JP2010043987A - Method and system for detecting thickness of graphene or micro-thin film of graphite - Google Patents

Method and system for detecting thickness of graphene or micro-thin film of graphite Download PDF

Info

Publication number
JP2010043987A
JP2010043987A JP2008208965A JP2008208965A JP2010043987A JP 2010043987 A JP2010043987 A JP 2010043987A JP 2008208965 A JP2008208965 A JP 2008208965A JP 2008208965 A JP2008208965 A JP 2008208965A JP 2010043987 A JP2010043987 A JP 2010043987A
Authority
JP
Japan
Prior art keywords
graphene
color
substrate
luminance value
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208965A
Other languages
Japanese (ja)
Other versions
JP5142278B2 (en
Inventor
Hisao Miyazaki
久生 宮崎
Kazuhito Tsukagoshi
一仁 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008208965A priority Critical patent/JP5142278B2/en
Publication of JP2010043987A publication Critical patent/JP2010043987A/en
Application granted granted Critical
Publication of JP5142278B2 publication Critical patent/JP5142278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a thickness of graphene or a micro-thin film of graphite with small space that is readily installed at low cost and allow any user, even a beginner, to readily determine the number of sheets of graphene atomic thin films in a reproducible fashion, and a system for detecting the thickness. <P>SOLUTION: A substrate as a reference sample having, provided thereon, a single layer of graphene or a micro-thin film of graphite formed by laminating two or more layers of graphene and a substrate as a measurement target sample are respectively imaged via a filter having a predetermined color. Appearance frequency characteristics with respect to a luminance value of the predetermined color are obtained in accordance with the imaged images. The appearance frequency characteristics are respectively normalized with the proviso that the luminance value of the predetermined color at the substrate part is made to be 100, and are displayed on a monitor so as to allow the characteristics to be compared with each other. In addition, the same or difference of features of change in the normalized frequency characteristics with respect to the luminance value of the predetermined color is determined so that presence or absence of each layer in the first to n-th (optional layer) layers in the measurement target sample is determined. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭素原子で6員環状に形成された原子薄膜からなるグラフェン又は超薄膜グラファイトの厚さ検出方法および厚さ検出システムに関する。   The present invention relates to a thickness detection method and a thickness detection system for graphene or ultrathin graphite composed of an atomic thin film formed of carbon atoms in a six-membered ring.

以下の説明で使われる、グラフェンおよび超薄膜グラファイトは下記のように定義される。
グラフェンは、炭素原子で6員環状に形成された原子薄膜とする。鉛筆の芯やグラファイトファイバーを分解するとグラフェンになる。つなぎ無く円筒状に丸まった物質がナノチューブである。
超薄膜グラファイトは、グラフェンが数層重なったものである。グラファイトを構成するグラフェンの層の間隔は0.34nmである。ナノメートルスケールの厚さのグラファイトを超薄膜グラファイトと呼称する。
炭素原子で6員環状に形成されたグラフェン原子薄膜の電気伝導に関しては、電子の移動度が既存半導体よりも1桁以上大きいことが理論的に予想され、実験によっても検証されつつある。
Graphene and ultra-thin graphite used in the following description are defined as follows.
Graphene is an atomic thin film formed of carbon atoms in a six-membered ring. When the pencil core and graphite fiber are disassembled, it becomes graphene. Nanotubes are materials that are rounded into a cylindrical shape without being connected.
Ultra-thin graphite is made of several layers of graphene. The interval between the graphene layers constituting the graphite is 0.34 nm. Graphite with a thickness of nanometer scale is called ultra-thin graphite.
Regarding the electrical conduction of a graphene atomic thin film formed of carbon atoms in a six-membered ring, it is theoretically expected that the electron mobility is one order of magnitude higher than that of existing semiconductors, and is being verified by experiments.

現在、この特性を引き出して次世代電子素子に利用することを目指した研究がかってない勢いで行われている。
また、1枚のフィルムは室温において量子ホール効果を示すことから、取り扱いやすく有効な量子標準抵抗素子としても注目されている。
しかしながら、実用化するためには、薄膜の枚数を目的に応じて限定しなければならない。次世代電子素子では1−4層の間の層数の相違を特定できることが必要であり、量子ホール効果素子では1層あるいは2層前後で特定できることが必須である。
この原子シート1層の厚さは0.34nmであり、この厚さを正確に計測することは容易ではない。
従来の原子薄膜枚数検出方法として考えられていた、(a)原子間力顕微鏡を用いた方法、(b)ラマン散乱を用いた方法、(c)光学顕微鏡を用いた方法を説明し、同時にそれらの問題点を説明する。
Currently, research aimed at extracting this characteristic and utilizing it in next-generation electronic devices is being conducted at an unprecedented rate.
In addition, since one film exhibits a quantum Hall effect at room temperature, it is attracting attention as an effective quantum standard resistance element that is easy to handle.
However, for practical use, the number of thin films must be limited according to the purpose. In the next generation electronic device, it is necessary to be able to specify the difference in the number of layers between 1-4 layers, and in the quantum Hall effect device, it is essential to be able to specify one layer or around two layers.
The thickness of one atomic sheet layer is 0.34 nm, and it is not easy to accurately measure this thickness.
Explained (a) a method using an atomic force microscope, (b) a method using Raman scattering, (c) a method using an optical microscope, which was considered as a conventional method for detecting the number of atomic thin films. The problem of is explained.

(a)原子間力顕微鏡(STM,AFM)を用いた方法:
原子シートの厚さを検出する感度を原理的に持ち得る検出方法としてのSTMおよびAFMを解説する。
走査型トンネル顕微鏡(STM:Scanning Tunneling Microscope)は、0.34nmの段差を正確に検出する感度を有するが、導電性基板上のみに有効な方法であり、電子素子応用を目指す場合は絶縁基板上に素子を作製しなければならない。
原子間力顕微鏡(AFM:Atomic Force Microscope)は、一般に1nm程度以下の段差の検出には、検出機構(ピエゾ素子の非線形性)のため困難である。標準試料との比較を常に行うことで、正確な計測も可能となるが、現実的でない。また、観察誤差の揺らぎや表面の微小付着物、基板表面の凹凸によるノイズなどに感度が高すぎ、可能な装置ではあるが効率的で有効な装置とは言えない。
これらの方法は共に最低1000万円程度の高価な装置を必要とする。
(A) Method using an atomic force microscope (STM, AFM):
STM and AFM will be described as detection methods that can in principle have the sensitivity to detect the thickness of the atomic sheet.
A scanning tunneling microscope (STM) has the sensitivity to accurately detect a step of 0.34 nm, but it is an effective method only on a conductive substrate. The device must be fabricated.
An atomic force microscope (AFM) is generally difficult to detect a step of about 1 nm or less because of a detection mechanism (non-linearity of a piezo element). Accurate measurement is possible by always comparing with a standard sample, but it is not realistic. In addition, the sensitivity is too high for fluctuations in observation error, minute deposits on the surface, noise due to unevenness on the substrate surface, and the like, but it cannot be said to be an efficient and effective device.
Both of these methods require expensive equipment of at least about 10 million yen.

