JP2010044010A - Method for detecting defect of mesh- or wire-embedded glass - Google Patents

Method for detecting defect of mesh- or wire-embedded glass Download PDF

Info

Publication number
JP2010044010A
JP2010044010A JP2008209621A JP2008209621A JP2010044010A JP 2010044010 A JP2010044010 A JP 2010044010A JP 2008209621 A JP2008209621 A JP 2008209621A JP 2008209621 A JP2008209621 A JP 2008209621A JP 2010044010 A JP2010044010 A JP 2010044010A
Authority
JP
Japan
Prior art keywords
glass
defect
mesh
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008209621A
Other languages
Japanese (ja)
Other versions
JP5136277B2 (en
Inventor
Shinichi Okamura
真一 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008209621A priority Critical patent/JP5136277B2/en
Publication of JP2010044010A publication Critical patent/JP2010044010A/en
Application granted granted Critical
Publication of JP5136277B2 publication Critical patent/JP5136277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simultaneously detecting a mesh defect and a glass defect, such as a wire disconnection, a defective shape and the like of a mesh- or wire-embedded glass. <P>SOLUTION: The method includes: bringing the mesh- or wire-embedded glass which is continuously conveyed, to transmit light from a light source; photographing the mesh- or wire-embedded glass by using at least one area camera which is disposed on the opposite side of the light source so as to sandwich the glass plate; and detecting the defect of the mesh- or wire-embedded glass, based on an obtained dark/light signal. In the method, after binarizing the photographed image data, a labeling process is carried out to calculate an area and a position coordinate of each light-signal graphic, and such the determination is made that no disconnection exists in any mesh wire surrounding the light-signal graphic or in any parallel wire section sandwiching the light-signal graphic, when each area of the light-signal graphic is within a set range, and a disconnection exists in the mesh wire or the wire section, when the area is outside the set range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は網入りまたは線入りガラスの網形状不良や断線等の網欠陥や、ガラス欠陥の検出方法に関する。   The present invention relates to a method for detecting a net defect such as a mesh shape defect or wire breakage of a glass or glass with a mesh, or a glass defect.

従来より網形状が四角形、菱形形状、及び六角形状等の金属製の網をガラス板に封入して成形した網入りまたは線入りガラスの欠陥検出方法は数多く知られている。   Conventionally, there are many known methods for detecting defects in meshed or lined glass in which a metal mesh having a square shape, a rhombus shape, or a hexagonal shape is enclosed in a glass plate and formed.

例えば、特開平6−347410号公報には、検査すべき網入り板ガラスの画像を取り込むステップと、前記取り込んだ画像を網形状に対応した所定量だけ移動させるステップと、移動前の画像と移動後の画像とを重ね合わせるステップと、重ね合わせた画像のうち重複した部分を取り除くステップと、前記重複した部分を取り除いた画像から欠陥部を判別するステップとからなる網入りガラスの欠陥検出方法が開示されている(特許文献1)。   For example, Japanese Patent Laid-Open No. 6-347410 discloses a step of capturing an image of a sheet glass with a screen to be inspected, a step of moving the captured image by a predetermined amount corresponding to the shape of the network, an image before the movement, and a post-movement A method for detecting a defect in a meshed glass comprising a step of superimposing the image on the image, a step of removing an overlapping portion of the overlapped image, and a step of determining a defective portion from the image from which the overlapping portion has been removed is disclosed. (Patent Document 1).

また、本出願人による特開平6−148100号公報にて、連続して搬送されるリボン状の網入りガラスに光源からの光を投光し、網入りガラスとは反対側に設けた複数台の2次元カメラにより網入りガラスを撮像し、得られた濃淡の信号により網入りガラスの検査をする方法において、所定の範囲に縦、横あるいは斜め方向に連続した濃信号があるときに、その濃信号の幅方向の中心から等間隔で網以上の幅にその濃信号を除去し、残った信号の大きさを求めることにより欠点を検査するようにした網入りガラスの検査方法を開示している(特許文献2)。
特開平6−347410号公報 特開平6−148100号公報
Further, in Japanese Patent Application Laid-Open No. 6-148100 filed by the present applicant, light from a light source is projected onto a ribbon-like meshed glass that is continuously conveyed, and a plurality of units provided on the opposite side of the meshed glass In the method of inspecting the glass with a two-dimensional camera, and inspecting the glass with the obtained gray signal, when there is a continuous dark signal in the vertical, horizontal or diagonal directions, Disclosed is a method for inspecting a glass with a mesh in which the dark signal is removed from the center in the width direction of the dark signal at equal intervals to a width greater than that of the net, and the defect is inspected by determining the size of the remaining signal. (Patent Document 2).
JP-A-6-347410 JP-A-6-148100

前記の特許文献1に記載の発明は、網入りガラスの成型時に網が引き延ばされる等により僅か変形するため、ガラスリボンの幅方向のパターンが僅か異なり同一形状でないため、取り込んだ画像を所定量だけ移動させて移動前の画像と移動後の画像とを重ね合わせ、重ね合わせた画像のうち重複した部分を取り除く処理において、重ならないケースが発生する。また、網の上に欠陥が存在する場合は網を消去した後に欠陥が分割されて検出され、欠陥サイズを正しく計測できないという懸念がある。   The invention described in Patent Document 1 is slightly deformed when the mesh is stretched when the meshed glass is molded. Therefore, the pattern in the width direction of the glass ribbon is slightly different and is not the same shape. When the image is moved only by overlapping the image before the movement and the image after the movement, and the overlapping portion of the superimposed image is removed, a case where the images do not overlap occurs. In addition, when a defect exists on the net, there is a concern that the defect is divided and detected after the net is erased, and the defect size cannot be measured correctly.

さらに、特許文献2に記載の発明は、濃信号が連続している場合に網とみなす方法であり、網を確実に撮像し、画像データの網部分が途切れることの無く、連続するように1つの画素幅を小さくしなけらばならず、また網を確実に除去しようとする場合、マスキング幅を大きめにとらざるを得ないため、カメラの視野を大きくとることができす、カメラの台数が増加し、コストアップとなるという問題点がある。また網の種類が平行な金属線、菱形(菱網)、正方形(角網)等によって検出アルゴリズムが異なり、複雑になるという問題点もあった。   Further, the invention described in Patent Document 2 is a method that considers a network when dark signals are continuous, so that the network is reliably imaged and the network portion of image data is continuous without interruption. One pixel width must be reduced, and if the net is to be removed reliably, the masking width must be increased, so the camera field of view can be increased. There is a problem that the cost increases. In addition, the detection algorithm differs depending on the metal wire, rhombus (rhombus), square (square mesh), etc., which are parallel to the mesh type.

本発明は、上記問題点、すなわち網入りガラスの網形状の種類に係わらず同一アルゴリズムで確実に網線形状の変形や断線等の網欠陥を検出するとともに、さらに網欠陥以外のガラス欠陥についても網欠陥の検出後に、網線部の画像を消去して欠陥部と網部とを判別し、欠陥の検出を行うことを目的とする。   The present invention detects the above-mentioned problems, that is, the net defects such as the deformation and breakage of the net line shape with the same algorithm regardless of the type of the net shape of the glass with glass, and also about the glass defects other than the net defects. An object of the present invention is to detect a defect by erasing an image of a mesh line portion after detecting the mesh defect to distinguish the defect portion and the mesh portion.

すなわち、本発明は、連続して搬送される網入りまたは線入りガラスに光源からの光を透過させ、該ガラス板を挟んで光源とは反対側に設けた少なくとも1台のエリアカメラにより前記網入りまたは線入りガラスを撮像し、得られた濃淡の信号により網入りまたは線入りガラスの欠陥の検出方法において、撮像した画像データを二値化処理後、淡信号図形のそれぞれについて、面積、位置座標を算出するラベリング処理により、該淡信号図形のそれぞれの面積が設定範囲内のときに、該淡信号図形を取り囲む濃信号に相当する網線または挟む平行線部に断線なしと判定し、前記面積が設定範囲外のときに該網線又は線部に断線有りと判定することを特徴とする網入りまたは線入りガラスの欠陥検出方法である。   That is, the present invention allows light from a light source to pass through a mesh or lined glass that is continuously conveyed, and the mesh is provided by at least one area camera provided on the opposite side of the light source across the glass plate. In a method for detecting defects in a half-lined or lined glass by imaging a lined or lined glass, and using the obtained light and shade signal, after binarizing the captured image data, the area and position of each light signal figure By labeling processing for calculating coordinates, when each area of the light signal graphic is within a setting range, it is determined that there is no disconnection in a mesh line or a parallel line portion sandwiched between the dark signal surrounding the light signal graphic, A method for detecting a defect in a meshed or lined glass, characterized in that when the area is outside the set range, it is determined that there is a break in the meshed line or line part.

