JP2010046681A - Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe - Google Patents

Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe Download PDF

Info

Publication number
JP2010046681A
JP2010046681A JP2008211988A JP2008211988A JP2010046681A JP 2010046681 A JP2010046681 A JP 2010046681A JP 2008211988 A JP2008211988 A JP 2008211988A JP 2008211988 A JP2008211988 A JP 2008211988A JP 2010046681 A JP2010046681 A JP 2010046681A
Authority
JP
Japan
Prior art keywords
pipe
less
treatment
seam
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211988A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yokoyama
泰康 横山
Yoshitomo Okabe
能知 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008211988A priority Critical patent/JP2010046681A/en
Publication of JP2010046681A publication Critical patent/JP2010046681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-strength thick-walled electric resistance welded steel pipe with a seam part having high toughness. <P>SOLUTION: A steel strip having a specific composition is formed into an open pipe by a continuous pipe making process, and the ends in the circumferential direction of the open pipe are joined to each other by electric resistance welding to make a pipe having a seam part. When subjecting the seam part of the pipe to seam heat treatment by heating it from the outer periphery of the pipe, Q treatment is first carried out in such a manner that the peripheral part of the pipe in which the width of the weld zone from the weld center is substantially the same width of the seam part is heated to an Ac<SB>3</SB>point or above and is then cooled with water, followed by T treatment in such a manner that the peripheral part of the pipe in which the width of the weld zone from the weld center is 1.5 to 3 times the heating width in the Q treatment is heated to 400 to 650°C and then is cooled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ラインパイプ用高強度厚肉電縫鋼管の製造方法に関する。ここで、高強度とはAPI規格のグレードX65以上の強度を意味し、厚肉とは14.3mm以上の肉厚を意味する。   The present invention relates to a method for producing a high-strength thick-walled electric-welded steel pipe for line pipes. Here, high strength means the strength of API standard grade X65 or higher, and thick means a thickness of 14.3 mm or more.

電縫鋼管の電縫溶接部およびその近傍の熱影響部(以下、シーム部と総称する)は、溶接時に受ける急速加熱とその後の抜熱による急速冷却により、母材部に比べて非常に硬度が高くなり、その結果脆くなることがよく知られている。そこで、シーム部の硬度を母材部並みに低下させ、破壊靭性を高めるために、電縫溶接後にシーム部のみをオーステナイト温度域まで加熱する処理を含むシーム熱処理を施すことが一般的である(特許文献1[0002])。   The ERW welded portion of the ERW steel pipe and the heat-affected zone in the vicinity (hereinafter referred to as the seam portion) are extremely harder than the base metal due to the rapid heating experienced during welding and the subsequent rapid cooling due to heat removal. It is well known that it becomes high and consequently brittle. Therefore, in order to reduce the hardness of the seam portion to the same level as the base metal portion and increase fracture toughness, it is common to perform a seam heat treatment including a process of heating only the seam portion to the austenite temperature range after ERW welding ( Patent Document 1 [0002]).

また、非特許文献1に解説されているように、電縫溶接後にシーム部のみをオーステナイト温度域(あるいはA点以下の温度)まで加熱する処理はポストアニーリングと称され、このポストアニーリングは、ポストアニーラーと呼ばれる誘導加熱方式の特殊な局部熱処理設備を用いて行なわれる。ポストアニーリングの加熱幅(加熱対象領域の管周方向幅)は20〜30mm程度である。 Also, as commentary in Non-Patent Document 1, the process to heat only the seam portion to the austenite temperature region (or A 3 points below the temperature) after electric resistance welding is referred to as post-annealing, the post annealing, It is carried out using a special local heat treatment facility called post-snealer with an induction heating method. The heating width (post-circumferential width of the region to be heated) of post annealing is about 20 to 30 mm.

電縫鋼管のシーム熱処理に関しては、特許文献2の如く、電縫溶接後、電縫溶接部およびその近傍の熱影響部を750〜1050℃で5秒以上加熱し、その後強制冷却するなどの技術が知られている(特許文献1[0003])。
特開平6−145794号公報 特開昭59−35629号公報 日本鉄鋼協会編「第3版鉄鋼便覧第III巻(2)条鋼・鋼管・圧延共通設備」第1084〜1086頁、昭和55年11月20日、丸善発行
Regarding seam heat treatment of ERW steel pipe, as in Patent Document 2, after ERW welding, the ERW weld and the heat affected zone in the vicinity thereof are heated at 750 to 1050 ° C. for 5 seconds or more, and then forcedly cooled. Is known (Patent Document 1 [0003]).
JP-A-6-145794 JP 59-35629 A Issued by Maruzen on November 20th, 1980, pp. 1084-1086, 3rd edition Steel Handbook, Volume III (2) Common Steel, Steel Pipe, and Rolling Equipment, edited by Japan Iron and Steel Association