(b)ラマン散乱を用いた方法:
光学的分光法であるラマン散乱では、グラフェン膜が数枚重なった超薄膜と比較して、グラフェン膜1層に特徴的な信号が再現性よく検出できることが報告されている。この方法を用いることでグラフェンを1層と特定できることは可能となったが、2層以上を正確に特定することは難しい(非特許文献3参照)。
また、ラマン散乱の信号を理解する経験が必要であり、だれでもがすぐに取り扱える検出方法とは言えない。
さらには装置の総額が最低2000万円程度となり高価であり、簡便性にかける(非特許文献3参照)。
(B) Method using Raman scattering:
In Raman scattering, which is optical spectroscopy, it has been reported that a characteristic signal of one graphene film can be detected with high reproducibility compared to an ultrathin film in which several graphene films are stacked. Although it has become possible to specify graphene as one layer by using this method, it is difficult to accurately specify two or more layers (see Non-Patent Document 3).
In addition, it requires experience to understand the Raman scattering signal, and it cannot be said that it is a detection method that anyone can handle immediately.
Furthermore, the total amount of the device is at least about 20 million yen, which is expensive and easy (see Non-Patent Document 3).

(c)光学顕微鏡:
金属顕微鏡(一般の光学顕微鏡)の観察によって1層のグラフェンを特定可能である(非特許文献1、2、4参照)。観察の原理は、基板と基板上のグラフェンの光学反射によるコントラスト差である。酸化膜を有するSi基板を用いたときに、グラフェンのある部位と無い部位のコントラストは約12%程度となることが理論的に導かれており、実験においても近い値が報告されている。このコントラストはSi上に形成した酸化シリコン薄膜の上にグラフェンを配置した場合、酸化シリコン膜厚を280nmあるいは90nmとし、560nm程度の光学フィルターを使うことでコントラストを視覚的に強調することが可能である。
(C) Optical microscope:
One layer of graphene can be identified by observation with a metallographic microscope (general optical microscope) (see Non-Patent Documents 1, 2, and 4). The principle of observation is a contrast difference due to optical reflection between the substrate and the graphene on the substrate. When a Si substrate having an oxide film is used, it has been theoretically derived that the contrast between a portion having graphene and a portion having no graphene is about 12%, and a close value has been reported in an experiment. When graphene is placed on a silicon oxide thin film formed on Si, the contrast can be visually enhanced by using an optical filter of about 560 nm with a silicon oxide film thickness of 280 nm or 90 nm. is there.

しかし、視覚による判断は観測者に依存してしまう。それを防ぐには観察画像を数値的に解析して層数を判別する必要がある。また、光学顕微鏡による観察画像はフォーカスのずれによってコントラストが変わってしまうので、それを補正して解析する必要がある。
必要装置は一般的な光学顕微鏡セットのみ(おおよそ150万円程度)であり、多くの研究グループでは最も基本的な研究道具として初期に設置している。
However, visual judgment depends on the observer. In order to prevent this, it is necessary to numerically analyze the observation image to determine the number of layers. In addition, since the contrast of an observation image obtained by an optical microscope changes due to a focus shift, it is necessary to correct and analyze the contrast.
The necessary equipment is only a general optical microscope set (about 1.5 million yen), and many research groups have installed it as the most basic research tool at an early stage.

Science 306,P.666 (2004)およびsupplement,Science 306, P.I. 666 (2004) and supplement, Applied Physics Letters 91, 063124 (2007)。Applied Physics Letters 91, 063124 (2007). Physical Review Letters 97,187401(2006),Nano Letters 7,238 (2007)。Physical Review Letters 97, 187401 (2006), Nano Letters 7, 238 (2007). Science 306,666(2004)およびsupplement添付資料,Applied Physics Letters 91,063124(2007)。Science 306,666 (2004) and supplemental attachments, Applied Physics Letters 91,063124 (2007).

上記の原子薄膜枚数検出方法では、原理的な難しさや経験の有無および利用装置に枚数が依存してしまう。
本発明の目的は、安価かつ容易に導入可能であり、装置スペースも小さく、初心者でも簡単にグラフェン原子薄膜の枚数を再現性よく確定することが可能なグラフェン又は超薄膜グラファイトの厚さ検出方法および厚さ検出システムを提供することにある。
In the above method for detecting the number of atomic thin films, the number of sheets depends on the difficulty in principle, the presence or absence of experience, and the device used.
An object of the present invention is to provide a method for detecting the thickness of graphene or ultrathin graphite, which can be introduced inexpensively and easily, has a small apparatus space, and allows a beginner to easily determine the number of graphene atomic thin films with high reproducibility. It is to provide a thickness detection system.

本発明の検査方法は、
(1) 単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトを設けた基準サンプルとなる基板と計測対象サンプルとなる基板を、所定の色のフィルタを介してそれぞれ撮像し、前記撮像したそれぞれの画像から前記所定の色の輝度値に対する出現頻度特性を求め、その出現頻度特性を基板部分の前記所定の色の輝度値を100として規格化し、両特性を比較できるようにモニタに表示する。好ましくは、
(2) 上記規格化した所定の色の輝度値対頻度特性における変化の特徴の異同を判断し、計測対象サンプルにおける1層〜n層(任意層)までの各層の存否を判断する。
(3) 上記所定の色は、基板を撮像した画像のコントラスト値および輝度値の変化が大きい色とする。
(4) 上記所定の色は、光の3原色の内の1色、2色の混合色および3色の混合色のうちのいずれか1つとする。
(5) 上記所定の色は、基板の色に影響を受けずに、単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトの層数を所定の色の輝度値に対する出現頻度特性により判断できる色であればどのような色であってもよい。
The inspection method of the present invention comprises:
(1) A substrate to be a reference sample and a substrate to be a measurement target sample provided with a single layer of graphene or a super thin film graphite in which a plurality of graphene layers are stacked are each imaged through a filter of a predetermined color, and each of the images captured An appearance frequency characteristic with respect to the luminance value of the predetermined color is obtained from the image, and the appearance frequency characteristic is normalized with the luminance value of the predetermined color of the substrate portion as 100, and displayed on the monitor so that both characteristics can be compared. Preferably,
(2) The difference of the characteristic of the change in the luminance value vs. frequency characteristic of the standardized predetermined color is determined, and the presence or absence of each layer from the 1st layer to the nth layer (arbitrary layer) in the measurement target sample is determined.
(3) The predetermined color is a color having a large change in contrast value and luminance value of an image obtained by imaging the substrate.
(4) The predetermined color is one of the three primary colors of light, a mixed color of two colors, and a mixed color of three colors.
(5) The predetermined color can be determined by the appearance frequency characteristic with respect to the luminance value of the predetermined color without being influenced by the color of the substrate, and the number of layers of single-layer graphene or ultrathin graphite in which a plurality of graphene layers are laminated. Any color can be used.