あるいは、本発明は、 前記ガラスが網入りガラスの場合、前記ラベリング処理により、前記淡信号図形のそれぞれについて、演算した画素面積が設定範囲内で、かつX座標の最大値、最小値の差と、Y座標の最大値、最小値の差との比が設定範囲内にあるとき、該淡信号図形を取り囲む濃信号に相当する網線部に変形不良なしと判定し、前記X座標の最大値、最小値の差と、Y座標の最大値、最小値の差との比が設定範囲外のとき該網線部に変形不良ありと判定することを特徴とする上述の網入りまたは線入りガラスの欠陥検出方法である。   Alternatively, in the present invention, when the glass is a meshed glass, the calculated pixel area is within a set range for each of the light signal figures by the labeling process, and the difference between the maximum value and the minimum value of the X coordinate When the ratio of the difference between the maximum value and the minimum value of the Y coordinate is within the set range, it is determined that there is no deformation defect in the net line portion corresponding to the dark signal surrounding the light signal figure, and the maximum value of the X coordinate The above-described meshed or lined glass, characterized in that when the ratio between the difference between the minimum value and the difference between the maximum value and the minimum value of the Y coordinate is outside the set range, the meshed line portion is determined to have a deformation defect. This is a defect detection method.

あるいは、本発明は、前記ガラスが複数本の平行な直線条からなる金属線入りガラスの場合に、2値化後の方形画像ブロックの淡信号の上辺及び下辺と、前記平行な金属線で囲まれたエリアの各淡信号図形について、前記ラベリング処理により、各淡信号図形の画素の面積が設定範囲内であって、かつY座標を最小値から最大値まで変化させたとき、X座標の最大値と最小値が設定範囲内にあるとき、該淡信号図形を縦方向で挟む濃信号に相当する平行な直線部に変形不良なしと判断し、前記X座標の最大値と最小値が設定範囲外のとき該直線部に変形不良ありと判定することを特徴とする上述の網入りまたは線入りガラスの欠陥検出方法である。   Alternatively, in the present invention, in the case where the glass is a glass with a metal wire composed of a plurality of parallel straight stripes, the upper side and the lower side of the light signal of the binarized rectangular image block are surrounded by the parallel metal lines. For each light signal graphic in the area, when the pixel area of each light signal graphic is within the setting range and the Y coordinate is changed from the minimum value to the maximum value by the labeling process, the maximum of the X coordinate When the value and the minimum value are within the setting range, it is determined that there is no deformation defect in the parallel straight line portion corresponding to the dark signal sandwiching the light signal figure in the vertical direction, and the maximum value and the minimum value of the X coordinate are It is the above-mentioned defect detection method for meshed or lined glass, characterized in that it is determined that there is a deformation defect in the straight line when outside.

あるいは、本発明は、前記エリアカメラに代えて、搬送される網入りまたは線入りガラスの搬送方向と直交する幅方向に走査するラインカメラを少なくとも1台配置し、該ラインカメラで網入りまたは線入りガラスの搬送速度に同期させて取り込んだ信号を記憶保持させて2次元の画像データとして演算処理することを特徴とする上述のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法である。   Alternatively, in the present invention, in place of the area camera, at least one line camera that scans in the width direction orthogonal to the conveyance direction of the meshed or lined glass to be conveyed is arranged, and the line camera is lined or lined. The method for detecting a defect in a meshed or lined glass according to any one of the above, characterized in that a signal taken in synchronization with the conveyance speed of the glass is stored and held and is processed as two-dimensional image data. .

あるいは、本発明は、前記網欠陥判定処理後、濃信号部分の全周囲を一画素分消去する収縮処理を所定回数行うことにより網に相当する濃信号のみを消去させ、残った濃信号を欠陥とし、画像データに基づいて、その大きさ、位置等を判別することを特徴とする上述のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法である。   Alternatively, according to the present invention, after the mesh defect determination process, only the dark signal corresponding to the mesh is erased by performing a contraction process for erasing the entire periphery of the dark signal portion by one pixel, and the remaining dark signal is defective. In addition, the defect detection method for netted or lined glass according to any one of the above, wherein the size, position, and the like are determined based on image data.

あるいは、本発明は、前記ガラス板が連続したリボン状のガラス板であることを特徴とする上述のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法である。   Alternatively, the present invention is the defect detection method for netted or lined glass according to any one of the above, wherein the glass plate is a continuous ribbon-shaped glass plate.

本発明は、網入りまたは線入りガラスの網の模様種類に関係なく、同一の網欠陥判別アルゴリズムで確実に網部の変形や断線等の網欠陥を検出するとともに、さらに網欠陥以外のガラス中の欠陥についてもガラス欠陥判別アルゴリズムによって網部の画像を消去して、ガラス欠陥を確実に検出できる。   The present invention reliably detects a network defect such as a deformation of a mesh part or a breakage with the same network defect discrimination algorithm regardless of the pattern type of the mesh of the mesh or lined glass, and further in the glass other than the mesh defect. The glass defect can be reliably detected by erasing the image of the mesh portion with the glass defect discrimination algorithm.

本発明は、連続して搬送されるリボン状または所定の寸法に切断された網入りガラスまたは線入りガラス中に含まれる網線等の金属線を、まず網欠陥アルゴリズムによって断線や変形等の網欠陥を判別し、さらに引き続いて、該網線以外のガラス中に含まれる欠陥、例えば泡や、失透、タレ、砂利、異物等と呼ばれる未溶解による欠陥をガラス欠陥アルゴリズムによって判別するものである。   In the present invention, a metal wire such as a mesh wire or a mesh wire contained in a ribbon-like glass or wire glass cut into a predetermined size is conveyed first by a mesh defect algorithm. Determining defects, and subsequently, defects contained in the glass other than the mesh, for example, defects due to undissolved such as bubbles, devitrification, sagging, gravel, foreign matter, etc. are determined by the glass defect algorithm. .

本発明の構成は前記した通りであるが、搬送される網入りまたは線入りガラスの下方に面状の光源を設け、該光源の上方で網入りまたは線入りガラスを挟んで前記光源とは反対側には少なくとも1台のエリアカメラ(二次元カメラ)を配置し、該光源から拡散板を通して網入りまたは線入りガラスに光を透過させ、前記少なくとも1台のエリアカメラにより網入りまたは線入りガラスの全幅方向を撮像し、金属製の網線やガラス中の欠陥等の光を透過させない黒色部分、光を透過させる白色部分、光を一部だけ透過させる部分を灰色部分等として、例えば256階調の濃淡レベルの画像信号を得て、画像処理装置に取り込む。前記エリアカメラが複数台ある場合は、搬送されるガラス板の幅方向に一列に配置する。   The configuration of the present invention is as described above. However, a planar light source is provided below the meshed or lined glass to be conveyed, and opposite to the light source with the meshed or lined glass sandwiched above the light source. At least one area camera (two-dimensional camera) is arranged on the side, light is transmitted from the light source through the diffusion plate to the netted or lined glass, and the at least one area camera is used for the netted or lined glass. For example, the 256th floor has a black part that does not transmit light such as a metal mesh wire or a defect in glass, a white part that transmits light, a gray part that transmits only a part of light, etc. An image signal having a gray level is obtained and taken into an image processing apparatus. When there are a plurality of the area cameras, they are arranged in a row in the width direction of the glass plate to be conveyed.

画像処理装置は撮像した画像データを所定の輝度レベル(スライスレベル)を境界とし、スライスレベルよりも暗い画素部分を濃信号レベル(0)とし、スライスレベルよりも明るい画素部分を淡信号レベル(1)とする二値化処理を行う。   The image processing apparatus uses the captured image data as a boundary at a predetermined luminance level (slice level), a pixel portion darker than the slice level as a dark signal level (0), and a pixel portion brighter than the slice level as a light signal level (1). ) Is performed.

前記二値化データの濃信号で囲まれた画素である淡信号図形それぞれについて、まず、前記網欠陥判別のアルゴリズムにより網欠陥を判別する。   For each light signal figure that is a pixel surrounded by a dark signal of the binarized data, first, a network defect is determined by the network defect determination algorithm.

該網欠陥判別のアルゴリズムは、画像処理装置のラベリング処理機能により、淡信号図形の面積(画素総数)、該位置を算出し、網線に相当する濃信号で囲まれた淡信号図形(以下「ラベル)という)のそれぞれの面積が設定範囲内のときに、該淡信号図形を取り囲む濃信号に相当する網線または平行線部に断線なしと判定し、前記面積が設定範囲外のときに該位置に断線不良ありと判定する。   The algorithm for discriminating the mesh defect is to calculate the area (total number of pixels) and the position of the light signal graphic by the labeling processing function of the image processing apparatus, and light signal graphic (hereinafter “ When each area of the label) is within the set range, it is determined that there is no disconnection in the mesh or parallel line portion corresponding to the dark signal surrounding the light signal figure. It is determined that there is a disconnection failure at the position.

図2(b)、図4(b)に示したように、断線が1箇所でもあると、該断線部の画素が淡信号となるので、該断線部の両側の正方形、菱形、六角形の網の淡信号図形同士が連結した例えば瓢箪状となり、正規の網目内の約2倍の面積の形状となるため、該連結部に断線があることがわかる。   As shown in FIGS. 2 (b) and 4 (b), if there is even one disconnection, the pixel in the disconnection part becomes a light signal, so that the square, rhombus, hexagonal shape on both sides of the disconnection part Since the light signal figures of the mesh are connected to each other, for example, a hook shape is formed, and the shape has an area approximately twice that of the regular mesh, it can be seen that there is a disconnection at the connecting portion.

続いて、前記ガラス板が正方形、菱形、六角形の網入りガラスの場合、前記ラベリング処理により、前記淡信号図形のそれぞれについて、図8、図9の点線で示したように、演算した画素面積が設定範囲内で、かつX座標の最大値、最小値Xminの差(Xmax―Xmin)と、Y座標の最大値Ymax、最小値Yminの差(Ymax―Ymin)との比が設定範囲内にあるとき、該淡信号図形を取り囲む濃信号に相当する網線部に変形不良なしと判定し、図8、図9の実線に示したように、前記X座標の最大値Xmax’、最小値Xmin’の差(Xmax’―Xmin’)と、Y座標の最大値Ymax’、最小値Ymin’の差(Ymax’―Ymin’)との比が設定範囲外のとき該網線部に変形不良ありと判定する。   Subsequently, in the case where the glass plate is a square, rhombus, hexagonal meshed glass, the pixel area calculated by the labeling process as shown by the dotted lines in FIGS. 8 and 9 for each of the light signal figures. Is within the setting range, and the ratio of the difference between the maximum value Xmin and the minimum value Xmin (Xmax-Xmin) and the difference between the maximum value Ymax Ymax and the minimum value Ymin (Ymax-Ymin) is within the setting range. In some cases, it is determined that there is no deformation defect in the mesh line portion corresponding to the dark signal surrounding the light signal figure, and as shown by the solid lines in FIGS. 8 and 9, the maximum value Xmax ′ and the minimum value Xmin of the X coordinate. If the ratio of the difference between 'Xmax'-Xmin' and the difference between the maximum value Ymax 'and the minimum value Ymin' of the Y coordinate (Ymax'-Ymin ') is outside the set range, there is a deformation defect in the mesh portion Is determined.

図6に示したように、前記ガラスが複数本の平行な直線条からなる金属線入りガラスの場合に、2値化後の方形画像ブロックの淡信号の上辺及び下辺と、前記平行な金属線で囲まれたエリアの各淡信号図形について、前記ラベリング処理により、各淡信号図形の画素の面積が設定範囲内で、かつY座標を最小値から最大値まで変化させたとき、X座標の最大値と最小値が設定範囲内にあるとき、該淡信号図形を縦方向で挟む濃信号に相当する平行な直線部に変形不良なしと判断し、図10に示したように、前記X座標の最大値と最小値が設定範囲外のとき該直線部に変形不良ありと判定する。   As shown in FIG. 6, in the case where the glass is a glass containing metal lines composed of a plurality of parallel straight stripes, the upper side and the lower side of the light signal of the binarized rectangular image block, and the parallel metal lines For each light signal graphic in the area surrounded by, when the area of the pixel of each light signal graphic is within the setting range and the Y coordinate is changed from the minimum value to the maximum value by the labeling process, the maximum of the X coordinate When the value and the minimum value are within the set range, it is determined that there is no deformation defect in the parallel straight line portion corresponding to the dark signal sandwiching the light signal figure in the vertical direction, and as shown in FIG. When the maximum value and the minimum value are outside the set range, it is determined that the straight line portion has a deformation defect.

すなわち、図10のラベル番号1、4については、該ラベル番号の淡信号図形を挟む平行な金属線2、2・・に変形はみられないが、ラベル番号2とラベル番号3を仕切る金属線2’については、淡信号図形の下方側においてラベル番号2のX軸方向の間隔が広がっており、逆にラベル番号3のX座標の間隔が狭まった状態で、金属線2’の変形による欠陥3があることがわかる。   That is, for the label numbers 1 and 4 in FIG. 10, no deformation is seen in the parallel metal lines 2, 2.. As for 2 ′, the X-axis direction interval of label number 2 is widened on the lower side of the light signal figure, and conversely, the defect due to deformation of the metal line 2 ′ is reduced while the X-coordinate interval of label number 3 is narrowed. It can be seen that there are three.

前記ガラス板Gが複数本の平行な直線条からなる金属線入りガラスの場合には、平行な直線条からなる金属線2がガラス板Gの搬送方向に連なっており、幅方向には金属線は存在しないが、画像処理装置で処理する前記方形ブロック画像においては、ラベリング等の処理をする場合に、該ブロック画像の上辺と下辺には実際の濃信号の画素はなくとも、該ブロック画像の上辺と下辺を淡信号図形の画素の上端辺と下端辺と便宜上見なして、淡信号となる画素の面積や、X座標やY座標を算出できる。   In the case where the glass plate G is a glass containing a metal wire made up of a plurality of parallel straight strips, the metal wire 2 made up of parallel straight strips is continuous in the conveying direction of the glass plate G, and the metal wire in the width direction. However, in the rectangular block image processed by the image processing apparatus, when performing processing such as labeling, the upper and lower sides of the block image do not have actual dark signal pixels, but the block image The upper side and the lower side are regarded as the upper and lower sides of the pixel of the light signal figure for convenience, and the area of the pixel that becomes the light signal, the X coordinate, and the Y coordinate can be calculated.

このような網欠陥判別のアルゴリズムによって、網欠陥の判別処理後、ガラス欠陥判別のアルゴリズムによって、ガラス欠陥4の判別を行うが、従来のガラス欠陥4だけの判別を行うものと違い、本発明は網欠陥3の判別をした後に続けてガラス欠陥4の判別処理も行うものである。   After such a defect determination algorithm, after the defect determination process, the glass defect 4 is determined by the glass defect determination algorithm. Unlike the conventional method of determining only the glass defect 4, the present invention After the determination of the net defect 3, the determination process of the glass defect 4 is also performed.

すなわち、ガラス欠陥の判別アルゴリズムは、網欠陥の有無の判定後、網に相当する濃信号部分の全周囲を一画素分消去する収縮処理を所定回数行い、網に相当する濃信号のみを消去させて、網線の線幅の示す画素数より多い画素数からなる欠陥部分の幅は消去されないで残る。   In other words, the glass defect discrimination algorithm performs a predetermined number of contraction processes to erase the entire periphery of the dark signal portion corresponding to the mesh by one pixel after determining the presence or absence of the mesh defect, and erases only the dark signal corresponding to the mesh. Thus, the width of the defective portion having the number of pixels larger than the number of pixels indicated by the line width of the mesh line remains without being erased.

残った濃信号部分を欠陥と判断し、収縮回数から欠陥の大きさを逆算推定し、欠陥位置、大きさ等をパソコン等に出力記憶させ、後工程において欠陥部分を含む箇所のガラスを切断除去すれば良い。   The remaining dark signal part is judged as a defect, the size of the defect is estimated from the number of contractions, and the position and size of the defect are output and stored in a personal computer, etc., and the glass including the defective part is cut and removed in the subsequent process. Just do it.

尚、画像の収縮処理とは画像処理装置において周知の技術であるが、濃信号部分または淡信号部分の全周囲を一画素分消去するものである。また、検出できる欠陥の大きさは網線の線径より大であり、カメラの視野による画素の大きさ、および収縮処理回数により左右されるが、収縮処理する回数は画素の大きさ、網線の線径等により決定される。   The image shrinking process is a well-known technique in the image processing apparatus, and erases the entire periphery of the dark signal part or the light signal part by one pixel. In addition, the size of the defect that can be detected is larger than the wire diameter of the mesh line, and depends on the size of the pixel in the field of view of the camera and the number of contraction processes, but the number of contraction processes is the size of the pixel and the mesh line. It is determined by the wire diameter.

本発明のように、網欠陥の有無の判定後に、ガラス欠陥の判定を行うために、画像処理装置の収縮処理により網線を除去すれば、網模様のパターンを記憶し処理する等の複雑な処理が不要となり、網線の種類に係わらず網線を表す濃信号画像を除去でき、同一のガラス欠陥判別ロジックでガラス欠陥を判別処理できるので、演算処理速度も高速化できる。   As in the present invention, after the determination of the presence or absence of a mesh defect, if the mesh line is removed by the shrinking process of the image processing device in order to determine the glass defect, a complicated pattern such as storing and processing a mesh pattern is performed. No processing is required, and a dark signal image representing a net line can be removed regardless of the type of the net line, and the glass defect can be discriminated by the same glass defect discriminating logic, so that the calculation processing speed can be increased.

以上のようにして、網入りまたは線入りガラスGの金属線部分の断線や変形等の網欠陥3の検出、さらにはガラス欠陥4を検出するようにしたがこれに限るものではない。   As described above, the detection of the net defects 3 such as the breakage or deformation of the metal wire portion of the meshed or lined glass G and the glass defect 4 are detected, but the present invention is not limited to this.

カメラ11はエリアカメラでもラインカメラのいずれでも良い。ラインカメラを用いる場合には、網入りまたは線入りガラスGの幅方向に走査させ、網入りまたは線入りガラスGの搬送に合わせて取り込んだ信号をメモり内に記憶保持させ、2次元の画像データとすれば、前記エリアカメラの処理と同様に処理させることができる。   The camera 11 may be either an area camera or a line camera. In the case of using a line camera, scanning is performed in the width direction of the meshed or lined glass G, and a signal taken in accordance with the conveyance of the meshed or lined glass G is stored and held in a memory so that a two-dimensional image is obtained. If it is data, it can be processed similarly to the processing of the area camera.

尚、ラインカメラを使用した場合は同一分解能で走査幅が広くとれるのでカメラの台数を減らすことができ、また光源10についてもラインカメラの走査方向である網入りまたは線入りガラスGの幅方向に直線的に設ければ良いので、簡略化できる。   When a line camera is used, the scanning width can be widened with the same resolution, so that the number of cameras can be reduced, and the light source 10 is also scanned in the width direction of the net or lined glass G that is the scanning direction of the line camera. Since it may be provided linearly, it can be simplified.

前記二値化画像において、網線2の部分、網欠陥3とガラス欠陥4の部分を濃信号として収縮処理したが、画像処理装置12の処理機能に合わせて、収縮処理する前にネガポジ反転して網線2の部分、網欠陥3とガラス欠陥4の部分を淡信号とし、ガラスの欠陥のない正常部分を濃信号とした後に、収縮処理を行って網線2の部分、網欠陥3とガラス欠陥4の部分の淡信号部分を収縮させる方法でも良い。これは画像処理装置12の種類によっては収縮処理命令が淡信号部分を収縮させるようにしている場合もあり、適宜必要に応じて処理すればよい。   In the binarized image, the portion of the mesh line 2, the portion of the mesh defect 3 and the glass defect 4 is contracted as a dark signal, but in accordance with the processing function of the image processing device 12, the negative / positive inversion is performed before the contraction processing. The portion of the mesh line 2, the portion of the mesh defect 3 and the glass defect 4 is set as a light signal, and the normal portion without the glass defect is set as a dark signal. A method of contracting the light signal portion of the glass defect 4 portion may also be used. Depending on the type of the image processing apparatus 12, the contraction processing command may cause the light signal portion to contract, and may be processed as necessary.

前記説明で濃信号部あるいは淡信号部の収縮処理について記載したが、画像処理装置によっては濃信号部と淡信号部を逆にして膨張処理と表現する場合もある。以上のようにして検出された網欠陥3、ガラス欠陥4は、更に通常ラベリングと呼ばれる演算処理を行い、求められた網欠陥3とガラス欠陥4の位置と検出画素数等の情報をパソコン13等に出力記憶させ、収縮回数と画素の大きさから、実欠陥の大きさを推定し、後工程においてパソコン13等の指示制御に基づいて網欠陥3、ガラス欠陥4と判定された部分を含む箇所のガラスを切断除去し、あるいは各種管理情報に加工することもできる。   In the above description, the contraction processing of the dark signal portion or the light signal portion has been described. However, depending on the image processing apparatus, the dark signal portion and the light signal portion may be reversed and expressed as expansion processing. The network defect 3 and the glass defect 4 detected as described above are further subjected to an arithmetic processing called normal labeling, and the information such as the positions of the network defect 3 and the glass defect 4 and the number of detected pixels are obtained. The location including the portion determined to be the net defect 3 and the glass defect 4 based on the instruction control of the personal computer 13 or the like in the post-process, estimating the size of the actual defect from the number of contractions and the size of the pixel The glass can be cut and removed, or processed into various management information.

以下、本発明に係わる網入りまたは線入りガラスの欠陥検出方法、および装置について図面に基づき詳細に説明する。   Hereinafter, the defect detection method and apparatus for a meshed or lined glass according to the present invention will be described in detail with reference to the drawings.

図1に示すように、矢印方向に連続的に搬送されるリボン状の網入りまたは線入りガラスGの下方に網欠陥3、ガラス欠陥4を検出するためのボックスに収納された高周波蛍光灯などの光源10を配設し、網入りまたは線入りガラスGの上方には該ガラス板Gの全幅を撮像するために検査幅を網入りまたは線入りガラスGの全幅よりやや大きめとし、この検査幅を分割して2台のCCD方式のエリアカメラ11、11を幅方向に一列に配設した。   As shown in FIG. 1, a high-frequency fluorescent lamp housed in a box for detecting a net defect 3 and a glass defect 4 below a ribbon-like net or lined glass G that is continuously conveyed in the direction of the arrow. In order to image the entire width of the glass plate G above the net or lined glass G, the inspection width is slightly larger than the total width of the net or lined glass G. The two CCD area cameras 11 and 11 were arranged in a line in the width direction.

網入りまたは線入りガラスGの下方に設けた光源10によって光を照射された網入りまたは線入りガラスGを2台のエリアカメラ11、11で撮像し、画像信号を画像処理装置12に入力される。画像処理装置12に入力された256階調の濃淡信号は、設定したスライスレベルによって2値化処理され、濃信号(0)、または淡信号(1)のいずれかになる。   The meshed or lined glass G irradiated with light by the light source 10 provided below the meshed or lined glass G is imaged by the two area cameras 11 and 11, and an image signal is input to the image processing device 12. The The 256 grayscale signal input to the image processing device 12 is binarized according to the set slice level, and becomes either the dark signal (0) or the light signal (1).

すなわち、2値化処理については各画素毎にその輝度の信号レベルが前記所定のスライスレベルより大きい(明るい)かどうかが比較され、大きい場合は淡信号、小さい場合は濃信号として処理され、図3(b)、図5(b)、図7(b)に示すように網線2とガラス欠陥4のそれぞれの部分は黒く塗りつぶした濃信号として表示される。尚、画像処理装置によって、濃淡信号を逆に処理する場合がある。   That is, regarding the binarization processing, whether or not the signal level of the luminance is larger (brighter) than each of the predetermined slice levels is compared for each pixel, and is processed as a light signal when large and as a dark signal when small. As shown in 3 (b), FIG. 5 (b), and FIG. 7 (b), each portion of the mesh line 2 and the glass defect 4 is displayed as a dark signal filled in black. In some cases, the grayscale signal is processed in reverse by the image processing apparatus.

[実施例1]図2(a)に示したような正方形の網形状を有する網入りガラスGの欠陥検出の例である。CCDカメラで撮像した図2(a)の画像を二値化した画像が図2(b)であり、画像処理装置のラベリング処理機能により、四角で囲まれた符号1〜15が示す淡信号図形の面積(淡信号部の画素総数)、該位置を算出する。   [Embodiment 1] This is an example of detecting defects in a meshed glass G having a square mesh shape as shown in FIG. FIG. 2B is an image obtained by binarizing the image of FIG. 2A captured by the CCD camera. The light signal figure indicated by reference numerals 1 to 15 surrounded by a square by the labeling processing function of the image processing apparatus. Area (total number of pixels in the light signal portion) and the position are calculated.

図2(b)に示すように、ラベル番号1〜9、ラベル番号11〜15については、該ラベルで示された淡信号を取り囲む網線内に断線が無いため、網部の一区画毎にラベルが設けられているが、ラベル番号10については、2つの区画を仕切る網線部に断線部3を有するため、2つの区画の淡信号部分が断線部分で連結して、2区画分併せて一つのラベルとみなされ、他のラベルの面積の2倍の面積になっている。逆に言えば、面積が2倍になっていることにより、該ラベルの中間部に網線の断線の網欠陥があることがわかる。また、該ラベル位置情報により網欠陥位置を特定可能である。   As shown in FIG. 2 (b), for label numbers 1 to 9 and label numbers 11 to 15, there is no break in the mesh line surrounding the light signal indicated by the label. Although the label is provided, the label number 10 has the disconnection part 3 in the mesh part that divides the two sections, so that the light signal parts of the two sections are connected by the disconnection part, and the two sections are combined. It is regarded as one label and has an area twice that of the other label. Conversely, when the area is doubled, it can be seen that there is a net defect in the middle of the label. Further, it is possible to specify the position of the net defect by the label position information.

続いて、図2(b)に示す状態で、ラベル番号1〜9、ラベル番号11〜15については、淡信号図形のX座標の最大値、最小値の差12.25〜12.5mmと、Y座標の最大値、最小値の差13.25〜14mmの比1.1〜1.05が、例えば1.0±20%の設定範囲内にあるので、該淡信号図形を取り囲む濃信号に相当する網線部に欠陥が無いと判定した。     Subsequently, in the state shown in FIG. 2B, for the label numbers 1 to 9 and the label numbers 11 to 15, the difference between the maximum value and the minimum value of the X coordinate of the light signal figure is 12.25 to 12.5 mm. Since the ratio 1.1 to 1.05 of the difference between the maximum value and the minimum value of the Y coordinate 13.25 to 14 mm is within a setting range of, for example, 1.0 ± 20%, the dark signal surrounding the light signal figure is obtained. It was determined that there was no defect in the corresponding mesh part.

また、ラベル番号10については、前記X座標の最大値、最小値の差25mmと、Y座標の最大値、最小値の差14mmとの比1.8が、例えば1.0±20%の設定範囲外であるので、該網線部に網線部分の欠陥ありと判定した。   For label number 10, the ratio 1.8 of the difference between the maximum and minimum values of the X coordinate of 25 mm and the difference between the maximum and minimum values of the Y coordinate of 14 mm is set to 1.0 ± 20%, for example. Since it was out of the range, it was determined that the mesh line portion had a defect in the mesh line portion.

網欠陥の判別処理後、前記2値化画像に対してガラス欠陥の判別処理を行う。すなわち、図2(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、網線部はすべて淡信号化となり、濃信号の画素が残っていれば、該部分がガラス欠陥ということになるが、図2(c)に示すように、実施例1についてはすべて淡信号となり、ガラス欠陥が存在しないことが証明できた。   After the defect determination process, a glass defect determination process is performed on the binarized image. That is, for the dark signal pixels including all the mesh lines of the binarized image of FIG. 2B, the contraction processing for converting the dark signal pixels at the boundary between the dark signal pixels and the light signal pixels to light signals. As shown in FIG. 2 (c), when the above process is performed twice, all of the mesh line portions are lightened and if dark signal pixels remain, the portion is a glass defect. For all of the samples, all signals were light signals, and it was proved that there was no glass defect.

該網入りガラスの良不良の判定は、網欠陥、ガラス欠陥のすべての検査が完了した段階で、総合的に判断する。   The determination of whether the meshed glass is good or bad is comprehensively made at the stage where all inspections for mesh defects and glass defects have been completed.

[実施例2]図3(a)に示したような正方形の網形状を有する網入りガラスG内にガラス欠陥4を有している場合の欠陥検出の例である。CCDカメラで撮像した図3(a)の画像を二値化した画像が図3(b)であり、画像処理装置のラベリング処理機能により、四角形の各網目について淡信号図形の面積(淡信号部の画素総数)、該位置が算出される。   [Embodiment 2] This is an example of defect detection in the case where the glass defect 4 is present in the netted glass G having a square net shape as shown in FIG. 3B is an image obtained by binarizing the image of FIG. 3A captured by the CCD camera, and the area of the light signal figure (light signal portion) for each square mesh by the labeling function of the image processing apparatus. The total number of pixels), and the position is calculated.

実施例1と同様に、まず網欠陥検出のアルゴリズムによって網欠陥を検出する手順を行った。すなわち、各ラベルの淡信号部の画素の面積を算出し設定範囲と比較することによって、断線による隣接する網目との連結は無いことがわかった。   In the same manner as in Example 1, first, a procedure for detecting a network defect using a network defect detection algorithm was performed. That is, by calculating the area of the pixel in the light signal portion of each label and comparing it with the set range, it was found that there was no connection with the adjacent mesh due to disconnection.

また、該各淡信号図形のX座標の最大値最小値の差12.25〜12.5mmと、Y座標の最大値最小値の差13.25〜13.75mmとの比1.1〜1.05が設定範囲、例えば1.0±20%の内にあるかどうかを調べたところ、許容範囲内であったので、各淡信号図形を取り囲む濃信号に相当する網線部に変形不良がないことが証明できた。   Further, the ratio of the difference between the maximum value and minimum value of the X coordinate of 12.25 to 12.5 mm of each light signal graphic and the difference of the maximum value and minimum value of the Y coordinate of 13.25 to 13.75 mm is 1.1 to 1. .05 is within a set range, for example, 1.0 ± 20%. As a result, it is within the allowable range, so there is a deformation defect in the net line portion corresponding to the dark signal surrounding each light signal figure. I proved it was not.

網欠陥の判別処理後、引き続いて、ガラス欠陥の判別処理を行う。すなわち、図3(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、網線部はすべて淡信号化し、図3(c)に示したように、ガラス欠陥に相当する2箇所の濃信号の画素4、4だけが残り、該2箇所の濃信号によりガラス欠陥を検出することができた。   Subsequent to the defect determination process, a glass defect determination process is performed. That is, for the dark signal pixels including all the mesh lines of the binarized image of FIG. 3B, the contraction processing for converting the dark signal pixels at the boundary between the dark signal pixels and the light signal pixels to light signals. 2 is performed, all of the net lines are lightened. As shown in FIG. 3C, only the two dark signal pixels 4 and 4 corresponding to the glass defects remain, and the two Glass defects could be detected by the dark signal.

[実施例3]図4(a)に示したような菱形の網形状を有する網入りガラスG内に断線の網欠陥3を有している場合の欠陥検出の例である。CCDカメラで撮像した図4(a)の画像を二値化した画像が図4(b)であり、画像処理装置のラベリング処理機能により、四角で囲まれた符号1〜3が示す淡信号図形の面積(淡信号部の画素総数)、該位置を算出する。   [Embodiment 3] This is an example of defect detection in the case where the broken glass defect 3 is present in the meshed glass G having a rhombic mesh shape as shown in FIG. 4B is an image obtained by binarizing the image of FIG. 4A captured by the CCD camera. The light signal figure indicated by reference numerals 1 to 3 surrounded by a square by the labeling processing function of the image processing apparatus. Area (total number of pixels in the light signal portion) and the position are calculated.

図4(b)に示すように、ラベル1、3については、該ラベルで示された淡信号を取り囲む網線部に断線が無いため、網部の一区画毎にラベルが設けられているが、ラベル2については、2つの区画を仕切る斜めの網線部に断線部3を有するため、2つの区画の淡信号部分が断線部分で連結して、2区画分併せて一つの淡信号図形のラベルとみなされ、他のラベル1、3の淡信号部の面積の2倍の面積になっている。逆に言えば、面積が2倍になっていることより、該ラベルの中間部に網線の断線の網欠陥があることがわかり、また、該ラベル位置情報により網欠陥位置を特定可能である。   As shown in FIG. 4B, the labels 1 and 3 are provided with labels for each section of the mesh portion because there is no break in the mesh portion surrounding the light signal indicated by the label. In the case of the label 2, since the broken line 3 is provided in the diagonal mesh part that divides the two sections, the light signal portions of the two sections are connected by the broken portion, and one light signal figure is combined for the two sections. It is regarded as a label and has an area twice that of the light signal portion of the other labels 1 and 3. In other words, since the area is doubled, it can be seen that there is a mesh defect of a mesh break in the middle part of the label, and the mesh defect position can be specified by the label position information. .

続いて、図4(b)に示す状態で、ラベル1、3については、淡信号図形のX座標の最大値、最小値の差27.00〜27.25mmと、Y座標の最大値、最小値の差27.25〜27.75mmの比1.0〜1.03が、例えば1.0±20%の設定範囲内にあるので、該淡信号図形を取り囲む濃信号に相当する網線部に欠陥が無いと判定した。   Next, in the state shown in FIG. 4B, for labels 1 and 3, the difference between the maximum value and the minimum value of the X coordinate of the light signal graphic is 27.00 to 27.25 mm, and the maximum value and the minimum value of the Y coordinate. Since the ratio 1.0 to 1.03 of the value difference 27.25 to 27.75 mm is within the setting range of, for example, 1.0 ± 20%, the halftone line portion corresponding to the dark signal surrounding the light signal figure It was determined that there was no defect.

また、ラベル2については、前記X座標の最大値、最小値の差41.5mmと、Y座標の最大値、最小値の差41.75mmとの比1.01が、例えば1.0±20%の設定範囲外であるが、該部にはすでに断線となる網欠陥3の存在が確認されているので、該ラベル2の網線部については網変形の検出結果の如何に係わらず網欠陥があることは明白である。   For label 2, the ratio 1.01 between the difference between the maximum value and the minimum value of the X coordinate of 41.5 mm and the difference between the maximum value of the Y coordinate and the minimum value of 41.75 mm is 1.0 ± 20, for example. % Is outside the set range, but the presence of the network defect 3 that is broken in the portion has already been confirmed. Therefore, the network defect of the network 2 of the label 2 is not affected by the detection result of the mesh deformation. It is clear that there is.

網欠陥の判別処理後、前記2値化画像に対してガラス欠陥の判別処理については、図4(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、網線部はすべて淡信号化となり、図4(c)に示すように、濃信号の画素が残っていないので、ガラス欠陥が存在しないことがわかった。   After the halftone defect discrimination processing, the glass defect discrimination processing for the binarized image is performed with respect to the dark signal pixels including all the net lines of the binarized image in FIG. When the contraction process for converting the dark signal pixel at the boundary between the pixel and the light signal pixel to light signal is performed twice, all of the net lines are light signaled. As shown in FIG. Since there was no pixel left, it was found that there was no glass defect.

[実施例4]図5(a)に示したような菱形の網形状を有する網入りガラスG内にガラス欠陥4を有している場合の欠陥検出の例である。CCDカメラで撮像した図5(a)の画像を二値化した画像が図5(b)であり、画像処理装置のラベリング処理機能により、菱形の各網目について淡信号図形の面積(淡信号部の画素総数)、該位置が算出される。   [Embodiment 4] This is an example of defect detection in the case where a glass defect 4 is present in a meshed glass G having a rhombus mesh shape as shown in FIG. An image obtained by binarizing the image of FIG. 5A captured by the CCD camera is FIG. 5B, and the area of the light signal figure (light signal portion) for each rhombus mesh by the labeling processing function of the image processing apparatus. The total number of pixels), and the position is calculated.

実施例2と同様に、まず網欠陥検出のアルゴリズムによって網欠陥を検出する手順を行った。すなわち、各ラベルの淡信号部の画素の面積を算出し設定範囲と比較することによって、断線による隣接する網目との連結は無いことがわかった。   In the same manner as in Example 2, first, a procedure for detecting a network defect using a network defect detection algorithm was performed. That is, by calculating the area of the pixel in the light signal portion of each label and comparing it with the set range, it was found that there was no connection with the adjacent mesh due to disconnection.

また、該各淡信号のX座標の最大値、最小値の差27.00〜27.25mmと、Y座標の最大値、最小値の差27.25〜27.75mmとの比1.0〜1.03が設定範囲、例えば1.0±20%の内にあるかどうかを調べたところ、許容範囲内であったので、各淡信号図形を取り囲む濃信号に相当する網線部に変形不良がないことが証明できた。   Also, the ratio of the difference between the maximum value and the minimum value of 27.00 to 27.25 mm of the X coordinate of each light signal and the difference of 27.25 to 27.75 mm of the maximum value and the minimum value of the Y coordinate from 1.0 to As a result of examining whether 1.03 is within a set range, for example, 1.0 ± 20%, it was within the allowable range, so the deformation of the shaded line portion corresponding to the dark signal surrounding each light signal figure is poor. Prove that there is no.

網欠陥の判別処理後、引き続いて、ガラス欠陥の判別処理を行う。すなわち、図5(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、網線部はすべて淡信号化し、図5(c)に示したように、ガラス欠陥に相当する2箇所の濃信号の画素4、4だけが残り、該2箇所の濃信号によりガラス欠陥を検出することができた。   Subsequent to the defect determination process, a glass defect determination process is performed. That is, for the dark signal pixels including all the mesh lines of the binarized image in FIG. 5B, the contraction processing for converting the dark signal pixels at the boundary between the dark signal pixels and the light signal pixels to light signals. 2 is performed, all of the net lines are lightened. As shown in FIG. 5C, only two dark signal pixels 4 and 4 corresponding to glass defects remain, and the two Glass defects could be detected by the dark signal.

網入りガラスの良不良の判定は、網欠陥、ガラス欠陥のすべてを検査し終わった段階で、総合的に判断する。   The determination of the quality of the glass with a mesh is made comprehensively at the stage where all the mesh defects and glass defects have been inspected.

[実施例5]図6(a)に示したような平行な直線状の線入りガラスG内の線状部に断線3を有している場合の欠陥検出の例である。CCDカメラで撮像した図6(a)の画像を二値化した画像が図6(b)であり、該二値化した画像に対して前述の実施例1と同様に画像処理装置でラベリング処理を行う。   [Embodiment 5] This is an example of defect detection in the case where the wire portion in the parallel straight line-containing glass G as shown in FIG. An image obtained by binarizing the image of FIG. 6A taken by the CCD camera is FIG. 6B, and the binarized image is labeled by the image processing apparatus in the same manner as in the first embodiment. I do.

本実施例において、ラベリング処理するにあたり、該二値化画像ブロックの上辺と下辺には実際の金属線条に相当する濃信号の画素はないが、該画像ブロック内の淡信号の上辺及び下辺と、前記平行な金属線による濃信号で囲まれた長方形エリアの各淡信号図形について、まず網欠陥検出のアルゴリズムによって網欠陥3を検出する手順を行った。   In the present embodiment, when performing the labeling process, there are no dark signal pixels corresponding to the actual metal stripes on the upper and lower sides of the binarized image block, but the upper and lower sides of the light signal in the image block For each light signal figure in a rectangular area surrounded by a dark signal by the parallel metal lines, a procedure for detecting a net defect 3 by a network defect detection algorithm was first performed.

図6(b)に示すように、ラベル1、2については、該ラベルで示された淡信号を取り囲む網線内に断線が無いため、網部の一区画毎にラベルが設けられているが、ラベル3については、2つの区画を仕切る網線部に断線部3を有するため、2つの区画の淡信号部分が断線部分で連結して、2区画分併せて一つのラベルとみなされ、他のラベルの面積の2倍の面積になっている。前述した実施例と同様に、面積が2倍になっていることより、該ラベルの中間部に網線3があることがわかる。また、該ラベル3のX、Y座標による位置情報により網欠陥位置を特定可能である。   As shown in FIG. 6B, the labels 1 and 2 are provided with a label for each section of the mesh part because there is no break in the mesh line surrounding the light signal indicated by the label. As for the label 3, since the broken line 3 is provided in the mesh part that divides the two sections, the light signal portions of the two sections are connected by the broken section, and the two sections are regarded as one label. The area of the label is twice as large. Similar to the above-described embodiment, the area is doubled, and it can be seen that there is a mesh 3 in the middle of the label. Further, the position of the net defect can be specified by the position information of the label 3 based on the X and Y coordinates.

続いて、図6(b)に示す二値化画像状態の各淡信号図形について、Y座標の最小値から最大値間を所定のピッチでX座標の最大値と最小値を算出して、そのX座標の差を算出した結果、ラベル1、2については、該ラベルを挟む平行な金属線2、2・・には変形がないので、X座標の間隔はほぼ一定で許容範囲内にある。一方、ラベル3については、金属線の断線による欠陥があるので、変形の欠陥を検出する必要はないが、あえて網欠陥の検出のアルゴリズムによって変形の検出を試みたとしても、淡信号部のX座標の幅がほぼ2倍となるため、該部に網欠陥があることがわかる。   Subsequently, for each light signal figure in the binarized image state shown in FIG. 6B, the maximum value and the minimum value of the X coordinate are calculated at a predetermined pitch from the minimum value of the Y coordinate, As a result of calculating the difference in the X coordinate, since the labels 1 and 2 are not deformed in the parallel metal lines 2, 2... Sandwiching the labels, the interval between the X coordinates is almost constant and within the allowable range. On the other hand, since there is a defect due to the disconnection of the metal wire for the label 3, it is not necessary to detect the deformation defect. However, even if an attempt is made to detect the deformation by the network defect detection algorithm, the light signal portion X Since the width of the coordinates is almost doubled, it can be seen that there is a net defect in the portion.

網欠陥3の判別処理後、前記2値化画像に対してガラス欠陥の判別処理については、図6(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、網線部はすべて淡信号化となり、濃信号の画素が残らないので、ガラス欠陥が存在しないことがわかった。   After the discrimination process for the halftone defect 3, regarding the discrimination process for the glass defect with respect to the binarized image, the dark signal is obtained for the dark signal pixels including all the net lines of the binarized image in FIG. When the contraction process that darkens the dark signal pixel at the boundary between the pixel and the light signal pixel is performed twice, all the net lines are lightened and no dark signal pixels remain. Was found to be absent.

[実施例6]図7(a)に示したような平行な直線状の線入りガラスG内の線状部に断線3を有している場合の欠陥検出の例である。CCDカメラで撮像した図7(a)の該二値化した画像に対して前述の実施例5と同様に画像処理装置でラベリング処理を行う。   [Embodiment 6] This is an example of defect detection in the case where the wire breakage 3 is present in the wire portion in the parallel straight lined glass G as shown in FIG. The binarized image of FIG. 7A taken by the CCD camera is subjected to a labeling process by the image processing apparatus in the same manner as in the fifth embodiment.

実施例5と同様に、該画像ブロック内の淡信号の上辺及び下辺と、前記平行な金属線による濃信号で囲まれた長方形エリアの各淡信号図形について、まず網欠陥検出のアルゴリズムによって網欠陥3を検出する手順を行ったところ、各ラベルの淡信号部の面積はいずれも設定範囲内にあるため、金属線2の断線が無いことがわかった。   As in the fifth embodiment, the upper and lower sides of the light signal in the image block and each light signal figure in the rectangular area surrounded by the dark signal by the parallel metal lines are first subjected to a network defect by a network defect detection algorithm. When the procedure for detecting 3 was performed, it was found that the area of the light signal portion of each label was within the set range, and therefore there was no disconnection of the metal wire 2.

次に、実施例2と同様に、まず網欠陥検出の平行な金属線の場合のアルゴリズムによって金属線の変形を検出する手順を行った。すなわち、Y座標の最小値から最大値間を所定のピッチでX座標の最大値と最小値を算出して、そのX座標の差を算出した結果、すべてのラベルのX軸方向の幅はほぼ一定で許容範囲内にあるので、各淡信号部を挟む平行な金属線2、2・・には変形がないことがわかった。   Next, in the same manner as in Example 2, first, a procedure for detecting deformation of a metal wire by an algorithm in the case of a parallel metal wire for detecting a network defect was performed. That is, the maximum and minimum values of the X coordinate are calculated from the minimum value of the Y coordinate at a predetermined pitch, and the difference between the X coordinates is calculated. As a result, the widths of all labels in the X-axis direction are almost equal. Since it is constant and within the allowable range, it was found that the parallel metal wires 2, 2.

網欠陥の判別処理後、引き続いて、ガラス欠陥の判別処理を行う。すなわち、図7(b)の2値化画像のすべての網線を含む濃信号の画素に対し、濃信号の画素と淡信号の画素の境界部の濃信号の画素を淡信号化する収縮処理を2回行った処、金属線はすべての淡信号化し、図7(c)に示したように、ガラス欠陥に相当する2箇所の濃信号の画素4、4だけが残り、該2箇所の濃信号によりガラス欠陥を検出することができた。   Subsequent to the defect determination process, a glass defect determination process is performed. That is, for the dark signal pixels including all the mesh lines of the binarized image of FIG. 7B, the contraction processing for converting the dark signal pixels at the boundary between the dark signal pixels and the light signal pixels to light signals. 2 is performed, all of the metal lines become light signals, and as shown in FIG. 7C, only two dark signal pixels 4 and 4 corresponding to glass defects remain, and the two Glass defects could be detected by the dark signal.

最終的に、網入りガラスの良不良の判定は、網欠陥、ガラス欠陥のすべてを検査し終わった段階で、総合的に判断すればよい。   Finally, whether the meshed glass is good or bad can be determined comprehensively at the stage where all the mesh defects and glass defects have been inspected.

本発明の検査装置の要部概略図Schematic diagram of the main part of the inspection apparatus of the present invention (a)〜(c)は、それぞれ正方形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例1を示す図。(A)-(c) is a figure which shows Example 1 of the image which shrunk and erased the original image of a square-shaped glass with a net, a binarized image, and a mesh line, respectively. (a)〜(c)は、それぞれ正方形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例2を示す図。(A)-(c) is a figure which shows Example 2 of the image which shrunk and erased the original image of a square-shaped glass with a mesh, a binarized image, and a mesh line, respectively. (a)〜(c)は、それぞれ菱形形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例3を示す図。(A)-(c) is a figure which shows Example 3 of the image which shrunk and erased the original image of a rhombus-shaped meshed glass, a binarized image, and a mesh line, respectively. (a)〜(c)は、それぞれ菱形形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例4を示す図。(A)-(c) is a figure which shows Example 4 of the image which shrunk and erased the original image of a rhombus-shaped meshed glass, a binarized image, and a mesh line, respectively. (a)〜(c)は、それぞれ平行線形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例5を示す図。(A)-(c) is a figure which shows Example 5 of the image which shrunk and erase | eliminated the original image of a glass with a parallel line shape, a binarized image, and a mesh line, respectively. (a)〜(c)は、それぞれ平行線形状の網入りガラスの原画像と、2値化画像、及び網線を収縮消去した画像の実施例6を示す図。(A)-(c) is a figure which shows Example 6 of the image which shrunk and erased the original image of the parallel-line-shaped meshed glass, the binarized image, and the mesh lines. 正方形状の網入りガラスの網形状線の変形した網欠陥を示す図。The figure which shows the net | network defect which the net shape line | wire of the square netted glass deform | transformed. 菱形形状の網入りガラスの網形状の変形した網欠陥を示す図。The figure which shows the net | network defect which the net shape deform | transformed of the rhombus-shaped netted glass. 平行な金属線入りガラスの線形状の変形した網欠陥を示す図。The figure which shows the net | network defect which the linear shape of the glass containing a parallel metal wire deform | transformed.

符号の説明Explanation of symbols

G 網入りまたは線入りガラス
2、2’ 網線
3 網欠陥
4 ガラス欠陥
5 ラベル
10 光源
11 カメラ
12 画像処理装置
13 パソコン
G Glass or lined glass 2, 2 'network line 3 Network defect 4 Glass defect 5 Label 10 Light source 11 Camera 12 Image processing device 13 Personal computer

Claims (6)

連続して搬送される網入りまたは線入りガラスに光源からの光を透過させ、該ガラス板を挟んで光源とは反対側に設けた少なくとも1台のエリアカメラにより前記網入りまたは線入りガラスを撮像し、得られた濃淡の信号により網入りまたは線入りガラスの欠陥を検出する方法において、撮像した画像データを二値化処理後、各淡信号図形について、面積、位置座標を算出するラベリング処理により、該淡信号図形のそれぞれの面積が設定範囲内のときに、該淡信号図形を取り囲む濃信号に相当する網線または挟む平行線部に断線なしと判定し、前記面積が設定範囲外のときに該網線又は線部に断線有りと判定することを特徴とする網入りまたは線入りガラスの欠陥検出方法。   Light from a light source is transmitted through a meshed or lined glass that is continuously conveyed, and the meshed or lined glass is obtained by at least one area camera provided on the opposite side of the light source across the glass plate. In the method of detecting defects in a halftone glass or lined glass using the obtained grayscale signal, the labeling process for calculating the area and position coordinates for each light signal figure after binarizing the captured image data Thus, when each area of the light signal graphic is within the set range, it is determined that there is no disconnection in the mesh lines or the parallel lines sandwiched between the dark signals surrounding the light signal graphic, and the area is out of the set range. A method for detecting a defect in a meshed or lined glass, characterized in that it is sometimes determined that there is a break in the meshed line or line part. 前記ガラスが網入りガラスの場合、前記ラベリング処理により、前記淡信号図形のそれぞれについて、演算した画素面積が設定範囲内で、かつX座標の最大値、最小値の差と、Y座標の最大値、最小値の差との比が設定範囲内にあるとき、該淡信号図形を取り囲む濃信号に相当する網線部に変形不良なしと判定し、前記X座標の最大値、最小値の差と、Y座標の最大値、最小値の差との比が設定範囲外のとき該網線部に変形不良ありと判定することを特徴とする請求項1に記載の網入りまたは線入りガラスの欠陥検出方法。   When the glass is a meshed glass, the labeling process is performed so that the calculated pixel area is within a setting range for each of the light signal figures, and the difference between the maximum value of the X coordinate, the minimum value, and the maximum value of the Y coordinate. When the ratio with the difference between the minimum values is within the setting range, it is determined that there is no deformation defect in the mesh portion corresponding to the dark signal surrounding the light signal figure, and the difference between the maximum value and the minimum value of the X coordinate The defect of the meshed or lined glass according to claim 1, wherein when the ratio between the difference between the maximum value and the minimum value of the Y coordinate is outside the set range, the meshed line portion is determined to have a deformation defect. Detection method. 前記ガラスが複数本の平行な直線条からなる金属線入りガラスの場合に、2値化後の方形画像ブロックの淡信号の上辺及び下辺と、前記平行な金属線で囲まれたエリアの各淡信号図形について、前記ラベリング処理により、各淡信号図形の画素の面積が設定範囲内であって、かつY座標を最小値から最大値まで変化させたとき、X座標の最大値と最小値が設定範囲内にあるとき、該淡信号図形を縦方向で挟む濃信号に相当する平行な直線部に変形不良なしと判断し、前記X座標の最大値と最小値が設定範囲外のとき該直線部に変形不良ありと判定することを特徴とする請求項1に記載の網入りまたは線入りガラスの欠陥検出方法。   In the case where the glass is a glass containing metal lines made of a plurality of parallel straight stripes, each light of the upper and lower sides of the light signal of the binarized rectangular image block and the area surrounded by the parallel metal lines For signal graphics, the maximum and minimum values of the X coordinate are set when the pixel area of each light signal graphic is within the setting range and the Y coordinate is changed from the minimum value to the maximum value by the labeling process. When it is within the range, it is determined that there is no deformation defect in the parallel straight line portion corresponding to the dark signal sandwiching the light signal figure in the vertical direction, and the straight line portion when the maximum value and the minimum value of the X coordinate are outside the set range 2. The method for detecting defects in netted or lined glass according to claim 1, wherein it is determined that there is a deformation defect. 前記エリアカメラに代えて、搬送される網入りまたは線入りガラスの搬送方向と直交する幅方向に走査するラインカメラを少なくとも1台配置し、該ラインカメラで網入りまたは線入りガラスの搬送速度に同期させて取り込んだ信号を記憶保持させて2次元の画像データとして演算処理することを特徴とする請求項1乃至3のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法。   In place of the area camera, at least one line camera that scans in the width direction perpendicular to the conveyance direction of the mesh or lined glass to be conveyed is arranged, and the line camera is used to increase the conveyance speed of the mesh or lined glass. 4. A method for detecting defects in meshed or lined glass according to any one of claims 1 to 3, wherein a signal taken in synchronism is stored and held and processed as two-dimensional image data. 前記網欠陥判定処理後、濃信号部分の全周囲を一画素分消去する収縮処理を所定回数行うことにより網に相当する濃信号のみを消去させ、残った濃信号を欠陥とし、画像データに基づいて、その大きさ、位置等を判別することを特徴とする請求項1乃至4のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法。   After the halftone defect determination process, only the dark signal corresponding to the halftone is erased by performing a contraction process for erasing the entire periphery of the dark signal portion for one pixel, and the remaining dark signal is regarded as a defect, based on the image data. 5. The method for detecting a defect in a meshed or lined glass according to any one of claims 1 to 4, wherein the size, position, etc. are discriminated. 前記ガラス板が連続したリボン状のガラス板であることを特徴とする請求項1乃至5のいずれかに記載の網入りまたは線入りガラスの欠陥検出方法。   6. The method for detecting defects in netted or lined glass according to claim 1, wherein the glass plate is a continuous ribbon-shaped glass plate.
JP2008209621A 2008-08-18 2008-08-18 Defect detection method for netted or lined glass Expired - Fee Related JP5136277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209621A JP5136277B2 (en) 2008-08-18 2008-08-18 Defect detection method for netted or lined glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209621A JP5136277B2 (en) 2008-08-18 2008-08-18 Defect detection method for netted or lined glass

Publications (2)

Publication Number Publication Date
JP2010044010A true JP2010044010A (en) 2010-02-25
JP5136277B2 JP5136277B2 (en) 2013-02-06

Family

ID=42015504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209621A Expired - Fee Related JP5136277B2 (en) 2008-08-18 2008-08-18 Defect detection method for netted or lined glass

Country Status (1)

Country Link
JP (1) JP5136277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226967A (en) * 2010-04-22 2011-11-10 Furukawa Battery Co Ltd Method for determining abnormality of lead-acid storage battery lattice body casting device
JP2020071094A (en) * 2018-10-30 2020-05-07 株式会社Ihiエアロスペース Mesh structure mesh inspection method and mesh structure mesh inspection device
CN115356355A (en) * 2022-10-21 2022-11-18 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection blanking conveying line and detection method for vacuum laminated glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108799A (en) * 1991-10-15 1993-04-30 Toshiba Corp Wiring pattern inspection device
JPH06347410A (en) * 1993-06-04 1994-12-22 Asahi Glass Co Ltd Defect detective method and device for wired plate glass
JPH07190956A (en) * 1993-12-27 1995-07-28 Nippon Sheet Glass Co Ltd Method and apparatus for detecting defect in structure and/or pattern of material
JPH08285788A (en) * 1995-04-13 1996-11-01 Nippon Sheet Glass Co Ltd Method and apparatus for detecting defect of object including continuous structure
JPH1114334A (en) * 1997-06-25 1999-01-22 Central Glass Co Ltd Defect detecting method and device of netset or wired glass
JPH11150169A (en) * 1997-11-17 1999-06-02 Nec Corp Circuit inspection method and device
JP2006047078A (en) * 2004-08-04 2006-02-16 Central Glass Co Ltd Method for inspecting printing defect and/or printing contamination of transparent plate body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108799A (en) * 1991-10-15 1993-04-30 Toshiba Corp Wiring pattern inspection device
JPH06347410A (en) * 1993-06-04 1994-12-22 Asahi Glass Co Ltd Defect detective method and device for wired plate glass
JPH07190956A (en) * 1993-12-27 1995-07-28 Nippon Sheet Glass Co Ltd Method and apparatus for detecting defect in structure and/or pattern of material
JPH08285788A (en) * 1995-04-13 1996-11-01 Nippon Sheet Glass Co Ltd Method and apparatus for detecting defect of object including continuous structure
JPH1114334A (en) * 1997-06-25 1999-01-22 Central Glass Co Ltd Defect detecting method and device of netset or wired glass
JPH11150169A (en) * 1997-11-17 1999-06-02 Nec Corp Circuit inspection method and device
JP2006047078A (en) * 2004-08-04 2006-02-16 Central Glass Co Ltd Method for inspecting printing defect and/or printing contamination of transparent plate body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226967A (en) * 2010-04-22 2011-11-10 Furukawa Battery Co Ltd Method for determining abnormality of lead-acid storage battery lattice body casting device
JP2020071094A (en) * 2018-10-30 2020-05-07 株式会社Ihiエアロスペース Mesh structure mesh inspection method and mesh structure mesh inspection device
JP7165561B2 (en) 2018-10-30 2022-11-04 株式会社Ihiエアロスペース Mesh inspection method for mesh structure and mesh inspection device for mesh structure
CN115356355A (en) * 2022-10-21 2022-11-18 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection blanking conveying line and detection method for vacuum laminated glass
CN115356355B (en) * 2022-10-21 2022-12-27 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection blanking conveying line and detection method for vacuum laminated glass

Also Published As

Publication number Publication date
JP5136277B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP3297950B2 (en) Flat panel inspection system
JP3333686B2 (en) Display screen inspection method
JP2005331929A (en) Image analysis method, image analysis program, and pixel evaluation system therewith
KR20090101356A (en) Defect detecting device, and defect detecting method
JP2007315967A (en) Defect detection apparatus, defect detection method, defect detection program, and computer-readable recording medium stored with the progtram
US10109045B2 (en) Defect inspection apparatus for inspecting sheet-like inspection object, computer-implemented method for inspecting sheet-like inspection object, and defect inspection system for inspecting sheet-like inspection object
JP4230880B2 (en) Defect inspection method
JP5136277B2 (en) Defect detection method for netted or lined glass
JP3907874B2 (en) Defect inspection method
JP3332208B2 (en) Defect detection method and apparatus for netted glass
JP2008014842A (en) Method and apparatus for detecting stain defects
JP3695120B2 (en) Defect inspection method
JP4743231B2 (en) Appearance inspection method and appearance inspection apparatus
JP2009281759A (en) Color filter defect inspection method, inspection apparatus, and color filter manufacturing method using it
JP6035124B2 (en) Defect inspection apparatus and defect inspection method
JP4743230B2 (en) Appearance inspection method and appearance inspection apparatus
JP2710527B2 (en) Inspection equipment for periodic patterns
JP4403036B2 (en) Soot detection method and apparatus
JP4178923B2 (en) Appearance inspection method and appearance inspection apparatus
JPH0711414B2 (en) Glass bottle uneven thickness inspection method
JP5231779B2 (en) Appearance inspection device
JP6185539B2 (en) Optical connector ferrule end face inspection device and inspection program
JP6690316B2 (en) Defect inspection apparatus, defect inspection method and defect inspection system for sheet-like inspected object
JP2876999B2 (en) Printing defect inspection equipment
JP3284462B2 (en) Bottle body defect detection method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5136277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees