among the above problems, that is, the transmission torque of the first clutch while the release timing of the first clutch is earlier than the stop timing of the engine and the engine is still generating the positive drive torque. An object of the present invention is to propose a mode switching control device for a hybrid vehicle in which the capacity is smaller than the engine torque so that the problem that the engine blows away and the driver feels uncomfortable is solved.

この目的のため、本発明によるハイブリッド車両のモード切り替え制御装置は、これを以下のごとくに構成する。
先ず、前提となるハイブリッド車両を説明するに、これは、
動力源としてエンジンおよびモータ/ジェネレータを具え、これらエンジンおよびモータ/ジェネレータ間に伝達トルク容量を変更可能な第1クラッチを介在させ、モータ/ジェネレータおよび駆動車輪間に伝達トルク容量を変更可能な第2クラッチを介在させ、
エンジンを停止させ、第1クラッチを解放すると共に第2クラッチを締結することによりモータ/ジェネレータからの動力のみによる電気走行モードを選択可能で、第1クラッチおよび第2クラッチを共に締結することによりエンジンおよびモータ/ジェネレータの双方からの動力によるハイブリッド走行モードを選択可能にしたものである。
For this purpose, the hybrid vehicle mode switching control apparatus according to the present invention is configured as follows.
First, to explain the premise hybrid vehicle,
An engine and a motor / generator are provided as power sources, a first clutch capable of changing the transmission torque capacity is interposed between the engine and the motor / generator, and a second transmission torque capacity can be changed between the motor / generator and the driving wheel. Through the clutch,
By stopping the engine, releasing the first clutch and engaging the second clutch, it is possible to select the electric travel mode using only the power from the motor / generator, and by engaging both the first and second clutches, the engine And a hybrid travel mode by power from both the motor / generator can be selected.

本発明は、かかるハイブリッド車両において、
前記ハイブリッド走行モードでの走行中、前記エンジンの停止および第1クラッチの解放による前記電気走行モードへのモード切り替えが指令されたとき、該モード切り替え指令時からの経過時間を計測してこの経過時間に基づき、前記エンジンの停止によりエンジン運転中のエンジントルクが消失した後に前記第1クラッチの解放を行わせるよう構成したことを特徴とするものである。
The present invention relates to such a hybrid vehicle,
When the mode switching to the electric driving mode is instructed by stopping the engine and releasing the first clutch during traveling in the hybrid traveling mode, the elapsed time is measured by measuring the elapsed time from the mode switching command. On the basis of the above, the first clutch is released after the engine torque during engine operation disappears due to the stop of the engine.

上記した本発明によるハイブリッド車両のモード切り替え制御装置によれば、以下の作用効果が奏し得られる。   According to the above-described mode switching control device for a hybrid vehicle according to the present invention, the following operational effects can be obtained.

つまり、ハイブリッド走行モードでの走行中、エンジンの停止および第1クラッチの解放による電気走行モードへのモード切り替えが指令されたとき、このモード切り替え指令時からの経過時間を計測してこの経過時間に基づき、上記エンジンの停止によりエンジン運転中のエンジントルクが消失した後に第1クラッチの解放を行わせるため、
停止操作中のエンジンが未だ正駆動トルクを発生している間に第1クラッチの解放が行われることはなく、かかる早すぎる第1クラッチの解放でエンジンが空吹けて運転者に違和感を与えるという前記の問題を解消することができる。
In other words, when driving in the hybrid driving mode is commanded to switch to the electric driving mode by stopping the engine and releasing the first clutch, the elapsed time from the mode switching command is measured and this elapsed time is calculated. Based on the above, in order to release the first clutch after the engine torque during engine operation disappears due to the engine stop,
The first clutch is not released while the engine being stopped is still generating positive drive torque, and the engine is blown away by prematurely releasing the first clutch, giving the driver a sense of discomfort. The above problem can be solved.

本発明の着想を適用可能なハイブリッド車両のパワートレーンを示す概略平面図である。It is a schematic plan view which shows the power train of the hybrid vehicle which can apply the idea of this invention. 本発明の着想を適用可能な他のハイブリッド車両のパワートレーンを示す概略平面図である。It is a schematic plan view which shows the power train of the other hybrid vehicle which can apply the idea of this invention. 本発明の着想を適用可能な更に他のハイブリッド車両のパワートレーンを示す概略平面図である。It is a schematic plan view which shows the power train of the further another hybrid vehicle which can apply the idea of this invention. 図1〜3に示したパワートレーンにおける自動変速機を示す骨子図である。FIG. 4 is a skeleton diagram showing an automatic transmission in the power train shown in FIGS. 図4に示した自動変速機内における変速摩擦要素の締結の組み合わせと、自動変速機の選択変速段との関係を示す締結論理図である。FIG. 5 is an engagement logic diagram showing a relationship between a combination of engagement of shift friction elements in the automatic transmission shown in FIG. 4 and a selected shift stage of the automatic transmission. 図3に示したパワートレーンの制御システムを示すブロック線図である。FIG. 4 is a block diagram showing a control system for the power train shown in FIG. 同制御システムにおける統合コントローラが実行する基本的な駆動力制御のプログラムを示すフローチャートである。It is a flowchart which shows the program of the basic driving force control which the integrated controller in the control system performs. 図6に示した制御システムにおける統合コントローラが実行する、HEV→EVモード切り替え制御の動作タイムチャートである。FIG. 7 is an operation time chart of HEV → EV mode switching control executed by an integrated controller in the control system shown in FIG. 6. FIG.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<構成>
図1は、本発明のモード切り替え制御装置を適用可能なハイブリッド駆動装置を具えたフロントエンジン・リヤホイールドライブ式ハイブリッド車両のパワートレーンを示し、1はエンジン、2は駆動車輪(左右後輪)である。
図1に示すハイブリッド車両のパワートレーンにおいては、通常の後輪駆動車と同様にエンジン1の車両前後方向後方に自動変速機3をタンデムに配置し、エンジン1(クランクシャフト1a)からの回転を自動変速機3の入力軸3aへ伝達する軸4に結合してモータ/ジェネレータ5を設ける。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Configuration>
FIG. 1 shows a power train of a front engine / rear wheel drive hybrid vehicle equipped with a hybrid drive device to which the mode switching control device of the present invention can be applied, where 1 is an engine and 2 is drive wheels (left and right rear wheels). is there.
In the power train of the hybrid vehicle shown in FIG. 1, the automatic transmission 3 is arranged in tandem at the rear of the engine 1 in the longitudinal direction of the vehicle in the same manner as a normal rear wheel drive vehicle, and the engine 1 (crankshaft 1a) is rotated. A motor / generator 5 is provided in combination with the shaft 4 that transmits to the input shaft 3a of the automatic transmission 3.

モータ/ジェネレータ5は、モータとして作用したり、ジェネレータ(発電機)として作用するもので、エンジン1および自動変速機3間に配置する。
このモータ/ジェネレータ5およびエンジン1間、より詳しくは、軸4とエンジンクランクシャフト1aとの間に第1クラッチ6を介挿し、この第1クラッチ6によりエンジン1およびモータ/ジェネレータ5間を切り離し可能に結合する。
ここで第1クラッチ6は、伝達トルク容量を連続的または段階的に変更可能なものとし、例えば、比例ソレノイドでクラッチ作動油流量およびクラッチ作動油圧を連続的に制御して伝達トルク容量を変更可能な湿式多板クラッチで構成する。
The motor / generator 5 functions as a motor or a generator (generator), and is disposed between the engine 1 and the automatic transmission 3.
The first clutch 6 can be inserted between the motor / generator 5 and the engine 1, more specifically, between the shaft 4 and the engine crankshaft 1a, and the engine 1 and the motor / generator 5 can be disconnected by the first clutch 6. To join.
Here, the transmission torque capacity of the first clutch 6 can be changed continuously or stepwise. For example, the transmission torque capacity can be changed by continuously controlling the clutch hydraulic oil flow rate and the clutch hydraulic pressure with a proportional solenoid. It consists of a simple wet multi-plate clutch.

モータ/ジェネレータ5および自動変速機3間、より詳しくは、軸4と変速機入力軸3aとの間に第2クラッチ7を介挿し、この第2クラッチ7によりモータ/ジェネレータ5および自動変速機3間を切り離し可能に結合する。
第2クラッチ7も第1クラッチ6と同様、伝達トルク容量を連続的または段階的に変更可能なものとし、例えば、比例ソレノイドでクラッチ作動油流量およびクラッチ作動油圧を連続的に制御して伝達トルク容量を変更可能な湿式多板クラッチで構成する。
A second clutch 7 is inserted between the motor / generator 5 and the automatic transmission 3, more specifically between the shaft 4 and the transmission input shaft 3a, and the motor / generator 5 and the automatic transmission 3 are inserted by the second clutch 7. The releasable connection is made.
Similarly to the first clutch 6, the second clutch 7 can change the transmission torque capacity continuously or stepwise. For example, the proportional hydraulic solenoid can continuously control the clutch hydraulic fluid flow rate and the clutch hydraulic pressure to transmit torque. It consists of a wet multi-plate clutch whose capacity can be changed.

自動変速機3は、2003年1月、日産自動車(株)発行「スカイライン新型車(CV35型車)解説書」第C−9頁〜第C−22頁に記載されたと同じものとし、複数の変速摩擦要素(クラッチやブレーキ等)を選択的に締結したり解放することで、これら変速摩擦要素の締結・解放組み合わせにより伝動系路(変速段)を決定するものとする。   The automatic transmission 3 is the same as that described in pages C-9 to C-22 on the "Skyline New Car (CV35) Manual" issued by Nissan Motor Co., Ltd. in January 2003. By selectively engaging or releasing a shift friction element (such as a clutch or a brake), a transmission system path (shift stage) is determined by a combination of engagement and release of these shift friction elements.

従って自動変速機3は、入力軸3aからの回転を選択変速段に応じたギヤ比で変速して出力軸3bに出力する。
この出力回転は、ディファレンシャルギヤ装置8により左右後輪2へ分配して伝達され、車両の走行に供される。
但し自動変速機3は、上記したような有段式のものに限られず、無段変速機であってもよいのは言うまでもない。
Therefore, the automatic transmission 3 shifts the rotation from the input shaft 3a at a gear ratio corresponding to the selected shift speed and outputs it to the output shaft 3b.
This output rotation is distributed and transmitted to the left and right rear wheels 2 by the differential gear device 8 and used for traveling of the vehicle.
However, it goes without saying that the automatic transmission 3 is not limited to the stepped type as described above, and may be a continuously variable transmission.