本発明の検査システムは、
(6) 単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトが設けられた基板をカラーで撮像する撮像装置と、撮像装置の撮像画像信号を色信号に変換する信号変換手段と、信号変換手段の色信号のうち基板の色と異なり且つ単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトがコントラスト良く且つ同じ離散的輝度値の発生頻度が多くなる所定の色を特定し、この所定の色のフィルタで前記単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトが設けられた基準サンプルの基板および計測対象サンプルの基板を撮像し、両撮像画像から所定の色の輝度値変化の発生頻度特性を求め、その求めた所定の色の輝度値変化の発生頻度特性に基づき規格化したグラフデータを作成し、モニタへ出力する画像処理手段と、画像処理手段の出力を表示するモニタとを有する。
(7) 上記画像処理手段は、上記規格化したグラフデータを上記基準サンプルおよび計測対象サンプルで対比し、離散的輝度値の発生頻度の増減が対応しているか否かを判断し、その判断の結果に基づき輝度値に対応する層数の有無を判断し、その判断結果を出力するようにし、上記モニタ装置は、上記画像処理手段の出力を表示するようにする。
The inspection system of the present invention
(6) An imaging device that captures in color a single layer of graphene or a substrate provided with an ultra-thin graphite layered with multiple layers of graphene, a signal conversion unit that converts a captured image signal of the imaging device into a color signal, and signal conversion Among the color signals of the means, a predetermined color that is different from the color of the substrate and has a high contrast with a single layer of graphene or a multi-layered graphene of graphene and the frequency of occurrence of the same discrete luminance value is specified. The substrate of the reference sample and the substrate of the sample to be measured provided with the single-layer graphene or the ultra-thin graphite layered with a plurality of layers of graphene with the filter of the color of the image, and the luminance value change of the predetermined color from both the captured images Determine the occurrence frequency characteristics, create graph data standardized based on the determined occurrence frequency characteristics of the brightness value of the specified color, and send it to the monitor An image processing means for outputting and a monitor for displaying the output of the image processing means.
(7) The image processing means compares the normalized graph data with the reference sample and the measurement target sample, determines whether or not the increase or decrease in the frequency of occurrence of the discrete luminance value corresponds, and the determination Based on the result, the presence / absence of the number of layers corresponding to the luminance value is determined and the determination result is output, and the monitor device displays the output of the image processing means.

上記従来の原子薄膜枚数の検出方法および装置では、操作が難しいということがあり、更に、経験年数および装置の複雑な構造にグラフェン又は超薄膜グラファイトの検出できる枚数が依存してしまう。
これらの方法に対して、本発明の検査方法と検査システムは、安価かつ容易に導入可能であり、検査システムの収納スペースも小さくでき、初心者でも簡単にグラフェン原子薄膜の枚数を再現性よく確定することができる。
本発明の検査方法は、従来のものに比べ、格別な検査結果が容易に判断できる程度に高い再現性を有し、経験によらない簡便さおよび人によらない普遍性を有する効果がある。本発明の検査システムは、格別な簡単で安価、省スペースな構成を採ることができ、検査結果が容易に判断できる程度に高い再現性を有し、経験によらない簡便さおよび人によらない普遍性を有する効果がある。
本発明は、光学顕微鏡の焦点の僅かなズレによって画像の明暗やコントラストが変わっても、検出する薄膜直近の反射光強度を測定し基板基準点として層数を検出することから、薄膜観察の経験の有無に大きく依存しない。また、装置も簡略且つ安価であり、簡単に導入可能となる。
The conventional method and apparatus for detecting the number of atomic thin films may be difficult to operate, and the number of graphene or ultrathin graphite that can be detected depends on the years of experience and the complicated structure of the apparatus.
In contrast to these methods, the inspection method and inspection system of the present invention can be introduced inexpensively and easily, the storage space of the inspection system can be reduced, and even a beginner can easily determine the number of graphene atomic thin films with high reproducibility. be able to.
Compared with the conventional method, the inspection method of the present invention has high reproducibility to such an extent that an exceptional inspection result can be easily judged, and has the effects of simplicity not based on experience and universality not depending on people. The inspection system of the present invention can take a particularly simple, inexpensive and space-saving configuration, has a reproducibility high enough to easily determine the inspection result, and does not rely on experience and simplicity. Has the effect of universality.
The present invention measures the reflected light intensity in the immediate vicinity of the thin film to be detected and detects the number of layers as a substrate reference point even if the contrast or contrast of the image changes due to a slight shift in the focus of the optical microscope. It does not depend greatly on the presence or absence of. Also, the apparatus is simple and inexpensive, and can be easily introduced.

本発明におけるグラフェンの層数を判別する原理を説明する。
特定色の基板の上に設けた単層のグラフェンおよびグラフェンを複数層積層した超薄膜グラファイトを撮像したフルカラー画像が処理の対象となる。
基板に設けられる単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトは、例えば、天然グラファイトをテープに広げ、300nmSiO/Si基板上に押し付けることで得られたグラフェンならびに数層のグラフェンからなる超薄膜グラファイトで構成する。
The principle of determining the number of graphene layers in the present invention will be described.
A single-layer graphene provided on a substrate of a specific color and a full-color image obtained by imaging ultra-thin graphite in which a plurality of graphene layers are stacked are processed.
Ultra-thin graphite with multiple layers of single-layer graphene or graphene provided on a substrate consists of, for example, graphene obtained by spreading natural graphite on a tape and pressing it onto a 300 nm SiO 2 / Si substrate, and several layers of graphene Consists of ultra-thin graphite.

見たいものはグラフェンであり、このグラフェンの積層数が判別対象となる。
グラフェンの色は、空気とグラフェン、グラフェンとSiO、SiOとSiの各界面で反射された光の干渉によって決まるため、干渉の様子はSiOの厚さに依存する。
したがって、コントラストを得やすい光の波長はSiOの厚さに依存する。
SiOの厚さと使う色の関係は非特許文献2の図3に示されている。図3は式(3)に基づく波長とSiO厚の関数としてのコントラストの色図表が示されている。波長軸(縦軸)には、400〜500nmの間のblue(青)領域、500〜600nmの間のgreen(緑)領域、600〜700nmの間のred(赤)領域が表示されている。
What we want to see is graphene, and the number of graphene stacks is the object of discrimination.
Since the color of graphene is determined by the interference of light reflected at each interface between air and graphene, graphene and SiO 2 , and SiO 2 and Si, the state of interference depends on the thickness of SiO 2 .
Therefore, the wavelength of light at which contrast is easily obtained depends on the thickness of SiO 2 .
The relationship between the thickness of SiO 2 and the color used is shown in FIG. FIG. 3 shows a color chart of contrast as a function of wavelength and SiO 2 thickness based on equation (3). On the wavelength axis (vertical axis), a blue (blue) region between 400 and 500 nm, a green (green) region between 500 and 600 nm, and a red (red) region between 600 and 700 nm are displayed.

グラフェンの有無によるコントラストが大きくなる光の波長は、SiOの厚さに依存する。一般的なCCDカメラにおいては、RGBの3原色に相当する波長の光の強度を検出しているのでSiOの厚さに応じて、この3原色から選ぶこととする。3原色はそれぞれ、Rは60−130nm及び220−350nm、Gは50−110nm及び220−310nm、Bは30−90nm及び190−260nmの厚さのSiOに対して有効であると予想される。 The wavelength of light that increases the contrast due to the presence or absence of graphene depends on the thickness of SiO 2 . In a general CCD camera, the intensity of light having a wavelength corresponding to the three primary colors of RGB is detected. Therefore, the three primary colors are selected according to the thickness of SiO 2 . The three primary colors are expected to be effective for SiO 2 with thicknesses of 60-130 nm and 220-350 nm, G of 50-110 nm and 220-310 nm, and B of 30-90 nm and 190-260 nm, respectively. .

図1は、特定色(この例では、FF9999の色)の基板の上に設けた単層のグラフェンおよびグラフェンを複数層積層した超薄膜グラファイトを撮像したフルカラー画像と、その画像をRGBそれぞれの色のフィルタをとおした画像のグレースケール表示画像を示す。
図1(a)は、単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトを設けた基板からなる基準サンプルの求めるフルカラー撮像画像を、説明の都合上グレースケールで表示してある。
カラーフィルタは、R(赤:レッド)、G(緑:グリーン)、B(青:ブルー)のフィルタとし、基板を背景としたグラフェンおよび超薄膜グラファイトを撮像した。
図1(b)は基準サンプルのフルカラー画像をR(レッド: 赤色)のフィルタをとおした画像をグレースケール表示した画像、
図1(c)は基準サンプルのフルカラー画像をG(グリーン:緑色)のフィルタをとおした画像をグレースケール表示した画像、
図1(d)は基準サンプルのフルカラー画像をB(ブルー:青色)のフィルタをとおした画像をグレースケール表示した画像である。
FIG. 1 shows a full-color image obtained by imaging a single-layer graphene provided on a substrate of a specific color (in this example, the color of FF9999) and ultra-thin graphite obtained by stacking a plurality of graphene layers, and the color of each image in RGB The gray scale display image of the image which passed through the filter of is shown.
FIG. 1A shows a full-color captured image obtained by a reference sample made of a substrate provided with a single layer of graphene or a super thin film graphite in which a plurality of graphene layers are laminated, in gray scale for convenience of explanation.
The color filters were R (red: red), G (green: green), and B (blue: blue) filters, and imaged graphene and ultrathin graphite with the substrate as the background.
FIG. 1 (b) shows an image obtained by displaying a full color image of a reference sample through an R (red: red) filter in gray scale,
FIG. 1 (c) is an image obtained by displaying a full-color image of a reference sample through a G (green: green) filter in gray scale,
FIG. 1D is an image obtained by displaying a full-color image of the reference sample through a B (blue: blue) filter in gray scale.

コントラストは輝度値に依存するが、グレースケール画像に変換しているので、輝度値はおおよそグレースケールの明度に比例するといえる。このことから、これらの画像はグレースケール表示しているため、グレースケール表示でも輝度値の相異をコントラスト良く表示できているといえる。
RGBそれぞれの画像の表示結果から、Bはコントラストが出にくく、Rはグラファイト薄膜を基板に移す際に付着した有機物の汚れが目立ちノイズが多すぎる。Gは他に比べコントラストが最も良いといえる。
このことから、通常フルカラー画像を構成するRGBそれぞれの画像の内、コントラストの最も良い所定の色の画像における検出対象領域内の輝度値の変化に基づいて層数の差を判別できることになる。
Although the contrast depends on the luminance value, the luminance value is approximately proportional to the lightness of the gray scale because it is converted to a gray scale image. Therefore, since these images are displayed in gray scale, it can be said that the difference in luminance value can be displayed with good contrast even in gray scale display.
From the display results of each of the RGB images, B has a low contrast, and R has a noticeable amount of noise due to the contamination of organic matter attached when the graphite thin film is transferred to the substrate. It can be said that G has the best contrast compared to the others.
From this, it is possible to determine the difference in the number of layers based on the change in the luminance value in the detection target region in the image of the predetermined color with the best contrast among the RGB images constituting the normal full color image.

次に層数を判別できる原理を説明する
図2は、本発明の層数を判別できる原理を説明する説明図である。
図2(a)は、特定色の基板の上に設けた単層のグラフェンおよびグラフェンを複数層積層した超薄膜グラファイトを撮像したフルカラー画像を、RGBの3元色に分解した内のG(グリーン)の画像のグレースケール表示画像を示す。
本文中の説明には、輝度値のフルレンジを256階調としたときの値を用いる。なお、輝度値は、256階調に限らず任意の階調とすることができる。
図2(b)は、輝度値の発生頻度が増減する特性を示す輝度値−頻度特性図である。
図2(b)の横軸は、図2(a)のG(グリーン)の色のフィルタをとおした画像における輝度値の規格化した数値を表す。
図2(c)は、画像全体の輝度を、図2(a)中の層数に応じた数字1、2、3、4、6で示す画像領域を表示する値としたときのグレースケール表示画像を示す。層数に対応した画像領域は、層数に応じて離散的な輝度値をとる。
図2(d)は、画像全体の輝度を、図2(a)中の層数に応じた数字2、3、4、6で示す画像領域を表示する値としたときのグレースケール表示画像を示す。
図2(e)は、画像全体の輝度を、図2(a)中の数字3、4、6で示す画像領域を表示する値としたときのグレースケール表示画像を示す。
図2(f)は、画像全体の輝度を、図2(a)中の数字4、6で示す画像領域を表示する値としたときのグレースケール表示画像を示す。
図2(g)は、画像全体の輝度を、図2(a)中の数字6で示す画像領域を表示する値としたときのグレースケール表示画像を示す。
Next, the principle capable of discriminating the number of layers will be described. FIG. 2 is an explanatory diagram for explaining the principle capable of discriminating the number of layers according to the present invention.
FIG. 2A shows G (green) in which a full-color image obtained by imaging a single-layer graphene provided on a substrate of a specific color and an ultra-thin graphite obtained by stacking a plurality of graphene layers is separated into RGB ternary colors. ) Shows a grayscale display image.
In the description in the text, values when the full range of luminance values is 256 gradations are used. Note that the luminance value is not limited to 256 gradations, and can be any gradation.
FIG. 2B is a luminance value-frequency characteristic diagram showing a characteristic in which the occurrence frequency of the luminance value increases or decreases.
The horizontal axis of FIG. 2B represents the normalized numerical value of the luminance value in the image through the G (green) color filter of FIG.
FIG. 2 (c) shows a gray scale display when the luminance of the entire image is set to a value for displaying the image area indicated by the numbers 1, 2, 3, 4, and 6 corresponding to the number of layers in FIG. 2 (a). Images are shown. The image area corresponding to the number of layers takes discrete luminance values according to the number of layers.
FIG. 2D shows a grayscale display image when the luminance of the entire image is set to a value for displaying the image area indicated by the numbers 2, 3, 4, and 6 corresponding to the number of layers in FIG. Show.
FIG. 2 (e) shows a grayscale display image when the luminance of the entire image is set to a value for displaying the image area indicated by the numbers 3, 4, and 6 in FIG. 2 (a).
FIG. 2 (f) shows a grayscale display image when the luminance of the entire image is set to a value for displaying the image area indicated by numerals 4 and 6 in FIG. 2 (a).
FIG. 2G shows a grayscale display image when the luminance of the entire image is set to a value for displaying the image area indicated by numeral 6 in FIG.

この図2(c)〜(g)により、
(1)層数が離散的な値をとる特徴点、
(2)層数がG(グリーン)の色のフィルタをとおした画像において、層数が離散的な輝度値に対応する特徴点、
を有することがわかる。
本発明の実施の形態を図に基づいて詳細に説明する。
具体的な計測の手順を示す。計測から画像解析を経た原子膜数確定までの実効的な時間は約5分程度となる。
2 (c) to (g),
(1) Feature points where the number of layers takes discrete values,
(2) In an image that has passed through a filter having a color of G (green), the number of layers corresponds to a discrete luminance value,
It can be seen that
Embodiments of the present invention will be described in detail with reference to the drawings.
A specific measurement procedure will be described. The effective time from measurement to determination of the number of atomic films through image analysis is about 5 minutes.

