JP2010045289A - Light-emitting element and manufacturing method thereof - Google Patents

Light-emitting element and manufacturing method thereof Download PDF

Info

Publication number
JP2010045289A
JP2010045289A JP2008209736A JP2008209736A JP2010045289A JP 2010045289 A JP2010045289 A JP 2010045289A JP 2008209736 A JP2008209736 A JP 2008209736A JP 2008209736 A JP2008209736 A JP 2008209736A JP 2010045289 A JP2010045289 A JP 2010045289A
Authority
JP
Japan
Prior art keywords
light extraction
light
layer
extraction side
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008209736A
Other languages
Japanese (ja)
Other versions
JP5187063B2 (en
Inventor
Kazunori Hagimoto
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008209736A priority Critical patent/JP5187063B2/en
Publication of JP2010045289A publication Critical patent/JP2010045289A/en
Application granted granted Critical
Publication of JP5187063B2 publication Critical patent/JP5187063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting element having a structure in which bonding strength of a light extraction side electrode is increased and thus a wire bonding portion is hardly peeled off from the electrode even if a stress repeatedly acts in a state of resin molding. <P>SOLUTION: In a main surface of a light extraction side of a laminate constituting the light-emitting element 100, concave portions LP are distributedly formed on a forming region of a light extraction side metal electrode 9, and the light extraction side metal electrode 9 is formed in a manner that the inside of each of the concave portions LP is covered in a close-contact manner together with its opening surrounding region. The light extraction side metal electrode 9 is formed in a manner of encroaching on the concave portions LP formed on the uppermost layer portion of the light emission side compound semiconductor layer 20, and as a result of an increase in close-contact area, the bonding strength of the electrode 9 can be remarkably increased. In addition, a wire bonding portion 16 is bonded to the light extraction side metal electrode 9 and molded, even if a repeated shearing stress due to heat cycle or the like acts between the both in this state, the electrode 9 encroaches on the concave portions LP to cause a so-called anchor effect and peeling hardly occurs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は発光素子及びその製造方法に関する。   The present invention relates to a light emitting device and a method for manufacturing the same.

特開平11−191641号公報JP 11-191641 A 特開平9−293905号公報Japanese Patent Laid-Open No. 9-293905

半導体発光素子は、AlGaInPやInAlGaNなどを基本材料とする高輝度タイプのものが開発されてきたが、材料及び素子構造の長年にわたる進歩の結果、素子内部における光電変換効率が理論上の限界に次第に近づきつつある。従って、一層高輝度の素子を得ようとした場合、素子からの光取出し効率が極めて重要となる。光取出し効率を高めるために、一般的に採用されている方法として、発光素子チップの周囲を屈折率の高い樹脂によりモールドする手法を例示できる。具体的には、特許文献1のように、エポキシ樹脂で素子チップを覆った発光素子が広く知られている。この場合、素子チップの底面(第二主表面)を発光駆動端として用いるために、該底面をAgペースト等の導電性接着層を介して金属ステージに接着する一方、光取出面をなす上面(第一主表面)側は、該上面の一部を覆う光取出側電極(ボンディングパッド)に通電用のワイヤーをワイヤボールを介してボンディングし(特許文献2参照)、周囲をエポキシ樹脂等の高屈折率の樹脂で覆ってモールドする。   Semiconductor light-emitting devices have been developed with high-luminance types based on AlGaInP, InAlGaN, etc., but as a result of many years of progress in materials and device structures, the photoelectric conversion efficiency inside the devices has gradually reached the theoretical limit. Approaching. Therefore, when an element with higher luminance is to be obtained, the light extraction efficiency from the element is extremely important. In order to increase the light extraction efficiency, a method generally employed is a method of molding the periphery of the light emitting element chip with a resin having a high refractive index. Specifically, as in Patent Document 1, a light-emitting element in which an element chip is covered with an epoxy resin is widely known. In this case, in order to use the bottom surface (second main surface) of the element chip as the light emission driving end, the bottom surface is bonded to the metal stage via a conductive adhesive layer such as an Ag paste, while the top surface forming the light extraction surface ( On the first main surface side, a current-carrying wire is bonded to a light extraction side electrode (bonding pad) that covers a part of the upper surface via a wire ball (see Patent Document 2), and the periphery is made of a high resin such as epoxy resin. Cover with a refractive index resin and mold.

ところで、素子チップを樹脂でモールドした場合、多くの樹脂は発光駆動時の温度上昇や、使用環境温度の昼夜の寒暖差、あるいは真夏の直射日光照射などの影響により膨張を起す。この膨張時に、電極とこれに接合されたワイヤーボンド部との間に剪断応力が繰り返し作用し、ワイヤーボンド部が電極から剥離しやすい欠点がある。この問題を解消するために、モールドに使用する樹脂を硬質のエポキシ樹脂から可撓性に富むシリコーン樹脂に変更する試みもなされているが、樹脂変更による応力緩和には限界がある。   By the way, when the element chip is molded with a resin, many resins expand due to an influence of a temperature rise at the time of light emission driving, a temperature difference between day and night of use environment temperature, or direct sunlight in midsummer. At the time of expansion, there is a defect that shear stress repeatedly acts between the electrode and the wire bond portion bonded thereto, and the wire bond portion is easily peeled off from the electrode. In order to solve this problem, an attempt has been made to change the resin used for the mold from a hard epoxy resin to a silicone resin having high flexibility, but there is a limit to stress relaxation by changing the resin.

本発明の課題は、光取出側電極の接合強度を高め、ひいては、樹脂モールド状態で繰返し応力が作用しても、ワイヤーボンド部が電極から剥離しにくい構造の発光素子と、その製造方法とを提供することにある。   An object of the present invention is to increase the bonding strength of the light extraction side electrode, and thus a light emitting element having a structure in which the wire bond portion is not easily peeled off from the electrode even when a repeated stress is applied in a resin mold state, and a manufacturing method thereof. It is to provide.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の発光素子は、
化合物半導体の積層体からなり、該積層体の一方の主表面の一部が通電用の光取出側金属電極により被覆され、主表面の光取出側金属電極の周囲領域が光取出面とされるとともに、該光取出面をなす化合物半導体層である光取出側化合物半導体層の表層部において、光取出側金属電極の形成領域に凹部が分散形成され、光取出側金属電極が該凹部の内面を、その開口周囲領域とともに密着被覆してなることを特徴とする。
In order to solve the above-described problems, the light-emitting element of the present invention includes:
It consists of a laminated body of compound semiconductors, a part of one main surface of the laminated body is covered with a light extraction side metal electrode for energization, and the area around the light extraction side metal electrode on the main surface is used as a light extraction surface In addition, in the surface layer portion of the light extraction side compound semiconductor layer that is the compound semiconductor layer forming the light extraction surface, concave portions are dispersedly formed in the formation region of the light extraction side metal electrode, and the light extraction side metal electrode covers the inner surface of the concave portion. Further, it is characterized in that it is closely coated together with the area around the opening.

また、本発明の発光素子の製造方法は、
化合物半導体の積層体の光取出面側となる主表面の、通電用の光取出側金属電極の形成予定領域に凹部を分散形成する凹部形成工程と、該形成予定領域にて凹部の内面及びその開口周囲領域を、光取出側金属電極により密着被覆する光取出側金属電極形成工程とをこの順で実施することを特徴とする。
In addition, the method for manufacturing the light emitting device of the present invention includes:
A concave portion forming step of dispersing concave portions in a region where the light extraction side metal electrode for energization is to be formed on the main surface on the light extraction surface side of the compound semiconductor laminate; The light extraction side metal electrode forming step of closely covering the opening peripheral region with the light extraction side metal electrode is performed in this order.

上記本発明によると、発光素子を構成する積層体の光取出側の主表面において、光取出側金属電極の形成領域に凹部を分散形成し、該凹部の内面をその開口周囲領域とともに密着被覆する形で光取出側金属電極を形成するようにした。これにより、予め光取出側化合物半導体層の表層部に形成した凹部内に食い込む形で光取出側金属電極が形成され、密着面積が増大する結果、電極の接合強度を大幅に高めることができる。また、光取出側金属電極にワイヤーボンド部を接合してモールドし、その状態で熱サイクル等による繰り返し剪断応力が両者の間に作用しても、電極が凹部内に入り込んでいわゆるアンカー効果を生じ、剥離等を生じにくい。   According to the present invention, the main surface on the light extraction side of the laminated body constituting the light emitting element is formed with the concave portions dispersed in the light extraction side metal electrode formation region, and the inner surface of the concave portion is closely covered together with the peripheral region of the opening. The light extraction side metal electrode was formed in a shape. As a result, the light extraction side metal electrode is formed so as to bite into the recess formed in the surface layer portion of the light extraction side compound semiconductor layer in advance, and as a result of increasing the contact area, the bonding strength of the electrode can be greatly increased. Moreover, even if a wire bond part is bonded to the light extraction side metal electrode and molded, and the repeated shear stress due to thermal cycle or the like acts between the two in that state, the electrode enters into the concave portion and causes a so-called anchor effect. , And hardly cause peeling.

凹部は複数の孔として光取出側金属電極の形成領域に散点状に分散形成することができる。これにより、凹部を光取出面に一様に形成でき、凹部の形成密度や個々の凹部の寸法の調整も容易である。このような孔は、レーザービームにより穿孔形成することができる。レーザービームの採用により、寸法や深さの揃った多数の孔を迅速に形成でき、また、ビーム出力やビーム径により個々の孔の寸法や深さも容易に調整できる。   The recesses can be formed as a plurality of holes in a scattered manner in the formation region of the light extraction side metal electrode. Thereby, a recessed part can be uniformly formed in a light extraction surface, and the adjustment of the formation density of a recessed part and the dimension of each recessed part is also easy. Such holes can be drilled with a laser beam. By adopting a laser beam, a large number of holes with the same size and depth can be formed quickly, and the size and depth of each hole can be easily adjusted by the beam output and the beam diameter.

一方、上記の凹部を乾式エッチング(例えば、イオンエッチング等)により形成することも可能である。この場合、光取出側化合物半導体層の主表面を適当なエッチングレジストで被覆し、露光・現像により凹部の形成領域に対応する窓部をパターニング形成し、その後、乾式エッチングを施すことにより、凹部を一括して形成することができる。   On the other hand, it is possible to form the recesses by dry etching (for example, ion etching). In this case, the main surface of the light extraction side compound semiconductor layer is covered with an appropriate etching resist, and a window corresponding to the formation region of the recess is patterned by exposure and development, and then the dry etching is performed to form the recess. It can be formed in a lump.

上記のレーザービーム穿孔ないし乾式エッチングにより凹部を形成したとき、凹部内面に変質層(化合物の組成変質層や酸化層)が残留することがある。このような変質層が形成されると、光取出側電極との密着性が阻害される場合があるので、該変質層を湿式エッチングにより除去し、その後、光取出側金属電極を形成することが望ましい。   When recesses are formed by laser beam drilling or dry etching, altered layers (compounds with altered composition or oxide layers) may remain on the inner surfaces of the recesses. If such a deteriorated layer is formed, the adhesion to the light extraction side electrode may be hindered. Therefore, the deteriorated layer may be removed by wet etching, and then the light extraction side metal electrode may be formed. desirable.

光取出側金属電極は、凹部の深さよりも小さい厚みを有するものとして形成できる。この場合、該凹部の内面形状に倣う形で光取出側金属電極が形成されると、該光取出側金属電極の凹部内面に密着しているのと反対側の主表面に、該凹部に対応する形状の電極凹部が生ずる。そして、このような光取出側金属電極の主表面に素子通電用ワイヤーをボンディングするためのワイヤーボンド部を接合すると、該ワイヤーボンド部は上記の電極凹部を充填する形で光取出側金属電極に密着接合される。つまり、下地の化合物半導体層の凹部形状を電極表面に電極凹部として転写し、これにワイヤーボンド部の接合側部分を充填する形でボンディングを行なうことで、ワイヤーボンド部が電極凹部に、ひいては光取出側金属電極を介して光取出側化合物半導体層の凹部内に大きく食い込み、アンカー効果は一層高められる。例えば、ワイヤーボンド部をボンディング後、周知のシェアテストを実施すると、破断モードをボンド部/チップ間の界面剥離破断から、ボンド部内破断モード(例えば凹部食込部の付け根位置での破断)へ遷移させることができ、剪断接合強度が大幅に向上する。   The light extraction side metal electrode can be formed to have a thickness smaller than the depth of the recess. In this case, when the light extraction side metal electrode is formed following the shape of the inner surface of the recess, the main surface on the opposite side of the light extraction side metal electrode is in close contact with the inner surface of the recess. An electrode recess having a shape is formed. And when the wire bond part for bonding the wire for element energization is joined to the main surface of such a light extraction side metal electrode, this wire bond part fills the above-mentioned electrode crevice to the light extraction side metal electrode. Tightly bonded. In other words, the concave shape of the underlying compound semiconductor layer is transferred to the electrode surface as an electrode concave portion, and bonding is performed in such a manner that the bonding side portion of the wire bond portion is filled therein, so that the wire bond portion becomes the electrode concave portion and eventually light. The anchor effect is further enhanced by greatly biting into the recesses of the light extraction side compound semiconductor layer via the extraction side metal electrode. For example, if a well-known shear test is performed after bonding the wire bond part, the fracture mode changes from bond-chip / chip interfacial debonding fracture to bond-in-bond fracture mode (for example, fracture at the root of the recess bite). The shear bond strength is greatly improved.

上記の凹部は光取出面にも分散形成することができる。光取出面に形成した凹部は光取出側電極ないしワイヤーボンド部の接合強度向上には寄与しないが、光取出面の総面積が凹部を形成する分だけ増大し、光取出効率の向上を図ることができる。   The recesses can be dispersedly formed on the light extraction surface. The concave portion formed on the light extraction surface does not contribute to improving the bonding strength of the light extraction side electrode or the wire bond portion, but the total area of the light extraction surface is increased by the amount of the concave portion to improve the light extraction efficiency. Can do.

この場合、凹部は、電極形成領域及びその周囲の光取出面との双方、すなわち光取出側化合物半導体層の主表面全面に形成することになる。そこで、積層体として形成された化合物半導体ウェーハの主表面の全面に凹部を分散形成し、該凹部を形成後の化合物半導体ウェーハの各素子チップとなる領域に光取出側金属電極を個別に形成し、その後、化合物半導体ウェーハを素子チップにダイシングする工程を採用すると効率的である。また、凹部をウェーハひいては素子の全面に渡って一様に形成するには、凹部を所定の配列パターンに従って形成することが当然望ましい。この場合、凹部は、光取出側化合物半導体層の主表面に対し、光取出側金属電極による被覆領域と光取出面とにまたがる所定方向に沿って配列形成される形となる。   In this case, the recess is formed on both the electrode formation region and the surrounding light extraction surface, that is, the entire main surface of the light extraction side compound semiconductor layer. Therefore, the concave portions are dispersedly formed over the entire main surface of the compound semiconductor wafer formed as a laminate, and the light extraction side metal electrodes are individually formed in the regions to be the respective element chips of the compound semiconductor wafer after the formation of the concave portions. Then, it is efficient to adopt a process of dicing the compound semiconductor wafer into element chips. In order to form the recesses uniformly over the wafer and the entire surface of the element, it is naturally desirable to form the recesses according to a predetermined arrangement pattern. In this case, the recesses are arranged and formed on the main surface of the light extraction side compound semiconductor layer along a predetermined direction extending over the region covered with the light extraction side metal electrode and the light extraction surface.

次に、光取出面に形成する凹部の内表面には、異方性エッチング処理による面粗し突起部をさらに分散形成することができる。このような発光素子は、凹部形成工程にて凹部を光取出面にも分散形成するとともに、光取出側金属電極形成工程の終了後、該光取出側金属電極により被覆されてない光取出面の凹部の内表面に異方性エッチング処理を実施することにより面粗し突起部をさらに分散形成する異方性エッチング工程を実施して製造することができる。   Next, surface roughening protrusions by anisotropic etching can be further dispersed and formed on the inner surface of the recesses formed on the light extraction surface. In such a light emitting device, the concave portions are also dispersedly formed on the light extraction surface in the concave portion formation step, and after the light extraction side metal electrode formation step is finished, the light extraction surface not covered with the light extraction side metal electrode is formed. It can be manufactured by carrying out an anisotropic etching process in which the inner surface of the recess is subjected to an anisotropic etching process to roughen the surface and further form the protrusions in a dispersed manner.

上記の構成によると、光取出面を平坦に形成する場合と比較して、面粗し対象面の総面積が凹部を形成する分だけ増大し、これにさらに面粗し突起部を重畳形成することによって、面粗し突起の総形成量を増加させることができる。その結果、異方性エッチングによる面粗し処理のみを行なう従来の手法と比較して、素子の光取出面積をより拡大することができ、ひいては光取出効率の更なる向上を図ることができる。   According to the above configuration, compared to the case where the light extraction surface is formed flat, the total area of the surface to be roughened is increased by the amount of forming the concave portion, and the surface is further roughened, and the protruding portion is superimposed. As a result, the total amount of roughening protrusions can be increased. As a result, it is possible to further increase the light extraction area of the device and to further improve the light extraction efficiency as compared with the conventional method in which only the surface roughening process by anisotropic etching is performed.

上記のレーザービーム穿孔ないし乾式エッチングにより光取出面に凹部を形成したとき、この凹部内面に前述の変質層が残留すると、面粗しのための異方性エッチング処理が阻害される場合があるので、光取出面に凹部についても該変質層を湿式エッチングにより除去し、その後、当該凹部の内面を異方性エッチング処理することが望ましい。   When a concave portion is formed on the light extraction surface by laser beam drilling or dry etching, if the above-mentioned deteriorated layer remains on the inner surface of the concave portion, the anisotropic etching process for surface roughening may be hindered. Also, it is desirable that the deteriorated layer is removed also by wet etching on the light extraction surface with respect to the recess, and then the inner surface of the recess is anisotropically etched.

面粗し突起部が、光取出面の凹部の開口周縁をなす領域にも分散形成することができる。また、光取出側化合物半導体層の凹部が非形成となる側面部にも、異方性エッチング処理による面粗し突起部を分散形成することができる。これにより、凹部の開口周縁領域ないし光取出側化合物半導体層の側面部における光取出効率をそれぞれ向上でき、素子全体の発光輝度をより高めることができる。   The roughened projections can also be formed in a distributed manner in the region that forms the opening periphery of the recess of the light extraction surface. Further, surface roughening projections by anisotropic etching can be dispersedly formed on the side surface where the concave portion of the light extraction side compound semiconductor layer is not formed. Thereby, the light extraction efficiency in the opening peripheral region of the recess or the side surface portion of the light extraction side compound semiconductor layer can be improved, and the light emission luminance of the entire device can be further increased.

光取出面への凹部の形成は、前述のごとく、発光素子ウェーハ(つまり、素子チップへのダイシング前)の状態で、その主表面全面に分散形成することが効率的である。面粗し突起部を凹部の内面以外(特に、チップ側面部)にも形成したい場合は、発光素子ウェーハを素子チップにダイシング後、個々の素子チップを異方性エッチング液に浸漬して凹部の内面に異方性エッチング処理を行なうようにする効率的である。   As described above, it is efficient to form the recesses on the light extraction surface in a dispersed state over the entire main surface in the state of the light emitting element wafer (that is, before dicing into the element chips). When it is desired to form a rough surface protrusion other than the inner surface of the recess (especially the side surface of the chip), after dicing the light emitting element wafer into the element chip, each element chip is immersed in an anisotropic etching solution to form the recess. It is efficient to perform an anisotropic etching process on the inner surface.

発光素子を構成する上記の積層体は、発光層部と、該発光層部に積層されるとともに該発光層部よりも厚みの大きい電流拡散層とを含むものとして構成できる。電流拡散層の形成により、素子面内の電流拡散効果向上と層側面からの光取出効率向上とを図ることができる。この場合、この電流拡散層を光取出側化合物半導体層とすることで、十分な深さの凹部を容易に形成できる。また、面粗し突起部をさらに形成することで素子全体の発光輝度向上に大きく貢献する。   The laminated body constituting the light emitting element can be configured to include a light emitting layer part and a current diffusion layer that is laminated on the light emitting layer part and has a thickness larger than that of the light emitting layer part. By forming the current diffusion layer, it is possible to improve the current diffusion effect in the element surface and improve the light extraction efficiency from the side surface of the layer. In this case, a recess having a sufficient depth can be easily formed by using the current diffusion layer as the light extraction side compound semiconductor layer. Further, by further forming the roughened protrusions, the light emission luminance of the entire device is greatly improved.

上記の発光層部は、例えは、組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAsと格子整合する組成を有する化合物にて各々構成された第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有するものとして形成できる。また、電流拡散層は、厚さ10μm以上のGaP光取出層として形成することができる。 The light emitting layer portion is, for example, a compound represented by the composition formula (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), The first conductive type cladding layer, the active layer, and the second conductive type cladding layer, each of which is composed of a compound having a lattice matching composition with GaAs, can be formed to have a double hetero structure in which the layers are stacked in this order. Further, the current diffusion layer can be formed as a GaP light extraction layer having a thickness of 10 μm or more.

(AlGa1−xIn1−yP混晶(ただし、0≦x≦1,0≦y≦1;以下、AlGaInP混晶、あるいは単にAlGaInPとも記載する)により発光層部が形成された発光素子は、薄いAlGaInP活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、例えば緑色から赤色までの広い波長域にて高輝度の素子を実現できる。そして、電流拡散層を、GaPにより一定以上(すなわち、10μm以上)に厚みを増加した光取出層として形成すれば、素子面内の電流拡散効果が向上するばかりでなく、層側面からの光取出量も増加するので、光取出効率をより高めることができるようになる。光取出層は、発光光束を効率よく透過させ、光取出し効率を高めることができるよう、発光光束の光量子エネルギーよりもバンドギャップエネルギーの大きい化合物半導体で形成する必要がある。特にGaPはバンドギャップエネルギーが大きく発光光束の吸収が小さいので、AlGaInP系発光素子の光取出層として好適である。 The light-emitting layer portion is formed of (Al x Ga 1-x ) y In 1-y P mixed crystal (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1; hereinafter also referred to as AlGaInP mixed crystal or simply AlGaInP). By adopting a double hetero structure in which a thin AlGaInP active layer is sandwiched between an n-type AlGaInP clad layer and a p-type AlGaInP clad layer having a larger band gap than that, for example from green A high-luminance element can be realized in a wide wavelength range up to red. If the current spreading layer is formed as a light extraction layer whose thickness is increased to a certain value (ie, 10 μm or more) by GaP, not only the current diffusion effect in the element surface is improved but also light extraction from the side surface of the layer. Since the amount increases, the light extraction efficiency can be further increased. The light extraction layer needs to be formed of a compound semiconductor having a band gap energy larger than the photon energy of the emitted light beam so that the emitted light beam can be efficiently transmitted and the light extraction efficiency can be increased. GaP is particularly suitable as a light extraction layer of an AlGaInP light-emitting element because it has a large band gap energy and a small absorption of emitted light flux.

なお、本発明の適用対象となる発光素子はAlGaInP系に限定されず、例えば、GaAs系、AlGaAs系、GaP系、InAlGaN系あるいはMgZnO系等、他の種々の発光素子についても同様に本発明を適用可能である。   The light emitting element to which the present invention is applied is not limited to the AlGaInP system, and the present invention is similarly applied to other various light emitting elements such as a GaAs system, AlGaAs system, GaP system, InAlGaN system, or MgZnO system. Applicable.

なお、光取出面に形成する凹部は、面粗し突起部を分散形成する場合は、凹部の凹部内空間体積を面粗し突起部の体積よりも大きく設定する必要がある。GaP光取出層に凹部を複数の孔として散点状に分散形成する場合、該孔の開口径(円形以外の開口を有する場合は、同面積の円の直径に換算した値とする)を1μm以上50μm以下、孔深さを0.5μm以上25μm以下に形成するとよい。また、異方性エッチングにより形成する面粗し突起部は、該孔の内面に平均的な高さが0.1μm以上5μm以下となるように形成するとよい。   When the concave portions formed on the light extraction surface are roughened and the projections are dispersedly formed, it is necessary to set the volume of the concave portion inside the concave portions to be rough and set larger than the volume of the projections. When the GaP light extraction layer is formed with a plurality of holes in the form of scattered dots, the opening diameter of the holes (if there is an opening other than a circle, the value converted to the diameter of a circle of the same area) is 1 μm. It is preferable that the hole depth is not less than 50 μm and the hole depth is not less than 0.5 μm and not more than 25 μm. Further, the rough surface protrusions formed by anisotropic etching may be formed on the inner surface of the hole so that the average height is 0.1 μm or more and 5 μm or less.

この場合、GaP光取出層の主表面(光取出面となる)を(100)面とし、該(100)面からなるGaP光取出層の主表面に前述の凹部を分散形成した後、さらに、酢酸と弗酸と硝酸とヨウ素と水とを、その合計が90質量%以上となるように含有し、酢酸と弗酸と硝酸とヨウ素との合計質量含有率が水の質量含有率よりも高い異方性エッチング液にてエッチングすることにより面粗し突起部を形成するとよい。このような異方性エッチング液を用いることで、異方性エッチング的な原理による凹凸形成が顕著に進行し、ひいてはGaP光取出層に面粗し突起部を効率よく安価に形成することができる。酢酸と弗酸と硝酸とヨウ素と水の合計は90質量%以上であり、これ以下の含有率では面粗し突起部を効率良く形成できない。また、酢酸と弗酸と硝酸とヨウ素との合計質量含有率が水の質量含有率より低くなっても、同様に面粗し突起部を効率良く形成できない。なお、酢酸と弗酸と硝酸とヨウ素と水との合計を100質量%から差し引いた残部は、(100)面上でのGaPに対する異方性エッチング効果が損なわれない範囲内で、他の成分(例えば酢酸以外のカルボン酸等)で占められていてもよい。   In this case, after the main surface of the GaP light extraction layer (becomes a light extraction surface) is the (100) plane and the above-mentioned concave portions are dispersedly formed on the main surface of the GaP light extraction layer composed of the (100) surface, Acetic acid, hydrofluoric acid, nitric acid, iodine and water are contained so that the sum thereof is 90% by mass or more, and the total mass content of acetic acid, hydrofluoric acid, nitric acid and iodine is higher than the mass content of water. It is preferable that the surface is roughened by etching with an anisotropic etchant to form a protrusion. By using such an anisotropic etching solution, the formation of irregularities by the principle of anisotropic etching proceeds remarkably, and as a result, the surface of the GaP light extraction layer can be roughened and the protrusions can be formed efficiently and inexpensively. . The total amount of acetic acid, hydrofluoric acid, nitric acid, iodine and water is 90% by mass or more, and if the content is less than this, the surface is roughened and the projections cannot be formed efficiently. Further, even if the total mass content of acetic acid, hydrofluoric acid, nitric acid and iodine is lower than the mass content of water, the surface is similarly roughened and the protrusions cannot be formed efficiently. The balance obtained by subtracting the total of acetic acid, hydrofluoric acid, nitric acid, iodine and water from 100% by mass is within the range where the anisotropic etching effect on GaP on the (100) plane is not impaired. (For example, carboxylic acid other than acetic acid) may be occupied.

異方性エッチング液は、
酢酸(CHCOOH換算):37.4質量%以上94.8質量%以下、
弗酸(HF換算):0.4質量%以上14.8質量%以下、
硝酸(HNO換算):1.3質量%以上14.7質量%以下、
ヨウ素(I換算):0.12質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上45質量%以下のものを採用するのがよい。いずれの成分も上記組成の範囲外になると、GaP単結晶の(100)面に対する異方性エッチング効果が十分でなくなり、GaP光取出層の第一主表面へ面粗らし突起部を十分に形成できなくなる。異方性エッチング液は、より望ましくは、
酢酸(CHCOOH換算):45.8質量%以上94.8質量%以下、
弗酸(HF換算):0.5質量%以上14.8質量%以下、
硝酸(HNO換算):1.6質量%以上14.7質量%以下、
ヨウ素(I換算):0.15質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上32.7質量%以下のものを採用するのがよい。すなわち、GaP単結晶の(100)面に対する異方性エッチング効果を高めるには、特に水の含有量を上記のように少なく留め、かつ、酸主溶媒の機能を水ではなく酢酸に担わせることが重要であるともいえる。
An anisotropic etchant
Acetic acid (converted to CH 3 COOH): 37.4% by mass or more and 94.8% by mass or less,
Hydrofluoric acid (converted to HF): 0.4 mass% or more and 14.8 mass% or less,
Nitric acid (in terms of HNO 3 ): 1.3% by mass or more and 14.7% by mass or less,
Iodine (I 2 equivalent): It is preferable to use a material containing 0.12% by mass to 0.84% by mass and having a water content of 2.4% by mass to 45% by mass. . If any component is out of the above composition range, the anisotropic etching effect on the (100) surface of the GaP single crystal is not sufficient, and the surface roughening protrusion is sufficiently formed on the first main surface of the GaP light extraction layer. become unable. More preferably, the anisotropic etchant is
Acetic acid (converted to CH 3 COOH): 45.8 mass% or more and 94.8 mass% or less,
Hydrofluoric acid (converted to HF): 0.5% by mass or more and 14.8% by mass or less,
Nitric acid (converted to HNO 3 ): 1.6 mass% or more and 14.7 mass% or less,
Iodine (I 2 equivalent): It is contained in the range of 0.15% by mass or more and 0.84% by mass or less, and the water content is 2.4% by mass or more and 32.7% by mass or less. Is good. That is, in order to enhance the anisotropic etching effect on the (100) plane of the GaP single crystal, in particular, the water content is kept low as described above, and the function of the acid main solvent is assigned to acetic acid instead of water. Can be said to be important.

以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の一実施形態である発光素子100を示す概念図である。発光素子100は、発光層部24と、該発光層部24の第一主表面側に形成されたGaP光取出層(ここではp型)20とを有する。また、発光層部24の第二主表面側にはGaP透明基板90が配置されている。発光層部24は、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、p型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層(第一導電型クラッド層)6とn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層(第二導電型クラッド層)4とにより挟んだ構造を有する。図1の発光素子100では、第一主表面側(図面上側)にp型AlGaInPクラッド層6が配置されており、第二主表面側(図面下側)にn型AlGaInPクラッド層4が配置されている。なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行なわない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1×1013〜1×1016/cm程度を上限とする)をも排除するものではない。この発光層部24はMOVPE法により成長されたものである。n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram showing a light emitting device 100 according to an embodiment of the present invention. The light emitting element 100 includes a light emitting layer portion 24 and a GaP light extraction layer (here, p-type) 20 formed on the first main surface side of the light emitting layer portion 24. Further, a GaP transparent substrate 90 is disposed on the second main surface side of the light emitting layer portion 24. The light emitting layer portion 24 includes the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal. , p-type (Al z Ga 1-z) y In 1-y P ( except x <z ≦ 1) p-type cladding layer made of (first-conductivity-type cladding layer) 6 and n-type (Al z Ga 1-z ) having a sandwiched by the y In 1-y P (except x <n-type cladding layer made of z ≦ 1) (second-conductivity-type cladding layer) 4. In the light emitting device 100 of FIG. 1, the p-type AlGaInP cladding layer 6 is disposed on the first main surface side (upper side in the drawing), and the n-type AlGaInP cladding layer 4 is disposed on the second main surface side (lower side in the drawing). ing. The term “non-dope” as used herein means “does not actively add dopant”, and contains a dopant component inevitably mixed in a normal manufacturing process (for example, 1 × 10 13 to 1 × The upper limit of about 10 16 / cm 3 is not excluded. The light emitting layer portion 24 is grown by the MOVPE method. The n-type cladding layer 4 and the p-cladding layer 6 have a thickness of, for example, 0.8 μm or more and 4 μm or less (preferably 0.8 μm or more and 2 μm or less), and the active layer 5 has a thickness of 0.4 μm or more and 2 μm or less, for example. (Desirably 0.4 μm or more and 1 μm or less). The total thickness of the light emitting layer portion 24 is, for example, 2 μm to 10 μm (desirably 2 μm to 5 μm).

次に、GaP光取出層20(光取出側化合物半導体層)は、10μm以上200μm以下(望ましくは40μm以上200μm以下:本実施形態では例えば100μm)の厚膜に形成され、図1に示すように、その第一主表面の一部(ここでは中央部)を覆う形で光取出側金属電極9が形成され、その周囲の主表面領域が光取出面20pとされている。   Next, the GaP light extraction layer 20 (light extraction side compound semiconductor layer) is formed in a thick film of 10 μm or more and 200 μm or less (desirably 40 μm or more and 200 μm or less: in this embodiment, for example, 100 μm), as shown in FIG. The light extraction side metal electrode 9 is formed so as to cover a part (here, the central portion) of the first main surface, and the surrounding main surface region is a light extraction surface 20p.

GaP光取出層20の第一主表面において光取出側金属電極9の被覆領域には凹部としての孔LPが散点状に分散形成され、光取出側金属電極9が各孔LPの内面を、その開口周囲領域とともに密着被覆している。光取出側金属電極9には、ワイヤーボンド部16を介して電極ワイヤー17の一端が接合されている。また、光取出側金属電極9とGaP光取出層20との間には、AuBe合金等からなる接合合金化層9aが孔LPの内面に倣う形状に形成されている。ワイヤーボンド部16は、特許文献2に開示されているごとく、キャピラリ先端から突出するワイヤーの先端に火花放電によりワイヤーボールを形成し、これをキャピラリ先端面にて光取出側金属電極9(ボンディングパッド)に押し付けつつ、例えばサーモソニック法等により溶着することにより形成される。   On the first main surface of the GaP light extraction layer 20, holes LP as concave portions are dispersedly formed in the covering region of the light extraction side metal electrode 9, and the light extraction side metal electrode 9 covers the inner surface of each hole LP. A close coating is provided along with the area around the opening. One end of an electrode wire 17 is joined to the light extraction side metal electrode 9 via a wire bond portion 16. Further, a bonding alloyed layer 9a made of an AuBe alloy or the like is formed between the light extraction side metal electrode 9 and the GaP light extraction layer 20 so as to follow the inner surface of the hole LP. As disclosed in Patent Document 2, the wire bond portion 16 forms a wire ball by spark discharge at the tip of the wire protruding from the capillary tip, and this is formed on the tip end surface of the capillary with the light extraction side metal electrode 9 (bonding pad). For example, it is formed by welding by a thermosonic method or the like.

GaP光取出層20(光取出側化合物半導体層)の表層部に形成した孔LP内に食い込む形で光取出側金属電極9が形成されることで、光取出側金属電極9とGaP光取出層20との密着面積が増大する結果、電極の接合強度を大幅に高めることができる。また、光取出側金属電極9にワイヤーボンド部16を接合して素子全体をモールドし、その状態で熱サイクル等による繰り返し剪断応力が両者の間に作用しても、電極が孔LP内に入り込んでいわゆるアンカー効果を生じ、剥離等を生じにくい。   The light extraction side metal electrode 9 and the GaP light extraction layer are formed by forming the light extraction side metal electrode 9 so as to bite into the holes LP formed in the surface layer portion of the GaP light extraction layer 20 (light extraction side compound semiconductor layer). As a result of increasing the contact area with 20, the bonding strength of the electrode can be significantly increased. In addition, the wire bond portion 16 is joined to the light extraction side metal electrode 9 to mold the entire element, and even if repeated shear stress due to a thermal cycle or the like acts between them, the electrode enters the hole LP. In this way, a so-called anchor effect is produced and peeling or the like hardly occurs.

図2、図3及び図4に、図1にて各破線で囲んだA部、B部及びC部の拡大模式図を示す。光取出側金属電極9は、孔LPの深さdよりも小さい厚みに形成されている。該孔LPの内面形状に倣う形で光取出側金属電極9が形成されると、該光取出側金属電極9の孔LP内面に密着しているのと反対側の主表面に、該孔LPに対応する形状の電極凹部LPFが生ずる。ワイヤーボンド部16は加熱軟化した状態で電極凹部LPFに向けて加圧され、電極凹部LPF内への塑性流動を生じつつ接合される。その結果、ワイヤーボンド部16は上記の電極凹部LPFを充填する形で光取出側金属電極9に密着接合される。つまり、下地の化合物半導体層の孔LP形状を電極表面に電極凹部LPFとして転写し、これにワイヤーボンド部16の接合側部分を充填する形でボンディングを行なうことで、ワイヤーボンド部16が電極凹部LPFひいては光取出側金属電極9を介して光取出側化合物半導体層の孔LP内に大きく食い込み、アンカー効果が一層高められる。例えば、ワイヤーボンド部16に対して周知のシェアテストを実施すると、破断モードをボンド部/チップ間の剥離破断から、孔LPより上方でのボンド部内破断モードへ遷移させることができ、剪断接合強度が大幅に向上する。孔LP形成による剪断強度向上効果を十分に高めるため、孔LPの深さdは0.5μm以上確保しておくことが有効である。   2, 3, and 4 are enlarged schematic views of A part, B part, and C part surrounded by broken lines in FIG. 1. The light extraction side metal electrode 9 is formed to a thickness smaller than the depth d of the hole LP. When the light extraction side metal electrode 9 is formed so as to follow the inner surface shape of the hole LP, the hole LP is formed on the main surface on the opposite side of the light extraction side metal electrode 9 that is in close contact with the inner surface of the hole LP. As a result, an electrode recess LPF having a shape corresponding to is generated. The wire bond portion 16 is pressurized toward the electrode recess LPF in a heated and softened state, and joined while causing plastic flow into the electrode recess LPF. As a result, the wire bond portion 16 is tightly bonded to the light extraction side metal electrode 9 so as to fill the electrode recess LPF. That is, the hole LP shape of the underlying compound semiconductor layer is transferred to the electrode surface as an electrode recess LPF, and bonding is performed so that the bonding side portion of the wire bond portion 16 is filled therein. The anchor effect is further enhanced by greatly biting into the hole LP of the light extraction side compound semiconductor layer through the LPF and the light extraction side metal electrode 9. For example, when a well-known shear test is performed on the wire bond portion 16, the fracture mode can be changed from the debonding fracture between the bond portion / chip to the fracture mode within the bond portion above the hole LP, and the shear bonding strength Is greatly improved. In order to sufficiently enhance the effect of improving the shear strength by forming the hole LP, it is effective to ensure the depth d of the hole LP to be 0.5 μm or more.

次に、図1に示すように、光取出面20pにも、光取出側電極9の被覆領域に形成したのと同様の孔LPが多数分散形成されている。孔LPは、光取出面20pと光取出側電極9の被覆領域とにまたがる形で、縦横2方向に一定間隔で格子状に配列形成されている。そして、図2及び図3に示すように、光取出面20pに開口する孔LPの内表面には、異方性エッチング処理による面粗し突起部Fが一様に分散形成されている。また、該面粗し突起部Fは、光取出面20pの孔LPの開口周縁をなす領域PAにも分散形成されている。さらに、図2及び図4に示すように、GaP光取出層20及びGaP透明基板90の孔LPが非形成となる側面部SSにも面粗し突起部Fが分散形成されている。   Next, as shown in FIG. 1, a large number of holes LP similar to those formed in the covering region of the light extraction side electrode 9 are dispersedly formed on the light extraction surface 20p. The holes LP are arranged in a grid pattern at regular intervals in the two vertical and horizontal directions so as to extend over the light extraction surface 20p and the covering region of the light extraction side electrode 9. As shown in FIGS. 2 and 3, the roughened protrusions F by the anisotropic etching process are uniformly formed on the inner surface of the hole LP opened in the light extraction surface 20p. Further, the roughened projections F are also distributed and formed in a region PA that forms the opening periphery of the hole LP of the light extraction surface 20p. Furthermore, as shown in FIGS. 2 and 4, the roughened projections F are also formed on the side surfaces SS where the holes LP of the GaP light extraction layer 20 and the GaP transparent substrate 90 are not formed.

GaP光取出層20は上記のように厚く形成されることで、光取出側金属電極9を介した通電による発光駆動電流を素子面内に拡散させ、発光層部24を面内にて均一に発光させる電流拡散層としての機能を果たす。また、層側面部SSからの取出光束も増加させ、発光素子全体の輝度(積分球輝度)を高める役割を担う。GaPは活性層5をなすAlGaInPよりもバンドギャップエネルギーが大きく、発光光束の吸収が抑制されている。   Since the GaP light extraction layer 20 is formed thick as described above, the light emission drive current by energization through the light extraction side metal electrode 9 is diffused in the element surface, and the light emitting layer portion 24 is uniformly distributed in the surface. It functions as a current diffusion layer that emits light. In addition, the extracted light flux from the layer side surface portion SS is also increased, and the luminance of the entire light emitting element (integrated sphere luminance) is increased. GaP has a larger band gap energy than AlGaInP forming the active layer 5, and absorption of the luminous flux is suppressed.

そして、光取出面20pの総表面積が孔LPを形成する分だけ増大し、これにさらに面粗し突起部Fを重畳形成することによって、孔LPを形成しない場合と比較して面粗し突起部Fの総形成量が増加する。その結果、素子の光取出面積をより拡大することができ、ひいては光取出効率の更なる向上を図ることができる。また、図2及び図4に示すように、側面部SSにも同様の面粗し突起部Fが形成され、該側面からの光取出効率も向上している。なお、図3に示すように、光取出側金属電極9に被覆されている領域では、孔LPの内面に面粗し突起部Fは形成されていない。   Then, the total surface area of the light extraction surface 20p is increased by the formation of the hole LP, and the surface is further roughened, and the protrusion F is superimposed on the surface to thereby roughen the protrusion compared to the case where the hole LP is not formed. The total amount of part F increases. As a result, the light extraction area of the element can be further increased, and as a result, the light extraction efficiency can be further improved. Further, as shown in FIGS. 2 and 4, the same surface roughening protrusion F is formed on the side surface portion SS, and the light extraction efficiency from the side surface is improved. In addition, as shown in FIG. 3, in the area | region coat | covered with the light extraction side metal electrode 9, the surface roughening protrusion part F is not formed in the inner surface of the hole LP.

本実施形態にてGaP光取出層20はHVPE法により成長されたものである(MOVPE法でもよい)。なお、GaP光取出層20と発光層部24との間には、GaP層からなる接続層20Jが、発光層部24に続く形でMOVPE法により形成されてなる。なお、接続層20Jは、AlGaInPからなる発光層部24と、GaP光取出層20との間で、格子定数差(ひいては混晶比)を漸次変化させるAlGaInP層としてもよい。なお、GaP光取出層20はHVPE法によるエピタキシャル成長層とする代わりに、GaP単結晶基板の貼り合わせにより形成することも可能である。   In this embodiment, the GaP light extraction layer 20 is grown by the HVPE method (may be the MOVPE method). A connection layer 20J made of a GaP layer is formed between the GaP light extraction layer 20 and the light emitting layer part 24 by the MOVPE method in a form following the light emitting layer part 24. The connection layer 20J may be an AlGaInP layer that gradually changes the lattice constant difference (and hence the mixed crystal ratio) between the light emitting layer portion 24 made of AlGaInP and the GaP light extraction layer 20. Note that the GaP light extraction layer 20 can be formed by bonding a GaP single crystal substrate instead of an epitaxially grown layer by the HVPE method.

また、GaP透明基板90はGaP単結晶基板の貼り合わせにより形成されたものであり(HVPE法によるエピタキシャル成長層としてもよい:符号91は、AlGaInPからなる接続層である)、第二主表面の全面がAu電極等からなる裏面電極15にて覆われている。GaP透明基板90の結晶方位は、発光層部24と一致させてある(つまり、オフアングル角度を合わせてある)。GaP透明基板90の厚さは例えば10μm以上200μm以下である。裏面電極15は、発光層部24からGaP透明基板90を透過して到来する発光光束に対する反射層を兼ねており、光取出し効率の向上に寄与している。また、裏面電極15とGaP透明基板90との間には、両者の接触抵抗を低減するためのAuGeNi合金等からなる接合合金化層15cが散点状に分散形成されている。GaP光取出層20及びGaP透明基板90は、いずれも、ドーパント濃度が5×1016/cm以上2×1018/cm以下に調整されている(なお、接合合金化層9aの直下に、接触抵抗を高めるための高濃度ドーピング領域が形成される場合は、これを除いた領域のドーパント濃度を意味する)。 The GaP transparent substrate 90 is formed by bonding a GaP single crystal substrate (may be an epitaxially grown layer by HVPE method: reference numeral 91 is a connection layer made of AlGaInP), and the entire surface of the second main surface. Is covered with a back electrode 15 made of an Au electrode or the like. The crystal orientation of the GaP transparent substrate 90 coincides with the light emitting layer portion 24 (that is, the off-angle angle is adjusted). The thickness of the GaP transparent substrate 90 is, for example, not less than 10 μm and not more than 200 μm. The back electrode 15 also serves as a reflection layer for the luminous flux that arrives from the light emitting layer portion 24 through the GaP transparent substrate 90, and contributes to the improvement of light extraction efficiency. Further, between the back electrode 15 and the GaP transparent substrate 90, bonding alloyed layers 15c made of AuGeNi alloy or the like for reducing the contact resistance between them are dispersedly formed in the form of dots. In both the GaP light extraction layer 20 and the GaP transparent substrate 90, the dopant concentration is adjusted to 5 × 10 16 / cm 3 or more and 2 × 10 18 / cm 3 or less (in addition, immediately below the bonding alloying layer 9a). In the case where a high-concentration doped region for increasing the contact resistance is formed, it means the dopant concentration in the region excluding this region).

GaP光取出層20の主光取出領域(第一主表面)20pは、凹凸をならした基準平面が、GaP単結晶の(100)面とほぼ一致しており(ただし、1゜以上25゜以下(例えば15°)のオフアングルが付与されていてもよい)、面粗し突起部Fは、図5に示すように、平坦な(100)結晶主表面を後述の異方性エッチング液と接触させることにより異方性エッチングして形成したものである。また、側面部SS(図1)も同様に{100}面とほぼ一致する面となっている。   The main light extraction region (first main surface) 20p of the GaP light extraction layer 20 has an uneven reference plane substantially coincident with the (100) plane of the GaP single crystal (however, 1 ° to 25 °) (For example, an off-angle of 15 ° may be given), and the roughened projection F contacts the flat (100) crystal main surface with an anisotropic etching solution described later, as shown in FIG. This is formed by anisotropic etching. Similarly, the side surface portion SS (FIG. 1) is a surface that substantially coincides with the {100} surface.

図6Aに示すように、面粗し突起部Fの外面は、GaP単結晶の化学的な異方性エッチング特性により、{111}面を主体に(突起部表面の50%以上)形成される。異方性エッチングが理想的に進行すれば、{100}面上の面粗し突起部Fは、図6Bに示すごとく面方位の異なる4つの{111}面に囲まれたピラミッド状の外観形態をなすが、実際には種々の要因により、半球状(図6B)、楕円体状(図6C)、円錐状(図6D)、キノコ状(図6E)、三角錐状(図6F)など、さまざまな突起形態が生じうる。なお、突起部の平均的な高さは例えば0.1μm以上5μm以下であり、突起部の平均間隔は0.1μm以上10μm以下である。そして、これを形成する孔LPは、例えば開口径が1μm以上50μm以下、開口深さが0.5μm以上25μm以下であり、配列間隔が0.1μm以上20μm以下である。   As shown in FIG. 6A, the outer surface of the roughened projection F is formed mainly of {111} plane (more than 50% of the projection surface) due to the chemical anisotropic etching characteristics of GaP single crystal. . If anisotropic etching progresses ideally, the roughened projection F on the {100} plane is a pyramid-like external form surrounded by four {111} planes having different plane orientations as shown in FIG. 6B. However, due to various factors, hemispherical (FIG. 6B), ellipsoidal (FIG. 6C), conical (FIG. 6D), mushroom (FIG. 6E), triangular pyramid (FIG. 6F), etc. Various protrusion forms can occur. The average height of the protrusions is, for example, 0.1 μm or more and 5 μm or less, and the average distance between the protrusions is 0.1 μm or more and 10 μm or less. And the hole LP which forms this has an opening diameter of 1 μm or more and 50 μm or less, an opening depth of 0.5 μm or more and 25 μm or less, and an arrangement interval of 0.1 μm or more and 20 μm or less.

以下、図1の発光素子100の製造方法について説明する。
まず、図7の工程1に示すように、成長用基板として、主表面が(100)面のGaAs単結晶基板1を用意する。次に、工程2に示すように、その基板1の主表面に、n型GaAsバッファ層2を例えば0.5μmエピタキシャル成長し、さらにAlGaInP接続層91(4μm)を成長し、次いで、発光層部24として、各々(AlGa1−xIn1−yPよりなる、厚さ1μmのn型クラッド層4(n型ドーパントはSi)、厚さ0.6μmの活性層(ノンドープ)5及び厚さ1μmのp型クラッド層6(p型ドーパントはMg:有機金属分子からのCもp型ドーパントとして寄与しうる)を、この順序にてエピタキシャル成長させる。p型クラッド層6とn型クラッド層4との各ドーパント濃度は、例えば1×1017/cm以上2×1018/cm以下である。さらに、図8の工程3に示すように、p型クラッド層6上に接続層20Jをエピタキシャル成長する。
Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described.
First, as shown in Step 1 of FIG. 7, a GaAs single crystal substrate 1 having a main surface of (100) plane is prepared as a growth substrate. Next, as shown in step 2, an n-type GaAs buffer layer 2 is epitaxially grown on the main surface of the substrate 1 by 0.5 μm, for example, and an AlGaInP connection layer 91 (4 μm) is further grown. 1 μm thick n-type cladding layer 4 (n-type dopant is Si), 0.6 μm thick active layer (non-doped) 5 and (Al x Ga 1-x ) y In 1-y P A p-type cladding layer 6 having a thickness of 1 μm (p-type dopant is Mg: C from organometallic molecules can also contribute as a p-type dopant) is epitaxially grown in this order. Each dopant concentration of the p-type cladding layer 6 and the n-type cladding layer 4 is, for example, 1 × 10 17 / cm 3 or more and 2 × 10 18 / cm 3 or less. Further, as shown in step 3 of FIG. 8, the connection layer 20 </ b> J is epitaxially grown on the p-type cladding layer 6.

上記各層のエピタキシャル成長は、公知のMOVPE法により行なわれる。Al、Ga、In(インジウム)、P(リン)の各成分源となる原料ガスとしては以下のようなものを使用できる;
・Al源ガス;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・Ga源ガス;トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など;
・In源ガス;トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)など。
Epitaxial growth of each of the above layers is performed by a known MOVPE method. The following materials can be used as source gases for the source components of Al, Ga, In (indium), and P (phosphorus);
Al source gas; trimethylaluminum (TMAl), triethylaluminum (TEAl), etc .;
Ga source gas; trimethylgallium (TMGa), triethylgallium (TEGa), etc .;
In source gas; trimethylindium (TMIn), triethylindium (TEIn), etc.
P source gas: trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.

工程4に進み、p型GaPよりなるGaP光取出層20を、HVPE法により成長させる。HVPE法は、具体的には、容器内にてIII族元素であるGaを所定の温度に加熱保持しながら、そのGa上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるHガスとともに基板上に供給する。
Ga(液体)+HCl(気体) → GaCl(気体)+1/2H‥‥(1)
成長温度は例えば640℃以上860℃以下に設定する。また、V族元素であるPは、PHをキャリアガスであるHとともに基板上に供給する。さらに、p型ドーパントであるZnは、DMZn(ジメチルZn)の形で供給する。GaClはPHとの反応性に優れ、下記(2)式の反応により、効率よくGaP光取出層20を成長させることができる:
GaCl(気体)+PH(気体)
→GaP(固体)+HCl(気体)+H(気体)‥‥(2)
Proceeding to Step 4, the GaP light extraction layer 20 made of p-type GaP is grown by the HVPE method. Specifically, in the HVPE method, GaCl, which is a group III element, is heated and held at a predetermined temperature in a container, and hydrogen chloride is introduced onto the Ga, thereby causing GaCl by the reaction of the following formula (1). And is supplied onto the substrate together with the H 2 gas that is a carrier gas.
Ga (liquid) + HCl (gas) → GaCl (gas) + 1 / 2H 2 (1)
The growth temperature is set to, for example, 640 ° C. or more and 860 ° C. or less. Further, P which is a group V element supplies PH 3 onto the substrate together with H 2 which is a carrier gas. Furthermore, Zn which is a p-type dopant is supplied in the form of DMZn (dimethyl Zn). GaCl is excellent in reactivity with PH 3, and the GaP light extraction layer 20 can be efficiently grown by the reaction of the following formula (2):
GaCl (gas) + PH 3 (gas)
→ GaP (solid) + HCl (gas) + H 2 (gas) (2)

GaP光取出層20の成長が終了したら、図9の工程5に進み、GaAs基板1をアンモニア/過酸化水素混合液などのエッチング液を用いて湿式エッチングすることにより除去する。そして、工程6に進み、GaAs基板1が除去された発光層部24の第二主表面側(接続層91の第二主表面である)に、別途用意されたn型GaP単結晶基板を貼り合わせてGaP透明基板90とし、発光素子ウェーハWを得る。   When the growth of the GaP light extraction layer 20 is completed, the process proceeds to step 5 in FIG. 9, and the GaAs substrate 1 is removed by wet etching using an etchant such as an ammonia / hydrogen peroxide mixture. Then, the process proceeds to Step 6, and a separately prepared n-type GaP single crystal substrate is attached to the second main surface side of the light emitting layer portion 24 from which the GaAs substrate 1 has been removed (the second main surface of the connection layer 91). In addition, a GaP transparent substrate 90 is obtained, and a light emitting element wafer W is obtained.

以上の工程が終了すれば、図10の工程7に示すように、発光素子ウェーハWに対し、GaP光取出層20の第一主表面にレーザービームLBを、位置を変えつつ順次照射することにより複数の孔LPを分散形成する。孔LPの配列形態は特に限定されず、格子状、千鳥状、同心円状あるいは渦巻状など各種採用でき、形成すべき孔LPの配列方向におけるレーザービームLBと発光素子ウェーハWとの相対的な移動・停止を繰り返しつつ、レーザービームLB断続的に照射することにより、所期のパターンに孔LPを配列形成できる。例えば、発光素子ウェーハWを固定し、レーザービームLBを走査移動する形で孔LPを形成する方法を例示できるが、レーザービームLBを固定し、発光素子ウェーハWを移動させてもよい。   When the above steps are completed, as shown in step 7 of FIG. 10, the first main surface of the GaP light extraction layer 20 is sequentially irradiated with the laser beam LB while changing the position, as shown in FIG. A plurality of holes LP are dispersedly formed. The arrangement form of the holes LP is not particularly limited, and various arrangements such as a lattice shape, a staggered shape, a concentric circle shape or a spiral shape can be adopted, and the relative movement between the laser beam LB and the light emitting element wafer W in the arrangement direction of the holes LP to be formed. By repeatedly irradiating the laser beam LB repeatedly while stopping, the holes LP can be arranged in an intended pattern. For example, a method of forming the hole LP in a form in which the light emitting element wafer W is fixed and the laser beam LB is scanned can be exemplified, but the light emitting element wafer W may be moved while the laser beam LB is fixed.

なお、図11に示すように、レーザービームLBにより穿孔形成した孔LPの内面には、化合物組成が化学量論比からシフトした組成変質層(例えば、GaP光取出層20の場合は、P組成が学量論比よりも少なくなるP欠乏層)や酸化膜が変質層DLとして残留する場合がある。そこで、図13に示すように、該組成変質層を湿式エッチングにより除去する。エッチング液SEAとしては硫酸−過酸化水素水溶液を使用できる。具体的には、例えば濃硫酸(硫酸濃度98%):過酸化水素水(過酸化水素濃度30%):水の体積配合比率が3:1:1のものを使用でき、液温は30℃以上70℃以下に調整するのがよい。なお、酸化膜を除去するだけであれば、フッ化水素酸を用いてもよい。   In addition, as shown in FIG. 11, on the inner surface of the hole LP formed by drilling with the laser beam LB, a composition altered layer in which the compound composition is shifted from the stoichiometric ratio (for example, in the case of the GaP light extraction layer 20, the P composition May be less than the stoichiometric ratio) or an oxide film may remain as the altered layer DL. Therefore, as shown in FIG. 13, the composition-altered layer is removed by wet etching. A sulfuric acid-hydrogen peroxide aqueous solution can be used as the etching solution SEA. Specifically, for example, concentrated sulfuric acid (sulfuric acid concentration 98%): hydrogen peroxide solution (hydrogen peroxide concentration 30%): water volume ratio of 3: 1: 1 can be used, and the liquid temperature is 30 ° C. It is good to adjust to 70 ° C. or lower. Note that hydrofluoric acid may be used if only the oxide film is removed.

図10に戻り、GaP光取出層20の第一主表面及びGaP透明基板90の第二主表面に電極パターニング用のフォトレジスト層を形成し、露光・現像により電極用の窓部をパターニングする。そして、その上から接合合金化層形成用の金属層をスパッタリングや真空蒸着法により形成し、フォトレジスト層とともに不要な蒸着金属をリフトオフし、さらに合金化の熱処理(いわゆるシンター処理)を行なうことにより、接合合金化層9a,15c(図1参照;図10では表示を省略)とする。そして、これら接合合金化層9a,15cをそれぞれ覆うように、光取出側金属電極9及び裏面電極15を形成する(工程8)。GaP光取出層20の第一主表面側では、スパッタリングないし蒸着により孔LPの内面にも一様に金属が付着し(特に、スパッタリングを用いた場合は、孔LPの内側面にも比較的均一な厚みにて金属を堆積させることができる)、孔LPの内面に倣う形状に接合合金化層9a及び光取出側金属電極9が形成される。   Returning to FIG. 10, a photoresist layer for electrode patterning is formed on the first main surface of the GaP light extraction layer 20 and the second main surface of the GaP transparent substrate 90, and the window portion for the electrode is patterned by exposure and development. Then, a metal layer for forming a bonded alloying layer is formed thereon by sputtering or vacuum vapor deposition, and unnecessary vapor deposited metal is lifted off together with the photoresist layer, and further heat treatment for alloying (so-called sintering treatment) is performed. The bonded alloyed layers 9a and 15c (see FIG. 1; not shown in FIG. 10). And the light extraction side metal electrode 9 and the back surface electrode 15 are formed so that these joining alloying layers 9a and 15c may be covered, respectively (process 8). On the first main surface side of the GaP light extraction layer 20, metal is uniformly deposited on the inner surface of the hole LP by sputtering or vapor deposition (particularly, when sputtering is used, the inner surface of the hole LP is relatively uniform. The metal can be deposited with a sufficient thickness), and the bonding alloying layer 9a and the light extraction side metal electrode 9 are formed in a shape following the inner surface of the hole LP.

続いて工程9に進み、発光素子ウェーハWを2つの<100>方向に沿ってダイシングすることにより、個々の素子チップ100’にダイシングする。本実施形態では、発光素子ウェーハWの第二主表面(裏面)に柔軟性を有した樹脂製の粘着シートASを貼り付け、第一主表面側からウェーハ厚さの途中位置までハーフダイシングを行い、その後、粘着シートASを展張して素子チップ100’に分離するエキスパンド処理を行なうようにしているが、フルダイシングを行なうようにしてもよい。なお、該ダイシング時には、各素子チップの側面部に、結晶欠陥密度の比較的高い加工ダメージ層が形成され、これが後述の面粗し処理を阻害する場合がある。そこで、ダイシング後の素子チップを、前述の硫酸−過酸化水素水溶液からなるエッチング液に浸漬して上記加工ダメージ層を除去することが望ましい。   Subsequently, the process proceeds to Step 9 where the light emitting element wafer W is diced along two <100> directions to be diced into individual element chips 100 '. In the present embodiment, a flexible resin adhesive sheet AS is attached to the second main surface (back surface) of the light emitting element wafer W, and half dicing is performed from the first main surface side to the middle position of the wafer thickness. Thereafter, the expanding process is performed in which the adhesive sheet AS is spread and separated into the element chip 100 ′, but full dicing may be performed. At the time of the dicing, a processing damage layer having a relatively high crystal defect density is formed on the side surface portion of each element chip, which may hinder the surface roughening process described later. Therefore, it is desirable to remove the processing damage layer by immersing the element chip after dicing in an etching solution made of the sulfuric acid-hydrogen peroxide solution.

続いて、工程10に示すように、個々の素子チップ100’を異方性エッチング液EAに浸漬して異方性エッチング処理を行なう。異方性エッチング液EAは、素子チップ100’の金属電極9,15に覆われていない表面領域、具体的には、光取出面20pと側面部SSとの双方に接触する。その結果、各孔LPの内面及びその開口周囲領域と側面部SSの全体とに面粗し突起部Fが形成される。なお光取出面20及び側面部SSへの面粗し突起部Fの形成は省略することも可能である。   Subsequently, as shown in Step 10, each element chip 100 ′ is immersed in an anisotropic etching solution EA to perform an anisotropic etching process. The anisotropic etching solution EA contacts the surface region of the element chip 100 ′ that is not covered with the metal electrodes 9 and 15, specifically, both the light extraction surface 20 p and the side surface portion SS. As a result, a roughened projection F is formed on the inner surface of each hole LP, the area surrounding the opening, and the entire side surface portion SS. Note that the formation of the rough protrusions F on the light extraction surface 20 and the side surface portion SS can be omitted.

異方性エッチング液は、酢酸と弗酸と硝酸とヨウ素とを含有する水溶液であり、具体的には、
酢酸(CHCOOH換算):37.4質量%以上94.8質量%以下、
弗酸(HF換算):0.4質量%以上14.8質量%以下、
硝酸(HNO換算):1.3質量%以上14.7質量%以下、
ヨウ素(I換算):0.12質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上45質量%以下のもの、より望ましくは、
酢酸(CHCOOH換算):45.8質量%以上94.8質量%以下、
弗酸(HF換算):0.5質量%以上14.8質量%以下、
硝酸(HNO換算):1.6質量%以上14.7質量%以下、
ヨウ素(I換算):0.15質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上32.7質量%以下のものを採用する。液温は40℃以上60℃以下が適当である。
An anisotropic etching solution is an aqueous solution containing acetic acid, hydrofluoric acid, nitric acid, and iodine. Specifically,
Acetic acid (converted to CH 3 COOH): 37.4% by mass or more and 94.8% by mass or less,
Hydrofluoric acid (converted to HF): 0.4 mass% or more and 14.8 mass% or less,
Nitric acid (in terms of HNO 3 ): 1.3% by mass or more and 14.7% by mass or less,
Iodine (I 2 equivalent): it contains in the range of 0.12 mass% or more 0.84 wt% or less, and those water content below 45 wt% to 2.4 wt%, more desirably,
Acetic acid (converted to CH 3 COOH): 45.8 mass% or more and 94.8 mass% or less,
Hydrofluoric acid (converted to HF): 0.5% by mass or more and 14.8% by mass or less,
Nitric acid (converted to HNO 3 ): 1.6 mass% or more and 14.7 mass% or less,
Iodine (I 2 conversion): It is contained in the range of 0.15% by mass or more and 0.84% by mass or less, and the water content is 2.4% by mass or more and 32.7% by mass or less. The liquid temperature is suitably 40 ° C. or higher and 60 ° C. or lower.

面粗し突起部Fの形成が終了すれば素子チップを水洗・乾燥し、さらに、ワイヤボンディングを経て図1の発光素子が完成する。   When the surface roughening and the formation of the protruding portion F are completed, the element chip is washed with water and dried, and then the light emitting element of FIG. 1 is completed through wire bonding.

以下、本発明の発光素子の、種々の変形例について説明する。
孔LPは、図11に示すように、レーザービームLBを用いるとほぼ円状の開口形状を有するものが形成可能である。他方、図12に示すように、GaP光取出層20(光取出側化合物半導体層)をエッチングレジストERで被覆し、露光・現像により孔LPの形成領域に対応する窓部をパターニング形成し、その後、乾式エッチングを施すことにより、孔LPを一括して形成することも可能である。乾式エッチングを用いる場合も、孔LP内面には変質層DLを生ずることがあり、図13と同様に、該組成変質層を湿式エッチングにより除去することが望ましい。
Hereinafter, various modifications of the light emitting device of the present invention will be described.
As shown in FIG. 11, when the laser beam LB is used, the hole LP having a substantially circular opening shape can be formed. On the other hand, as shown in FIG. 12, the GaP light extraction layer 20 (light extraction side compound semiconductor layer) is covered with an etching resist ER, and a window corresponding to the formation region of the hole LP is formed by patterning by exposure and development. It is also possible to form the holes LP in a lump by performing dry etching. Even when dry etching is used, an altered layer DL may be formed on the inner surface of the hole LP, and it is desirable to remove the altered composition layer by wet etching as in FIG.

この場合、窓部のパターニング形状に応じて所望の開口形態の孔LPを形成できる。図14は、方形の開口形状を有する孔LPを格子状に配列形成した例である。このとき、孔LPの内壁面が互いに直交する{100}面(すなわち、ウェーハの主表面が(100)面であれば、(010)面と(001)面)となるように、発光素子ウェーハに対する孔LPの形成方位を定めておくと、孔LPの底面及び側面がいずれも異方性エッチングに有利な{100}面となり、面粗し突起部をより顕著に形成することができる。   In this case, the hole LP having a desired opening shape can be formed according to the patterning shape of the window. FIG. 14 shows an example in which holes LP having a square opening shape are arranged in a lattice pattern. At this time, the light emitting element wafer is so formed that the inner wall surfaces of the holes LP are {100} planes orthogonal to each other (that is, (010) plane and (001) plane if the main surface of the wafer is (100) plane)). If the formation orientation of the hole LP with respect to is determined, the bottom surface and side surface of the hole LP both become {100} planes advantageous for anisotropic etching, and the surface roughening and the protruding portion can be formed more remarkably.

また、孔に代え、図15に示すように、所定間隔で配列する溝LGを凹部として形成することも可能である。図16ではこのような溝LGの組を互いに交差する2方向に格子状に形成した例を示す。溝LGも乾式エッチングによりパターニング形成できるほか、レーザービームを溝形成方向に移動させながら連続照射することにより形成してもよい。ここでも、内壁面が{100}面となるように溝LGを形成することができる。   Moreover, it replaces with a hole and as shown in FIG. 15, it is also possible to form the groove | channel LG arranged at a predetermined interval as a recessed part. FIG. 16 shows an example in which such a set of grooves LG is formed in a lattice shape in two directions intersecting each other. The groove LG may be formed by patterning by dry etching, or may be formed by continuous irradiation while moving the laser beam in the groove forming direction. Also here, the groove LG can be formed so that the inner wall surface is a {100} plane.

図17は、光取出面20pへの孔LPの形成を省略した発光素子の例を示す。この場合、光取出面20p(あるいは側面部SS)には、面粗し突起部Fを形成しても、形成しなくともいずれでもよい。また、図18は、不透明基板であるGaAs基板1を敢えて除去せず、そのまま素子基板として流用した発光素子の例を示す。いずれも、その余の点については、図1の発光素子と全く同一であり、共通部に同一の符号を付与して詳細な説明は略する。   FIG. 17 shows an example of a light emitting device in which the formation of the hole LP in the light extraction surface 20p is omitted. In this case, the light extraction surface 20p (or the side surface portion SS) may be either roughened or not formed with the roughened protrusion F. FIG. 18 shows an example of a light emitting element that is used as an element substrate without removing the GaAs substrate 1 which is an opaque substrate. In any case, the other points are completely the same as those of the light emitting element of FIG. 1, and the same reference numerals are given to the common portions and the detailed description is omitted.

次に、図19は、発光素子ウェーハの第一主表面をなす、HVPE法により成長したGaP光取出層の主表面に、レーザービーム穿孔(レーザー出力:約100mW)により孔を同心円状の形成した例を示す光学顕微鏡撮影画像である(倍率:約100倍)。ウェーハの直径は50mmであり、左はウェーハ中心付近を、右は同じく外周付近を示す。図20は孔の一つを拡大して示すものであり、孔の開口径は約11μm、深さは約4.0μmである。   Next, FIG. 19 shows that concentric holes are formed by laser beam drilling (laser output: about 100 mW) on the main surface of the GaP light extraction layer grown by the HVPE method, which forms the first main surface of the light emitting element wafer. It is an optical microscope image which shows an example (magnification: about 100 times). The diameter of the wafer is 50 mm, the left shows the vicinity of the wafer center, and the right shows the vicinity of the outer periphery. FIG. 20 shows an enlarged view of one of the holes. The hole has an opening diameter of about 11 μm and a depth of about 4.0 μm.

図21は、右下がGaP光取出層への孔形成(レーザー穿孔)と異方性エッチング(フロスト)とをいずれも行なわない発光素子チップ(番号4)、右上がレーザー穿孔のみを行なった発光素子チップ(番号3)、左下が異方性エッチング(フロスト)のみを行なった発光素子チップ(番号2)、左上がレーザー穿孔後、さらに異方性エッチング(フロスト)を行なった発光素子チップ(番号1)をそれぞれ示す光学顕微鏡観察画像である。レーザー穿孔により形成した孔の深さは約6.0μmであり、それぞれ、JIS−B0601(1994)に規定された方法により測定した主表面の算術平均粗さRaの値も合わせて図示している。レーザー穿孔のみを行なった発光素子チップと比較して、さらに異方性エッチング処理を追加することで、算術平均粗さRaの値が若干低くなっていることがわかる。また、異方性エッチング処理は、酢酸81.7質量%、弗酸5質量%、硝酸5質量%、ヨウ素0.3質量%、水8質量%の組成からなるエッチング液を用い、液温は例えば25℃にて150秒行なっている。   In FIG. 21, the lower right is a light emitting element chip (No. 4) in which neither hole formation (laser perforation) nor anisotropic etching (frost) is performed in the GaP light extraction layer, and the upper right is light emission in which only laser perforation is performed. Element chip (No. 3), the lower left is a light emitting element chip (No. 2) that has undergone only anisotropic etching (frost), and the upper left is a light emitting element chip (No. that has undergone anisotropic etching (frost) after laser drilling. It is an optical microscope observation image which respectively shows 1). The depth of the hole formed by laser drilling is about 6.0 μm, and the value of the arithmetic mean roughness Ra of the main surface measured by the method defined in JIS-B0601 (1994) is also shown. . It can be seen that the arithmetic average roughness Ra is slightly lower by adding an anisotropic etching process as compared with the light emitting element chip that has been subjected only to laser drilling. The anisotropic etching treatment uses an etching solution having a composition of 81.7% by mass of acetic acid, 5% by mass of hydrofluoric acid, 5% by mass of nitric acid, 0.3% by mass of iodine, and 8% by mass of water. For example, it is performed at 25 ° C. for 150 seconds.

上記の番号3及び番号4の各チップに対し、金ワイヤーを用いて市販のワイヤーボンディング機(キューリンク&ソファー社:4125D)によりワイヤーボンディングを行なった。ボンディング部を形成するためのワイヤーボール径は80μmである。また、得られたボンド部は、平面視(つまり、積層体の主表面と平行な投影面に対する正射投影領域)での面積S0が5024μmである。 Wire bonding was performed on each of the chips of No. 3 and No. 4 using a gold wire using a commercially available wire bonding machine (Cuelink & Sofa Co., Ltd .: 4125D). The wire ball diameter for forming the bonding portion is 80 μm. Further, the obtained bond portion has an area S0 of 5024 μm 2 in a plan view (that is, an orthographic projection region with respect to a projection plane parallel to the main surface of the multilayer body).

上記各チップのボンド部に対し、市販のシェアテスタ(Think MBS200)を用いてシェアテストを実施した。その結果、孔部を形成せずに光取出側電極9で被覆した番号4(比較例)のチップについてのシェア強度が77.9gmfであったのに対し、孔部を形成し、これを光取出側電極9で覆った番号3(実施例)のチップについてのシェア強度は79.9gmfと明らかに向上していた。また、番号4においてはボンド部がGaP光取出層との界面で剥離していたのに対し、番号3においてはボンド部内で破断が生じていた。また、番号3においては、ボンディング部の接合位置に凹部が散点状に分散形成されているため、シェア強度の剪断方向依存性が十分小さいことも確認できた。   A share test was performed on the bond part of each chip using a commercially available share tester (Think MBS200). As a result, while the shear strength of the chip of No. 4 (comparative example) covered with the light extraction side electrode 9 without forming the hole portion was 77.9 gmf, the hole portion was formed and this The shear strength of the chip of No. 3 (Example) covered with the extraction-side electrode 9 was clearly improved to 79.9 gmf. In No. 4, the bond part peeled off at the interface with the GaP light extraction layer, whereas in No. 3, fracture occurred in the bond part. In No. 3, since the concave portions were dispersedly formed at the bonding positions of the bonding portions, it was confirmed that the shear strength dependence of the shear strength was sufficiently small.

図22は、上記の各発光素子チップを、種々の駆動電流値にて発光させたときの、発光出力PO、積分球輝度PV及び直上輝度IVの各測定結果を示す(測定値は、それぞれチップ10個の平均値にて示している)。孔形成(レーザー穿孔)と異方性エッチング(フロスト)とをいずれも行なった発光素子チップ(番号1)は、異方性エッチング(フロスト)のみを行なった発光素子チップ(番号2)と比較して、POで7.49%、PVで10.7%、IVで6.37%、それぞれ確実に改善されていることがわかった。   FIG. 22 shows the measurement results of the light emission output PO, the integrating sphere luminance PV, and the directly above luminance IV when each of the above light emitting element chips is caused to emit light at various drive current values. The average value of 10 is shown). The light-emitting element chip (No. 1) subjected to both hole formation (laser drilling) and anisotropic etching (frost) is compared with the light-emitting element chip (No. 2) subjected to anisotropic etching (frost) alone. As a result, it was confirmed that PO was improved by 7.49%, PV by 10.7%, and IV by 6.37%.

本発明の発光素子の第一例を示す側面断面模式図及び光取出側電極周辺の拡大平面図。The side surface cross-sectional schematic diagram which shows the 1st example of the light emitting element of this invention, and the enlarged plan view of the optical extraction side electrode periphery. 図1のA部拡大図。The A section enlarged view of FIG. 同じくB部拡大図。Similarly B section enlarged view. 同じくC部拡大図。Similarly C section enlarged view. GaP{100}面上への異方性エッチングによる面粗し突起部の形成形態を概念的に示す図。The figure which shows notionally the formation form of the surface roughening protrusion by anisotropic etching on GaP {100} surface. GaP{100}面上の面粗し突起部の外形の第一例を示す斜視図。The perspective view which shows the 1st example of the external shape of the roughening protrusion part on a GaP {100} surface. 同じく第二例を示す斜視図。The perspective view which similarly shows a 2nd example. 同じく第三例を示す斜視図。The perspective view which shows a 3rd example similarly. 同じく第四例を示す斜視図。The perspective view which similarly shows a 4th example. 同じく第五例を示す斜視図。The perspective view which similarly shows a 5th example. 同じく第六例を示す斜視図。The perspective view which similarly shows the 6th example. 図1の発光素子の製造方法を示す工程説明図。Process explanatory drawing which shows the manufacturing method of the light emitting element of FIG. 図7に続く工程説明図。Process explanatory drawing following FIG. 図8に続く工程説明図。Process explanatory drawing following FIG. 図9に続く工程説明図。Process explanatory drawing following FIG. レーザービームにより凹部を穿孔形成する様子を示す模式図。The schematic diagram which shows a mode that a recessed part is drilled and formed by a laser beam. 乾式エッチングにより凹部を穿孔形成する様子を示す模式図。The schematic diagram which shows a mode that a recessed part is drilled and formed by dry etching. 湿式エッチングにより凹部内面の変質層を除去する様子を示す模式図。The schematic diagram which shows a mode that the altered layer of a recessed part inner surface is removed by wet etching. 光取出面への凹部形成形態の第一変形例を示す平面図。The top view which shows the 1st modification of the recessed part formation form to a light extraction surface. 同じく第二変形例を示す平面図。The top view which shows a 2nd modification similarly. 同じく第三変形例を示す平面図。The top view which shows a 3rd modification similarly. 本発明の発光素子の第二例を示す側面断面模式図及び光取出側電極周辺の拡大平面図。The side surface cross-sectional schematic diagram which shows the 2nd example of the light emitting element of this invention, and the enlarged plan view of the optical extraction side electrode periphery. 本発明の発光素子の第三例を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the 3rd example of the light emitting element of this invention. レーザービームによる凹部穿孔パターンの実例を示す画像。The image which shows the example of the recessed part drilling pattern by a laser beam. 図19の拡大画像。The enlarged image of FIG. 本発明の効果確認評価に用いた試験素子を光取出面側にて撮影した光学顕微鏡画像。The optical microscope image which image | photographed the test element used for the effect confirmation evaluation of this invention in the light extraction surface side. 図21の試験素子を用いて行なった効果確認評価の結果を示す図。The figure which shows the result of the effect confirmation evaluation performed using the test element of FIG.

符号の説明Explanation of symbols

4 第一導電型クラッド層
5 活性層
6 第二導電型クラッド層
9 光取出側金属電極
16 ワイヤーボンド部
20 GaP光取出層
20p 光取出面
SS 側面部
24 発光層部
W 発光素子ウェーハ
F 面粗し突起部
LP 孔(凹部)
LG 溝
100 発光素子
DESCRIPTION OF SYMBOLS 4 1st conductivity type clad layer 5 Active layer 6 2nd conductivity type clad layer 9 Light extraction side metal electrode 16 Wire bond part 20 GaP light extraction layer 20p Light extraction surface SS Side surface part 24 Light emitting layer part W Light emitting element wafer F Surface roughness Protrusion part LP hole (concave part)
LG groove 100 light emitting element

Claims (20)

化合物半導体の積層体からなり、該積層体の一方の主表面の一部が通電用の光取出側金属電極により被覆され、前記主表面の前記光取出側金属電極の周囲領域が光取出面とされるとともに、該光取出面をなす化合物半導体層である光取出側化合物半導体層の表層部において、前記光取出側金属電極の形成領域に凹部が分散形成され、前記光取出側金属電極が該凹部の内面を、その開口周囲領域とともに密着被覆してなることを特徴とする発光素子。   Composed of a laminate of compound semiconductors, a part of one main surface of the laminate is covered with a light extraction side metal electrode for energization, and a region around the light extraction side metal electrode of the main surface is a light extraction surface. In addition, in the surface layer portion of the light extraction side compound semiconductor layer that is the compound semiconductor layer that forms the light extraction surface, recesses are dispersedly formed in the formation region of the light extraction side metal electrode, and the light extraction side metal electrode is A light-emitting element, wherein the inner surface of the recess is closely covered together with the area around the opening. 前記凹部は複数の孔として散点状に分散形成されてなる請求項1記載の発光素子。   The light emitting device according to claim 1, wherein the concave portions are formed in a dispersed manner as a plurality of holes. 前記孔はレーザービームにより穿孔形成されたものである請求項2記載の発光素子。   The light emitting device according to claim 2, wherein the hole is formed by drilling with a laser beam. 前記光取出側金属電極は、前記凹部の深さよりも小さい厚みを有するとともに、該光取出側金属電極の前記凹部内面に密着しているのと反対側の主表面に該凹部に対応する形状の電極凹部を生じさせる形で、該凹部の内面形状に倣う形で形成されるとともに、該光取出側金属電極の前記主表面に、素子通電用ワイヤーをボンディングするためのワイヤーボンド部が前記電極凹部を充填する形で密着接合されてなる請求項1ないし請求項3のいずれか1項に記載の発光素子。   The light extraction side metal electrode has a thickness smaller than the depth of the concave portion, and has a shape corresponding to the concave portion on the main surface opposite to the inner surface of the concave portion of the light extraction side metal electrode. A wire bonding portion for bonding an element energizing wire to the main surface of the light extraction side metal electrode is formed in a shape that follows the shape of the inner surface of the recess in a shape that generates an electrode recess. The light emitting device according to any one of claims 1 to 3, wherein the light emitting device is tightly bonded in a form of filling. 前記凹部の深さdが0.5μm以上とされてなる請求項4記載の発光素子。   The light emitting device according to claim 4, wherein the depth d of the recess is 0.5 μm or more. 前記凹部が前記光取出面にも分散形成されてなる請求項1ないし請求項5のいずれか1項に記載の発光素子。   The light emitting device according to any one of claims 1 to 5, wherein the concave portions are also formed to be dispersed on the light extraction surface. 前記凹部は、前記光取出側化合物半導体層の前記主表面に対し、前記光取出側金属電極による被覆領域と前記光取出面とにまたがる所定方向に沿って配列形成されてなる請求項1ないし請求項6のいずれか1項に記載の発光素子。   The said recessed part is arranged and formed with respect to the said main surface of the said light extraction side compound semiconductor layer along the predetermined direction over the coating area | region by the said light extraction side metal electrode, and the said light extraction surface. Item 7. The light-emitting element according to any one of items 6. 前記光取出面において前記凹部の内表面に異方性エッチング処理による面粗し突起部がさらに分散形成されてなる請求項6又は請求項7に記載の発光素子。   8. The light emitting device according to claim 6, wherein the light extraction surface is formed by further dispersing and roughening protrusions by anisotropic etching on the inner surface of the recess. 前記面粗し突起部が、前記光取出面の前記凹部の開口周縁をなす領域にも分散形成されてなる請求項7又は請求項8に記載の発光素子。   The light-emitting element according to claim 7 or 8, wherein the surface-roughening protrusion is dispersedly formed in a region of the light extraction surface that forms the periphery of the opening of the recess. 前記凹部は複数の孔として散点状に分散形成されてなり、
該孔は開口径が1μm以上50μm以下、孔深さが0.5μm以上25μm以下であり、前記面粗し突起部は該孔の内面に突起高さが0.1μm以上5μm以下となるように形成されてなる請求項9記載の発光素子。
The concave portions are formed as a plurality of holes in a scattered manner,
The hole has an opening diameter of 1 μm or more and 50 μm or less, a hole depth of 0.5 μm or more and 25 μm or less, and the rough surface protrusion has a protrusion height of 0.1 μm or more and 5 μm or less on the inner surface of the hole. The light emitting device according to claim 9 formed.
前記光取出側化合物半導体層の、前記凹部が非形成となる側面部にも、異方性エッチング処理による前記面粗し突起部が分散形成されてなる請求項1ないし請求項10のいずれか1項に記載の発光素子。   11. The surface roughening protrusion by anisotropic etching is dispersedly formed on a side surface of the light extraction side compound semiconductor layer where the concave portion is not formed. The light emitting element according to item. 前記化合物半導体の積層体は発光層部と、該発光層部に積層されるとともに該発光層部よりも厚みの大きい電流拡散層とを含むものであり、該電流拡散層が前記光取出側化合物半導体層を構成するものである請求項1ないし請求項10のいずれか1項に記載の発光素子。   The laminated body of the compound semiconductor includes a light emitting layer portion and a current diffusion layer that is stacked on the light emitting layer portion and has a thickness larger than that of the light emitting layer portion, and the current diffusion layer is the light extraction side compound. The light emitting device according to claim 1, which constitutes a semiconductor layer. 前記発光層部が、組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAsと格子整合する組成を有する化合物にて各々構成された第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有するものとして形成され、
前記電流拡散層が、厚さ10μm以上のGaP光取出層として形成されてなる請求項12記載の発光素子。
Among the compounds represented by the composition formula (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), the light emitting layer portion is lattice-matched with GaAs. A first conductivity type cladding layer, an active layer and a second conductivity type cladding layer each composed of a compound having a composition to be formed as having a double heterostructure laminated in this order,
The light emitting element according to claim 12, wherein the current diffusion layer is formed as a GaP light extraction layer having a thickness of 10 μm or more.
化合物半導体の積層体の光取出面側となる主表面の、通電用の光取出側金属電極の形成予定領域に凹部を分散形成する凹部形成工程と、該形成予定領域にて前記凹部の内面及びその開口周囲領域を、前記光取出側金属電極により密着被覆する光取出側金属電極形成工程とをこの順で実施することを特徴とする発光素子の製造方法。   A recessed portion forming step of forming recessed portions in a region where the light extraction side metal electrode for energization is to be formed on the main surface on the light extraction surface side of the compound semiconductor laminate, and the inner surface of the recess in the formation region, A method of manufacturing a light emitting device, wherein a light extraction side metal electrode forming step of closely covering the opening peripheral region with the light extraction side metal electrode is performed in this order. 前記凹部をレーザービーム穿孔により形成する請求項14記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 14, wherein the recess is formed by laser beam drilling. 前記凹部を乾式エッチングにより形成する請求項14記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 14, wherein the recess is formed by dry etching. 前記凹部を形成後、凹部内面に残留する変質層を湿式エッチングにより除去し、その後、当該凹部の内面をその開口周囲領域とともに、前記光取出側金属電極により密着被覆する請求項15又は請求項16に記載の発光素子の製造方法。   17. After the formation of the concave portion, the altered layer remaining on the inner surface of the concave portion is removed by wet etching, and then the inner surface of the concave portion is closely covered with the light extraction side metal electrode together with the area around the opening. The manufacturing method of the light emitting element as described in any one of. 前記積層体として形成された化合物半導体ウェーハの前記主表面の全面に前記凹部を分散形成し、該凹部を形成後の化合物半導体ウェーハの各素子チップとなる領域に前記光取出側金属電極を個別に形成し、その後、前記化合物半導体ウェーハを前記素子チップにダイシングする請求項14ないし請求項17のいずれか1項に記載の発光素子の製造方法。   The concave portions are dispersedly formed on the entire surface of the main surface of the compound semiconductor wafer formed as the laminated body, and the light extraction side metal electrodes are individually provided in regions to be element chips of the compound semiconductor wafer after the concave portions are formed. The method for manufacturing a light-emitting element according to claim 14, wherein the compound semiconductor wafer is formed and then diced into the element chip. 前記凹部形成工程にて前記凹部を前記光取出面にも分散形成するとともに、前記光取出側金属電極形成工程の終了後、該光取出側金属電極により被覆されてない前記光取出面の凹部の内表面に異方性エッチング処理を実施することにより面粗し突起部をさらに分散形成する異方性エッチング工程を実施する請求項14ないし請求項18のいずれか1項に記載の発光素子の製造方法。   In the recess forming step, the recesses are dispersedly formed on the light extraction surface, and after completion of the light extraction side metal electrode formation step, the recesses of the light extraction surface that are not covered with the light extraction side metal electrode are formed. 19. The light emitting device according to claim 14, wherein an anisotropic etching process is performed in which the inner surface is subjected to an anisotropic etching process to roughen the surface and further form protrusions in a dispersed manner. Method. ダイシング後の個々の素子チップを異方性エッチング液に浸漬して前記光取出面をなす前記凹部の内面に前記異方性エッチング処理を行なう請求項19記載の発光素子の製造方法。   20. The method for manufacturing a light-emitting element according to claim 19, wherein each dicing element chip is immersed in an anisotropic etching solution, and the anisotropic etching process is performed on the inner surface of the concave portion forming the light extraction surface.
JP2008209736A 2008-08-18 2008-08-18 Light emitting element Active JP5187063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209736A JP5187063B2 (en) 2008-08-18 2008-08-18 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209736A JP5187063B2 (en) 2008-08-18 2008-08-18 Light emitting element

Publications (2)

Publication Number Publication Date
JP2010045289A true JP2010045289A (en) 2010-02-25
JP5187063B2 JP5187063B2 (en) 2013-04-24

Family

ID=42016411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209736A Active JP5187063B2 (en) 2008-08-18 2008-08-18 Light emitting element

Country Status (1)

Country Link
JP (1) JP5187063B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125823A1 (en) * 2012-02-20 2013-08-29 Seoul Opto Device Co., Ltd. High efficiency light emitting diode and method of fabricating the same
JP2014027310A (en) * 2013-11-01 2014-02-06 Toshiba Corp Light-emitting element
CN103594588A (en) * 2013-10-21 2014-02-19 溧阳市东大技术转移中心有限公司 Wire bonding electrode of light emitting diode
KR20150046917A (en) * 2013-10-23 2015-05-04 삼성전자주식회사 Semiconductor light emitting diode package and lighting device using the same
US9362449B2 (en) 2012-02-20 2016-06-07 Seoul Viosys Co., Ltd. High efficiency light emitting diode and method of fabricating the same
JP2017034214A (en) * 2015-08-06 2017-02-09 信越半導体株式会社 Light-emitting device
CN113410360A (en) * 2021-07-21 2021-09-17 山西中科潞安紫外光电科技有限公司 Deep ultraviolet LED flip chip and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213649A (en) * 1995-02-01 1996-08-20 Sanken Electric Co Ltd Semiconductor light emitting element
JP2003209283A (en) * 2002-01-15 2003-07-25 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JP2004356279A (en) * 2003-05-28 2004-12-16 Hitachi Cable Ltd Method for manufacturing semiconductor light emitting element
JP2007019263A (en) * 2005-07-07 2007-01-25 Toshiba Discrete Technology Kk Semiconductor light-emitting device and manufacturing method thereof
JP2007067209A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting element and method of manufacturing same
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2008047861A (en) * 2006-08-14 2008-02-28 Samsung Electro Mech Co Ltd Vertical-structure gallium nitride light-emitting diode device and its manufacturing method
JP2009130027A (en) * 2007-11-21 2009-06-11 Sanken Electric Co Ltd Roughing method of semiconductor light-emitting element wafer and semiconductor light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213649A (en) * 1995-02-01 1996-08-20 Sanken Electric Co Ltd Semiconductor light emitting element
JP2003209283A (en) * 2002-01-15 2003-07-25 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JP2004356279A (en) * 2003-05-28 2004-12-16 Hitachi Cable Ltd Method for manufacturing semiconductor light emitting element
JP2007019263A (en) * 2005-07-07 2007-01-25 Toshiba Discrete Technology Kk Semiconductor light-emitting device and manufacturing method thereof
JP2007067209A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting element and method of manufacturing same
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2008047861A (en) * 2006-08-14 2008-02-28 Samsung Electro Mech Co Ltd Vertical-structure gallium nitride light-emitting diode device and its manufacturing method
JP2009130027A (en) * 2007-11-21 2009-06-11 Sanken Electric Co Ltd Roughing method of semiconductor light-emitting element wafer and semiconductor light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125823A1 (en) * 2012-02-20 2013-08-29 Seoul Opto Device Co., Ltd. High efficiency light emitting diode and method of fabricating the same
US9362449B2 (en) 2012-02-20 2016-06-07 Seoul Viosys Co., Ltd. High efficiency light emitting diode and method of fabricating the same
CN103594588A (en) * 2013-10-21 2014-02-19 溧阳市东大技术转移中心有限公司 Wire bonding electrode of light emitting diode
KR20150046917A (en) * 2013-10-23 2015-05-04 삼성전자주식회사 Semiconductor light emitting diode package and lighting device using the same
KR102070089B1 (en) * 2013-10-23 2020-01-29 삼성전자주식회사 Semiconductor light emitting diode package and lighting device using the same
JP2014027310A (en) * 2013-11-01 2014-02-06 Toshiba Corp Light-emitting element
JP2017034214A (en) * 2015-08-06 2017-02-09 信越半導体株式会社 Light-emitting device
CN113410360A (en) * 2021-07-21 2021-09-17 山西中科潞安紫外光电科技有限公司 Deep ultraviolet LED flip chip and preparation method thereof

Also Published As

Publication number Publication date
JP5187063B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP4092658B2 (en) Method for manufacturing light emitting device
JP4154731B2 (en) Light emitting device manufacturing method and light emitting device
JP4899348B2 (en) Method for manufacturing light emitting device
US7485482B2 (en) Method for manufacturing vertical group III-nitride light emitting device
JP4715370B2 (en) Light emitting device and manufacturing method thereof
JP5187063B2 (en) Light emitting element
KR20110097011A (en) Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof
JP2007305999A (en) MANUFACTURING METHOD FOR VERTICAL-STRUCTURE GaN-BASED LED DEVICE
JP2008047860A (en) Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
JP5306779B2 (en) Light emitting device and manufacturing method thereof
JP2010129596A (en) Light-emitting element and manufacturing method thereof
US20160079474A1 (en) Semiconductor light emitting device and method of manufacturing the same
WO2010021212A1 (en) Light emitting element, and method for manufacturing the element
JP2006210824A (en) Nitride semiconductor light emitting element
WO2007145300A1 (en) Gallium nitride compound semiconductor light emitting element
JP2006332383A (en) Semiconductor light emitting device and its manufacturing method
JP5105310B2 (en) Light emitting device and manufacturing method thereof
JP2010114405A (en) Nitride semiconductor light-emitting diode
US20110001158A1 (en) Iii-nitride semiconductor light emitting device
JP2008066442A (en) Light emitting diode
JP2009010012A (en) Semiconductor light emitting element and manufacturing method thereof, and light emitting device
KR20110018563A (en) Iii nitride semiconductor light emitting device and method for fabricatiing the same
JP2007019263A (en) Semiconductor light-emitting device and manufacturing method thereof
JP5440640B2 (en) Nitride semiconductor light emitting device
JP5287467B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250