自動変速機3は、図4に示すごときもので、以下にその概略を説明する。
入出力軸3a,3bは同軸突き合わせ関係に配置し、これら入出力軸3a,3b 上にエンジン1(モータ/ジェネレータ5)の側から順次フロントプラネタリギヤ組Gf、センタープラネタリギヤ組Gm、およびリヤプラネタリギヤ組Grを載置して具え、これらを自動変速機3における遊星歯車変速機構の主たる構成要素とする。
The automatic transmission 3 is as shown in FIG. 4, and the outline thereof will be described below.
The input / output shafts 3a and 3b are arranged in a coaxial butt relationship, and the front planetary gear set Gf, the center planetary gear set Gm, and the rear planetary gear set Gr are sequentially arranged on the input / output shafts 3a and 3b from the engine 1 (motor / generator 5) side. These are the main components of the planetary gear transmission mechanism in the automatic transmission 3.

エンジン1(モータ/ジェネレータ5)に最も近いフロントプラネタリギヤ組Gfは、フロントサンギヤSf 、フロントリングギヤRf 、これらに噛合するフロントピニオンPf 、および該フロントピニオンを回転自在に支持するフロントキャリアCf よりなる単純遊星歯車組とする。   The front planetary gear set Gf closest to the engine 1 (motor / generator 5) is a simple planetary gear comprising a front sun gear Sf, a front ring gear Rf, a front pinion Pf meshing with the front sun gear Sf, and a front carrier Cf rotatably supporting the front pinion. A gear set.

次にエンジン1(モータ/ジェネレータ5)に近いセンタープラネタリギヤ組Gmは、センターサンギヤSm 、センターリングギヤRm 、これらに噛合するセンターピニオンPm 、および該センターピニオンを回転自在に支持するセンターキャリアCm よりなる単純遊星歯車組とする。   Next, the center planetary gear set Gm close to the engine 1 (motor / generator 5) includes a center sun gear Sm, a center ring gear Rm, a center pinion Pm meshing with the center sun gear Sm, and a center carrier Cm that rotatably supports the center pinion. A planetary gear set.

エンジン1(モータ/ジェネレータ5)から最も遠いリヤプラネタリギヤ組Grは、リヤサンギヤSr 、リヤリングギヤRr 、これらに噛合するリヤピニオンPr 、および該リヤピニオンを回転自在に支持するリヤキャリアCr よりなる単純遊星歯車組とする。   The rear planetary gear set Gr farthest from the engine 1 (motor / generator 5) is a simple planetary gear set comprising a rear sun gear Sr, a rear ring gear Rr, a rear pinion Pr meshing with the rear sun gear Sr, and a rear carrier Cr that rotatably supports the rear pinion. To do.

遊星歯車変速機構の伝動経路(変速段)を決定する変速摩擦要素としては、フロントブレーキFr/B、インプットクラッチI/C、ハイ・アンド・ローリバースクラッチH&LR/C、ダイレクトクラッチD/C、リバースブレーキR/B、ロー・コーストブレーキLC/B、およびフォワードブレーキFWD/Bを設け、
これらを3個のワンウェイクラッチ、つまり3速ワンウェイクラッチ3rd/OWC、1速ワンウェイクラッチ1st/OWCおよびフォワードワンウェイクラッチFWD/OWCとともに、以下のごとくプラネタリギヤ組Gf,Gm,Grの上記構成要素に相関させて自動変速機3の遊星歯車変速機構を構成する。
Front friction Fr / B, input clutch I / C, high-and-low reverse clutch H & LR / C, direct clutch D / C, reverse, as the transmission friction elements that determine the transmission path (speed stage) of the planetary gear transmission mechanism Brake R / B, low coast brake LC / B, and forward brake FWD / B
These are correlated with the above-mentioned components of the planetary gear sets Gf, Gm, and Gr together with three one-way clutches, namely, the three-speed one-way clutch 3rd / OWC, the first-speed one-way clutch 1st / OWC, and the forward one-way clutch FWD / OWC. Thus, the planetary gear transmission mechanism of the automatic transmission 3 is configured.

フロントリングギヤRfは入力軸3aに結合し、センターリングギヤRmは、インプットクラッチI/Cにより適宜入力軸3aに結合可能とする。
フロントサンギヤSfは、3速ワンウェイクラッチ3rd/OWCを介してエンジン1の回転方向と逆の方向へ回転しないようにすると共に、3速ワンウェイクラッチ3rd/OWCに対し並列的に配置したフロントブレーキFr/Bにより適宜固定可能にする。
フロントキャリアCfおよびリヤリングギヤRrを相互に結合し、センターリングギヤRmおよびリヤキャリアCrを相互に結合する。
The front ring gear Rf is coupled to the input shaft 3a, and the center ring gear Rm can be appropriately coupled to the input shaft 3a by the input clutch I / C.
The front sun gear Sf is prevented from rotating in the direction opposite to the rotation direction of the engine 1 via the 3-speed one-way clutch 3rd / OWC, and the front brake Fr / disposed in parallel to the 3-speed one-way clutch 3rd / OWC. B can be fixed as appropriate.
Front carrier Cf and rear ring gear Rr are coupled to each other, and center ring gear Rm and rear carrier Cr are coupled to each other.

センターキャリアCmは出力軸3bに結合し、センターサンギヤSmおよびリヤサンギヤSr間は、1速ワンウェイクラッチ1st/OWCを介してセンターサンギヤSmがリヤサンギヤSrに対しエンジン1の回転方向と逆の方向へ回転しないようにすると共に、ハイ・アンド・ローリバースクラッチH&LR/CによりセンターサンギヤSmおよびリヤサンギヤSrを相互に結合可能とする。   The center carrier Cm is coupled to the output shaft 3b, and the center sun gear Sm does not rotate in the direction opposite to the rotation direction of the engine 1 with respect to the rear sun gear Sr via the first-speed one-way clutch 1st / OWC between the center sun gear Sm and the rear sun gear Sr. In addition, the center sun gear Sm and the rear sun gear Sr can be coupled to each other by the high and low reverse clutch H & LR / C.

リヤサンギヤSrおよびリヤキャリアCr間をダイレクトクラッチD/Cにより結合可能とし、リヤキャリアCrをリバースブレーキR/Bにより適宜固定可能とする。
センターサンギヤSmは更に、フォワードブレーキFWD/BおよびフォワードワンウェイクラッチFWD/OWCにより、フォワードブレーキFWD/Bの締結状態でエンジン1の回転方向と逆の方向へ回転しないようにすると共に、ロー・コーストブレーキLC/Bにより適宜固定可能にし、これがためロー・コーストブレーキLC/BをフォワードブレーキFWD/BおよびフォワードワンウェイクラッチFWD/OWCに対し並列的に設ける。
The rear sun gear Sr and the rear carrier Cr can be coupled by a direct clutch D / C, and the rear carrier Cr can be appropriately fixed by a reverse brake R / B.
The center sun gear Sm is further prevented by the forward brake FWD / B and the forward one-way clutch FWD / OWC from rotating in the reverse direction of the engine 1 when the forward brake FWD / B is engaged, and the low coast brake. LC / B can be fixed as appropriate, so low coast brake LC / B is provided in parallel with forward brake FWD / B and forward one-way clutch FWD / OWC.

上記遊星歯車変速機構の動力伝達列は、7個の変速摩擦要素Fr/B,I/C,H&LR/C,D/C,R/B,LC/B,FWD/B、および3個のワンウェイクラッチ3rd/OWC,1st/OWC,FWD/OWCの図5に〇印および●印(エンジンブレーキ時)で示す選択的係合により、前進第1速(1st)、前進第2速(2nd)、前進第3速(3rd)、前進第4速(4th)および前進第5速(5th)の前進変速段と、後退変速段(Rev )とを得ることができる。   The power transmission train of the planetary gear transmission mechanism has seven shift friction elements Fr / B, I / C, H & LR / C, D / C, R / B, LC / B, FWD / B, and three one-way. With the selective engagement shown in Fig. 5 for clutches 3rd / OWC, 1st / OWC, FWD / OWC as indicated by ◯ and ● (when engine braking), forward first speed (1st), forward second speed (2nd), The third forward speed (3rd), the fourth forward speed (4th), the fifth forward speed (5th), and the reverse speed stage (Rev) can be obtained.

上記した自動変速機3を具える図1のパワートレーンにおいては、停車状態からの発進時などを含む低負荷・低車速時に用いられる電気走行(EV)モードが要求される場合、第1クラッチ6を解放し、第2クラッチ7を締結し、自動変速機3を動力伝達状態にする。   In the power train of FIG. 1 including the automatic transmission 3 described above, when the electric travel (EV) mode used at low load / low vehicle speed including when starting from a stopped state is required, the first clutch 6 Is released, the second clutch 7 is engaged, and the automatic transmission 3 is in a power transmission state.

この状態でモータ/ジェネレータ5を駆動すると、当該モータ/ジェネレータ5からの出力回転のみが変速機入力軸3aに達することとなり、自動変速機3が当該入力軸3aへの回転を、選択中の変速段に応じ変速して変速機出力軸3bより出力する。
変速機出力軸3bからの回転はその後、ディファレンシャルギヤ装置8を経て後輪2に至り、車両をモータ/ジェネレータ5のみによって電気走行(EV走行)させることができる。
When the motor / generator 5 is driven in this state, only the output rotation from the motor / generator 5 reaches the transmission input shaft 3a, and the automatic transmission 3 changes the rotation to the input shaft 3a to the selected shift speed. The speed is changed according to the speed and output from the transmission output shaft 3b.
Then, the rotation from the transmission output shaft 3b reaches the rear wheel 2 via the differential gear device 8, and the vehicle can be electrically driven (EV traveling) only by the motor / generator 5.

高速走行時や、大負荷走行時や、バッテリの持ち出し可能電力が少ない時などで用いられるハイブリッド走行(HEV走行)モードが要求される場合、第1クラッチ6および第2クラッチ7をともに締結し、自動変速機3を動力伝達状態にする。
この状態では、エンジン1からの出力回転、または、エンジン1からの出力回転およびモータ/ジェネレータ5からの出力回転の双方が変速機入力軸3aに達することとなり、自動変速機3が当該入力軸3aへの回転を、選択中の変速段に応じ変速して、変速機出力軸3bより出力する。
変速機出力軸3bからの回転はその後、ディファレンシャルギヤ装置8を経て後輪2に至り、車両をエンジン1およびモータ/ジェネレータ5の双方によってハイブリッド走行(HEV走行)させることができる。
When hybrid driving (HEV driving) mode used when driving at high speeds, during heavy loads, or when the amount of power that can be taken out by the battery is low, both the first clutch 6 and the second clutch 7 are engaged, The automatic transmission 3 is brought into a power transmission state.
In this state, the output rotation from the engine 1, or both the output rotation from the engine 1 and the output rotation from the motor / generator 5 reach the transmission input shaft 3a, and the automatic transmission 3 is connected to the input shaft 3a. Is rotated according to the currently selected shift speed and output from the transmission output shaft 3b.
The rotation from the transmission output shaft 3b then reaches the rear wheel 2 via the differential gear device 8, and the vehicle can be hybrid-driven (HEV-driven) by both the engine 1 and the motor / generator 5.

かかるHEV走行中において、エンジン1を最適燃費で運転させるとエネルギーが余剰となる場合、この余剰エネルギーによりモータ/ジェネレータ5を発電機として作動させることで余剰エネルギーを電力に変換し、この発電電力をモータ/ジェネレータ5のモータ駆動に用いるよう蓄電しておくことでエンジン1の燃費を向上させることができる。   In such HEV traveling, when the engine 1 is operated with the optimal fuel efficiency, if the energy becomes surplus, the surplus energy is converted into electric power by operating the motor / generator 5 as a generator by this surplus energy, and this generated power is converted into electric power. By accumulating power to be used for driving the motor of the motor / generator 5, the fuel consumption of the engine 1 can be improved.

なお図1では、モータ/ジェネレータ5および駆動車輪2を切り離し可能に結合する第2クラッチ7を、モータ/ジェネレータ5および自動変速機3間に介在させたが、
図2に示すように、第2クラッチ7を自動変速機3およびディファレンシャルギヤ装置8間に介在させても、同様に機能させることができる。
In FIG. 1, the second clutch 7 that detachably couples the motor / generator 5 and the drive wheel 2 is interposed between the motor / generator 5 and the automatic transmission 3,
As shown in FIG. 2, even if the second clutch 7 is interposed between the automatic transmission 3 and the differential gear device 8, the same function can be achieved.

また、図1および図2では第2クラッチ7として専用のものを自動変速機3の前、若しくは、後に追加することとしたが、
この代わりに第2クラッチ7として、図3に示すごとく自動変速機3内に既存する前進変速段選択用の変速摩擦要素または後退変速段選択用の変速摩擦要素を流用するようにしてもよい。
In addition, in FIG. 1 and FIG. 2, a dedicated second clutch 7 is added before or after the automatic transmission 3,
Instead, as the second clutch 7, as shown in FIG. 3, a shift friction element for selecting a forward shift stage or a shift friction element for selecting a reverse shift stage existing in the automatic transmission 3 may be used.

第2クラッチ7として流用する自動変速機3の変速摩擦要素については後述する。
この場合、第2クラッチ7が前記したモード選択機能を果たすのに加えて、この機能を果たすよう締結される時に自動変速機を動力伝達状態にすることとなり、専用の第2クラッチが不要でコスト上大いに有利である。
The shift friction element of the automatic transmission 3 used as the second clutch 7 will be described later.
In this case, in addition to the second clutch 7 fulfilling the mode selection function described above, the automatic transmission is put into a power transmission state when engaged to fulfill this function, and a dedicated second clutch is not required and the cost is reduced. The top is very advantageous.

<制御システム>
図1〜3に示すハイブリッド車両のパワートレーンを成すエンジン1、モータ/ジェネレータ5、第1クラッチ6、および第2クラッチ7は、図6に示すようなシステムにより制御する。
なお以下では、パワートレーンが図3に示すようなものである(第2クラッチ7として自動変速機3内に既存の変速摩擦要素を流用したもの)である場合につき説明を展開するものとする。
<Control system>
The engine 1, the motor / generator 5, the first clutch 6, and the second clutch 7 constituting the power train of the hybrid vehicle shown in FIGS. 1 to 3 are controlled by a system as shown in FIG.
In the following description, it is assumed that the power train is as shown in FIG. 3 (existing speed change friction element in the automatic transmission 3 as the second clutch 7).

図6の制御システムは、パワートレーンの動作点を統合制御する統合コントローラ20を具え、パワートレーンの動作点を、目標エンジントルクtTeと、目標モータ/ジェネレータトルクtTm(目標モータ/ジェネレータ回転数tNmでもよい)と、第1クラッチ6の目標伝達トルク容量tTc1(第1クラッチ指令圧tPc1)と、第2クラッチ7の目標伝達トルク容量tTc2(第2クラッチ指令圧tPc2)とで規定する。   The control system of FIG. 6 includes an integrated controller 20 that performs integrated control of the operating point of the power train. The operating point of the power train is set to the target engine torque tTe and the target motor / generator torque tTm (even with the target motor / generator rotation speed tNm). And the target transmission torque capacity tTc1 (first clutch command pressure tPc1) of the first clutch 6 and the target transmission torque capacity tTc2 (second clutch command pressure tPc2) of the second clutch 7.

統合コントローラ20には、上記パワートレーンの動作点を決定するために、
エンジン回転数Neを検出するエンジン回転センサ11からの信号と、
モータ/ジェネレータ回転数Nmを検出するモータ/ジェネレータ回転センサ12からの信号と、
変速機入力回転数Niを検出する入力回転センサ13からの信号と、
変速機出力回転数Noを検出する出力回転センサ14からの信号と、
エンジン1の要求負荷状態を表すアクセルペダル踏み込み量(アクセル開度APO)を検出するアクセル開度センサ15からの信号と、
モータ/ジェネレータ5用の電力を蓄電しておくバッテリ9の蓄電状態SOC(持ち出し可能電力)を検出する蓄電状態センサ16からの信号とを入力する。
In order to determine the operating point of the power train, the integrated controller 20
A signal from the engine rotation sensor 11 for detecting the engine speed Ne;
A signal from the motor / generator rotation sensor 12 for detecting the motor / generator rotation speed Nm;
A signal from the input rotation sensor 13 for detecting the transmission input rotation speed Ni,
A signal from the output rotation sensor 14 that detects the transmission output rotation speed No,
A signal from an accelerator opening sensor 15 for detecting an accelerator pedal depression amount (accelerator opening APO) representing a required load state of the engine 1;
A signal from a storage state sensor 16 that detects a storage state SOC (carryable power) of the battery 9 that stores power for the motor / generator 5 is input.

なお、上記したセンサのうち、エンジン回転センサ11、モータ/ジェネレータ回転センサ12、入力回転センサ13、および出力回転センサ14はそれぞれ、図1〜3に示すように配置することができる。   Among the sensors described above, the engine rotation sensor 11, the motor / generator rotation sensor 12, the input rotation sensor 13, and the output rotation sensor 14 can be arranged as shown in FIGS.

統合コントローラ20は、上記入力情報のうちアクセル開度APO、バッテリ蓄電状態SOC、および変速機出力回転数No(車速VSP)から、運転者が希望している車両の駆動力を実現可能な運転モード(EVモード、HEVモード)を選択すると共に、目標エンジントルクtTe、目標モータ/ジェネレータトルクtTm(目標モータ/ジェネレータ回転数tNmでもよい)、目標第1クラッチ伝達トルク容量tTc1(第1クラッチ指令圧tPc1)、および目標第2クラッチ伝達トルク容量tTc2(第2クラッチ指令圧tPc2)をそれぞれ演算する。
目標エンジントルクtTeはエンジンコントローラ21に供給され、目標モータ/ジェネレータトルクtTm(目標モータ/ジェネレータ回転数tNmでもよい)はモータ/ジェネレータコントローラ22に供給される。
The integrated controller 20 is a driving mode in which the driving force of the vehicle desired by the driver can be realized from the accelerator opening APO, the battery storage state SOC, and the transmission output rotational speed No (vehicle speed VSP) among the above input information. (EV mode, HEV mode) and target engine torque tTe, target motor / generator torque tTm (may be target motor / generator rotation speed tNm), target first clutch transmission torque capacity tTc1 (first clutch command pressure tPc1 ) And a target second clutch transmission torque capacity tTc2 (second clutch command pressure tPc2).
The target engine torque tTe is supplied to the engine controller 21, and the target motor / generator torque tTm (which may be the target motor / generator rotation speed tNm) is supplied to the motor / generator controller 22.

エンジンコントローラ21は、エンジントルクTeが目標エンジントルクtTeとなるようエンジン1を制御し、
モータ/ジェネレータコントローラ22はモータ/ジェネレータ5のトルクTm(または回転数Nm)が目標モータ/ジェネレータトルクtTm(または目標モータ/ジェネレータ回転数tNm)となるよう、バッテリ9およびインバータ10を介してモータ/ジェネレータ5を制御する。
統合コントローラ20は、目標第1クラッチ伝達トルク容量tTc1(第1クラッチ指令圧tPc1)および目標第2クラッチ伝達トルク容量tTc2(第2クラッチ指令圧tPc2)に対応したソレノイド電流を第1クラッチ6および第2クラッチ7の油圧制御ソレノイド(図示せず)に供給し、第1クラッチ6の伝達トルク容量Tc1(第1クラッチ圧Pc1)が目標伝達トルク容量tTc1(第1クラッチ指令圧tPc1)に一致するよう、また、第2クラッチ7の伝達トルク容量Tc2(第2クラッチ圧Pc2)が目標第2クラッチ伝達トルク容量tTc2(第2クラッチ指令圧tPc2)に一致するよう、第1クラッチ6および第2クラッチ7を個々に締結力制御する。
The engine controller 21 controls the engine 1 so that the engine torque Te becomes the target engine torque tTe.
The motor / generator controller 22 is connected to the motor / generator 5 via the battery 9 and the inverter 10 so that the torque Tm (or rotational speed Nm) of the motor / generator 5 becomes the target motor / generator torque tTm (or target motor / generator rotational speed tNm). The generator 5 is controlled.
The integrated controller 20 generates solenoid currents corresponding to the target first clutch transmission torque capacity tTc1 (first clutch command pressure tPc1) and the target second clutch transmission torque capacity tTc2 (second clutch command pressure tPc2). 2 Supply to the hydraulic control solenoid (not shown) of the clutch 7 so that the transmission torque capacity Tc1 (first clutch pressure Pc1) of the first clutch 6 matches the target transmission torque capacity tTc1 (first clutch command pressure tPc1) Also, the first clutch 6 and the second clutch 7 are set so that the transmission torque capacity Tc2 (second clutch pressure Pc2) of the second clutch 7 matches the target second clutch transmission torque capacity tTc2 (second clutch command pressure tPc2). The fastening force is controlled individually.