スタート
(1)薄膜の撮像画像を取得する:(ステップS1)
光学顕微鏡に取り付けた撮像装置(例えば、少なくともCCDカメラおよび信号増幅回路を含む)によって、基板上に設けた単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトの薄膜画像を通常の白色光源のもとで撮像(NTSC信号として)し、その撮像信号を信号処理装置へ出力する。
(2)撮像信号から各色毎の画像信号を抽出する:(ステップS2)
I/Oインターフェース回路を介して撮像信号(NTSC)を取り込み、信号変換手段で撮像信号(NTSC)からRGB各色の画像信号を抽出する。
(3)画像処理手段で最適な色の画像信号を選択する:(ステップS3)
RGB各色の画像信号から、現在使用している基板(300nmSiO/Si)において最も大きなコントラスト値が得られる特定色、例えばG(グリーン画像、波長500〜570 nm)の画像信号を選択する。
(4)基準サンプルでの特定色の画像信号における基板基準点値を検出する:(ステップS4)
計測対象のグラフェン片に近い部位での基板からの特定色における光反射強度値(G光を取り出しているために、G光の強さ)を基板基準点の値として検出し数値化する。
(5)計測対象サンプルでの特定色の画像信号における基板基準点値を検出する:(ステップS5)
計測対象のグラフェン片に近い部位での基板からの特定色における光反射強度値(G光を取り出しているために、G光の強さ)を基板基準点の値として検出し数値化する。
(6)層数を検出する:(ステップS6)
両サンプル上のグラフェン片の部位に限定して光反射強度を検出し数値化し、同じ光反射強度特性を比較し、同じ特性があることを判断して同じ層数の存在を決定する。
この数値はグラフェンの層数に強く依存し、層数が増加するにしたがって注目している波長の信号はグラフェンあるいはグラファイトによって遮られて小さくなる。また、層数が1枚ずつ増加するために、それに応じて数値はデジタル的に減少する。それ故層数を正確に検出することが可能となる。
ストップ
Start (1) Acquire a captured image of a thin film: (Step S1)
Using an imaging device (for example, including at least a CCD camera and a signal amplification circuit) attached to an optical microscope, a single-layer graphene provided on a substrate or a thin film image of ultra-thin graphite laminated with multiple layers of graphene Originally, imaging is performed (as an NTSC signal), and the imaging signal is output to a signal processing device.
(2) Extracting an image signal for each color from the imaging signal: (Step S2)
The image pickup signal (NTSC) is taken in via the I / O interface circuit, and the RGB image signals are extracted from the image pickup signal (NTSC) by the signal conversion means.
(3) The image signal of the optimum color is selected by the image processing means: (Step S3)
From the RGB color image signals, a specific color such as G (green image, wavelength 500 to 570 nm) that can obtain the largest contrast value on the currently used substrate (300 nm SiO 2 / Si) is selected.
(4) The substrate reference point value in the image signal of the specific color in the reference sample is detected: (Step S4)
A light reflection intensity value in a specific color from the substrate at a portion close to the graphene piece to be measured (the intensity of the G light because G light is extracted) is detected and digitized.
(5) The substrate reference point value in the image signal of the specific color in the measurement target sample is detected: (Step S5)
A light reflection intensity value in a specific color from the substrate at a portion close to the graphene piece to be measured (the intensity of the G light because G light is extracted) is detected and digitized.
(6) Detect the number of layers: (Step S6)
The light reflection intensity is detected and digitized only for the graphene pieces on both samples, the same light reflection intensity characteristics are compared, the presence of the same characteristics is determined, and the presence of the same number of layers is determined.
This value strongly depends on the number of graphene layers, and as the number of layers increases, the signal of the wavelength of interest is blocked by graphene or graphite and becomes smaller. Further, since the number of layers increases by one, the numerical value decreases digitally accordingly. Therefore, the number of layers can be accurately detected.
stop

図5は、本発明の実施例1の構成図である。
本発明のグラフェン又は超薄膜グラファイトの厚さ検出システム1は、撮像装置2、信号処理装置3およびモニタ装置6を電気的に接続して構成する。
厚さ検出システム1は、基板上に配置した単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトのカラー画像を取得する機能を備え、少なくとも、層数の相異を表示できる程度の拡大倍率の高いレンズ系と、高解像度の撮像装置2を備える。
前記レンズ系は、例えば、実用上の都合から、光学顕微鏡7で構成する。
撮像装置2は、微細な撮像素子を組み込んで構成する。好ましくは高い解像度を得易いCCD方式がよい。また、撮像装置2は、読み取り方式に応じて取得した画像信号(例えば、NTSC方式の画像信号)を信号処理装置3へ出力する都合から信号増幅回路を含むものが好都合で、例えばCCDカメラとして構成されているものがよい。
信号処理装置3は、少なくともI/Oインターフェース回路、中央演算回路(CPU)およびメモリを備えたパーソナルコンピュータやマイクロコンピュータで構成され、ハードウエアを周知のように機能させて以下説明する処理を行なう。
信号処理装置3は、信号変換手段4と画像処理手段5を備える。
信号変換手段4は、撮像装置2から送られてくる読み取り方式に応じて取得した画像信号(例えば、NTSC方式の画像信号)を異なる色の画像信号、例えばRGB3元色それぞれの色画像信号へフィルタを介して変換する。
RGB画像は、例えば図1(b)〜(d)に示すようになる。
FIG. 5 is a configuration diagram of Embodiment 1 of the present invention.
The graphene or ultrathin graphite thickness detection system 1 of the present invention is configured by electrically connecting an imaging device 2, a signal processing device 3, and a monitor device 6.
The thickness detection system 1 has a function of acquiring a color image of a single layer of graphene disposed on a substrate or an ultra-thin graphite layered with a plurality of graphene layers, and at least an enlargement magnification capable of displaying the difference in the number of layers A high lens system and a high-resolution imaging device 2.
The lens system is composed of an optical microscope 7 for practical reasons, for example.
The imaging device 2 is configured by incorporating a fine imaging element. A CCD system that can easily obtain a high resolution is preferable. Further, the image pickup apparatus 2 preferably includes a signal amplifying circuit for the purpose of outputting an image signal (for example, an NTSC image signal) acquired according to a reading method to the signal processing device 3, and is configured as a CCD camera, for example. What is being done is good.
The signal processing device 3 is composed of a personal computer or a microcomputer including at least an I / O interface circuit, a central processing circuit (CPU), and a memory, and performs the processing described below by causing the hardware to function as well known.
The signal processing device 3 includes a signal conversion unit 4 and an image processing unit 5.
The signal converting unit 4 filters the image signal (for example, NTSC image signal) acquired according to the reading method sent from the imaging device 2 into an image signal of a different color, for example, a color image signal of each of the RGB ternary colors. Convert through.
RGB images are as shown in FIGS. 1B to 1D, for example.

基板の色と異なる色は、基板の色との対比でグラフェン等の層数の相異が最もコントラスト良く表示できている色として特定できるものであればよい。
実用上は、通常のRGB3元色それぞれ個別の画像を用いることもできる。
画像処理手段5は、信号変換手段4から取り込んだ基準サンプルのフルカラー画像信号から所定の関数を用いて所定色画像情報を抽出する。この所定色画像情報から微少領域単位の離散的輝度値の発生頻度特性データを抽出しメモリに記憶し、頻度が突出するピーク値に対応する輝度値を演算しメモリに記憶する。
The color different from the color of the substrate may be any color that can be identified as the color that can display the contrast with the highest contrast in the number of layers such as graphene.
In practical use, it is also possible to use individual images of normal RGB ternary colors.
The image processing means 5 extracts predetermined color image information from the reference sample full color image signal fetched from the signal conversion means 4 using a predetermined function. Generation frequency characteristic data of discrete luminance values in units of minute regions is extracted from the predetermined color image information and stored in a memory, and luminance values corresponding to peak values with a prominent frequency are calculated and stored in the memory.