近年、電縫鋼管の高強度化、厚肉化に伴い、合金成分添加量が増加し、シーム熱処理時の二相域加熱部が脆性破壊の起点となる危惧が生じてきた。しかしながら、シーム熱処理は経験に頼るものであったため、この二相域加熱部の靭性向上に関しては,従来、特に対策はとられていなかった。
欧州の比較的小径の電縫管ミルでは、造管−溶接後に、管全周を熱処理する方法を採用している。この場合、シーム熱処理による二相域加熱部の靭性不足問題は生じないが、鋼管全周を加熱するため、製造時の熱処理コストが大幅に増加する。また、電縫鋼管の素材になる帯鋼を製造する際に加工熱処理技術を適用して帯鋼に付与した組織細粒化による高強度化、高靭性化を、造管−溶接後の管全周の熱処理でキャンセルしてしまうことになるため、合金成分添加による高強度化を図る必要があり、合金成分コストの著しい上昇につながる。
In recent years, with the increase in strength and thickness of ERW steel pipes, the amount of alloy components added has increased, and there has been a concern that the two-phase zone heating part during seam heat treatment will become the starting point of brittle fracture. However, since the seam heat treatment relied on experience, no special measures have been taken to improve the toughness of the two-phase zone heating section.
In a relatively small diameter ERW pipe mill in Europe, a method of heat treating the entire circumference of the pipe after pipe making and welding is adopted. In this case, the problem of insufficient toughness of the two-phase zone heating part due to the seam heat treatment does not occur, but since the entire circumference of the steel pipe is heated, the heat treatment cost during production increases significantly. In addition, when manufacturing steel strips used as materials for ERW steel pipes, high strength and high toughness are achieved by refining the structure imparted to the steel strips by applying heat treatment technology. Since it will be canceled by the circumferential heat treatment, it is necessary to increase the strength by adding the alloy components, leading to a significant increase in the cost of the alloy components.

すなわち、従来の技術では、高強度厚肉電縫鋼管のシーム部靭性をシーム熱処理により十分向上させるのが困難であり、この点が課題であった。   That is, in the conventional technique, it is difficult to sufficiently improve the seam toughness of the high-strength thick-walled electric resistance welded steel pipe by the seam heat treatment, and this is a problem.

本発明者らは、上述の状況に鑑み、管全周の熱処理に頼らず、シーム熱処理の中で、靭性劣化の原因となっていた二相域加熱部に対して靭性向上に有効な組織の生成を促す簡便な手法を鋭意検討し、本発明をなした。すなわち本発明は次のとおりである。
(請求項1)
質量%で、C:0.02〜0.12%、Si:0.01〜0.5%、Mn:0.4〜2.0%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し残部がFeおよび不可避的不純物からなる組成の帯鋼を、連続的造管によりオープンパイプとなし、該オープンパイプの円周方向端部同士を電縫溶接して形成したシーム部を有する管となし、該管のシーム部に、管外周側からの加熱によるシーム熱処理を施すにあたり、まず、溶接接合部を中心とする幅がほぼシーム部幅になる管周部分をAc点以上に加熱後水冷するQ処理を行い、次いで、溶接接合部を中心とする幅が前記Q処理時の加熱幅の1.5〜3倍になる管周部分を400〜650℃に加熱後放冷するT処理を行うことを特徴とする、ラインパイプ用高強度厚肉電縫鋼管の製造方法。
(請求項2)
前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種または2種を含有することを特徴とする請求項1に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。
(請求項3)
前記組成に加えてさらに、質量%で、Cr:1.5%以下、Mo:2.0%以下の中から選ばれる1種または2種を含有することを特徴とする請求項1または2に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。
(請求項4)
前記組成に加えてさらに、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。
(請求項5)
前記組成に加えてさらに、質量%で、Ca:0.005%以下を含有することを特徴とする請求項1〜4のいずれか1項に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。
In view of the above-mentioned situation, the present inventors do not rely on the heat treatment of the entire circumference of the tube, and in the seam heat treatment, the structure effective for improving the toughness with respect to the two-phase zone heating part that has caused the toughness deterioration. The present invention was made by intensively studying a simple method for promoting generation. That is, the present invention is as follows.
(Claim 1)
In mass%, C: 0.02-0.12%, Si: 0.01-0.5%, Mn: 0.4-2.0%, P: 0.01% or less, S: 0.01 %, Al: 0.1% or less, and a steel strip having the balance consisting of Fe and inevitable impurities is made into an open pipe by continuous pipe making, and the circumferential ends of the open pipe are electrically connected to each other. A pipe having a seam portion formed by sewing and welding is formed, and when the seam heat treatment is performed on the seam portion of the pipe by heating from the outer periphery side of the pipe, first, the width around the welded joint is set to be almost the width of the seam portion. The pipe circumference portion is heated to Ac 3 points or more and then subjected to water treatment Q treatment, and then the pipe circumference portion whose width around the welded joint is 1.5 to 3 times the heating width at the time of the Q treatment. High-strength thickness for line pipes, characterized in that T treatment is performed by heating to 400 to 650 ° C. and then allowing to cool. A method for manufacturing a meat electric welded steel pipe.
(Claim 2)
The composition according to claim 1, further comprising one or two kinds selected from Cu: 0.5% or less and Ni: 0.5% or less by mass% in addition to the composition. A manufacturing method for high strength thick ERW steel pipes for line pipes.
(Claim 3)
3. In addition to the composition, the composition further comprises one or two selected from Cr: 1.5% or less and Mo: 2.0% or less by mass%. The manufacturing method of the high intensity | strength thick-walled ERW steel pipe for description of a line pipe.
(Claim 4)
In addition to the above composition, the composition further contains one or more selected from the group consisting of Nb: 0.1% or less, V: 0.1% or less, and Ti: 0.1% or less in terms of mass%. The manufacturing method of the high strength thick-walled electric-welded steel pipe for line pipes of any one of Claims 1-3 characterized by the above-mentioned.
(Claim 5)
The high-strength thick-walled electric-welded steel pipe for line pipes according to any one of claims 1 to 4, further comprising Ca: 0.005% or less by mass% in addition to the composition. Production method.

本発明によれば、特定組成の鋼板を造管工程に続く電縫溶接工程により管とし、これにシーム熱処理としてQT処理を施し、該QT処理において、T処理時の加熱幅を、Q処理時の加熱幅の1.5〜3倍に規制することで、シーム部靭性に優れたラインパイプ用高強度厚肉電縫鋼管の製造が可能となる。   According to the present invention, a steel sheet having a specific composition is made into a pipe by an electric seam welding process following the pipe making process, and subjected to a QT process as a seam heat treatment. In the QT process, the heating width at the T process is By restricting to 1.5 to 3 times the heating width, it is possible to manufacture a high-strength thick-walled electric-welded steel pipe for line pipes with excellent seam toughness.

本発明者らは、強度がAPI規格X65グレード以上のラインパイプ用高強度厚肉電縫鋼管の寒冷地における脆性破壊抑制の観点から、シーム熱処理後のシーム部(略してシーム熱処理部という)に必要な靭性と、それを満たす成分系の検討を行った。その結果、必要な靭性は、シーム熱処理部に切欠を入れたシャルピー衝撃試験において、破面遷移温度が−46℃以下、−46℃における吸収エネルギーが100J以上になる高靭性であって、化学組成を最適化した上で、シーム熱処理としてQT(焼入れ−焼戻し)処理を行い、そのとき、Q処理時の加熱幅をほぼシーム部幅(シーム部幅の1.0〜1.1倍)とし、T処理時の加熱幅をQ処理時の加熱幅の1.5倍以上3倍以下とすることにより実現できることを見出した。   From the viewpoint of suppressing brittle fracture in cold districts of high-strength thick-walled electric-welded steel pipes for line pipes having an API standard X65 grade or higher in strength, the present inventors applied seam portions after seam heat treatment (referred to as seam heat treatment portions for short). We examined the required toughness and the component systems that satisfy it. As a result, the required toughness is high toughness in which the fracture surface transition temperature is −46 ° C. or lower and the absorbed energy at −46 ° C. is 100 J or higher in the Charpy impact test in which a seam heat treatment portion is notched. In addition, the QT (quenching-tempering) treatment is performed as the seam heat treatment, and at that time, the heating width at the Q treatment is substantially the seam width (1.0 to 1.1 times the seam width). It has been found that the heating width at the T treatment can be realized by setting the heating width at 1.5 times to 3 times the heating width at the Q treatment.

以下、本発明において最適化された化学組成について説明する。この最適化された化学組成は、電縫鋼管をラインパイプとして敷設する時の総合的な低コスト化を考慮し、特に鋼管の輸送費削減を重要視している顧客の要求に応えるために、高強度を前提とした化学組成を基本としている。成分含有量の単位は質量%であり、%と略記される。
・C:0.02〜0.12%とする。Cは、炭化物として析出強化に寄与する元素であるが、0.1%を超えるとパーライト、ベイナイト、マルテンサイト等の第二相の組織分率が増加し、ラインパイプとして必要な優れた素材靭性を確保できなくなる。このため、本発明では、0.1%以下に限定した。もっとも、C含有量が0.02%未満では、ラインパイプとして十分な強度が確保できなくなる。このため、Cは0.02%以上含有することが望ましい。なお、より好ましくは、C含有量は0.02〜0.07%である。
・Si:0.01〜0.5%とする。Siは脱酸のために添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると電縫溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
・Mn:0.4〜2.0%とする。Mnは強度、靭性を確保するため添加するが、0.4%未満ではその効果が十分でなく、2.0%を超えると第二相分率が増加し、ラインパイプとして必要な優れた素材靭性を確保できないため、Mn含有量を0.4〜2.0%に規定する。なお、好ましくは、Mn:0.06〜1.8%である。
・P:0.01%以下とする。Pは電縫溶接性を劣化させる不純物元素であるため、P含有量の上限を0.01%に規定する。
・S:0.01%以下とする。Sは一般に鋼中においてMnS介在物となり、靭性を劣化させるだけでなく、水素誘起割れ(HIC)の起点となるため少ないほどよい。しかし、0.01%以下であれば問題ないため、S含有量の上限を0.01%に規定する。
・Al:0.1%以下とする。Alは脱酸剤として添加されるが、0.1%を超えると鋼の清浄度が低下し、靭性を劣化させるため、Al含有量は0.1%以下に規定する。
Hereinafter, the chemical composition optimized in the present invention will be described. This optimized chemical composition considers the overall cost reduction when laying ERW steel pipes as line pipes, and in order to meet the demands of customers who place emphasis on reducing the transportation costs of steel pipes. The chemical composition is based on the premise of high strength. The unit of component content is mass% and is abbreviated as%.
C: 0.02 to 0.12%. C is an element that contributes to precipitation strengthening as a carbide, but if it exceeds 0.1%, the structural fraction of the second phase of pearlite, bainite, martensite, etc. increases, and the excellent material toughness required as a line pipe Cannot be secured. For this reason, in this invention, it limited to 0.1% or less. However, if the C content is less than 0.02%, sufficient strength as a line pipe cannot be secured. For this reason, it is desirable to contain C 0.02% or more. More preferably, the C content is 0.02 to 0.07%.
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the weldability is deteriorated, so the Si content is 0.01 to 0. Stipulated to be 5%.
Mn: 0.4 to 2.0%. Mn is added to ensure strength and toughness, but if it is less than 0.4%, the effect is not sufficient, and if it exceeds 2.0%, the second phase fraction increases, and it is an excellent material necessary as a line pipe. Since toughness cannot be ensured, the Mn content is specified to be 0.4 to 2.0%. In addition, Preferably, it is Mn: 0.06-1.8%.
-P: 0.01% or less. Since P is an impurity element that degrades electroweldability, the upper limit of the P content is specified to be 0.01%.
-S: 0.01% or less. In general, S becomes MnS inclusions in steel, and not only deteriorates toughness, but also serves as a starting point for hydrogen-induced cracking (HIC). However, since there is no problem if it is 0.01% or less, the upper limit of the S content is defined as 0.01%.
-Al: 0.1% or less. Al is added as a deoxidizer, but if it exceeds 0.1%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.1% or less.

本発明ではラインパイプ向け電縫鋼管の強度や降伏比、靭性をさらに改善する目的で、上記の成分に加えてさらに、Cu:0.5%以下、Ni:0.5%以下の中から選ばれた1種または2種、Cr:1.5%以下、Mo:2.0%以下の中から選ばれた1種または2種、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれた1種または2種以上、Ca:0.005%以下、を選択して含有できる。
・Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
・Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると硬化第二相が生成しやすくなり、素材靭性の低下に繋がるため、添加する場合は0.5%を上限とする。
・Cr:1.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると第二相が生成しやすくなり素材靭性を低下させるため、添加する場合は1.5%を上限とする。
・Mo:2.0%以下とする。MoはMn,Crと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると第二相が生成しやすくなり素材靭性を低下させるため、添加する場合は2.0%を上限とする。なお、より好ましくは、Mo:0.5%以下である。
・Nb:0.1%以下とする。Nbは炭窒化物の微細析出と組織の微細粒化により強度と靭性を向上させる。しかし、0.1%を超えると硬化した第二相が増加しやすくなり、逆に素材靭性が著しく劣化するため、Nb含有量は0.1%以下に規定する。
・V:0.1%以下とする。VもNbと同様に炭窒化物の微細析出により強度上昇に寄与する。しかし、0.1%を超えるとNbと同様に硬化した第二相の分率が増加し、素材靭性が著しく劣化するため、V含有量は0.1%以下に規定する。
・Ti:0.1%以下とする。TiもNb,Vと同様に炭窒化物の微細析出により強度上昇に寄与する。しかし、0.1%を超えるとNb,Vと同様に硬化した第二相の分率が増加し、素材靭性が著しく劣化するため、Ti含有量は0.1%以下に規定する。
・Ca:0.005%以下とする。Caは、HICの起点となり易い伸長したMnSの形態制御に必要な元素である。しかし、0.005%を超えて添加すると過剰なCa酸化物、硫化物が生成し、靭性劣化に繋がるため、Ca含有量は0.005%以下に規定する。
In the present invention, in order to further improve the strength, yield ratio, and toughness of the ERW steel pipe for line pipe, in addition to the above components, Cu: 0.5% or less, Ni: 0.5% or less is selected. 1 or 2 selected from the group consisting of Cr: 1.5% or less, Mo: 2.0% or less, Nb: 0.1% or less, V: 0.1% or less , Ti: 0.1% or less, and one or more selected from Ca and 0.005% or less can be selected and contained.
Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
Ni: 0.5% or less Ni is an element effective for improving toughness and increasing strength, but if added in a large amount, a hardened second phase is likely to be formed, leading to a decrease in material toughness. Therefore, when added, the upper limit is 0.5%. .
-Cr: 1.5% or less. Like Mn, Cr is an element effective for obtaining sufficient strength even at low C. However, when added in a large amount, the second phase tends to be formed and the material toughness is lowered. The upper limit.
-Mo: 2.0% or less. Mo is an element effective for obtaining sufficient strength even at low C as in Mn and Cr. However, when added in a large amount, the second phase is easily formed and the material toughness is lowered. % Is the upper limit. More preferably, Mo: 0.5% or less.
-Nb: 0.1% or less. Nb improves strength and toughness by fine precipitation of carbonitride and fine graining of the structure. However, if it exceeds 0.1%, the cured second phase tends to increase, and conversely, the material toughness deteriorates remarkably, so the Nb content is specified to be 0.1% or less.
-V: 0.1% or less. V, like Nb, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the fraction of the cured second phase increases in the same manner as Nb, and the material toughness deteriorates remarkably, so the V content is specified to be 0.1% or less.
-Ti: 0.1% or less. Ti, like Nb and V, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the fraction of the cured second phase increases in the same manner as Nb and V, and the toughness of the material deteriorates remarkably, so the Ti content is specified to be 0.1% or less.
-Ca: 0.005% or less. Ca is an element necessary for controlling the morphology of elongated MnS that tends to be the starting point of HIC. However, if added over 0.005%, excessive Ca oxides and sulfides are generated and lead to toughness deterioration, so the Ca content is specified to be 0.005% or less.

上記以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の作用効果をなくさない限りにおいて、Feの一部が上記以外の微量元素で置換されてもよい。
本発明では、造管−電縫溶接は通常の技術で行えばよいが、造管−電縫溶接後のシーム熱処理は、通常とは異なる。すなわち、本発明におけるシーム熱処理は、まず、溶接接合部を中心とする幅がほぼシーム部幅になる管周部分をAc点以上に加熱後水冷するQ処理を行い、次いで、溶接接合部を中心とする幅が前記Q処理時の加熱幅の1.5〜3倍になる管周部分を400〜650℃に加熱後放冷するT処理を行うものとする。なお、ここにいう加熱幅は、管外周面内で管周方向に定義される。
The balance other than the above consists of Fe and inevitable impurities. However, as long as the effects of the present invention are not lost, a part of Fe may be substituted with a trace element other than the above.
In the present invention, pipe-forming and electric seam welding may be performed by a normal technique, but seam heat treatment after pipe-making and electric seam welding is different from usual. That is, in the seam heat treatment in the present invention, first, the pipe peripheral portion whose width around the welded joint is substantially the width of the seam is heated to Ac 3 points or more and then water-cooled, and then the welded joint is processed. It is assumed that T treatment is performed in which a tube peripheral portion whose center width is 1.5 to 3 times the heating width in the Q treatment is cooled to 400 to 650 ° C. and then allowed to cool. The heating width here is defined in the pipe circumferential direction within the pipe outer peripheral surface.

T処理において、Q処理と比較して1.5〜3倍の広い加熱幅の領域を加熱する方法としては、T処理用誘導コイルを大型化する、T処理時の出力を増大させる、T処理用高周波加熱装置の周波数を下げる等、様々な手法が挙げられるが、Q処理時の1.5〜3倍の加熱幅が確保できさえすれば、いかなる手法を採用してもよい。
Q処理時の加熱幅を溶接接合部を中心としてほぼシーム部幅(例えばシーム部幅の1.0〜1.1倍)にとるのは通常と同様である。T処理時の加熱幅をQ処理時の1.5倍以上にとるのは、Q処理における二相域加熱−急冷領域を確実にT処理することで、靭性を劣化させるマルテンサイトや残留オーステナイトを、焼戻しマルテンサイトもしくはフェライト+炭化物にするためである。
In the T process, as a method of heating a region having a wide heating width of 1.5 to 3 times compared to the Q process, the T process induction coil is enlarged, the output during the T process is increased, and the T process is increased. Various methods such as lowering the frequency of the high-frequency heating apparatus for use are available, but any method may be adopted as long as a heating width 1.5 to 3 times that in the Q treatment can be secured.
It is the same as usual that the heating width at the time of the Q treatment is approximately the seam width (for example, 1.0 to 1.1 times the width of the seam width) with the welded joint as the center. The heating width at the time of the T treatment is 1.5 times or more that at the time of the Q treatment because the two-phase region heating-quenching region in the Q treatment is surely subjected to the T treatment, so that martensite and residual austenite are deteriorated in toughness. In order to make tempered martensite or ferrite + carbide.

従来では、図1に示すように、Q処理時とT処理時とで加熱幅が同じ幅にとられていた。図1において、1は電縫鋼管、2は溶接接合部、3はオーステナイト域(Ac点以上)加熱部、4は二相域(Ac点以上Ac点未満)加熱部、5はテンパー温度域(400〜650℃)加熱部である。Q処理されてなる二相域加熱部4は、フェライト+ベイナイト+マルテンサイト+残留オーステナイトの混合組織になるが、従来は、T処理時の加熱幅がQ処理時の加熱幅と同じであるため、テンパー温度域加熱部5が管内面側まで広がらず、すなわち、二相域加熱部4の管内周側が十分にT処理されず、したがって、靭性を劣化させるマルテンサイトや残留オーステナイトを、靭性を劣化させない焼戻しマルテンサイトもしくはフェライト+炭化物にすることができず、シーム熱処理部靭性が確保できない。 Conventionally, as shown in FIG. 1, the heating width is the same during Q treatment and T treatment. In FIG. 1, 1 is an ERW steel pipe, 2 is a weld joint, 3 is an austenite region (Ac 3 points or more) heating unit, 4 is a two-phase region (Ac 1 point or more and less than Ac 3 points) heating unit, 5 is a temper It is a temperature range (400-650 degreeC) heating part. The Q-treated two-phase zone heating unit 4 has a mixed structure of ferrite + bainite + martensite + residual austenite, but conventionally, the heating width at the T treatment is the same as the heating width at the Q treatment. In addition, the tempering temperature zone heating section 5 does not spread to the inner surface of the pipe, that is, the pipe inner peripheral side of the two-phase zone heating section 4 is not sufficiently T-treated, and therefore martensite and residual austenite that deteriorates toughness deteriorates toughness. It cannot be made tempered martensite or ferrite + carbide, and the toughness of the seam heat treatment part cannot be ensured.

このT処理の加熱幅を変更するにあたり、加熱幅がQ処理時の1.5倍未満の場合、二相域加熱部4全体をテンパー温度域加熱部5とすることができず、すなわち二相域加熱部4が十分にT処理されず、シーム熱処理部の高靭性が確保できない。
一方、T処理時の加熱幅がQ処理時の3倍を超える場合、シーム熱処理部の靭性が著しく変化することはないが、T処理の必要がない母材部まで加熱することとなり、工業的にメリットがない。
In changing the heating width of the T treatment, when the heating width is less than 1.5 times that of the Q treatment, the entire two-phase zone heating unit 4 cannot be made into the temper temperature zone heating unit 5, that is, the two-phase zone. The zone heating part 4 is not sufficiently T-processed and the high toughness of the seam heat-treatment part cannot be ensured.
On the other hand, when the heating width at the time of T treatment exceeds three times that at the time of Q treatment, the toughness of the seam heat treatment part does not change significantly, but the base material part that does not require the T treatment is heated. Has no merit.

これらのことから、本発明では、T処理時の加熱幅をQ処理時のそれの1.5〜3倍に規定するのである。   From these things, in this invention, the heating width at the time of the T treatment is specified to be 1.5 to 3 times that at the time of the Q treatment.

表1に示す化学組成になる供試鋼(鋼種A〜J)スラブを、表1に示す板厚に熱間圧延し、巻き取ったホットコイルを素材として、造管、電縫溶接、シーム熱処理の順次工程により、外径20インチのX65,X70,X80グレード(鋼種との対応を表1に示す)の厚肉高強度電縫鋼管を製造した。シーム熱処理条件は、表2に示した中のいずれかを採用した。   Test steel (steel types A to J) slabs having the chemical composition shown in Table 1 are hot-rolled to the plate thickness shown in Table 1, and wound hot coil is used as a raw material for pipe making, electric seam welding, seam heat treatment Through these sequential steps, thick, high-strength ERW steel pipes of X65, X70, and X80 grades (corresponding to steel types are shown in Table 1) having an outer diameter of 20 inches were manufactured. Any of the seam heat treatment conditions shown in Table 2 was adopted.

Figure 2010046681
Figure 2010046681

Figure 2010046681
Figure 2010046681

シーム熱処理後の製品管のシーム部靭性(シーム熱処理部靭性)を調査すべく、溶接接合部位置からの管周方向距離が10mmになる位置からJIS Z 2202に規定されるVノッチ試験片を10本ずつ、管周方向が試験片長さ方向、管長手方向がノッチ深さ方向となるように採取し、−46℃でシャルピー衝撃試験を行って、吸収エネルギーおよび脆性破面率を測定した。なお、製造上のばらつきを考慮して、測定データの最小値および平均値でみて、吸収エネルギーが125J以上、かつ脆性破面率が35%以下をシーム熱処理部靭性の合格範囲とした。その結果を表3に示す。   In order to investigate the seam toughness of the product pipe after seam heat treatment (seam heat treatment part toughness), 10 V-notch test pieces defined in JIS Z 2202 were measured from the position where the pipe circumferential distance from the weld joint position was 10 mm. Samples were taken so that the tube circumferential direction was the test piece length direction and the tube longitudinal direction was the notch depth direction, and a Charpy impact test was conducted at -46 ° C. to measure the absorbed energy and the brittle fracture surface ratio. In consideration of manufacturing variations, the minimum value and average value of the measurement data were taken as the acceptable range of the seam heat treatment part toughness for the absorbed energy of 125 J or more and the brittle fracture surface ratio of 35% or less. The results are shown in Table 3.

Figure 2010046681
Figure 2010046681

表3より、組成、シーム熱処理条件の両方とも本発明範囲に入る本発明例では、いずれの例でもシーム熱処理部靭性が合格となったのに対し、組成、シーム熱処理条件のいずれか一方または両方が本発明範囲を逸脱する比較例では、いずれの例でもシーム熱処理部靭性が不合格となった。   From Table 3, in the present invention examples where both the composition and the seam heat treatment conditions fall within the scope of the present invention, the seam heat treatment part toughness passed in any of the examples, whereas either one or both of the composition and seam heat treatment conditions However, in the comparative examples that deviate from the scope of the present invention, the seam heat-treated part toughness in each example failed.

従来のシーム熱処理用QT処理における加熱領域を示す模式図である。It is a schematic diagram which shows the heating area | region in the conventional QT process for seam heat processing.

符号の説明Explanation of symbols

1 電縫鋼管
2 溶接接合部
3 オーステナイト域(Ac点以上)加熱部
4 二相域(Ac点以上Ac点未満)加熱部
5 テンパー温度域(400〜650℃)加熱部
1 ERW pipe 2 welded portion 3 the austenite region (Ac 3 points or more) heating unit 4 two-phase region (Ac less than 1 point or more Ac 3 point) heating unit 5 tempering temperature range (400 to 650 ° C.) heating unit

Claims (5)

質量%で、C:0.02〜0.12%、Si:0.01〜0.5%、Mn:0.4〜2.0%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し残部がFeおよび不可避的不純物からなる組成の帯鋼を、連続的造管によりオープンパイプとなし、該オープンパイプの円周方向端部同士を電縫溶接して形成したシーム部を有する管となし、該管のシーム部に、管外周側からの加熱によるシーム熱処理を施すにあたり、まず、溶接接合部を中心とする幅がほぼシーム部幅になる管周部分をAc点以上に加熱後水冷するQ処理を行い、次いで、溶接接合部を中心とする幅が前記Q処理時の加熱幅の1.5〜3倍になる管周部分を400〜650℃に加熱後放冷するT処理を行うことを特徴とする、ラインパイプ用高強度厚肉電縫鋼管の製造方法。 In mass%, C: 0.02-0.12%, Si: 0.01-0.5%, Mn: 0.4-2.0%, P: 0.01% or less, S: 0.01 %, Al: 0.1% or less, and a steel strip having the balance consisting of Fe and inevitable impurities is made into an open pipe by continuous pipe making, and the circumferential ends of the open pipe are electrically connected to each other. A pipe having a seam portion formed by sewing and welding is formed, and when the seam heat treatment is performed on the seam portion of the pipe by heating from the outer periphery side of the pipe, first, the width around the welded joint is set to be almost the width of the seam portion. The pipe circumference portion is heated to Ac 3 points or more and then subjected to water treatment Q treatment, and then the pipe circumference portion whose width around the welded joint is 1.5 to 3 times the heating width at the time of the Q treatment. High-strength thickness for line pipes, characterized in that T treatment is performed by heating to 400 to 650 ° C. and then allowing to cool. A method for manufacturing a meat electric welded steel pipe. 前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種または2種を含有することを特徴とする請求項1に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。   The composition according to claim 1, further comprising one or two kinds selected from Cu: 0.5% or less and Ni: 0.5% or less by mass% in addition to the composition. A manufacturing method for high strength thick ERW steel pipes for line pipes. 前記組成に加えてさらに、質量%で、Cr:1.5%以下、Mo:2.0%以下の中から選ばれる1種または2種を含有することを特徴とする請求項1または2に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。   3. In addition to the composition, the composition further comprises one or two selected from Cr: 1.5% or less and Mo: 2.0% or less by mass%. The manufacturing method of the high intensity | strength thick-walled ERW steel pipe for description of a line pipe. 前記組成に加えてさらに、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。   In addition to the above composition, the composition further contains one or more selected from the group consisting of Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less in terms of mass% The manufacturing method of the high strength thick-walled electric-welded steel pipe for line pipes of any one of Claims 1-3 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ca:0.005%以下を含有することを特徴とする請求項1〜4のいずれか1項に記載のラインパイプ用高強度厚肉電縫鋼管の製造方法。   The high-strength thick-walled electric-welded steel pipe for line pipes according to any one of claims 1 to 4, further comprising Ca: 0.005% or less by mass% in addition to the composition. Production method.
JP2008211988A 2008-08-20 2008-08-20 Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe Pending JP2010046681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211988A JP2010046681A (en) 2008-08-20 2008-08-20 Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211988A JP2010046681A (en) 2008-08-20 2008-08-20 Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe

Publications (1)

Publication Number Publication Date
JP2010046681A true JP2010046681A (en) 2010-03-04

Family

ID=42064228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211988A Pending JP2010046681A (en) 2008-08-20 2008-08-20 Method for manufacturing high-strength thick-walled electric resistance welded steel pipe for line pipe

Country Status (1)

Country Link
JP (1) JP2010046681A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302716A (en) * 2001-04-06 2002-10-18 Sumitomo Metal Ind Ltd Electric resistance welded tube having excellent strength and toughness and production method therefor
JP2007254797A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302716A (en) * 2001-04-06 2002-10-18 Sumitomo Metal Ind Ltd Electric resistance welded tube having excellent strength and toughness and production method therefor
JP2007254797A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Similar Documents

Publication Publication Date Title
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP5131411B2 (en) ERW steel pipe for oil well and method for manufacturing ERW steel pipe for oil well
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
EP2692875B1 (en) Electroseamed steel pipe and process for producing same
CA2687436C (en) Bent pipe and a method for its manufacture
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
EP3276024B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes.
WO2015004901A1 (en) Thick-walled electric resistance welded steel pipe for line pipe, and method for manufacturing said steel pipe
JP2011094230A (en) Steel sheet having low yield ratio, high strength and high uniform elongation, and method for manufacturing the same
JP5369639B2 (en) High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP4824143B2 (en) High strength steel pipe, steel plate for high strength steel pipe, and manufacturing method thereof
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JPWO2018216638A1 (en) Bend steel pipe and manufacturing method thereof
JP2002327212A (en) Method for manufacturing sour resistant steel sheet for line pipe
JP2004143555A (en) Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2000178688A (en) Resistance welded tube for hollow stabilizer, excellent in fatigue endurance
JP4165292B2 (en) Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance
JP2008095156A (en) Method for manufacturing hollow stabilizer with excellent delayed fracture resistance
JP4432719B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP2003277831A (en) Method of producing high strength, high toughness bend pipe
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Effective date: 20120420

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A02 Decision of refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A02