<ハイブリッド車両の一般的な駆動力制御>
統合コントローラ20は、上記した運転モード(EVモード、HEVモード)の選択、そして目標エンジントルクtTe、目標モータ/ジェネレータトルクtTm(目標モータ/ジェネレータ回転数tNmでもよい)、目標第1クラッチ伝達トルク容量tTc1(第1クラッチ指令圧tPc1)、および目標第2クラッチ伝達トルク容量tTc2(第2クラッチ指令圧tPc2)の演算を、図7に示すメインルーチンにより実行する。
<General driving force control of hybrid vehicles>
The integrated controller 20 selects the above-described operation mode (EV mode, HEV mode), the target engine torque tTe, the target motor / generator torque tTm (may be the target motor / generator speed tNm), the target first clutch transmission torque capacity Calculation of tTc1 (first clutch command pressure tPc1) and target second clutch transmission torque capacity tTc2 (second clutch command pressure tPc2) is executed by the main routine shown in FIG.

先ずステップS1において、予定の到達目標駆動力マップを用い、アクセル開度APOおよび車速VSPから、定常的な到達目標駆動力tFo0を演算する。
次のステップS2においては、予定の変速マップをもとにアクセル開度APOおよび車速VSPから目標変速段SHIFTを決定し、これをステップS9で自動変速機3の変速制御部(図示せず)へ指令して自動変速機3を目標変速段SHIFTへと変速させる。
First, in step S1, a steady attainment target driving force tFo0 is calculated from the accelerator opening APO and the vehicle speed VSP using a planned attainment target driving force map.
In the next step S2, the target shift stage SHIFT is determined from the accelerator opening APO and the vehicle speed VSP based on the planned shift map, and this is transferred to the shift control unit (not shown) of the automatic transmission 3 in step S9. Command to shift the automatic transmission 3 to the target shift stage SHIFT.

ステップS3においては、予定の目標運転モード領域マップを用いて、アクセル開度APOおよび車速VSPから、目標とする運転モード(EVモード、HEVモード)を決定する。
目標運転モードとして通常、高負荷(大アクセル開度)・高車速時はHEVモードをあてがい、低負荷・低車速時はEVモードをあてがうように上記の目標運転モード領域マップを定めるのが普通である。
In step S3, the target operation mode (EV mode, HEV mode) is determined from the accelerator opening APO and the vehicle speed VSP using the planned target operation mode region map.
Normally, the target operation mode area map above is set so that the HEV mode is applied at high loads (large accelerator opening) and high vehicle speeds, and the EV mode is applied at low loads and low vehicle speeds. is there.

次のステップS4においては、現在の運転モードと上記目標運転モードとの対比により、運転モード遷移演算を以下のごとくに行う。
現在の運転モードと目標運転モードとが一致していれば、現在の運転モードEVモードまたはHEVモードを保持するよう指令する。
現在の運転モードがEVモードで、目標運転モードがHEVモードであれば、EVモードからHEVモードへのモード切り替えを指令する。
現在の運転モードがHEVモードで、目標運転モードがEVモードであれば、HEVモードからEVモードへのモード切り替えを指令する。
そして、これらの指令をステップS9で出力することにより、指令通りにモード保持や、モード切り替えを行わせる。
In the next step S4, the operation mode transition calculation is performed as follows by comparing the current operation mode with the target operation mode.
If the current operation mode matches the target operation mode, a command is issued to maintain the current operation mode EV mode or HEV mode.
If the current operation mode is the EV mode and the target operation mode is the HEV mode, the mode switching from the EV mode to the HEV mode is commanded.
If the current operation mode is the HEV mode and the target operation mode is the EV mode, the mode switching from the HEV mode to the EV mode is commanded.
Then, by outputting these commands in step S9, mode holding or mode switching is performed as instructed.

ステップS5においては、現在の駆動力から、ステップS1で求めた到達目標駆動力tFo0へ、所定の味付けをもった応答で移行するのに必要な時々刻々の過渡目標駆動力tFoを演算する。
この演算に当たっては例えば、到達目標駆動力tFo0を所定時定数のローパスフィルタに通過させて得られる出力を過渡目標駆動力tFoとすることができる。
In step S5, the transient target driving force tFo is calculated every moment necessary for shifting from the current driving force to the ultimate target driving force tFo0 obtained in step S1 with a predetermined seasoning response.
In this calculation, for example, an output obtained by passing the ultimate target driving force tFo0 through a low-pass filter having a predetermined time constant can be used as the transient target driving force tFo.

ステップS6においては、運転モード(EVモード、HEVモード)や、モード切り替えに応じて、過渡目標駆動力tFoと、駆動車輪2のタイヤ有効半径Rtと、ファイナルギヤ比ifと、現在の選択変速段により決まる自動変速機3のギヤ比iGと、自動変速機3の入力回転数Niと、エンジン回転数Neと、バッテリ蓄電状態SOC(持ち出し可能電力)に応じた目標放電電力tPとから、モータ/ジェネレータ5との共働により、若しくは単独で、過渡目標駆動力tFoを達成するのに必要な目標エンジントルクtTeを求める。
このようにして決定した目標エンジントルクtTeをステップS9において、図6のエンジンコントローラ21に指令し、エンジンコントローラ21はエンジン1を目標エンジントルクtTeが実現されるよう制御する。
In step S6, depending on the operation mode (EV mode, HEV mode) and mode switching, the transient target driving force tFo, the tire effective radius Rt of the driving wheel 2, the final gear ratio if, and the currently selected shift speed From the gear ratio iG of the automatic transmission 3 determined by the motor, the input rotational speed Ni of the automatic transmission 3, the engine rotational speed Ne, and the target discharge power tP according to the battery storage state SOC (power that can be taken out), A target engine torque tTe required to achieve the transient target driving force tFo is obtained in cooperation with the generator 5 or independently.
The target engine torque tTe determined in this way is commanded to the engine controller 21 in FIG. 6 in step S9, and the engine controller 21 controls the engine 1 so that the target engine torque tTe is realized.

ステップS7においては、運転モード(EVモード、HEVモード)や、モード切り替えに応じて、過渡目標駆動力tFoを達成するのに必要な、または、モード切り替えを遂行させるのに必要な第1クラッチ6および第2クラッチ7の目標伝達トルク容量tTc1,tTc2(クラッチ指令圧tPc1,tPc2)を求める。
このようにして決定した第1クラッチ6および第2クラッチ7の目標伝達トルク容量tTc1,tTc2(クラッチ指令圧tPc1,tPc2)をステップS9において、図6の第1クラッチ6および第2クラッチ7に指令し、第1クラッチ6および第2クラッチ7を目標伝達トルク容量tTc1,tTc2となるよう締結力制御する。
In step S7, the first clutch 6 necessary to achieve the transient target driving force tFo or to perform mode switching according to the operation mode (EV mode, HEV mode) or mode switching. Then, target transmission torque capacities tTc1, tTc2 (clutch command pressures tPc1, tPc2) of the second clutch 7 are obtained.
The target transmission torque capacities tTc1, tTc2 (clutch command pressures tPc1, tPc2) of the first clutch 6 and the second clutch 7 determined in this way are commanded to the first clutch 6 and the second clutch 7 of FIG. 6 in step S9. Then, the engaging force is controlled so that the first clutch 6 and the second clutch 7 have the target transmission torque capacities tTc1 and tTc2.

ステップS8においては、運転モード(EVモード、HEVモード)や、モード切り替えに応じて、過渡目標駆動力tFoと、駆動車輪2のタイヤ有効半径Rtと、ファイナルギヤ比ifと、現在の選択変速段により決まる自動変速機3のギヤ比iGと、自動変速機3の入力回転数Niと、エンジン回転数Neと、バッテリ蓄電状態SOC(持ち出し可能電力)に応じた目標放電電力tPとから、エンジン1との共働により、若しくは単独で、過渡目標駆動力tFoを達成するのに必要な目標モータ/ジェネレータトルクtTmを求める。
このようにして決定した目標モータ/ジェネレータトルクtTmをステップS9において、図6のモータ/ジェネレータコントローラ22に指令し、モータ/ジェネレータコントローラ22はモータ/ジェネレータ5を目標モータ/ジェネレータトルクtTmが実現されるよう制御する。
In step S8, depending on the operation mode (EV mode, HEV mode) and mode switching, the transient target driving force tFo, the tire effective radius Rt of the driving wheel 2, the final gear ratio if, and the currently selected shift speed From the gear ratio iG of the automatic transmission 3 determined by the engine, the input rotational speed Ni of the automatic transmission 3, the engine rotational speed Ne, and the target discharge power tP according to the battery storage state SOC (carryable power), the engine 1 The target motor / generator torque tTm required to achieve the transient target driving force tFo is obtained either in cooperation with or alone.
The target motor / generator torque tTm thus determined is commanded to the motor / generator controller 22 of FIG. 6 in step S9, and the motor / generator controller 22 realizes the target motor / generator torque tTm for the motor / generator 5. Control as follows.

<HEV→EVモード切り替え制御>
以上は一般的なハイブリッド車両のパワートレーン駆動力制御であるが、本発明が狙いとするHEV→EVモード切り替え制御を、図8に示すごとくアクセルペダルの釈放でアクセル開度APOが低下され、これに伴ってHEV→EVモード切り替え指令が発せられると共に自動変速機3が4速から5速へアップシフトされる場合につき、以下に説明する。
<HEV → EV mode switching control>
The above is the powertrain driving force control of a general hybrid vehicle. In the HEV → EV mode switching control aimed by the present invention, the accelerator pedal opening APO is reduced by releasing the accelerator pedal as shown in FIG. A description will now be given of the case where the HEV → EV mode switching command is issued and the automatic transmission 3 is upshifted from the fourth speed to the fifth speed.

なお、HEV→EVモード切り替えは前記したとおり、第1クラッチ6および第2クラッチ7を締結してエンジン1およびモータ/ジェネレータ5からの動力により車輪2を駆動するハイブリッド走行(HEV)モードから、第1クラッチ6を解放すると共にエンジン1を停止してモータ/ジェネレータ5からの動力のみにより車輪2を駆動する電気走行(EV)モードへの切り替えであるため、第1クラッチ6を解放すると共にエンジン1を停止して当該HEV→EVモード切り替えが遂行される。   As described above, the HEV → EV mode is switched from the hybrid travel (HEV) mode in which the first clutch 6 and the second clutch 7 are engaged and the wheels 2 are driven by the power from the engine 1 and the motor / generator 5. 1 The clutch 6 is released and the engine 1 is stopped, and the mode is switched to the electric travel (EV) mode in which the wheels 2 are driven only by the power from the motor / generator 5, so the first clutch 6 is released and the engine 1 And the HEV → EV mode switching is performed.