次に、画像処理手段5は、信号変換手段4から取り込んだ計測対象サンプルのフルカラー画像信号を、所定の関数を用いて所定色画像情報を抽出する。この所定色画像情報から微少領域単位の離散的輝度値の発生頻度特性データを抽出しメモリに記憶し、発生頻度が突出するピーク値に対応する輝度値を演算しメモリに記憶する。   Next, the image processing unit 5 extracts predetermined color image information from the full-color image signal of the measurement target sample fetched from the signal conversion unit 4 using a predetermined function. Occurrence frequency characteristic data of discrete luminance values in units of minute areas is extracted from the predetermined color image information and stored in a memory, and luminance values corresponding to peak values where the occurrence frequency is prominent are calculated and stored in the memory.

次に、画像処理手段5は、メモリから読み出した基準サンプルと計測対象サンプルの離散的輝度値の発生頻度特性データを、基板の色での輝度値を100として規格化し、モニタ6に表示する。
次に、規格化した基準サンプルと計測対象サンプルの離散的輝度値の発生頻度特性データを読み込み、上記輝度値の発生頻度が突出するピーク値が対応するか否かを判断するため演算する、即ち、基準サンプルにおける発生頻度が突出する輝度値をメモリに記憶し、計測対象サンプルにおける発生頻度が突出する輝度値をメモリに記憶し、メモリに記憶した基準サンプルと計測対象サンプルの輝度値を比較し、両サンプルにおける輝度値を対比し、両輝度値が一方のピーク値を含む所定幅の輝度値内にあると判断されたときは、このピーク値に対応する層の存在が判断され、判断結果がメモリに記憶される。
Next, the image processing means 5 normalizes the occurrence frequency characteristic data of the discrete luminance values of the reference sample and measurement target sample read from the memory with the luminance value in the color of the substrate as 100, and displays it on the monitor 6.
Next, the frequency characteristics data of the discrete luminance values of the standardized reference sample and the measurement target sample are read, and calculation is performed to determine whether or not the peak value at which the frequency of the luminance value protrudes corresponds, that is, , Store the brightness value of the reference sample in which the occurrence frequency is prominent in the memory, store the brightness value of the occurrence frequency of the measurement target sample in the memory, and compare the brightness value of the reference sample and the measurement target sample stored in the memory. When the luminance values in both samples are compared, and it is determined that both luminance values are within a predetermined width including one peak value, the presence of a layer corresponding to this peak value is determined, and the determination result Is stored in the memory.

モニタ装置は、上記画像処理手段の出力を表示する、例えば、グラフェンの層数の相異が画像上に輝度の相違となるように表示する。   The monitor device displays the output of the image processing means, for example, so that the difference in the number of layers of graphene becomes a difference in luminance on the image.

(測定例)
測定に使用する機材は、
対物レンズ X100を備えた光学顕微鏡(オリンパス(登録商標)製 BX51)、CCDカメラ(アームスシステム製 ARUSB−202K)、画像処理・画像解析ソフト PopImaging(デジタル・ビーイング・キッズ製)を用いた。
(Measurement example)
The equipment used for measurement is
An optical microscope (BX51 manufactured by Olympus (registered trademark)) equipped with an objective lens X100, a CCD camera (ARUSB-202K manufactured by Arms System), and image processing / image analysis software PopImaging (manufactured by Digital Being Kids) were used.

(測定原理)
図3は、本発明の測定原理を説明する説明図である。
図3(a)は、基準サンプルの実線枠内を、基板の色に対してコントラスト値の高い特定の色、この場合G(グリーン)のフィルタで、撮像したグラフェンおよび超薄膜グラファイトの撮像画像である。
図3(b)は、計測対象サンプルの点線枠内を図3(a)と同じくG(グリーン)のフィルタで撮像したグラフェンおよび超薄膜グラファイトの撮像画像である。
図3(c)は、実線の特性が図3(a)の実線枠内のグリーンフィルタを介した撮像画像の輝度値−頻度特性を表し、点線の特性が図3(b)の点線枠内のグリーンフィルタを介した撮像画像の輝度値−頻度特性を表す。
図3(c)では、両特性における基板の値の整合ができていないため、両特性の比較ができない。
図3(d)は、図3(c)における両特性を、基板部分のG(グリーン)輝度を100として規格化した特性図である。
図3(d)の両特性を、モニタに表示して見たり、特性値を比較演算してみたりして、ピーク値の存否を比較し、基準サンプルのピークと対応する計測対象サンプルのピークの存否を判断し、どの層があるかを判断する。図3(d)の場合、計測対象サンプルの点線枠内には2層の領域と3層の領域があることが判断できる。この判断は、モニタを見ることによっても、また、両特性の比較演算結果を比較することによっても、どの層があるか判断できる。
(Measurement principle)
FIG. 3 is an explanatory diagram for explaining the measurement principle of the present invention.
FIG. 3A shows an image of graphene and ultra-thin graphite captured with a specific color having a high contrast value with respect to the color of the substrate, in this case a G (green) filter, within the solid line frame of the reference sample. is there.
FIG. 3B is a captured image of graphene and ultra-thin graphite obtained by imaging the inside of the dotted line frame of the measurement target sample with a G (green) filter as in FIG.
FIG. 3C shows the luminance value-frequency characteristic of the captured image through the green filter in the solid line frame in FIG. 3A, and the dotted line characteristic in the dotted frame in FIG. 3B. Represents a luminance value-frequency characteristic of a captured image through the green filter.
In FIG. 3C, since the values of the substrates in both characteristics are not matched, the two characteristics cannot be compared.
FIG. 3D is a characteristic diagram in which both characteristics in FIG. 3C are normalized with the G (green) luminance of the substrate portion set to 100.
Both characteristics shown in FIG. 3D are displayed on the monitor, or the characteristic values are compared and calculated to compare the presence or absence of peak values, and the peak of the measurement target sample corresponding to the peak of the reference sample. To determine whether there is a layer or not. In the case of FIG. 3D, it can be determined that there are a two-layer region and a three-layer region within the dotted frame of the measurement target sample. This determination can be made by looking at the monitor and by comparing the comparison calculation results of both characteristics to determine which layer is present.

(輝度値−層数の対応)
表1は、以上説明した本発明の特徴をまとめたもので、輝度値−層数特性を表す。
図4は上記表1を示す。
図4の特性は、回帰分析の結果、直線で近似できることがわかった。
グラフェンの1層分は、この場合、輝度値でおおよそ6の差があることがわかる。
(Luminance value-number of layers)
Table 1 summarizes the characteristics of the present invention described above, and represents the luminance value-layer number characteristics.
FIG. 4 shows Table 1 above.
As a result of regression analysis, it was found that the characteristics of FIG. 4 can be approximated by a straight line.
In this case, it is understood that there is a difference of about 6 in luminance value for one layer of graphene.

グラフェンあるいは超薄膜グラファイトは、今後のグラフェンエレクトロニクスへの展開に進展。グラフェンは現在の集積電子素子を構成するシリコンデバイスの先の材料、あるいは通信に用いる超高速高周波用トランジスタのチャネル材料として期待されている。さらに抵抗標準としての量子ホール効果素子として利用可能。これらの素子を作るための基本装置あるいは薄膜検査装置として利用される。
応用の態様としては、
・本方法自体の装置構成におる「原子薄膜層数計測システム」としての製品
・現CMOSの次世代エレクトロニクス作製のための作製ならびに素子の検査用具
・超高速高周波トランジスタ作製のための作製ならびに素子の検査用具
・抵抗標準量子ホール効果素子作製のための作製ならびに素子の検査用具等がある。
低次元ナノ構造材料、例えば基本構造体のグラフェンからなるナノチューブ、ナノワイヤ、ナノ粒子等は、将来のデバイス、内部配線、リソグラフィ、パッケージング等の潜在的な技術課題を解決できる可能性のあるユニークな性質を有しているとして期待されている。例えば、カーボンナノチューブは高い熱伝導率とバリスティックな伝導を提供する可能性がある(「2007年度国際半導体ロードマップ(ITRS2007)参照」)。
Graphene or ultra-thin graphite has advanced to future graphene electronics. Graphene is expected as a material for the silicon devices that make up the current integrated electronic devices, or as a channel material for ultrahigh-speed and high-frequency transistors used in communications. Furthermore, it can be used as a quantum Hall effect element as a resistance standard. It is used as a basic device or thin film inspection device for making these elements.
As an application aspect,
・ Product as an `` Atomic thin film layer number measurement system '' in the device configuration of this method itself ・ Preparation of current CMOS for next-generation electronics production and device inspection tool ・ Preparation for fabrication of ultrahigh-speed high-frequency transistor and device fabrication There are inspection tools, resistance standard quantum Hall effect device manufacturing, and device inspection tools.
Low-dimensional nanostructured materials, such as nanotubes, nanowires, nanoparticles, etc., composed of graphene as a basic structure, are unique in that they may solve potential technical issues such as future devices, internal wiring, lithography, and packaging. Expected to have properties. For example, carbon nanotubes may provide high thermal conductivity and ballistic conduction (see “2007 International Semiconductor Roadmap (ITRS 2007)”).

特定色の基板の上に設けた単層のグラフェンおよびグラフェンを複数層積層した超薄膜グラファイトを撮像したフルカラー画像と、その画像をRGBそれぞれの色のフィルタをとおした画像のグレースケール表示画像を示す。A full-color image of a single-layer graphene provided on a substrate of a specific color and an ultra-thin graphite layered with multiple layers of graphene, and a grayscale display image of the image through RGB filters . 本発明の層数を判別できる原理を説明する説明図である。It is explanatory drawing explaining the principle which can discriminate | determine the number of layers of this invention. 本発明の測定原理を説明する説明図である。It is explanatory drawing explaining the measurement principle of this invention. 本発明の特徴をまとめたもので、輝度値−層数特性を表す。This is a summary of the characteristics of the present invention and represents the luminance value-layer number characteristic. 本発明の実施例1の構成図である。It is a block diagram of Example 1 of this invention.

符号の説明Explanation of symbols

1 膜厚検出システム
2 撮像装置
3 信号処理手段
4 信号変換手段
5 画像処理手段
6 モニタ
7 光学顕微鏡
DESCRIPTION OF SYMBOLS 1 Film thickness detection system 2 Imaging device 3 Signal processing means 4 Signal conversion means 5 Image processing means 6 Monitor 7 Optical microscope

Claims (7)

単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトを設けた基準サンプルとなる基板と計測対象サンプルとなる基板を、所定の色のフィルタを介してそれぞれ撮像し、前記撮像したそれぞれの画像から前記所定の色の輝度値に対する出現頻度特性を求め、その出現頻度特性を基板部分の前記所定の色の輝度値を100として規格化し、両特性を比較できるようにモニタに表示することを特徴とする検査方法。   A substrate to be a reference sample and a substrate to be a measurement target sample provided with a single layer of graphene or a super thin film graphite in which a plurality of layers of graphene are stacked are each imaged through a filter of a predetermined color, and each of the captured images is used. An appearance frequency characteristic with respect to a luminance value of the predetermined color is obtained, the appearance frequency characteristic is normalized with the luminance value of the predetermined color of the substrate portion as 100, and displayed on a monitor so that both characteristics can be compared. Inspection method to do. 上記規格化した所定の色の輝度値対頻度特性における変化の特徴の異同を判断し、計測対象サンプルにおける1層〜n層(任意層)までの各層の存否を判断することを特徴とする請求項1記載の検査方法。   The difference in the characteristic of the luminance value vs. frequency characteristic of the standardized predetermined color is determined, and the existence of each layer from the 1st layer to the nth layer (arbitrary layer) in the measurement target sample is determined. Item 1. The inspection method according to Item 1. 上記所定の色は、基板を撮像した画像のコントラスト値および輝度値の変化が大きい色とすることを特徴とする請求項1又は2記載の検査方法。   3. The inspection method according to claim 1, wherein the predetermined color is a color having a large change in contrast value and luminance value of an image obtained by imaging the substrate. 上記所定の色は、光の3原色の内の1色、2色の混合色および3色の混合色のうちのいずれか1つとすることを特徴とする請求項1乃至3のいずれか1項記載の検査方法。   The predetermined color is any one of one of two primary colors of light, a mixed color of two colors, and a mixed color of three colors. Inspection method described. 上記所定の色は、基板の色に影響を受けずに、単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトの層数を所定の色の輝度値に対する出現頻度特性により判断できる色であればどのような色であってもよいとすることを特徴とする請求項1乃至4のいずれか1項記載の検査方法。   The predetermined color should not be affected by the color of the substrate, and can be determined from the appearance frequency characteristic for the luminance value of the predetermined color without affecting the number of layers of single-layer graphene or multiple layers of graphene. 5. The inspection method according to claim 1, wherein any color may be used. 単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトが設けられた基板をカラーで撮像する撮像装置と、撮像装置の撮像画像信号を色信号に変換する信号変換手段と、信号変換手段の色信号のうち基板の色と異なり且つ単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトがコントラスト良く且つ同じ離散的輝度値の発生頻度が多くなる所定の色を特定し、この所定の色のフィルタで前記単層のグラフェン又はグラフェンを複数層積層した超薄膜グラファイトが設けられた基準サンプルの基板および計測対象サンプルの基板を撮像し、両撮像画像から所定の色の輝度値変化の発生頻度特性を求め、その求めた所定の色の輝度値変化の発生頻度特性に基づき規格化したグラフデータを作成し、モニタへ出力する画像処理手段と、画像処理手段の出力を表示するモニタとを有することを特徴とする検査システム。   Single-layer graphene or an image pickup device for picking up an image of a substrate provided with an ultra-thin graphite layered with multiple layers of graphene, a signal conversion means for converting a picked-up image signal of the image pickup device into a color signal, and a color of the signal conversion means Among the signals, a specific color that is different from the color of the substrate and has a single layer of graphene or an ultra-thin graphite layered with multiple layers of graphene is identified with high contrast and the frequency of occurrence of the same discrete luminance value is increased. Image of the substrate of the reference sample and the substrate of the sample to be measured provided with the ultrathin graphite layered with a single layer of graphene or a plurality of graphene layers using a filter, and the frequency characteristics of luminance value change of a predetermined color from both captured images The graph data that is normalized based on the frequency characteristics of the change in luminance value of the determined color is created and output to the monitor. Inspection system comprising: an image processing unit, a monitor for displaying an output of the image processing unit. 上記画像処理手段は、上記規格化したグラフデータを上記基準サンプルおよび計測対象サンプルで対比し、離散的輝度値の発生頻度の増減が対応しているか否かを判断し、その判断の結果に基づき輝度値に対応する層数の有無を判断し、その判断結果を出力するようにし、上記モニタ装置は、上記画像処理手段の出力を表示するようにすることを特徴とする請求項6記載の検査システム。   The image processing means compares the normalized graph data with the reference sample and the measurement target sample, determines whether an increase or decrease in the frequency of occurrence of the discrete luminance value corresponds, and based on the result of the determination 7. The inspection according to claim 6, wherein the presence / absence of the number of layers corresponding to the luminance value is determined and the determination result is output, and the monitor device displays the output of the image processing means. system.
JP2008208965A 2008-08-14 2008-08-14 Method and system for detecting thickness of graphene or ultra-thin graphite Expired - Fee Related JP5142278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208965A JP5142278B2 (en) 2008-08-14 2008-08-14 Method and system for detecting thickness of graphene or ultra-thin graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208965A JP5142278B2 (en) 2008-08-14 2008-08-14 Method and system for detecting thickness of graphene or ultra-thin graphite

Publications (2)

Publication Number Publication Date
JP2010043987A true JP2010043987A (en) 2010-02-25
JP5142278B2 JP5142278B2 (en) 2013-02-13

Family

ID=42015481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208965A Expired - Fee Related JP5142278B2 (en) 2008-08-14 2008-08-14 Method and system for detecting thickness of graphene or ultra-thin graphite

Country Status (1)

Country Link
JP (1) JP5142278B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162411A1 (en) * 2010-06-25 2011-12-29 日本電気株式会社 Method for determining number of layers of two-dimensional thin film atomic structure and device for determining number of layers of two-dimensional thin film atomic structure
CN102854136A (en) * 2012-09-07 2013-01-02 泰州巨纳新能源有限公司 Method for determining number of layers and thickness of graphene by using optical microscope picture
JP2013531227A (en) * 2010-05-18 2013-08-01 マーポス、ソチエタ、ペル、アツィオーニ Method and apparatus for optically measuring the thickness of an object by interferometry
WO2014026692A1 (en) * 2012-08-13 2014-02-20 Danmarks Tekniske Universitet Automatic identification of single- and/or few-layer thin-film material
KR101366114B1 (en) * 2012-09-10 2014-02-24 전자부품연구원 Method for monitoring of surface of graphene
KR101517429B1 (en) 2013-08-23 2015-05-07 건국대학교 산학협력단 Method for determining graphene thickness using atomic force microscope
CN105300882A (en) * 2015-10-21 2016-02-03 泰州巨纳新能源有限公司 Method for judging graphene layer number rate through optical microscope pictures
CN113533415A (en) * 2021-07-19 2021-10-22 苏州鸿凌达电子科技有限公司 Heat-conducting property detection method applied to graphene/graphite heat-conducting module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946007B1 (en) 2012-06-20 2019-02-08 삼성전자주식회사 Apparatus and Method for analyzing graphene
KR102588330B1 (en) * 2021-08-30 2023-10-11 세종대학교산학협력단 Two-dimensional object detection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351830A (en) * 1998-06-05 1999-12-24 Dainippon Printing Co Ltd Method for inspecting film thickness unevenness of coating material
WO2002088415A1 (en) * 2001-04-23 2002-11-07 Sony Corporation Film forming method
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351830A (en) * 1998-06-05 1999-12-24 Dainippon Printing Co Ltd Method for inspecting film thickness unevenness of coating material
WO2002088415A1 (en) * 2001-04-23 2002-11-07 Sony Corporation Film forming method
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7012003698; P.Blake et.al.: '"Making graphene visible"' APPLIED PHYSICS LETTERS Vol.91, 20070810, 063124 *
JPN7012003699; Guoquan Teo et.al.: '"Visibility study of graphene multilayer structures"' JOURNAL OF APPLIED PHYSICS Vol.103, 20080616, pages 124302 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531227A (en) * 2010-05-18 2013-08-01 マーポス、ソチエタ、ペル、アツィオーニ Method and apparatus for optically measuring the thickness of an object by interferometry
US9079283B2 (en) 2010-05-18 2015-07-14 Marposs Societa′ per Azioni Method and apparatus for optically measuring by interferometry the thickness of an object
US8698077B2 (en) 2010-06-25 2014-04-15 Nec Corporation Method for determining number of layers of two-dimensional thin film atomic structure and device for determining number of layers of two-dimensional thin film atomic structure
JP5874981B2 (en) * 2010-06-25 2016-03-02 日本電気株式会社 Layer number determination method for two-dimensional thin film atomic structure and layer number determination device for two-dimensional thin film atomic structure
WO2011162411A1 (en) * 2010-06-25 2011-12-29 日本電気株式会社 Method for determining number of layers of two-dimensional thin film atomic structure and device for determining number of layers of two-dimensional thin film atomic structure
US9251601B2 (en) 2012-08-13 2016-02-02 Danmarks Tekniske Universitet Automatic identification of single- and/or few-layer thin-film material
CN104737201A (en) * 2012-08-13 2015-06-24 丹麦技术大学 Automatic identification of single- and/or few-layer thin-film material
WO2014026692A1 (en) * 2012-08-13 2014-02-20 Danmarks Tekniske Universitet Automatic identification of single- and/or few-layer thin-film material
CN102854136A (en) * 2012-09-07 2013-01-02 泰州巨纳新能源有限公司 Method for determining number of layers and thickness of graphene by using optical microscope picture
KR101366114B1 (en) * 2012-09-10 2014-02-24 전자부품연구원 Method for monitoring of surface of graphene
KR101517429B1 (en) 2013-08-23 2015-05-07 건국대학교 산학협력단 Method for determining graphene thickness using atomic force microscope
CN105300882A (en) * 2015-10-21 2016-02-03 泰州巨纳新能源有限公司 Method for judging graphene layer number rate through optical microscope pictures
CN113533415A (en) * 2021-07-19 2021-10-22 苏州鸿凌达电子科技有限公司 Heat-conducting property detection method applied to graphene/graphite heat-conducting module
CN113533415B (en) * 2021-07-19 2022-07-22 苏州鸿凌达电子科技有限公司 Heat conduction performance detection method applied to graphene/graphite heat conduction module

Also Published As

Publication number Publication date
JP5142278B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5142278B2 (en) Method and system for detecting thickness of graphene or ultra-thin graphite
Arenal et al. Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures
Yanev et al. Tunneling atomic-force microscopy as a highly sensitive mapping tool for the characterization of film morphology in thin high-k dielectrics
JP4690379B2 (en) Optical microscope system for nano-line sensing using polarizing plate and fast Fourier transform
Herner et al. High performance MIIM diode based on cobalt oxide/titanium oxide
US7491934B2 (en) SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast
Peter et al. Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials
Hoshino et al. Nanoscale fluorescence imaging with quantum dot near-field electroluminescence
Nair et al. Algorithm-improved high-speed and non-invasive confocal Raman imaging of 2D materials
Gaillard et al. Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope
TWI628140B (en) Method for distinguishing carbon nanotubes
Kim et al. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films
TWI485383B (en) System and method for the detection of the number of graphene layers
TWI616899B (en) Method for making transparent conductive layer
Kang et al. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes
McClarty et al. Geometric and chemical components of the giant piezoresistance in silicon nanowires
TWI656092B (en) Method for taking photo of carbon nanotubes
Korkh et al. Characterization of CVD-synthesized graphene films transferred on different substrates using the scanning probe microscopy electrical techniques
Hattori et al. Identification of the monolayer thickness difference in a mechanically exfoliated thick flake of hexagonal boron nitride and graphite for van der Waals heterostructures
JP6457766B2 (en) Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material
Obelenis et al. Determination of the number of graphene layers on different substrates by optical microscopy technique
Gmeinwieser et al. Local strain and potential distribution induced by single dislocations in GaN
Hung et al. Potential application of tip-enhanced Raman spectroscopy (TERS) in semiconductor manufacturing
Chu et al. Near-infrared bilayer nanowire grid polarizer array fabricated using soft nanoimprint lithography
Li et al. The magneto-optical properties of annealed Co96Pt4 nanowire arrays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees