JP2010046700A - Bonded structure and method for manufacturing the same - Google Patents

Bonded structure and method for manufacturing the same Download PDF

Info

Publication number
JP2010046700A
JP2010046700A JP2008214546A JP2008214546A JP2010046700A JP 2010046700 A JP2010046700 A JP 2010046700A JP 2008214546 A JP2008214546 A JP 2008214546A JP 2008214546 A JP2008214546 A JP 2008214546A JP 2010046700 A JP2010046700 A JP 2010046700A
Authority
JP
Japan
Prior art keywords
carbon film
oxygen
joined body
metal material
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008214546A
Other languages
Japanese (ja)
Other versions
JP5207052B2 (en
Inventor
Yuka Yamada
由香 山田
Kenichi Suzuki
憲一 鈴木
Kazuyuki Nakanishi
和之 中西
Tadashi Oshima
正 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008214546A priority Critical patent/JP5207052B2/en
Publication of JP2010046700A publication Critical patent/JP2010046700A/en
Application granted granted Critical
Publication of JP5207052B2 publication Critical patent/JP5207052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel bonded structure manufactured by bonding various kinds of carbon films and metal materials by soldering, and a method for manufacturing the same. <P>SOLUTION: The bonded structure is composed of a first member 1 and a second member 2, and has a bonding portion 3. The first member 1 includes a substrate 1s and a carbon film 1f which coats at least a part of the surface of the substrate 1s. At least a part of the second member 2 includes a metal material 2. The bond portion 3 is formed by bonding the carbon film 1f and the metal material 2 by soldering. The carbon film 1f contains oxygen in at least the bonded interface 1j. Tin solder 3j of the bond portion 3 contains tin as a main component and one or more selected from a group of zinc and rare-earth elements. The tin solder 3j of the bond portion 3 is chemically bonded to the oxygen contained in the carbon film 1f and also is diffusion-bonded to the metal material 2 or is chemically bonded to oxygen in an oxide formed on the surface of the metal material 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種炭素膜と金属材料との間がはんだ付けされた接合体に関するものである。   The present invention relates to a joined body in which various carbon films and a metal material are soldered.

炭素は、埋設量がほぼ無限であり、かつ無害であることから資源問題および環境問題の面からも極めて優れた材料である。炭素材料としては、原子間の結合形態により、ダイヤモンド、ダイヤモンドライクカーボン、グラファイト、グラッシーカーボン、フラーレン、カーボンナノチューブなど、様々な結晶構造のものが知られている。なかでも、非晶質構造を有する非晶質炭素(ダイヤモンドライクカーボン:DLC)は、耐摩耗性、固体潤滑性などの機械的特性に優れ、耐食性、絶縁性、可視光/赤外光透過率、酸素バリア性などを合わせもつ。そのため、非晶質炭素膜は、各種基材の表面に被覆されて用いられることが多い。たとえば、電気機器では、絶縁性の非晶質炭素膜で被覆されたヒートシンク(放熱板)上に半導体素子を搭載して使用されることもある。   Carbon is an extremely excellent material from the viewpoint of resource problems and environmental problems because the amount of burying is almost infinite and harmless. Carbon materials having various crystal structures such as diamond, diamond-like carbon, graphite, glassy carbon, fullerene, and carbon nanotube are known depending on the bonding form between atoms. Among them, amorphous carbon (diamond-like carbon: DLC) having an amorphous structure has excellent mechanical properties such as wear resistance and solid lubricity, corrosion resistance, insulation, and visible / infrared light transmittance. And oxygen barrier properties. Therefore, the amorphous carbon film is often used by being coated on the surface of various base materials. For example, in electrical equipment, a semiconductor element may be mounted on a heat sink (heat radiating plate) covered with an insulating amorphous carbon film.

たとえば、特許文献1には、放熱板と、放熱板を覆う絶縁性非晶質炭素膜と、絶縁性非晶質炭素膜上に設けられた三層からなる電極としての多層金属体と、多層金属体上にはんだ付けされて搭載された半導体素子と、を備える半導体装置が開示されている。多層金属体のうち、絶縁性非晶質炭素膜上の第一層は絶縁性非晶質炭素膜との密着性が高い金属からなり、第二層は第一層と第三層との接合性に優れた金属からなり、第三層は導電性を有しはんだとの密着性が高い金属からなる。つまり、特許文献1では、電極を多層金属体としたことにより、絶縁性非晶質炭素膜と電極との接合性を確保している。   For example, Patent Document 1 discloses a heat sink, an insulating amorphous carbon film covering the heat sink, a multilayer metal body as a three-layer electrode provided on the insulating amorphous carbon film, and a multilayer A semiconductor device including a semiconductor element soldered and mounted on a metal body is disclosed. Of the multilayer metal body, the first layer on the insulating amorphous carbon film is made of a metal having high adhesion to the insulating amorphous carbon film, and the second layer is a junction between the first layer and the third layer. The third layer is made of a metal having conductivity and high adhesion to the solder. In other words, in Patent Document 1, since the electrode is a multilayer metal body, the bondability between the insulating amorphous carbon film and the electrode is ensured.

非晶質炭素膜を電気機器などに使用するためには、特許文献1のように、種々の金属材料と非晶質炭素膜とを接合する技術が必要となる。接合には、実用的な強度が求められる他、熱的、電気的な接触が得られること、構成材料の特性を損なわないこと、など使用目的に応じた接合条件が必須となる。
特開2006−245235号公報
In order to use an amorphous carbon film for an electric device or the like, a technique for joining various metal materials and an amorphous carbon film as in Patent Document 1 is required. For joining, practical strength is required, and joining conditions according to the purpose of use, such as thermal and electrical contact being obtained and characteristics of the constituent materials not being impaired, are essential.
JP 2006-245235 A

非晶質炭素膜と金属材料とを接合する方法として、ろう付けがある。ろう付けによる接合では、接合温度が400℃を超える高温となる。そのため、非晶質炭素膜および金属材料のうち一方でも耐熱性が低い場合には、ろう付けできない場合がある。さらに、ろう付けに用いる多くの合金は、非晶質炭素膜との濡れ性が悪いため、両者を接合できない場合が多い。   As a method for joining the amorphous carbon film and the metal material, there is brazing. In the joining by brazing, the joining temperature becomes a high temperature exceeding 400 ° C. Therefore, brazing may not be possible if the heat resistance of either the amorphous carbon film or the metal material is low. Furthermore, since many alloys used for brazing have poor wettability with an amorphous carbon film, they often cannot be joined together.

また、非晶質炭素膜と金属材料とを有機接着剤で接合する方法がある。しかしながら、有機接着剤は、熱伝導性、導電性ともに低く、高湿環境では強度が弱いという問題があるため、用途によっては不都合である。熱伝導性および導電性を補うことを目的として、有機接着剤に銀や銅などを含有させた有機接着剤もあるが、はんだのような合金からなる接合材料と比較すると、特性は不十分である。   There is also a method of joining an amorphous carbon film and a metal material with an organic adhesive. However, the organic adhesive has a problem that it has low thermal conductivity and low electrical conductivity and has a low strength in a high-humidity environment. There are organic adhesives that contain silver or copper in the organic adhesive for the purpose of supplementing thermal conductivity and conductivity, but the properties are insufficient compared to bonding materials made of alloys such as solder. is there.

そこで、本発明は、上記問題点に鑑み、各種炭素膜と金属材料とをはんだにより接合した新規の接合体およびその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a novel joined body in which various carbon films and a metal material are joined by solder, and a method for manufacturing the same.

本発明者等は、セラミックスを接合することが可能なセラミックス用はんだに着目した。しかしながら、炭素膜と金属材料との接合に、単にセラミックス用はんだを使用しても、実用的な接合強度が得られなかった。そこで、本発明者らは、炭素膜を特定の組成とすることで、炭素膜と金属材料とを強固にはんだ付けできることに想到した。   The present inventors have paid attention to a solder for ceramics capable of joining ceramics. However, even if a ceramic solder is simply used for joining the carbon film and the metal material, practical joint strength cannot be obtained. Therefore, the present inventors have conceived that the carbon film and the metal material can be firmly soldered by setting the carbon film to a specific composition.

すなわち、本発明の接合体は、基材と該基材の表面の少なくとも一部に被覆された炭素膜とからなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え該炭素膜と該金属材料とがはんだ付けされた接合部をもつ接合体であって、
前記炭素膜は、少なくとも被接合面に酸素を含み、
前記接合部は、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含み、前記炭素膜の酸素と化学結合するとともに前記金属材料と拡散結合または該金属材料の表面に形成された酸化物の酸素と化学結合する錫はんだで接合されていることを特徴とする。
That is, the joined body of the present invention comprises a first member comprising a base material and a carbon film coated on at least a part of the surface of the base material, and a second member comprising at least a part of a metal material. A joined body having a joint portion to which the carbon film and the metal material are soldered,
The carbon film contains oxygen at least on the bonded surface,
The joint includes at least one selected from the group consisting of tin and zinc and rare earth elements as a main component, and is chemically bonded to oxygen of the carbon film and is formed on the surface of the metal material by diffusion bonding with the metal material. It is characterized in that it is joined with tin solder that chemically bonds with oxygen of the formed oxide.

本発明の接合体において、炭素膜と金属材料との接合部は、錫を主成分とし、亜鉛および希土類元素からなる群から選択される一種以上を含む錫はんだによりはんだ付けされている。この錫はんだは、酸素との結合力が極めて強い酸素親和力の高い元素である亜鉛および希土類元素からなる群から選択される一種以上を含む。本発明の接合体において、炭素膜は少なくとも被接合面に酸素を含むため、この酸素が酸素親和力の高い元素と化学結合することで、炭素膜に錫はんだが接合される。また、金属材料に対しては、錫はんだの成分が金属材料へと拡散して合金を生成することで、金属材料に錫はんだが接合される。あるいは、ステンレス鋼やアルミニウム合金のように金属材料の表面に酸化物(不動態皮膜)を形成する場合には、この酸素が酸素親和力の高い元素と化学結合することで、金属材料に錫はんだが接合される。その結果、本発明の接合体は、第一部材の表面が炭素膜で被覆されていても、第一部材と第二部材とが錫はんだによるはんだ付けで強固に接合される。   In the joined body of the present invention, the joint between the carbon film and the metal material is soldered with tin solder containing tin as a main component and at least one selected from the group consisting of zinc and rare earth elements. This tin solder contains one or more selected from the group consisting of zinc and rare earth elements, which are elements having an extremely high oxygen affinity and a strong binding force with oxygen. In the joined body of the present invention, since the carbon film contains oxygen at least on the surface to be joined, the oxygen is chemically bonded to an element having a high oxygen affinity, so that tin solder is joined to the carbon film. Moreover, with respect to a metal material, the tin solder is joined to the metal material by diffusing the tin solder component into the metal material to form an alloy. Alternatively, when an oxide (passive film) is formed on the surface of a metal material such as stainless steel or an aluminum alloy, this oxygen is chemically bonded to an element having a high oxygen affinity, so that tin solder is added to the metal material. Be joined. As a result, in the joined body of the present invention, even when the surface of the first member is covered with the carbon film, the first member and the second member are firmly joined by soldering with tin solder.

特に、炭素膜は、少なくともその被接合面に珪素を含むのが望ましい。珪素は酸素親和力が高いため炭素膜の被接合面に酸素を導入しやすいだけでなく、炭素膜が非晶質炭素膜であれば珪素を含有することで高密着性、高硬度、高耐摩耗性、低摩擦係数、高絶縁性などの性質が付与されるため、接合強度の面でも炭素膜の特性向上の面でも好ましい。   In particular, the carbon film desirably contains silicon at least on the surface to be bonded. Since silicon has a high oxygen affinity, not only is it easy to introduce oxygen into the bonded surface of the carbon film, but if the carbon film is an amorphous carbon film, it contains silicon to provide high adhesion, high hardness, and high wear resistance. The properties such as the property, the low friction coefficient, and the high insulation are imparted, which is preferable in terms of the bonding strength and the improvement of the characteristics of the carbon film.

また、本発明の接合体の製造方法は、基材の少なくとも一部に炭素膜が被覆されてなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え該炭素膜と該金属材料とがはんだ付けされた接合部をもつ接合体の製造方法であって、
前記炭素膜の少なくとも被接合面に酸素を付与する酸素含有炭素膜形成工程と、
前記炭素膜と前記金属材料とを、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含む錫はんだではんだ付けするはんだ付け工程と、
を含むことを特徴とする。
In addition, the method for producing a joined body of the present invention includes a first member in which at least a part of a base material is coated with a carbon film, and a second member in which at least a part is made of a metal material. A method of manufacturing a joined body having a joint portion to which the metal material is soldered,
An oxygen-containing carbon film forming step of imparting oxygen to at least the bonded surface of the carbon film;
A soldering step of soldering the carbon film and the metal material with a tin solder containing at least one selected from the group consisting of zinc and rare earth elements mainly composed of tin;
It is characterized by including.

以下に、本発明の接合体およびその製造方法を実施するための最良の形態を説明する。   The best mode for carrying out the joined body and the method for producing the same according to the present invention will be described below.

[接合体]
本発明の接合体は、基材の少なくとも一部に炭素膜が被覆されてなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え炭素膜と金属材料とが錫はんだによりはんだ付けされた接合部をもつ。
[Joint]
The joined body of the present invention includes a first member in which at least a part of a base material is coated with a carbon film, and a second member in which at least a part is made of a metal material, and the carbon film and the metal material are tin solders. With a soldered joint.

第一部材は、基材と、基材の表面の少なくとも一部に被覆された炭素膜とからなる。基材の形状および材質に特に限定はないが、炭素膜が被覆される基材の表面は、炭素膜との密着性が高いとよい。基材と炭素膜との密着性が低いと、接合部での接合強度が高くても、基材と炭素膜との間で剥離が生じて接合体が破壊することがあるためである。基材は、鉄、アルミニウム、チタンまたは珪素などの金属またはこれを主成分とする合金、炭化物、窒化物などのセラミックスからなれば、炭素膜との密着性に優れるため、好ましい。   The first member includes a base material and a carbon film coated on at least a part of the surface of the base material. The shape and material of the base material are not particularly limited, but the surface of the base material on which the carbon film is coated preferably has high adhesion to the carbon film. This is because if the adhesion between the substrate and the carbon film is low, even if the bonding strength at the bonded portion is high, peeling may occur between the substrate and the carbon film and the bonded body may be destroyed. The base material is preferably made of a metal such as iron, aluminum, titanium, or silicon, or an alloy mainly composed thereof, or a ceramic such as a carbide or nitride, because of excellent adhesion to the carbon film.

炭素膜は、炭素を主成分とする炭素材料からなる膜である。炭素膜を構成する炭素材料としては、ダイヤモンド、ダイヤモンドライクカーボン、グラファイト、グラッシーカーボン、フラーレン、カーボンナノチューブ等が挙げられるが、平滑な面を形成しやすく、酸素を付加しやすい点から、非晶質構造をもつ非晶質炭素(ダイヤモンドライクカーボン:DLC)膜であるのが好ましい。炭素膜の組成は、少なくとも被接合面に酸素を含むのであれば特に限定はなく、酸素の他、珪素、水素、金属元素、窒素などを含んでもよい。酸素は、後述のように、接合部において錫はんだと化学結合する。そのため、酸素は、炭素膜の被接合面に含まれればよいが、炭素膜の全体に含まれていてもよい。このとき、炭素膜の最表面からの厚さが0.5〜500nmの表層が、酸素含有量の多い高酸素含有層であるとよい。高酸素含有層は、高酸素含有層を100原子%(水素を含む場合は水素を除く)としたとき、酸素を50〜70原子%さらには55〜65原子%含む層であるのが好ましい。   The carbon film is a film made of a carbon material containing carbon as a main component. Examples of the carbon material constituting the carbon film include diamond, diamond-like carbon, graphite, glassy carbon, fullerene, and carbon nanotube. However, it is amorphous because it can easily form a smooth surface and easily add oxygen. An amorphous carbon (diamond-like carbon: DLC) film having a structure is preferable. The composition of the carbon film is not particularly limited as long as oxygen is contained in at least a bonding surface, and may contain silicon, hydrogen, a metal element, nitrogen, or the like in addition to oxygen. As will be described later, oxygen chemically bonds with tin solder at the joint. Therefore, oxygen should just be contained in the to-be-joined surface of a carbon film, but may be contained in the whole carbon film. At this time, the surface layer having a thickness of 0.5 to 500 nm from the outermost surface of the carbon film is preferably a high oxygen content layer having a high oxygen content. The high oxygen-containing layer is preferably a layer containing 50 to 70 atomic% or even 55 to 65 atomic% of oxygen when the high oxygen containing layer is 100 atomic% (excluding hydrogen when hydrogen is included).