また、自動変速機3の上記4速から5速へのアップシフトは、図5の締結論理図に矢印を付して示すごとく、締結状態のダイレクトクラッチD/Cを解放させる(以下、これを解放要素と称する)と共に、解放状態のフロントブレーキFr/Bを締結させる(以下、これを締結要素と称する)ことにより達成されるため、
ここではダイレクトクラッチD/C(解放要素)を図3の第2クラッチ7として用い、図8では、その指令圧をtPc2により、また、その実圧をPc2によりそれぞれ示した。
Further, the upshift of the automatic transmission 3 from the 4th speed to the 5th speed causes the engaged direct clutch D / C to be released as indicated by an arrow in the engagement logic diagram of FIG. This is achieved by fastening the front brake Fr / B in a released state (hereinafter referred to as a fastening element).
Here, the direct clutch D / C (release element) is used as the second clutch 7 in FIG. 3, and in FIG. 8, the command pressure is indicated by tPc2, and the actual pressure is indicated by Pc2.

図8では更に、フロントブレーキFr/B(締結要素)の指令圧をtPcにより、また、その実圧をPcにより、また、その伝達トルク容量をTcによりそれぞれ示した。
図8ではその他に、図5から明らかなごとく上記4速から5速へのアップシフト中も締結状態を保つハイ・アンド・ローリバースクラッチH&LR/Cの伝達トルク容量を、エンジン1のトルクTe、モータ/ジェネレータ5のトルクTm、エンジン回転数Ne、モータ/ジェネレータ回転数Nm、および変速機出力トルクToと共に併記し、
図3における第1クラッチ6の指令圧をtPc1により、また、その実圧をPc1により、また、その伝達トルク容量をTc1によりそれぞれ示した。
Further, in FIG. 8, the command pressure of the front brake Fr / B (engagement element) is indicated by tPc, the actual pressure thereof is indicated by Pc, and the transmission torque capacity thereof is indicated by Tc.
In addition to FIG. 8, as clearly shown in FIG. 5, the transmission torque capacity of the high & low reverse clutch H & LR / C that maintains the engaged state even during the upshift from the 4th speed to the 5th speed is shown as the torque Te of the engine 1, Along with the torque Tm of the motor / generator 5, the engine speed Ne, the motor / generator speed Nm, and the transmission output torque To,
The command pressure of the first clutch 6 in FIG. 3 is indicated by tPc1, the actual pressure is indicated by Pc1, and the transmission torque capacity is indicated by Tc1.

ただし第1クラッチ6は、常態では締結されてその伝達トルク容量Tc1を最大値にされており、その指令圧tPc1に向かうよう制御される実圧Pc1の上昇につれ伝達トルク容量Tc1を低下されるものとする。   However, the first clutch 6 is normally engaged and its transmission torque capacity Tc1 is set to the maximum value, and the transmission torque capacity Tc1 is reduced as the actual pressure Pc1 is controlled to be directed toward the command pressure tPc1. And

図8に示すアクセル開度APO(要求駆動力)の低下で4→5アップシフト指令が発せられる瞬時t1に、今回第2クラッチ7として用いるダイレクトクラッチD/C(解放要素)の指令圧tPc2を、若干の応答遅れはあるものの理論上は即座に0にする。
これによりダイレクトクラッチD/C(解放要素)の実圧Pc2は、ハードウェア上の動作遅れををもって指令圧tPc2に追従するよう制御され、ダイレクトクラッチD/C(解放要素)は、4→5アップシフト指令が発せられる瞬時t1からできるだけ早期に解放させる。
一方で、フロントブレーキFr/B(締結要素)の締結を未だ実行させないことにより、自動変速機3を動力伝達不能な中立状態にしておく。
The command pressure tPc2 of the direct clutch D / C (release element) used this time as the second clutch 7 is instantly t1 when the 4 → 5 upshift command is issued when the accelerator opening APO (required driving force) decreases as shown in FIG. Although there is a slight response delay, it is set to 0 immediately in theory.
As a result, the actual pressure Pc2 of the direct clutch D / C (release element) is controlled to follow the command pressure tPc2 with a delay in hardware, and the direct clutch D / C (release element) is increased by 4 to 5 Release as early as possible from the instant t1 when the shift command is issued.
On the other hand, the front transmission Fr / B (engagement element) is not yet engaged, so that the automatic transmission 3 is in a neutral state where power cannot be transmitted.

図8に示すアクセル開度APO(要求駆動力)の更なる低下で、瞬時t2にHEV→EVモード切り替え指令が発せられ、瞬時t3にアクセル開度APO=0の判定(アイドル判定)がなされるが、
HEV→EVモード切り替え指令瞬時t2から第1の所定時間TM1が経過する瞬時t4に、第1クラッチ6の指令圧tPc1を、若干の応答遅れはあるものの理論上は即座に最大値にする。
これにより第1クラッチ6の実圧Pc1は、ハードウェア上の動作遅れををもって指令圧tPc1に追従するよう制御され、第1クラッチ6は伝達トルク容量Tc1を図示のごとくに低下され、図示のスリップ開始点を経て遂には解放される。
When the accelerator opening APO (required driving force) shown in FIG. 8 further decreases, the HEV → EV mode switching command is issued at instant t2, and the accelerator opening APO = 0 is determined (idle determination) at instant t3. But,
At the instant t4 when the first predetermined time TM1 elapses from the HEV → EV mode switching command instant t2, the command pressure tPc1 of the first clutch 6 is theoretically immediately maximized although there is a slight response delay.
As a result, the actual pressure Pc1 of the first clutch 6 is controlled to follow the command pressure tPc1 with a delay in hardware, and the first clutch 6 has the transmission torque capacity Tc1 reduced as shown in the figure, and the slip shown in the figure. It is finally released after starting point.

HEV→EVモード切り替え指令瞬時t2から第2の所定時間TM2が経過する瞬時t5より、エンジントルクTeをそれまでのアクセル開度APOに応じた制御状態から、フューエルカット(燃料供給停止)によるエンジン停止操作で一気に低下させ、エンジン回転数Neの経時変化により示すごとくにエンジンを停止させる。
なお上記の所定時間TM1,TM2は、エンジン1の上記停止によりエンジン運転中のエンジントルクTeが消失した(図8の正側エンジントルクが消失した)後に第1クラッチ6の解放が行われるような相関関係を持った予定時間とする(図8に第1クラッチ6の解放判定瞬時t6、および第1クラッチ6の解放瞬時t7を示した)。
From moment t5 when the second predetermined time TM2 elapses from HEV → EV mode switching command instant t2, the engine is stopped by fuel cut (fuel supply stop) from the control state corresponding to the accelerator opening APO until the engine torque Te The engine is suddenly reduced by operation, and the engine is stopped as indicated by the change in the engine speed Ne over time.
Note that the predetermined clutches TM1 and TM2 are such that the first clutch 6 is released after the engine torque Te during engine operation disappears due to the stop of the engine 1 (the positive engine torque in FIG. 8 disappears). A scheduled time having a correlation is shown (the release determination instant t6 of the first clutch 6 and the release instant t7 of the first clutch 6 are shown in FIG. 8).

HEV→EVモード切り替え指令瞬時t2から第2の所定時間TM2が経過する瞬時t5より、つまりこの瞬時t5から上記のごとくに行われるエンジン停止操作と並行的に、自動変速機3の4→5アップシフトに伴う入力側回転数の低下をモータ/ジェネレータ5により前もって生起させる変速ショック防止用の回転合わせ制御を行う。   HEV → EV mode switching command From the instant t2 when the second predetermined time TM2 has elapsed from the instant t2, that is, in parallel with the engine stop operation performed from the instant t5 as described above, the automatic transmission 3 is increased 4 → 5. Rotation matching control is performed to prevent a shift shock in which the motor / generator 5 causes a decrease in the input side rotational speed accompanying the shift in advance.

この回転合わせ制御は、その開始時t5から、変速ショック防止上予め定めた目標変速時間(図8参照)が経過する瞬時t8までの間に、モータ/ジェネレータ5の回転数Nmを変速前回転数(図8に4速回転数として示した)から変速後回転数(図8に5速回転数として示した)へと低下させる、モータ/ジェネレータ5の回転数(Nm)制御であり、この回転数Nmが変速後回転数(図8に5速回転数として示した)に対し余裕代をもって接近した瞬時t8に終了させる。   In this rotation matching control, the rotation speed Nm of the motor / generator 5 is set to the rotation speed before the shift from the start time t5 to the instant t8 when a predetermined target shift time (see FIG. 8) elapses to prevent shift shock. This is the rotational speed (Nm) control of the motor / generator 5 that reduces the rotational speed (shown as 4th speed in FIG. 8) to the speed after shifting (shown as 5th speed in FIG. 8). The number Nm is terminated at an instant t8 that approaches the post-shift speed (shown as the 5th speed in FIG. 8) with a margin.

4→5アップシフト時の締結要素であるフロントブレーキFr/Bの指令圧tPcは、エンジン停止指令瞬時(モータ/ジェネレータ5の回転合わせ制御開始瞬時)t5より図示のごとくに上昇させるが、モータ/ジェネレータ5の回転合わせ制御終了瞬時t8までは、実圧PcがフロントブレーキFr/B(締結要素)をリターンスプリングに抗してロスストロークさせる程度の小さな値とし、これによりフロントブレーキFr/B(締結要素)を締結開始直前状態に保ってその締結動作遅れをできるだけ少なくする。   The command pressure tPc of the front brake Fr / B, which is the engagement element at the time of the 4 → 5 upshift, rises as shown in the figure from the engine stop command moment (motor / generator 5 rotation matching control start moment) t5. Until the end of rotation matching control of generator 5, t8 is set so that the actual pressure Pc causes the front brake Fr / B (engagement element) to make a loss stroke against the return spring, and thus the front brake Fr / B (engagement) Element) is kept in the state immediately before the start of fastening, and the fastening operation delay is minimized.

そしてモータ/ジェネレータ5の回転合わせ制御終了瞬時t8にフロントブレーキFr/B(締結要素)の指令圧tPcを最大値にし、ハードウェア上の動作遅れをもってこれに追従するよう制御される実圧Pcの上昇によりフロントブレーキFr/B(締結要素)の伝達トルク容量Tcを図示のごとくに増大させる。
これによるフロントブレーキFr/B(締結要素)の締結は、前記したダイレクトクラッチD/C(解放要素)の解放とにより、自動変速機3を4速から5速へとアップシフトさせる。
Then, at the moment t8 when the rotation matching control of the motor / generator 5 is finished, the command pressure tPc of the front brake Fr / B (engagement element) is maximized, and the actual pressure Pc is controlled so as to follow this with a hardware operation delay. As a result of the increase, the transmission torque capacity Tc of the front brake Fr / B (fastening element) is increased as shown in the figure.
When the front brake Fr / B (engagement element) is engaged, the automatic transmission 3 is upshifted from the fourth speed to the fifth speed by releasing the direct clutch D / C (release element).

かかるフロントブレーキFr/B(締結要素)の締結進行、つまり4速から5速へのアップシフトの進行により、モータ/ジェネレータ5はモータトルクTmの経時変化から明らかなようにフリクショントルクを低下されるが、
モータ/ジェネレータ5の回転合わせ制御終了瞬時t8からの経過時間が第3の所定時間TM3となる瞬時t9より、モータ/ジェネレータ5のトルクTmをHEV→EVモード切り替え後の目標駆動トルクとなすためのモータトルク制御を行わせる。
ここで第3の所定時間TM3は、モータ/ジェネレータ5のフリクショントルクTmが、フロントブレーキFr/B(締結要素)の締結進行、つまり4速から5速へのアップシフトの進行により消失するのに要する時間として予め設定する予定時間である。
As the front brake Fr / B (engagement element) is engaged, that is, the upshift from the 4th speed to the 5th speed is performed, the motor / generator 5 reduces the friction torque as is apparent from the change over time of the motor torque Tm. But,
From the instant t9 when the elapsed time from the rotation matching control end instant t8 of the motor / generator 5 becomes the third predetermined time TM3, the torque Tm of the motor / generator 5 becomes the target drive torque after switching from HEV to EV mode. The motor torque control is performed.
Here, during the third predetermined time TM3, the friction torque Tm of the motor / generator 5 disappears as the front brake Fr / B (engagement element) is engaged, that is, as the upshift from the fourth speed to the fifth speed progresses. This is a scheduled time set in advance as the time required.

かかるモータトルク制御により、モータ/ジェネレータ5のトルクTmがHEV→EVモード切り替え後の目標駆動トルクとなる瞬時t10に、自動変速機3の4→5アップシフトを伴ったHEV→EVモード切り替えが終了するが、
アクセルペダルの釈放によるアクセル開度APO=0に起因して上記HEV→EVモード切り替え後の目標駆動トルクが負値(エンジンブレーキ要求)であることから、瞬時t9以後モータ/ジェネレータ5はエネルギーの回生により発電を行う発電機として機能する。
With this motor torque control, the HEV → EV mode switching with the 4 → 5 upshift of the automatic transmission 3 ends at the instant t10 when the torque Tm of the motor / generator 5 becomes the target drive torque after the HEV → EV mode switching. But
Since the target drive torque after switching the HEV → EV mode is negative (engine brake request) due to the accelerator opening APO = 0 due to the release of the accelerator pedal, the motor / generator 5 regenerates energy after the instant t9. It functions as a generator that generates electricity.

なお、自動変速機3の4→5アップシフト中も締結状態を保つハイ・アンド・ローリバースクラッチH&LR/Cの伝達トルク容量は図8に示すごとく、モータ/ジェネレータ5のトルクTmがHEV→EVモード切り替え後の目標駆動トルクとなるHEV→EVモード切り替え終了瞬時t10を境に、それよりも前ではHEVモードに呼応してエンジン1およびモータ/ジェネレータ5からのトルクを伝達可能なトルク容量に制御し、瞬時t10よりも後ではEVモードに呼応してモータ/ジェネレータ5からのトルクを伝達可能なトルク容量に制御する。   Note that the transmission torque capacity of the high and low reverse clutch H & LR / C that maintains the engaged state during the 4 → 5 upshift of the automatic transmission 3 is as shown in FIG. 8, and the torque Tm of the motor / generator 5 is HEV → EV HEV → EV mode switching end instant t10 that becomes the target drive torque after mode switching, and before that, control to torque capacity that can transmit torque from engine 1 and motor / generator 5 in response to HEV mode After the instant t10, the torque capacity is controlled so that the torque from the motor / generator 5 can be transmitted in response to the EV mode.

<作用効果>
上記した本実施例のHEV→EVモード切り替え制御によれば、以下の作用効果が得られる。
先ず、HEVモードから、エンジン1の停止および第1クラッチ6の解放により、EVモードへのモード切り替えを行うに際し、第2クラッチ7(ダイレクトクラッチD/C)の締結トルク容量(図8の実圧Pc2で決まる)を、この第2クラッチ7がエンジン停止時のショック(図8にハッチングを付して示したエンジントルクTeの変化)を吸収し得るよう低下させた状態で(図8では、第2クラッチであるダイレクトクラッチD/Cの締結トルク容量を0にした状態で)、上記モード切り替え時のエンジン1の停止および第1クラッチ6の解放を行わせるため、
第1クラッチ6の解放タイミングがバラツキによりエンジン1の停止タイミングより遅れて、第1クラッチ1の伝達トルク容量Tc1がエンジントルクTeよりも大きい間にエンジン1を停止させることとなった場合でも、エンジン停止時のトルク変動(図8にハッチングを付して示したエンジントルクTeの変化)が第1クラッチ6を経て後方の駆動車輪2へ向かう途中に存在する第2クラッチ7(ダイレクトクラッチD/C)のスリップにより吸収され、図8の0に保たれる出力トルクToの経時変化から明らかなようにエンジン停止ショックの発生を防止して、このショックに関する前記した従来の問題を回避することができる。
<Effect>
According to the HEV → EV mode switching control of the present embodiment described above, the following operational effects can be obtained.
First, when switching the mode from the HEV mode to the EV mode by stopping the engine 1 and releasing the first clutch 6, the engagement torque capacity of the second clutch 7 (direct clutch D / C) (actual pressure in FIG. 8) (Determined by Pc2) with the second clutch 7 lowered so as to absorb the shock (change in engine torque Te shown by hatching in FIG. 8) when the engine stops (in FIG. In order to cause the engine 1 to stop and the first clutch 6 to be released at the time of the mode switching, with the engagement torque capacity of the direct clutch D / C, which is a two-clutch, set to 0)
Even when the release timing of the first clutch 6 is delayed and the engine 1 is stopped while the transmission torque capacity Tc1 of the first clutch 1 is larger than the engine torque Te, the engine 1 is stopped. The second clutch 7 (direct clutch D / C) in which torque fluctuation at the time of stopping (change in engine torque Te shown by hatching in FIG. 8) is present on the way to the driving wheel 2 behind the first clutch 6 ) To prevent the engine stop shock and avoid the above-mentioned conventional problems related to this shock, as is apparent from the change over time in the output torque To that is absorbed by the slip of .

なお、この問題解決のためには上記した本実施例の対策に代えて、エンジン停止ショックをモータ/ジェネレータ5のトルク制御により相殺することも考えられるが、この手法では、前記した第1クラッチ6の解放タイミングのバラツキや、エンジン1の停止タイミングのバラツキに起因して、確実な問題解決は望み得ないし、この手法では更に、上記相殺のためのモータ/ジェネレータの困難なトルク補償タイミングおよびトルク補償量の制御が必要になって、益々問題解決が困難にすらなる。   In order to solve this problem, it is conceivable to cancel the engine stop shock by torque control of the motor / generator 5 instead of the countermeasure of the above-described embodiment. However, in this technique, the first clutch 6 described above is used. Due to the variation in the release timing of the engine and the variation in the stop timing of the engine 1, a reliable solution to the problem cannot be expected. As volume control becomes necessary, problem solving becomes even more difficult.

ところで本実施例では上記した通り、HEV→EVモード切り替えを行うに際し、第2クラッチ7(ダイレクトクラッチD/C)の締結トルク容量(図8の実圧Pc2で決まる)を、この第2クラッチ7がエンジン停止時のショック(図8にハッチングを付して示したエンジントルクTeの変化)を吸収し得るよう低下させた状態で、当該モード切り替え用のエンジン1の停止および第1クラッチ6の解放を行わせるため、
HEV→EVモード切り替えショック防止用のモータ/ジェネレータ5の上記したトルク補償制御が不要であり、当該制御時に決定すべきトルク補償タイミングおよびトルク補償量の決定に煩わされることもなく、上記したエンジン停止ショック防止機能を確実に得ることができる。
By the way, in this embodiment, as described above, when the HEV → EV mode is switched, the engagement torque capacity (determined by the actual pressure Pc2 in FIG. 8) of the second clutch 7 (direct clutch D / C) is determined. Is stopped to absorb the shock when the engine stops (change in engine torque Te shown by hatching in FIG. 8), and the engine 1 for mode switching is stopped and the first clutch 6 is released. To do
The above-described torque compensation control of the motor / generator 5 for preventing HEV → EV mode switching shock is unnecessary, and the engine stop described above is not bothered by the determination of the torque compensation timing and torque compensation amount to be determined at the time of the control. A shock prevention function can be obtained with certainty.

なお、上記したHEV→EVモード切り替え時エンジン停止ショック防止用のモータ/ジェネレータ5のトルク補償制御が必要であると、上記のHEV→EVモード切り替えが自動変速機の変速を伴うものである場合において、つまり、変速ショック対策用のモータ/ジェネレータ5の回転合わせ制御が必要である場合において、モータ/ジェネレータ5をトルク補償制御しつつ回転合わせ制御しなければならなくなるが、
これら制御を同時に遂行することが不可能で、優先順位の高い方から順次に遂行することとなり、モード切り替え応答を著しく悪化させるという新たな問題を生ずる。
When torque compensation control of the motor / generator 5 for preventing engine stop shock at the time of switching the HEV → EV mode is necessary, when the HEV → EV mode switching involves a shift of the automatic transmission, In other words, when it is necessary to perform rotation alignment control of the motor / generator 5 for countermeasures against shift shock, it is necessary to perform rotation alignment control while performing torque compensation control on the motor / generator 5,
These controls cannot be performed at the same time, and are performed sequentially from the higher priority, resulting in a new problem that the mode switching response is remarkably deteriorated.

しかし本実施例においては上記の通り、モータ/ジェネレータ5の上記トルク補償制御なしにHEV→EVモード切り替え時エンジン停止ショック防止機能を達成し得ることから、
モータ/ジェネレータ5を変速ショック対策用に回転合わせ制御するだけでよく、上記の新たな問題を生ずることもないし、モータ/ジェネレータ5による変速ショック対策用回転合わせ制御の制御性を向上させることができる。
However, in the present embodiment, as described above, since the engine stop shock prevention function can be achieved when switching from HEV to EV mode without the torque compensation control of the motor / generator 5,
The motor / generator 5 only needs to be rotationally aligned for countermeasures against shift shocks, and the above-mentioned new problems are not caused, and the controllability of rotational alignment control for countermeasures against shift shocks by the motor / generator 5 can be improved. .

ところで、第1クラッチ6の解放タイミングがバラツキにより、上記したとは逆に、エンジン1の停止タイミングより早く、エンジン1がエンジン停止操作(本実施例ではフューエルカット)中であっても未だ停止に至らず正駆動トルクを発生している間に第1クラッチ6の伝達トルク容量がエンジントルクTeよりも小さくなる場合、エンジンが正駆動トルクにより空吹けを生じてしまい、運転者に違和感を与えるという問題を生ずる。   By the way, due to variations in the release timing of the first clutch 6, contrary to the above, the engine 1 is still stopped even if the engine 1 is in the engine stop operation (fuel cut in this embodiment) earlier than the stop timing of the engine 1. If the transmission torque capacity of the first clutch 6 is smaller than the engine torque Te while the positive drive torque is being generated, the engine will blow away due to the positive drive torque, giving the driver a sense of incongruity. Cause problems.

しかし本実施例においては前記したごとく、HEV→EVモード切り替え指令時(図8の瞬時t2)からの経過時間を計測して、この経過時間が第1の所定時間TM1になったとき(図8の瞬時t3)、第1クラッチ6の解放を指令し、上記計測したHEV→EVモード切り替え指令時t2からの経過時間が第2の所定時間TM2になったとき(図8の瞬時t5)、エンジン1の停止を指令するよう構成し、
これら第1の所定時間TM1および第2の所定時間TM2を、エンジン1の停止によりエンジン運転中のエンジントルクTeが消失した(Te=0になった)後に第1クラッチ6の解放が行われるよう設定したため、
HEV→EVモード切り替えに際し、第1クラッチ6の解放がエンジン1の停止完了(エンジントルクTeの消失)後に行われるのを保証し得ることとなる。
However, in this embodiment, as described above, the elapsed time from the HEV → EV mode switching command (instant t2 in FIG. 8) is measured, and when this elapsed time becomes the first predetermined time TM1 (FIG. 8). When the release of the first clutch 6 is commanded and the elapsed time from the measured HEV → EV mode switching command t2 becomes the second predetermined time TM2 (instant t5 in FIG. 8), the engine Configure to command 1 stop,
During the first predetermined time TM1 and the second predetermined time TM2, the first clutch 6 is released after the engine torque Te during engine operation disappears (Te = 0) due to the engine 1 being stopped. Because we set
When the HEV → EV mode is switched, it can be guaranteed that the release of the first clutch 6 is performed after the completion of the stop of the engine 1 (disappearance of the engine torque Te).

このため、エンジン1がエンジン停止操作(本実施例ではフューエルカット)中であっても未だ停止に至らず正駆動トルクを発生している間に第1クラッチ6の解放が行われることはなく(第1クラッチ6の伝達トルク容量がエンジントルクTeよりも小さくなることがなく)、かかる早すぎる第1クラッチ6の解放でエンジンが正駆動トルクにより空吹けを生じて運転者に違和感を与えるという上記の問題を確実に解消することができる。   For this reason, even if the engine 1 is in the engine stop operation (fuel cut in this embodiment), the first clutch 6 is not released while the positive drive torque is generated without stopping yet ( The transmission torque capacity of the first clutch 6 does not become smaller than the engine torque Te), and the release of the first clutch 6 that is too early causes the engine to blow away due to the positive drive torque, causing the driver to feel uncomfortable. This problem can be solved reliably.

また本実施例においては、第2クラッチ7(ダイレクトクラッチD/C)の締結トルク容量(図8の実圧Pc2で決まる)を、この第2クラッチ7がエンジン停止時のショック(図8にハッチングを付して示したエンジントルクTeの変化)を吸収し得るよう低下させた状態で(図8では、第2クラッチであるダイレクトクラッチD/Cの締結トルク容量を0にした状態で)、前記4→5アップシフト時のモータ/ジェネレータ5による変速ショック対策用回転合わせ制御を行うため、
このモータ/ジェネレータ5による回転合わせ制御を、出力トルクToに関係なく、また、モータ/ジェネレータトルクTmに関係なく行うことができ、従って、エンジン停止動作(モード切り替え)と、回転合わせ制御(変速制御)とを同時並行させ得て、自動変速機3の変速を伴うHEV→EVモード切り替えといえども、これを短時間で完遂させることができる。
Further, in this embodiment, the engagement torque capacity of the second clutch 7 (direct clutch D / C) (determined by the actual pressure Pc2 in FIG. 8) is applied to the shock when the second clutch 7 stops the engine (hatched in FIG. 8). (Change in engine torque Te indicated by) is reduced so as to be absorbed (in FIG. 8, with the engagement torque capacity of the direct clutch D / C being the second clutch being 0), In order to perform rotation matching control for gear shift shock countermeasures by the motor / generator 5 at the time of 4 → 5 upshift,
The rotation matching control by the motor / generator 5 can be performed regardless of the output torque To and regardless of the motor / generator torque Tm. Therefore, the engine stop operation (mode switching) and the rotation matching control (shift control) can be performed. ) Can be simultaneously performed in parallel, and this can be accomplished in a short time even when the HEV → EV mode is switched with the shift of the automatic transmission 3.

なお上記では、自動変速機3の4→5アップシフトが図5の締結論理から明らかなようにワンウェイクラッチを介することのない変速であることから、
HEV→EVモード切り替え指令時t2からの経過時間(所定時間TM2,TM1)に基づき、エンジン1の停止によりエンジン運転中のエンジントルクTeが消失した後に第1クラッチ6の解放を行わせるようにしてエンジンの空吹けを防止したが、
変速に際し締結される変速摩擦要素の締結によって発生する伝動系に、駆動車輪2からエンジン1への逆駆動を空転により禁止するワンウェイクラッチ(逆駆動禁止要素)が存在していて、この要素が空転している場合は、エンジンの空吹けを生ずることがないため 、
前記エンジン1の停止および第1クラッチ6の解放を、HEV→EVモード切り替え指令時t2に直ちに開始させることとする。
In the above, the 4 → 5 upshift of the automatic transmission 3 is a shift that does not involve a one-way clutch as is apparent from the engagement logic of FIG.
Based on the elapsed time from the HEV → EV mode switching command t2 (predetermined times TM2, TM1), the engine 1 is stopped and the first clutch 6 is released after the engine torque Te during engine operation disappears. I prevented the engine from being blown,
There is a one-way clutch (reverse drive prohibition element) that inhibits reverse drive from the drive wheel 2 to the engine 1 by idling in the transmission system generated by the engagement of the speed change friction element that is engaged at the time of shifting. If you do not cause the engine to blow,
The stop of the engine 1 and the release of the first clutch 6 are immediately started at the time t2 of the HEV → EV mode switching command.

かようにエンジン1の停止および第1クラッチ6の解放を、HEV→EVモード切り替え指令時t2に直ちに開始させる場合、その分だけモード切り替えの応答性と、エンジンの燃費向上とを実現する。   Thus, when the stop of the engine 1 and the release of the first clutch 6 are immediately started at the time t2 of the HEV → EV mode switching command, the mode switching responsiveness and the improvement of the fuel consumption of the engine are realized.

なお上記では、自動変速機3の4→5アップシフトがダイレクトクラッチD/Cを締結状態から解放させると共に、ハイ・アンド・ローリバースクラッチH&LR/Cを解放状態から締結させる摩擦要素の掛け替えにより行われることから、
解放側変速摩擦要素であるダイレクトクラッチD/Cを第2クラッチ7(図3参照)として用い、第2クラッチ7を図1および図2に示すように新設する必要がないようにしたため、コスト上およびスペース上大いに有利である。
In the above, the 4 → 5 upshift of the automatic transmission 3 is performed by changing the friction element that releases the direct clutch D / C from the engaged state and also engages the high and low reverse clutch H & LR / C from the released state. Because
The direct clutch D / C, which is the disengagement side frictional element, is used as the second clutch 7 (see Fig. 3), and the second clutch 7 is not required to be newly installed as shown in Figs. And a great advantage over space.

ところで、摩擦要素の掛け替えに依らない自動変速機3の変速を伴うHEV→EVモード切り替え時や、変速を伴わないHEV→EVモード切り替え時においては、当該モード切り替え中に自動変速機を伝動状態に維持するための変速摩擦要素を図3における第2クラッチ7として用いることで、第2クラッチ7を図1および図2に示すように新設する必要がないようにして同様の作用効果を奏することができる。   By the way, at the time of HEV → EV mode switching that involves shifting of the automatic transmission 3 that does not depend on switching of friction elements, or at the time of HEV → EV mode switching that does not involve shifting, the automatic transmission is set to the transmission state during the mode switching. By using the shift friction element for maintaining as the second clutch 7 in FIG. 3, it is possible to achieve the same effect as the second clutch 7 does not need to be newly installed as shown in FIGS. it can.

一例としては、自動変速機3の締結論理を示す図5から明らかなように、ハイ・アンド・ローリバースクラッチH&LR/Cが2速以外の全ての変速段で締結状態にされることから、これを図3の第2クラッチとして用い、HEV→EVモード切り替え中にこれを解放、若しくは、その伝達トルク容量を低下させることで、前記した作用効果を達成することができる。   As an example, as is clear from FIG. 5 showing the engagement logic of the automatic transmission 3, the high and low reverse clutch H & LR / C is engaged at all gears other than the second speed. 3 can be used as the second clutch in FIG. 3 to release it during HEV → EV mode switching, or to reduce its transmission torque capacity, thereby achieving the above-described effects.

1 エンジン
2 駆動車輪(後輪)
3 自動変速機
Gf フロントプラネタリギヤ組
Gm センタープラネタリギヤ組
Gr リヤプラネタリギヤ組
Fr/B フロントブレーキ
I/C インプットクラッチ
H&LR/C ハイ・アンド・ローリバースクラッチ
D/C ダイレクトクラッチ(第2クラッチ)
R/B リバースブレーキ
LC/B ロー・コーストブレーキ
FWD/B フォワードブレーキ
3rd/OWC 3速ワンウェイクラッチ
1st/OWC 1速ワンウェイクラッチ
FWD/OWC フォワードワンウェイクラッチ
4 伝動軸
5 モータ/ジェネレータ
6 第1クラッチ
7 第2クラッチ
8 ディファレンシャルギヤ装置
9 バッテリ
10 インバータ
11 エンジン回転センサ
12 モータ/ジェネレータ回転センサ
13 変速機入力回転センサ
14 変速機出力回転センサ
15 アクセル開度センサ
16 バッテリ蓄電状態センサ
20 統合コントローラ
21 エンジンコントローラ
22 モータ/ジェネレータコントローラ
1 Engine 2 Drive wheel (rear wheel)
3 Automatic transmission
Gf Front planetary gear set
Gm Center planetary gear set
Gr Rear planetary gear set
Fr / B front brake
I / C input clutch
H & LR / C High and Low Reverse Clutch
D / C direct clutch (second clutch)
R / B reverse brake
LC / B low coast brake
FWD / B forward brake
3rd / OWC 3-speed one-way clutch
1st / OWC 1-speed one-way clutch
FWD / OWC Forward one-way clutch 4 Transmission shaft 5 Motor / generator 6 First clutch 7 Second clutch 8 Differential gear unit 9 Battery
10 Inverter
11 Engine rotation sensor
12 Motor / generator rotation sensor
13 Transmission input rotation sensor
14 Transmission output rotation sensor
15 Accelerator position sensor
16 Battery charge sensor
20 Integrated controller
21 Engine controller
22 Motor / generator controller

Claims (3)

動力源としてエンジンおよびモータ/ジェネレータを具え、これらエンジンおよびモータ/ジェネレータ間に伝達トルク容量を変更可能な第1クラッチを介在させ、モータ/ジェネレータおよび駆動車輪間に伝達トルク容量を変更可能な第2クラッチを介在させ、
エンジンを停止させ、第1クラッチを解放すると共に第2クラッチを締結することによりモータ/ジェネレータからの動力のみによる電気走行モードを選択可能で、第1クラッチおよび第2クラッチを共に締結することによりエンジンおよびモータ/ジェネレータの双方からの動力によるハイブリッド走行モードを選択可能なハイブリッド車両において、
前記ハイブリッド走行モードでの走行中、前記エンジンの停止および第1クラッチの解放による前記電気走行モードへのモード切り替えが指令されたとき、該モード切り替え指令時からの経過時間を計測してこの経過時間に基づき、前記エンジンの停止によりエンジン運転中のエンジントルクが消失した後に前記第1クラッチの解放を行わせるよう構成したことを特徴とする、ハイブリッド車両のモード切り替え制御装置。
An engine and a motor / generator are provided as power sources, a first clutch capable of changing the transmission torque capacity is interposed between the engine and the motor / generator, and a second transmission torque capacity can be changed between the motor / generator and the driving wheel. Through the clutch,
By stopping the engine, releasing the first clutch and engaging the second clutch, it is possible to select the electric travel mode using only the power from the motor / generator, and by engaging both the first and second clutches, the engine And a hybrid vehicle that can select a hybrid driving mode by power from both the motor / generator,
When the mode switching to the electric driving mode is instructed by stopping the engine and releasing the first clutch during traveling in the hybrid traveling mode, the elapsed time is measured by measuring the elapsed time from the mode switching command. In accordance with the present invention, the mode switching control device for a hybrid vehicle is configured to release the first clutch after engine torque during engine operation disappears due to the engine being stopped.
請求項1に記載のモード切り替え制御装置において、
前記計測したモード切り替え指令時からの経過時間が第1の所定時間になったとき、前記第1クラッチの解放を指令し、前記計測したモード切り替え指令時からの経過時間が第2の所定時間になったとき、前記エンジンの停止を指令するよう構成し、
前記第1の所定時間および第2の所定時間を、前記エンジンの停止によりエンジン運転中のエンジントルクが消失した後に前記第1クラッチの解放が行われるよう設定したことを特徴とする、ハイブリッド車両のモード切り替え制御装置。
In the mode switching control device according to claim 1,
When the elapsed time from the measured mode switching command reaches the first predetermined time, the first clutch is instructed to be released, and the elapsed time from the measured mode switching command is set to the second predetermined time. When it becomes, it is configured to command the stop of the engine,
The hybrid vehicle is characterized in that the first predetermined time and the second predetermined time are set such that the first clutch is released after the engine torque during engine operation disappears due to the stop of the engine. Mode switching control device.
前記ハイブリッド車両が、前記モータ/ジェネレータおよび駆動車輪間に自動変速機を具えたものである、請求項1または2に記載のモード切り替え制御装置において、
前記モード切り替えが前記自動変速機の変速を伴うものであり、且つ、該変速が解放状態の変速摩擦要素の締結により遂行され、この締結により発生する伝動系に、前記駆動車輪からエンジンへの逆駆動を空転により禁止する逆駆動禁止要素が存在していて、この要素が空転している場合、前記エンジンの停止および第1クラッチの解放を、前記ハイブリッド走行モードから電気走行モードへのモード切り替え指令時に直ちに行わせるよう構成したことを特徴とする、ハイブリッド車両のモード切り替え制御装置。
The mode switching control device according to claim 1 or 2, wherein the hybrid vehicle includes an automatic transmission between the motor / generator and driving wheels.
The mode change is accompanied by a shift of the automatic transmission, and the shift is performed by engagement of a disengaged shift friction element, and a transmission system generated by the engagement is reversed from the drive wheel to the engine. When there is a reverse drive prohibition element that prohibits driving by idling, and this element is idling, the mode stop command for stopping the engine and releasing the first clutch from the hybrid travel mode to the electric travel mode is provided. A mode switching control apparatus for a hybrid vehicle, characterized in that it is configured to be performed immediately at times.
JP2009267222A 2009-11-25 2009-11-25 Hybrid vehicle mode switching control device Active JP4877383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267222A JP4877383B2 (en) 2009-11-25 2009-11-25 Hybrid vehicle mode switching control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267222A JP4877383B2 (en) 2009-11-25 2009-11-25 Hybrid vehicle mode switching control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006080600A Division JP4561663B2 (en) 2006-03-23 2006-03-23 Hybrid vehicle mode switching control device

Publications (2)

Publication Number Publication Date
JP2010047257A true JP2010047257A (en) 2010-03-04
JP4877383B2 JP4877383B2 (en) 2012-02-15

Family

ID=42064711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267222A Active JP4877383B2 (en) 2009-11-25 2009-11-25 Hybrid vehicle mode switching control device

Country Status (1)

Country Link
JP (1) JP4877383B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103587527A (en) * 2012-08-15 2014-02-19 北汽福田汽车股份有限公司 Gear shift control method of full-electric vehicle with AMT (automated mechanical transmission)
JP2014113870A (en) * 2012-12-07 2014-06-26 Toyota Motor Corp Control device for vehicle
CN104002799A (en) * 2014-05-12 2014-08-27 潍柴动力股份有限公司 Hybrid power vehicle mode switching and gear shifting dynamic state coordination control method and device
JPWO2013108812A1 (en) * 2012-01-19 2015-05-11 日産自動車株式会社 Control device and control method for hybrid drive vehicle
KR101704573B1 (en) * 2015-10-02 2017-02-22 현대자동차주식회사 Hybrid vehicle and method of efficiently changing power train mode
KR101876740B1 (en) * 2017-04-17 2018-07-10 현대자동차주식회사 Hybrid vehicle and method of changing modes
CN113085864A (en) * 2021-03-15 2021-07-09 江铃汽车股份有限公司 Driving mode switching control method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965513A (en) * 1995-08-22 1997-03-07 Aqueous Res:Kk Synchronous control equipment of vehicle
JP2000059914A (en) * 1998-08-10 2000-02-25 Toyota Motor Corp Generation controller
JP2000320663A (en) * 1999-05-13 2000-11-24 Toyota Motor Corp Control device for drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965513A (en) * 1995-08-22 1997-03-07 Aqueous Res:Kk Synchronous control equipment of vehicle
JP2000059914A (en) * 1998-08-10 2000-02-25 Toyota Motor Corp Generation controller
JP2000320663A (en) * 1999-05-13 2000-11-24 Toyota Motor Corp Control device for drive device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108812A1 (en) * 2012-01-19 2015-05-11 日産自動車株式会社 Control device and control method for hybrid drive vehicle
CN103587527A (en) * 2012-08-15 2014-02-19 北汽福田汽车股份有限公司 Gear shift control method of full-electric vehicle with AMT (automated mechanical transmission)
JP2014113870A (en) * 2012-12-07 2014-06-26 Toyota Motor Corp Control device for vehicle
CN104002799A (en) * 2014-05-12 2014-08-27 潍柴动力股份有限公司 Hybrid power vehicle mode switching and gear shifting dynamic state coordination control method and device
KR101704573B1 (en) * 2015-10-02 2017-02-22 현대자동차주식회사 Hybrid vehicle and method of efficiently changing power train mode
KR101876740B1 (en) * 2017-04-17 2018-07-10 현대자동차주식회사 Hybrid vehicle and method of changing modes
CN108725430A (en) * 2017-04-17 2018-11-02 现代自动车株式会社 Hybrid vehicle and its mode switching method
US10556582B2 (en) 2017-04-17 2020-02-11 Hyundai Motor Company Hybrid vehicle and mode switching method therefor
CN113085864A (en) * 2021-03-15 2021-07-09 江铃汽车股份有限公司 Driving mode switching control method and system

Also Published As

Publication number Publication date
JP4877383B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4561663B2 (en) Hybrid vehicle mode switching control device
JP4972988B2 (en) Hybrid vehicle transmission state switching control device
JP4529940B2 (en) Hybrid vehicle transmission state switching control device
JP5076516B2 (en) Mode change control device for shifting of hybrid vehicle
EP1839987B1 (en) Driving mode control
JP3593983B2 (en) Vehicle driving force control device
JP5730912B2 (en) Control device for hybrid vehicle
EP1792800B1 (en) Hybrid vehicle control
JP5742124B2 (en) Control device for hybrid vehicle
JP4877383B2 (en) Hybrid vehicle mode switching control device
JP2008179235A (en) Gear shift control device for hybrid car
JP2008179283A (en) Mode switching controller for hybrid car
JP2010143361A (en) Regenerative braking time gear shift control device for automatic transmission for electric vehicle
JP2010173493A (en) Device for controlling vehicle power transmission device
JP5789997B2 (en) Control device for hybrid vehicle
JP2011157068A (en) Transmission state changeover controller for hybrid vehicle
JP5104406B2 (en) Engine start control device for hybrid vehicle
JP5413008B2 (en) Control device for hybrid vehicle
JP4830774B2 (en) Hybrid vehicle rollback prevention device
JP2012153311A (en) Engine stop control device of hybrid vehicle
JP5578020B2 (en) Motor control device for shift of hybrid vehicle
JP5672944B2 (en) Vehicle control device
JP2012121568A (en) Engine start control device of hybrid vehicle
JP2012090507A (en) Regeneration control device
JP5636872B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4877383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3