また、本発明の接合体では、炭素膜、なかでもDLC膜の少なくとも被接合面に珪素を含むとよい。珪素は、酸素親和力が高い元素であるため、少なくとも炭素膜の被接合面に珪素が存在することで、被接合面に酸素を導入しやすい。珪素は、炭素膜の被接合面に含まれればよいが、炭素膜の全体に含まれていてもよい。炭素膜は、全体を100原子%としたときに珪素を2〜40原子%含むのが好ましい。特に、炭素膜全体を100原子%としたときに珪素を4原子%以上さらには6原子%以上さらには9原子%以上含むと、接合部の接合強度が向上するため好ましい。   Moreover, in the joined body of the present invention, it is preferable that at least a surface to be joined of the carbon film, particularly the DLC film, contains silicon. Since silicon is an element having a high oxygen affinity, at least silicon is present on the bonded surface of the carbon film, so that oxygen is easily introduced into the bonded surface. Silicon may be contained in the bonded surface of the carbon film, but may be contained in the entire carbon film. The carbon film preferably contains 2 to 40 atomic% of silicon when the whole is 100 atomic%. In particular, when the total carbon film is 100 atomic%, it is preferable that silicon is contained in an amount of 4 atomic% or more, 6 atomic% or more, and further 9 atomic% or more because the bonding strength of the bonding portion is improved.

炭素膜は、少なくとも被接合面に酸素を含むのであれば単層構造からなるものであってもよいが、絶縁性や密着性などといった炭素膜に求められる種々の特性を高いレベルで達成するために、膜厚方向に対して水素や珪素の含有量が異なる2層以上の多層構造や傾斜構造からなるものであってもよい。   The carbon film may have a single-layer structure as long as oxygen is contained in at least the bonding surface. However, in order to achieve various characteristics required for the carbon film such as insulation and adhesion at a high level. Furthermore, it may be composed of a multilayer structure or an inclined structure having two or more layers having different hydrogen and silicon contents in the film thickness direction.

炭素膜の膜厚は、接合体の用途や要求される特性に応じて適宜選択すればよいが、基材との密着性の面から0.1〜100μmさらには0.5〜50μmとするのがよい。   The film thickness of the carbon film may be appropriately selected according to the use of the joined body and the required properties, but is 0.1 to 100 μm, more preferably 0.5 to 50 μm from the viewpoint of adhesion to the base material. Is good.

第二部材は、少なくとも一部が金属材料からなれば、その形状や材質に特に限定はない。たとえば、金属材料からなるバルク体や薄膜の他、金属材料以外の材料からなる基材の表面の少なくとも一部に金属皮膜が被覆された部材であってもよい。金属材料の種類にも特に限定はなく、鉄、銅、ニッケル、モリブデン、タングステンなどの他、ステンレス、アルミニウムなどのように表面に不動態皮膜が形成される金属材料または合金であってもよい。   The shape and material of the second member are not particularly limited as long as at least a part of the second member is made of a metal material. For example, a member in which a metal film is coated on at least a part of the surface of a base material made of a material other than a metal material may be used in addition to a bulk material or a thin film made of a metal material. The type of the metal material is not particularly limited, and may be a metal material or alloy having a passive film formed on the surface, such as stainless steel and aluminum, in addition to iron, copper, nickel, molybdenum, tungsten and the like.

ここで、図1は、本発明の接合体を模式的に示す断面図である。接合部3では、第一部材1と第二部材2とが接合される。具体的には、基材1sに被覆された炭素膜1fと金属材料(すなわち第二部材2)とが錫はんだ3jではんだ付けされて接合される。錫はんだは、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含む。亜鉛および希土類元素からなる群から選択される添加元素は、酸素親和力が高い。そのため、添加元素が炭素膜1fの被接合面1jに存在する酸素と化学結合し、錫はんだ3jは炭素膜1fに直接接合される。また、錫はんだ3jは、金属材料2に対しては、通常のはんだ付けと同様に被接合面2jから金属材料へと拡散結合し、錫はんだ3jは金属材料2に直接接合される。表面に酸化物(不動態皮膜)をもつ金属からなる金属材料2であっても、上記の添加元素が被接合面2jに存在する酸化物の酸素と結合し、錫はんだ3jは金属材料2に直接接合される。   Here, FIG. 1 is a cross-sectional view schematically showing the joined body of the present invention. In the joint part 3, the first member 1 and the second member 2 are joined. Specifically, the carbon film 1f covered with the substrate 1s and the metal material (that is, the second member 2) are soldered and joined with the tin solder 3j. The tin solder contains one or more selected from the group consisting of zinc and rare earth elements mainly composed of tin. The additive element selected from the group consisting of zinc and rare earth elements has a high oxygen affinity. Therefore, the additive element chemically bonds with oxygen present on the bonded surface 1j of the carbon film 1f, and the tin solder 3j is directly bonded to the carbon film 1f. Further, the tin solder 3j is diffusion-bonded to the metal material 2 from the joined surface 2j to the metal material in the same manner as normal soldering, and the tin solder 3j is directly bonded to the metal material 2. Even in the case of the metal material 2 made of a metal having an oxide (passive film) on the surface, the additive element is combined with oxygen of the oxide present on the bonded surface 2j, and the tin solder 3j is bonded to the metal material 2. Directly joined.

上記の添加元素は、錫はんだを100質量%としたとき、0.5〜7.5質量%さらには2〜4質量%含まれれば、十分な接合強度が得られる。添加元素は、亜鉛および希土類元素の中でも、亜鉛および/またはルテニウムが特に好ましい。なお、錫はんだは、銅、銀、鉛、ビスマス、インジウム、アンチモン、ニッケルといった通常のはんだに含まれる元素のうち少なくとも一種以上を含んでもよい。また、錫はんだは、鉛を含まないのがよい。   When the additive element is contained in an amount of 0.5 to 7.5% by mass and further 2 to 4% by mass when tin solder is 100% by mass, sufficient bonding strength can be obtained. Among the zinc and rare earth elements, zinc and / or ruthenium is particularly preferable as the additive element. The tin solder may contain at least one or more elements included in ordinary solder such as copper, silver, lead, bismuth, indium, antimony, and nickel. The tin solder should not contain lead.

上記の構成を有する本発明の接合体は、高い接合剪断強度をもつ。具体的には、接合部の接合剪断強度が、好ましくは5MPa以上さらに好ましくは6MPa以上を示す。なお、本明細書において、接合部の接合剪断強度は、日本工業規格JISZ3198−5「鉛フリーはんだ試験方法−第5部:はんだ継手の引張及びせん断試験方法」に規定された方法により測定される値とする。   The joined body of the present invention having the above configuration has high joint shear strength. Specifically, the joint shear strength of the joint is preferably 5 MPa or more, more preferably 6 MPa or more. In this specification, the joint shear strength of the joint is measured by the method specified in Japanese Industrial Standard JISZ3198-5 “Lead-free solder test method—Part 5: Tensile and shear test method of solder joint”. Value.

[接合体の用途]
以上説明した本発明の接合体は、半導体素子に発生する熱を放散・冷却するための半導体素子放熱部材に好適に用いることができる。半導体素子放熱部材は、半導体素子を搭載し、半導体素子に発生する熱を放散および/または冷却する部材であって、具体的には、ヒートシンク、ヒートスプレッダー、放熱板、冷却板等と呼ばれるような、半導体素子に発生する熱の放散や冷却に関与する放熱部材を意味する。以下に、半導体素子放熱部材を、図2を用いて説明する。
[Use of joined body]
The joined body of the present invention described above can be suitably used for a semiconductor element heat radiating member for radiating and cooling heat generated in a semiconductor element. The semiconductor element heat dissipation member is a member that mounts the semiconductor element and dissipates and / or cools the heat generated in the semiconductor element. Specifically, the semiconductor element heat dissipation member is called a heat sink, a heat spreader, a heat dissipation plate, a cooling plate, or the like. It means a heat dissipating member involved in the dissipation and cooling of heat generated in the semiconductor element. The semiconductor element heat dissipation member will be described below with reference to FIG.

図2は、半導体素子放熱部材を模式的に示す断面図である。半導体素子放熱部材は、金属基体11上に、少なくともこの金属基体11と半導体素子41との間を電気的に絶縁するように絶縁性のDLC膜12を設けたものであり、この絶縁性DLC膜12上に電極21を介して半導体素子41を搭載するものである。このとき、DLC膜12と電極21とは、接合部30において錫はんだ31によりはんだ付けされている。また、半導体素子41は、一般的なはんだ43により電極21に固定される。すなわち、金属基体11およびDLC膜12が本発明の接合体の第一部材、電極21(あるいは電極21、はんだ43および半導体素子41)が本発明の接合体の第二部材、にそれぞれ相当する。   FIG. 2 is a cross-sectional view schematically showing a semiconductor element heat dissipation member. The semiconductor element heat dissipating member is provided with an insulating DLC film 12 on the metal base 11 so as to electrically insulate at least the metal base 11 and the semiconductor element 41. The insulating DLC film A semiconductor element 41 is mounted on 12 via an electrode 21. At this time, the DLC film 12 and the electrode 21 are soldered with tin solder 31 at the joint 30. The semiconductor element 41 is fixed to the electrode 21 with a general solder 43. That is, the metal substrate 11 and the DLC film 12 correspond to the first member of the joined body of the present invention, and the electrode 21 (or the electrode 21, the solder 43, and the semiconductor element 41) correspond to the second member of the joined body of the present invention.

金属基体は、熱伝導性を有する公知の金属材料からなるものであれば特に限定されない。たとえば、金属基体の熱伝導率が、8W/m・K以上さらには10W/m・K以上、100W/m・K以上であるのがよい。ヒートシンク等の半導体素子放熱部材として用いた場合には、金属基体は放熱板の役割を担う。半導体素子の熱を効率的に放散させるためには、金属基体の熱伝導率は高い程好ましい。このような観点から、金属基体は、少なくともAl、Cu、Mo、W、SiおよびFeから選ばれる少なくとも一種を含む金属または合金からなるのが好ましい。また、金属基体の形状および寸法は、使用目的に応じて適宜決定すればよい。   The metal substrate is not particularly limited as long as it is made of a known metal material having thermal conductivity. For example, the thermal conductivity of the metal substrate is preferably 8 W / m · K or more, more preferably 10 W / m · K or more, and 100 W / m · K or more. When used as a semiconductor element heat radiating member such as a heat sink, the metal substrate serves as a heat radiating plate. In order to dissipate the heat of the semiconductor element efficiently, the higher the thermal conductivity of the metal substrate, the better. From such a viewpoint, the metal substrate is preferably made of a metal or alloy containing at least one selected from Al, Cu, Mo, W, Si, and Fe. Further, the shape and dimensions of the metal substrate may be appropriately determined according to the purpose of use.

絶縁性DLC膜は、炭素を主成分とし、水素を含むのが好ましい。水素を含んだ絶縁性DLC膜は強度が強く、金属基体の表面から剥離が起こりにくい。絶縁性DLC膜に含まれる水素の含有量は特に限定されないが、剥離防止の観点からは、絶縁性DLC膜を100原子%としたときに20原子%以上さらには25原子%以上であるのが好ましい。水素の含有量は多ければ多いほど絶縁性DLC膜がより柔軟になるために剥離防止の上では好ましいが、水素の含有量が多すぎる場合には、DLC膜が有機的な構造となり、強度が大幅に低下することにより逆に剥離が起こりやすくなる場合がある。そのため、絶縁性DLC膜を100原子%としたときの水素の含有量は、40原子%以下さらには35原子%以下であるのが好ましい。   The insulating DLC film preferably contains carbon as a main component and contains hydrogen. The insulating DLC film containing hydrogen has a high strength and does not easily peel from the surface of the metal substrate. The content of hydrogen contained in the insulating DLC film is not particularly limited, but from the viewpoint of preventing peeling, it is 20 atomic% or more, further 25 atomic% or more when the insulating DLC film is 100 atomic%. preferable. The higher the hydrogen content, the more flexible the insulating DLC film, which is preferable for preventing peeling. However, when the hydrogen content is too high, the DLC film has an organic structure, and the strength is high. On the contrary, peeling may easily occur due to a significant decrease. Therefore, the content of hydrogen when the insulating DLC film is 100 atomic% is preferably 40 atomic% or less, and more preferably 35 atomic% or less.

絶縁性DLC膜は、さらに珪素を含むことにより、DLC膜に酸素を導入しやすいだけでなく、金属基体との密着性が向上する。また、珪素を含むことで、珪素を主たる構成成分とする半導体素子と絶縁性DLC膜との熱膨張係数の差を小さくすることができ、両者の熱膨張係数差に起因する応力の発生を緩和できる。絶縁性DLC膜に含まれる珪素の含有量は特に限定されないが、1〜30原子%さらには5〜20原子%であるとよい。珪素含有量が1原子%以上であれば、半導体素子放熱部材が大きな温度変化に曝されても、半導体素子と絶縁性DLC膜との熱膨張係数差に起因する応力を緩和でき、剥離の発生が防止される。また、珪素含有量が30原子%以下さらには20原子%以下であれば、絶縁性DLC膜の導電性が増大するのを防止でき、半導体素子と金属基体との間の絶縁性を十分に確保できる。   When the insulating DLC film further contains silicon, not only oxygen can be easily introduced into the DLC film, but also the adhesion to the metal substrate is improved. In addition, the inclusion of silicon can reduce the difference in thermal expansion coefficient between the semiconductor element mainly composed of silicon and the insulating DLC film, and can reduce the stress caused by the difference in thermal expansion coefficient between the two. it can. The content of silicon contained in the insulating DLC film is not particularly limited, but is preferably 1 to 30 atomic%, more preferably 5 to 20 atomic%. If the silicon content is 1 atomic% or more, even if the semiconductor element heat dissipation member is exposed to a large temperature change, the stress caused by the difference in thermal expansion coefficient between the semiconductor element and the insulating DLC film can be relieved, and peeling occurs. Is prevented. Further, if the silicon content is 30 atomic% or less, further 20 atomic% or less, it is possible to prevent the conductivity of the insulating DLC film from increasing, and sufficiently ensure the insulation between the semiconductor element and the metal substrate. it can.

また、半導体素子放熱部材における絶縁性DLC膜の膜厚は、半導体素子と金属基体との絶縁性を十分に確保する観点から、0.1μm以上さらには0.5μm以上が好ましい。また、半導体素子に発生した熱を金属基体へと効率的に放散させるためには数十μm以下とするのが好ましい。   In addition, the thickness of the insulating DLC film in the semiconductor element heat dissipation member is preferably 0.1 μm or more, and more preferably 0.5 μm or more, from the viewpoint of sufficiently ensuring the insulation between the semiconductor element and the metal substrate. Moreover, in order to efficiently dissipate the heat generated in the semiconductor element to the metal substrate, the thickness is preferably several tens of μm or less.

以上説明した本発明の接合体からなる半導体素子放熱部材は、半導体素子に発生する熱の放熱特性に優れ、半導体素子やその他の部材との密着性に優れる。   The semiconductor element heat dissipating member comprising the joined body of the present invention described above is excellent in heat dissipation characteristics of heat generated in the semiconductor element and excellent in adhesion to the semiconductor element and other members.

本発明の構造体は、上述の半導体素子放熱部材のほか、電子部品(抵抗、コンデンサーなど)を搭載するための基板または筐体などに用いることができる。   The structure of the present invention can be used for a substrate or a housing for mounting an electronic component (such as a resistor or a capacitor) in addition to the above-described semiconductor element heat dissipation member.

[接合体の製造方法]
本発明の接合体は、以下に説明する本発明の接合体の製造方法(以下「本発明の接合方法」と記載)により作製が可能である。すなわち、本発明の製造方法は、基材の少なくとも一部に炭素膜が被覆されてなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え該炭素膜と該金属材料とがはんだ付けされた接合部をもつ接合体の製造方法であって、主として、酸素含有炭素膜形成工程およびはんだ付け工程を含む。
[Method of manufacturing joined body]
The joined body of the present invention can be produced by the method for producing the joined body of the present invention described below (hereinafter referred to as “the joining method of the present invention”). That is, the manufacturing method of the present invention includes a first member in which at least a part of a base material is coated with a carbon film, and a second member in which at least a part is made of a metal material, and the carbon film and the metal material Is a method for manufacturing a joined body having a soldered joint, and mainly includes an oxygen-containing carbon film forming step and a soldering step.

ここで、第一部材は、プラズマCVD法、イオンプレーティング法、スパッタリング法など、既に公知のCVD法、PVD法により、基材の表面に炭素膜を成膜することで得られる。炭素膜の成膜の前には、基材表面との密着性を高めるために、基材に対して表面処理をしてもよい。たとえば、基材の表面に微細な凹凸を形成してアンカー効果により密着性を高めたり、密着性を高める中間層を形成したりするなど、基材の種類に応じて行えばよい。   Here, the first member is obtained by forming a carbon film on the surface of the base material by a known CVD method or PVD method such as plasma CVD method, ion plating method, sputtering method or the like. Prior to the formation of the carbon film, the substrate may be subjected to a surface treatment in order to improve the adhesion with the substrate surface. For example, fine irregularities may be formed on the surface of the base material to increase the adhesion by the anchor effect, or an intermediate layer to improve the adhesion may be formed.

酸素含有炭素膜形成工程は、炭素膜の少なくとも被接合面に酸素を付与する工程である。炭素膜の少なくとも被接合面に酸素を付与するためには、炭素膜を形成する際に、あらかじめ酸素を含有する炭素膜を成膜してもよいし、炭素膜を成膜後に炭素膜の少なくとも被接合面に酸素を付与する処理を施してもよい。たとえば、炭素膜に酸素を含む雰囲気中で紫外線を照射したり(UV処理)、炭素膜を酸素を含むプラズマに曝したり(プラズマ処理)することで、成膜後の炭素膜であっても被接合面に酸素を付与することができる。UV処理やプラズマ処理では、−O、=O、−OH等で表される含酸素官能基が付加されるとよい。炭素膜の少なくとも被接合面に含まれる炭素や珪素に含酸素官能基が結合することで、被接合面においてC−O、C−OH、C=O、Si−O、Si−OHなどの形態で存在する。   The oxygen-containing carbon film forming step is a step of imparting oxygen to at least the bonded surface of the carbon film. In order to provide oxygen to at least the bonded surface of the carbon film, a carbon film containing oxygen may be formed in advance when the carbon film is formed, or at least the carbon film may be formed after the carbon film is formed. You may perform the process which provides oxygen to a to-be-joined surface. For example, the carbon film is exposed to ultraviolet rays in an atmosphere containing oxygen (UV treatment), or the carbon film is exposed to plasma containing oxygen (plasma treatment), so that even a carbon film after film formation is covered. Oxygen can be applied to the bonding surface. In UV treatment or plasma treatment, an oxygen-containing functional group represented by —O, ═O, —OH or the like is preferably added. Forms of C—O, C—OH, C═O, Si—O, Si—OH, etc. on the bonded surface by bonding oxygen-containing functional groups to carbon or silicon contained in at least the bonded surface of the carbon film Exists.

酸素含有炭素膜形成工程は、炭素膜の被接合面の水素を除く酸素含有量を50〜70原子%さらには55〜65原子%とする工程であるのが望ましい。炭素膜の被接合面の酸素含有量を50原子%以上とすることで、接合部の接合剪断強度が高い接合体が得られる。酸素含有量が多いほど接合剪断強度が大きくなる傾向にあるが、炭素膜の被接合面の酸素含有量が70原子%を超えても大きな向上は見られない。炭素膜の被接合面の酸素含有量は、炭素膜の成膜条件や、UV処理やプラズマ処理の処理条件を変更することで所望の含有量とすることができる。なお、本明細書において、炭素膜の表面の酸素含有量は、X線光電子分光法(XPS)による表面分析により得られた値とする。XPSでは、炭素膜の表面から3nm程度までの最表面の元素分析が可能である。   The oxygen-containing carbon film forming step is preferably a step in which the oxygen content excluding hydrogen on the bonded surface of the carbon film is 50 to 70 atomic%, more preferably 55 to 65 atomic%. By setting the oxygen content of the bonded surface of the carbon film to 50 atomic% or more, a bonded body having a high bonding shear strength at the bonded portion can be obtained. As the oxygen content increases, the joining shear strength tends to increase. However, even if the oxygen content of the bonded surface of the carbon film exceeds 70 atomic%, no significant improvement is observed. The oxygen content of the bonded surface of the carbon film can be set to a desired content by changing the film forming conditions of the carbon film and the processing conditions of the UV treatment and the plasma treatment. In this specification, the oxygen content on the surface of the carbon film is a value obtained by surface analysis by X-ray photoelectron spectroscopy (XPS). In XPS, elemental analysis of the outermost surface from the surface of a carbon film to about 3 nm is possible.

また、前記酸素含有炭素膜形成工程は、前記炭素膜の被接合面の水素を除く珪素含有量を20〜40原子%さらには25〜40原子%とする工程であるのが望ましい。珪素を含む炭素膜であれば、UV処理またはプラズマ処理を施すことで処理中に表面の炭素は酸化されて気化するため、炭素膜の表層の珪素含有量を高められる。炭素膜の被接合面の珪素含有量を20〜40原子%とすることで、接合部の接合剪断強度が高い接合体が得られる。炭素膜の被接合面の珪素含有量は、炭素膜の成膜条件や、UV処理やプラズマ処理の処理条件を変更することで所望の含有量とすることができる。なお、本明細書において、炭素膜の表面の珪素含有量は、X線光電子分光法(XPS)による表面分析により得られた値とする。   The oxygen-containing carbon film forming step is preferably a step in which the silicon content excluding hydrogen on the bonded surface of the carbon film is 20 to 40 atomic%, further 25 to 40 atomic%. In the case of a carbon film containing silicon, the surface carbon of the carbon film is oxidized and vaporized by performing UV treatment or plasma treatment, so that the silicon content of the surface layer of the carbon film can be increased. By setting the silicon content of the bonded surface of the carbon film to 20 to 40 atomic%, a bonded body having a high bonding shear strength at the bonded portion can be obtained. The silicon content of the bonded surface of the carbon film can be set to a desired content by changing the film forming conditions of the carbon film and the processing conditions of the UV treatment and the plasma treatment. In this specification, the silicon content on the surface of the carbon film is a value obtained by surface analysis by X-ray photoelectron spectroscopy (XPS).

はんだ付け工程は、炭素膜と金属材料とを、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含む錫はんだではんだ付けする工程である。はんだ付け工程は、上記組成の錫はんだを用い、通常の手順ではんだ付けを行えばよい。超音波接合によりはんだ付けを行うと、超音波の印加によるキャビテーション効果により溶融した錫はんだと被接合面との接合が良好になるとともに、被接合面の酸素がトラップされやすくなるため望ましい。このとき、100〜400℃ではんだ付けを行うことができるため、炭素膜や金属材料の熱による劣化が防止される。   The soldering step is a step of soldering the carbon film and the metal material with tin solder containing at least one selected from the group consisting of tin and zinc and rare earth elements. In the soldering step, tin solder having the above composition may be used, and soldering may be performed by a normal procedure. When soldering is performed by ultrasonic bonding, it is preferable that the molten tin solder is bonded to the bonded surface by the cavitation effect by applying ultrasonic waves, and oxygen of the bonded surface is easily trapped. At this time, since soldering can be performed at 100 to 400 ° C., deterioration of the carbon film or the metal material due to heat is prevented.

以上、本発明の接合体およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the joined_body | zygote of this invention and its manufacturing method was demonstrated, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の接合体およびその製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the joined body and the method for producing the same according to the present invention.

純アルミニウム板材から2つで一組の試験片を作製し、一方にDLC膜を成膜したのち、両者をはんだ付けして、接合体を得た。なお、接合体の形状は、JISZ3198−5に規定された1号せん断試験片試験材と同じとした。以下に、作製手順を説明する。   A pair of test pieces was prepared from two pure aluminum plate materials, a DLC film was formed on one, and both were soldered to obtain a joined body. In addition, the shape of the joined body was the same as the No. 1 shear test piece test material defined in JISZ3198-5. The production procedure will be described below.

[DLC膜の成膜]
直流プラズマCVD法により、アルミニウム製の試験片の表面全体にDLC膜を成膜した。成膜条件は、希釈ガスとしてアルゴン、水素、原料ガスとして、メタン、珪素を含むDLC膜を成膜する場合には、さらにテトラメチルシランを用い、直流電圧を印加することでプラズマを生成し、水素を含み珪素含有量の異なるDLC膜を成膜した。珪素含有量は、テトラメチルシランの量を変えることで調整した。
[DLC film formation]
A DLC film was formed on the entire surface of the aluminum test piece by DC plasma CVD. When forming a DLC film containing argon, hydrogen as a dilution gas, and methane and silicon as source gases, tetramethylsilane is further used to form a plasma by applying a DC voltage, DLC films containing hydrogen and different silicon contents were formed. The silicon content was adjusted by changing the amount of tetramethylsilane.

[酸素含有炭素膜形成工程]
試験片に成膜されたDLC膜に対し、UV処理またはプラズマ処理を行い、DLC膜の表面に酸素を付与した。UV処理は、UVオゾンクリーナー(フィルジェン株式会社製UV42)を用い、波長:184.9nmおよび253.7nm、紫外線強度:28mW/cmの条件の下、1〜120分の範囲で処理時間を変えて行った。また、プラズマ処理は、電子顕微鏡用親水化処理装置(日本電子株式会社製HDT−400)を用い、プラズマ出力500Wとし、10〜120秒の範囲で処理時間を変えて行った。
[Oxygen-containing carbon film formation process]
The DLC film formed on the test piece was subjected to UV treatment or plasma treatment to give oxygen to the surface of the DLC film. The UV treatment uses a UV ozone cleaner (UV42 manufactured by Philgen Co., Ltd.), and the treatment time is in the range of 1 to 120 minutes under the conditions of wavelengths: 184.9 nm and 253.7 nm, ultraviolet intensity: 28 mW / cm 2. I changed it. The plasma treatment was performed using a hydrophilic treatment apparatus for an electron microscope (HDT-400 manufactured by JEOL Ltd.) with a plasma output of 500 W and a treatment time in the range of 10 to 120 seconds.

[DLC膜の分析]
DLC膜中の珪素含有量は、電子プローブ微小部分析法(EPMA)およびX線光電子分光法(XPS)により定量した。また、膜中の水素含有量は、弾性反跳粒子検出法(ERDA)により定量した。ERDAは、2MeVのヘリウムイオンビームを膜表面に照射して、膜からはじき出される水素を半導体検出器により検出し、膜中の水素濃度を測定する方法である。
[Analysis of DLC film]
The silicon content in the DLC film was quantified by electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The hydrogen content in the film was quantified by elastic recoil particle detection (ERDA). ERDA is a method of measuring the hydrogen concentration in the film by irradiating the surface of the film with a 2 MeV helium ion beam, detecting hydrogen ejected from the film with a semiconductor detector.

さらに、DLC膜の表面の炭素、酸素および珪素含有量をXPSにより測定した。この表面分析には、アルバック・ファイ株式会社製XPS分析装置を用い、X線源:単色AlKα、光電子取出角:5°、分析領域:約200μmφとし、最表面から3nm程度のC1s、O1sおよびSi2pのスペクトルからDLC膜の表面に含まれる各元素の含有量を求めた。   Further, the carbon, oxygen and silicon contents on the surface of the DLC film were measured by XPS. For this surface analysis, an XPS analyzer manufactured by ULVAC-PHI Co., Ltd. was used. X-ray source: monochromatic AlKα, photoelectron extraction angle: 5 °, analysis region: about 200 μmφ, C1s, O1s and Si2p about 3 nm from the outermost surface From the spectrum, the content of each element contained on the surface of the DLC film was determined.

酸素含有非晶質炭素膜形成工程後の各DLC膜のXPS分析結果を、図3〜図7に示す。図3は、DLC膜を100原子%としたとき珪素を含まず水素含有量が20原子%のDLC膜に行ったプラズマ処理の時間に対する表面元素含有量を示す。図4は、DLC膜を100原子%としたとき珪素を含まず水素含有量が20原子%のDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。図5は、DLC膜を100原子%としたときの珪素含有量が5原子%で水素含有量が34原子%のDLC膜に行ったプラズマ処理の時間に対する表面元素含有量を示す。図6は、DLC膜を100原子%としたときの珪素含有量が6原子%で水素含有量が30原子%のDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。図7は、DLC膜を100原子%としたときの珪素含有量が10原子%で水素含有量が31原子%のDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。   The XPS analysis results of each DLC film after the oxygen-containing amorphous carbon film forming step are shown in FIGS. FIG. 3 shows the surface element content with respect to the time of the plasma treatment performed on the DLC film that does not contain silicon and has a hydrogen content of 20 atomic% when the DLC film is 100 atomic%. FIG. 4 shows the surface element content with respect to the time of UV treatment performed on the DLC film having no hydrogen and 20 atomic% when the DLC film is 100 atomic%. FIG. 5 shows the surface element content with respect to the time of plasma treatment performed on the DLC film having a silicon content of 5 atomic% and a hydrogen content of 34 atomic% when the DLC film is 100 atomic%. FIG. 6 shows the surface element content with respect to the time of UV treatment performed on a DLC film having a silicon content of 6 atomic% and a hydrogen content of 30 atomic% when the DLC film is 100 atomic%. FIG. 7 shows the surface element content with respect to the time of UV treatment performed on a DLC film having a silicon content of 10 atomic% and a hydrogen content of 31 atomic% when the DLC film is 100 atomic%.

珪素を含まないDLC膜(図3および図4)では、酸素量の大きな増加は見られなかったが、未処理(処理時間が0)のものに比べて酸素量が増加した。これは、UV処理やプラズマ処理によりC−C結合やC−H結合が、C−O結合やC=O結合となったためである。しかし、処理時間を長くしても酸素量はほぼ一定であり、処理方法で大きな差もなかった。酸素量が大きく増加しなかったのは、処理中に炭素は酸化されて気化するため、付与できる酸素の量に限界があるのだと推測される。一方、珪素を含むDLC膜(図5〜図7)では、処理時間が長くなるほど、表面の酸素量が増加する傾向にあった。また、処理中に炭素は酸化されて気化するため、表面の珪素が濃化するので、酸素が付与されやすい状態にあると言える。   In the DLC film not containing silicon (FIGS. 3 and 4), the oxygen amount was not greatly increased, but the oxygen amount was increased as compared with the untreated film (processing time 0). This is because the C—C bond and the C—H bond are changed to the C—O bond and the C═O bond by the UV treatment and the plasma treatment. However, even when the treatment time was extended, the amount of oxygen was almost constant, and there was no significant difference in the treatment method. The reason why the amount of oxygen did not increase greatly is presumed that the amount of oxygen that can be imparted is limited because carbon is oxidized and vaporized during the treatment. On the other hand, in the DLC film containing silicon (FIGS. 5 to 7), the amount of oxygen on the surface tends to increase as the treatment time becomes longer. Further, since carbon is oxidized and vaporized during the treatment, silicon on the surface is concentrated, so that it can be said that oxygen is easily provided.

[はんだ付け工程]
次に、DLC膜を成膜後UV処理またはプラズマ処理した試験片とDLC膜をもたない試験片とを、セラミックス用はんだ(栄信工業株式会社製セラソルザ・エコ#217)ではんだ付けした。なお、このセラミックス用はんだは、Sn−3.8Zn−1.24Sb−0.03Al(数値は質量%)である。はんだ付けには、超音波はんだ付け装置(栄信工業株式会社製特殊サンボンダーSO−6)を使用し、各試験片を290℃以上に保持したヒータ上に載置し、それぞれのはんだ付部(被接合面)にセラミックス用はんだを超音波を印加しながら予備はんだした後、接合治具上で被接合面を重ね合わせて接合した。
[Soldering process]
Next, the test piece that had been subjected to UV treatment or plasma treatment after the DLC film was formed and the test piece that did not have the DLC film were soldered with a solder for ceramics (Cerasolzer Eco # 217 manufactured by Eishin Industry Co., Ltd.). In addition, this solder for ceramics is Sn-3.8Zn-1.24Sb-0.03Al (a numerical value is mass%). For soldering, an ultrasonic soldering device (special sun bonder SO-6 manufactured by Eishin Industry Co., Ltd.) was used, and each test piece was placed on a heater held at 290 ° C. or higher, and each soldered portion (covered part) After preliminarily soldering the ceramic solder to the bonding surface) while applying ultrasonic waves, the bonded surfaces were overlapped and bonded on the bonding jig.

[評価]
図4、図6および図7に示した各試験片を上記の手順によりはんだ付けして得られた接合体の接合強度(接合剪断強度)を、JISZ3198−5に規定された方法により測定した。測定結果を図8および図9に示す。図8はDLC膜の表面酸素含有量に対する接合剪断強度を示すグラフであり、図9は、表面珪素含有量に対する接合剪断強度を示すグラフである。なお、UV処理時間を0時間とした試験片を用いた接合体は、比較例(図8および図9で「未処理」と表記)である。
[Evaluation]
The joining strength (joining shear strength) of the joined body obtained by soldering each test piece shown in FIGS. 4, 6 and 7 by the above procedure was measured by the method defined in JISZ3198-5. The measurement results are shown in FIGS. FIG. 8 is a graph showing the bonding shear strength with respect to the surface oxygen content of the DLC film, and FIG. 9 is a graph showing the bonding shear strength with respect to the surface silicon content. In addition, the joined body using the test piece with the UV treatment time of 0 hour is a comparative example (indicated as “untreated” in FIGS. 8 and 9).

図8より、珪素を含まないDLC膜では、UV処理されて表面酸素含有量が30at%程度となったDLC膜をもつ各接合体は、未処理(酸素15at%)のものに比べ、接合剪断強度が向上した。また、珪素を含むDLC膜では、表面酸素含有量が高いほど接合剪断強度も向上、特に、表面酸素含有量が54〜63at%のDLC膜をもつ各接合体では、4.9MPaを超える接合剪断強度を示した。   According to FIG. 8, in the DLC film not containing silicon, each bonded body having the DLC film whose surface oxygen content is about 30 at% after UV treatment is compared with the untreated (oxygen 15 at%) bonded shear. Strength improved. Further, in the DLC film containing silicon, the higher the surface oxygen content, the better the joint shear strength. In particular, in each joined body having a DLC film having a surface oxygen content of 54 to 63 at%, the joint shear exceeding 4.9 MPa. Intensity was shown.

また、図9より、表面珪素含有量が25at%以上であるDLC膜をもつ各接合体は、4.9MPaを超える接合剪断強度を示した。   Moreover, from FIG. 9, each joined body having a DLC film having a surface silicon content of 25 at% or more showed a joining shear strength exceeding 4.9 MPa.

[比較例]
珪素を10原子%含むUV処理をしたDLC膜(図7の各試験片)に対し、Sn−Cuはんだを用いて接合体を作製した。はんだ付けは230℃以上に保持して行った。
[Comparative example]
A bonded body was prepared using Sn—Cu solder on a DLC film (each test piece in FIG. 7) subjected to UV treatment containing 10 atomic% of silicon. Soldering was performed at 230 ° C. or higher.

はんだ付けでは、いずれの試験片においても、DLC膜とSn−Cuはんだとが全く濡れなかった。つまり、UV処理の有無に関わらず、接合することすらできなかった。   In the soldering, the DLC film and the Sn—Cu solder were not wet at all in any of the test pieces. In other words, it was not possible to join even with or without UV treatment.

本発明の接合体を模式的に示す断面図である。It is sectional drawing which shows the conjugate | zygote of this invention typically. 本発明の接合体からなる半導体素子放熱部材を模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor element heat radiating member consisting of the conjugate | zygote of this invention. 珪素を含まないDLC膜に行ったプラズマ処理の時間に対する表面元素含有量を示す。The surface element content with respect to the time of the plasma treatment performed on the DLC film not containing silicon is shown. 珪素を含まないDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。The surface element content with respect to the time of UV treatment performed on the DLC film not containing silicon is shown. 珪素含有量が5原子%のDLC膜に行ったプラズマ処理の時間に対する表面元素含有量を示す。The surface element content with respect to the time of the plasma treatment performed on the DLC film having a silicon content of 5 atomic% is shown. 珪素含有量が6原子%のDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。The surface element content with respect to the time of UV treatment performed on a DLC film having a silicon content of 6 atomic% is shown. 珪素含有量が10原子%のDLC膜に行ったUV処理の時間に対する表面元素含有量を示す。The surface element content with respect to the time of UV treatment performed on a DLC film having a silicon content of 10 atomic% is shown. DLC膜の表面酸素含有量に対する接合剪断強度を示すグラフである。It is a graph which shows the joining shear strength with respect to the surface oxygen content of a DLC film. DLC膜の表面珪素含有量に対する接合剪断強度を示すグラフである。It is a graph which shows the joining shear strength with respect to the surface silicon content of a DLC film.

符号の説明Explanation of symbols

1:第一部材 1s:基材 1f:炭素膜 1j:被接合面
11:金属基体 12:絶縁性非晶質炭素膜
2:第二部材(金属材料) 2j:被接合面 21:電極
3,30:接合部 3j,31:錫はんだ
1: First member 1s: Base material 1f: Carbon film 1j: Surface to be bonded 11: Metal substrate 12: Insulating amorphous carbon film 2: Second member (metal material) 2j: Surface to be bonded 21: Electrode 3 30: Junction 3j, 31: Tin solder

Claims (15)

基材と該基材の表面の少なくとも一部に被覆された炭素膜とからなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え該炭素膜と該金属材料とがはんだ付けされた接合部をもつ接合体であって、
前記炭素膜は、少なくとも被接合面に酸素を含み、
前記接合部は、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含み、前記炭素膜の酸素と化学結合するとともに前記金属材料と拡散結合または該金属材料の表面に形成された酸化物の酸素と化学結合する錫はんだで接合されていることを特徴とする接合体。
A first member comprising a base material and a carbon film coated on at least a part of the surface of the base material; and a second member comprising at least a part of a metal material, the carbon film and the metal material comprising A joined body having a soldered joint,
The carbon film contains oxygen at least on the bonded surface,
The joint includes at least one selected from the group consisting of tin and zinc and rare earth elements as a main component, and is chemically bonded to oxygen of the carbon film and is formed on the surface of the metal material by diffusion bonding with the metal material. A bonded body characterized in that it is bonded with tin solder that chemically bonds to oxygen of the oxidized oxide.
前記炭素膜は、非晶質炭素膜である請求項1記載の接合体。   The joined body according to claim 1, wherein the carbon film is an amorphous carbon film. 前記炭素膜は、少なくとも被接合面に珪素を含む請求項1または2記載の接合体。   The joined body according to claim 1, wherein the carbon film contains silicon at least on a surface to be joined. 前記炭素膜は、全体を100原子%としたときに珪素を2〜40原子%含む請求項1〜3のいずれかに記載の接合体。   The said carbon film is a joined body in any one of Claims 1-3 which contains 2-40 atomic% of silicon, when the whole is 100 atomic%. 前記接合部の接合剪断強度が5MPa以上である請求項1〜4のいずれかに記載の接合体。   The joined body according to any one of claims 1 to 4, wherein a joining shear strength of the joined portion is 5 MPa or more. 基材の少なくとも一部に炭素膜が被覆されてなる第一部材と、少なくとも一部が金属材料からなる第二部材と、を備え該炭素膜と該金属材料とがはんだ付けされた接合部をもつ接合体の製造方法であって、
前記炭素膜の少なくとも被接合面に酸素を付与する酸素含有炭素膜形成工程と、
前記炭素膜と前記金属材料とを、錫を主成分とし亜鉛および希土類元素からなる群から選択される一種以上を含む錫はんだではんだ付けするはんだ付け工程と、
を含むことを特徴とする接合体の製造方法。
A first member in which at least a part of a base material is coated with a carbon film; and a second member at least part of which is made of a metal material; and a joining portion in which the carbon film and the metal material are soldered A method for manufacturing a joined body having:
An oxygen-containing carbon film forming step of imparting oxygen to at least the bonded surface of the carbon film;
A soldering step of soldering the carbon film and the metal material with a tin solder containing at least one selected from the group consisting of zinc and rare earth elements mainly composed of tin;
The manufacturing method of the conjugate | zygote characterized by including.
前記炭素膜は、非晶質炭素膜である請求項6記載の接合体の製造方法。   The method of manufacturing a joined body according to claim 6, wherein the carbon film is an amorphous carbon film. 前記炭素膜は、少なくとも被接合面に珪素を含み、
前記酸素含有炭素膜形成工程は、少なくとも珪素に酸素を付加する工程である請求項6または7記載の接合体の製造方法。
The carbon film includes silicon at least on a bonded surface,
The method for manufacturing a joined body according to claim 6 or 7, wherein the oxygen-containing carbon film forming step is a step of adding oxygen to at least silicon.
前記酸素含有炭素膜形成工程は、前記第一部材の前記炭素膜に酸素を含む雰囲気中で紫外線を照射する工程である請求項6〜8のいずれかに記載の接合体の製造方法。   The method for producing a joined body according to any one of claims 6 to 8, wherein the oxygen-containing carbon film forming step is a step of irradiating the carbon film of the first member with ultraviolet rays in an atmosphere containing oxygen. 前記酸素含有炭素膜形成工程は、前記第一部材の前記炭素膜を酸素を含むプラズマに曝す工程である請求項6〜8のいずれかに記載の接合体の製造方法。   The said oxygen-containing carbon film formation process is a process of exposing the said carbon film of said 1st member to the plasma containing oxygen, The manufacturing method of the conjugate | zygote in any one of Claims 6-8. 前記酸素含有炭素膜形成工程は、前記炭素膜の被接合面の水素を除く酸素含有量を50〜70原子%とする工程である請求項6〜10のいずれかに記載の接合体の製造方法。   The said oxygen-containing carbon film formation process is a process which makes oxygen content except hydrogen of the to-be-joined surface of the said carbon film 50-70 atomic%, The manufacturing method of the joined body in any one of Claims 6-10. . 前記酸素含有炭素膜形成工程は、前記炭素膜の被接合面の水素を除く珪素含有量を20〜40原子%とする工程である請求項9または10記載の接合体の製造方法。   The method for producing a joined body according to claim 9 or 10, wherein the oxygen-containing carbon film forming step is a step of setting a silicon content excluding hydrogen on a bonded surface of the carbon film to 20 to 40 atomic%. 請求項6〜12のいずれかに記載の製造方法により作製された接合体。   A joined body produced by the production method according to claim 6. 前記炭素膜は、全体を100原子%としたときに珪素を2〜40原子%含む請求項13記載の接合体。   14. The joined body according to claim 13, wherein the carbon film contains 2 to 40 atomic% of silicon when the whole is 100 atomic%. 前記接合部の接合剪断強度が5MPa以上である請求項13または14記載の接合体。   The joined body according to claim 13 or 14, wherein a joining shear strength of the joined portion is 5 MPa or more.
JP2008214546A 2008-08-22 2008-08-22 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP5207052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214546A JP5207052B2 (en) 2008-08-22 2008-08-22 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214546A JP5207052B2 (en) 2008-08-22 2008-08-22 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2010046700A true JP2010046700A (en) 2010-03-04
JP5207052B2 JP5207052B2 (en) 2013-06-12

Family

ID=42064245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214546A Expired - Fee Related JP5207052B2 (en) 2008-08-22 2008-08-22 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP5207052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106904A1 (en) * 2019-11-25 2021-06-03 三菱マテリアル株式会社 Graphene bonded body
CN113714677A (en) * 2021-08-30 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing high-strength interconnection of CSP (chip scale package) devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143344A (en) * 1983-02-04 1984-08-16 Ibiden Co Ltd Silicon carbide substrate for electronic circuit and manufacture thereof
JPH02244689A (en) * 1989-03-16 1990-09-28 Fuji Electric Co Ltd Manufacture of sub-mount of semiconductor laser element heat dissipating body
JP2003031589A (en) * 2001-04-19 2003-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
WO2004053984A1 (en) * 2002-12-09 2004-06-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor element heat dissipating member, semiconductor device using same, and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143344A (en) * 1983-02-04 1984-08-16 Ibiden Co Ltd Silicon carbide substrate for electronic circuit and manufacture thereof
JPH02244689A (en) * 1989-03-16 1990-09-28 Fuji Electric Co Ltd Manufacture of sub-mount of semiconductor laser element heat dissipating body
JP2003031589A (en) * 2001-04-19 2003-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
WO2004053984A1 (en) * 2002-12-09 2004-06-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor element heat dissipating member, semiconductor device using same, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106904A1 (en) * 2019-11-25 2021-06-03 三菱マテリアル株式会社 Graphene bonded body
CN113714677A (en) * 2021-08-30 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing high-strength interconnection of CSP (chip scale package) devices
CN113714677B (en) * 2021-08-30 2023-03-14 江苏师范大学 Sn-based brazing filler metal capable of realizing high-strength interconnection of CSP (chip Scale Package) devices

Also Published As

Publication number Publication date
JP5207052B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP6432466B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
KR102280653B1 (en) Electronic part mounting substrate and method for producing same
JP2009290007A (en) Jointed body, semiconductor device and method for manufacturing jointed body
WO2016031754A1 (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
ATE338737T1 (en) BRAZLED METALIZATIONS FOR DIAMOND COMPONENTS
JP5050440B2 (en) Semiconductor device and manufacturing method thereof
WO1994014190A1 (en) Surface structure for soldering and non-flux soldering method using the same
JP5985849B2 (en) JOINT BODY, MANUFACTURING METHOD THEREOF, AND MEMBER
JP5207052B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP2019050366A (en) Thermal stress compensation junction layer and power electronics assembly including the same
Chen et al. Low temperature SiC die-attach bonding technology by hillocks generation on Al sheet surface with stress self-generation and self-release
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP5004792B2 (en) Cu-Mo substrate and manufacturing method thereof
JP5231727B2 (en) Joining method
TWI283463B (en) Members for semiconductor device
JP2016041434A (en) Method for manufacturing joined body, method for manufacturing substrate for power modules, and method for manufacturing substrate for power module with heat sink
JP3917503B2 (en) Method of joining aluminum member and copper member and joining structure thereof
JP2015104746A (en) Solder joint material and solder joint material manufacturing method
JP7116946B2 (en) Method for producing copper-tin alloy
JP6908173B2 (en) Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
WO2021112060A1 (en) Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board
JP2015080812A (en) Joint method
JP2006303346A (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5207052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees