JP2010043803A - Heat exchanger for chemical liquid - Google Patents

Heat exchanger for chemical liquid Download PDF

Info

Publication number
JP2010043803A
JP2010043803A JP2008209477A JP2008209477A JP2010043803A JP 2010043803 A JP2010043803 A JP 2010043803A JP 2008209477 A JP2008209477 A JP 2008209477A JP 2008209477 A JP2008209477 A JP 2008209477A JP 2010043803 A JP2010043803 A JP 2010043803A
Authority
JP
Japan
Prior art keywords
heat exchange
chemical
header
heat exchanger
exchange block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008209477A
Other languages
Japanese (ja)
Other versions
JP5376489B2 (en
Inventor
Hiroyuki Muraishi
浩幸 村石
Fumihiko Koyama
文彦 小山
Yoshinori Ushinagare
義範 牛流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2008209477A priority Critical patent/JP5376489B2/en
Publication of JP2010043803A publication Critical patent/JP2010043803A/en
Application granted granted Critical
Publication of JP5376489B2 publication Critical patent/JP5376489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a maintenance cost and to contribute to improvement in reliability by reducing a risk of liquid leakage caused by deterioration of a seal ring. <P>SOLUTION: A heat exchanger 1 for chemical liquid carries out heat exchanging to the chemical liquid L circulating inside by cooling or heating heat exchanging surfaces formed on its outer surfaces. For composing the heat exchanger, it is integrally formed as a whole by sintering predetermined burning material M so as to provide a chemical liquid circulation passage R for circulating the chemical liquid L inside. The heat exchanging surfaces Cu, Cd are provided on at least upper surface 2u and a lower surface 2d which are to be the outer surfaces. The heat exchanger 1 is equipped with: a heat exchanging block 2 provided with an inlet port Ri and an outlet port Re facing to the chemical liquid circulation passage R on at least either the upper surface 2u or the lower surface 2d; and a connection header 3 fixed to at least one 2u (2d) of the upper surface 2u and the lower surface 2d and provided with an inlet side connection part Ji communicating with the inlet port Ri and an outlet side connection part Je communicating with the outlet port Re. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外面に形成した熱交換面を冷却又は加熱することにより内部に流通する薬液に対して熱交換を行う薬液用熱交換器に関する。   The present invention relates to a chemical heat exchanger that exchanges heat with respect to a chemical flowing through the inside by cooling or heating a heat exchange surface formed on an outer surface.

従来、外面に形成した熱交換面を冷却又は加熱することにより内部に流通する薬液に対して熱交換を行う薬液用熱交換器としては、特許文献1で開示される半導体処理液用冷却加熱装置が知られている。同公報で開示される半導体処理液用冷却加熱装置(薬液用熱交換器)は、一対の熱交換基板により側部壁体を挟むことにより冷却加熱室を形成し、この冷却加熱室に半導体処理液を流通させるとともに、各熱交換基板に、流通する半導体処理液を接触せしめて冷却または加熱するものであり、熱交換基板の少なくとも処理液接触面側がアモルファスカーボン層により被覆されるグラファイト基材で構成、又は熱交換基板がアモルファスカーボンで構成される。   Conventionally, as a heat exchanger for a chemical solution that performs heat exchange with respect to a chemical solution that circulates inside by cooling or heating a heat exchange surface formed on the outer surface, a cooling and heating device for a semiconductor processing solution disclosed in Patent Document 1 It has been known. The semiconductor processing liquid cooling and heating device (chemical liquid heat exchanger) disclosed in the publication forms a cooling and heating chamber by sandwiching a side wall between a pair of heat exchange substrates, and a semiconductor processing liquid is formed in the cooling and heating chamber. In addition to circulating the liquid, the circulating semiconductor processing liquid is brought into contact with each heat exchange substrate and cooled or heated, and at least the processing liquid contact surface side of the heat exchange substrate is a graphite base material covered with an amorphous carbon layer. The configuration or the heat exchange substrate is made of amorphous carbon.

しかし、この半導体処理液用冷却加熱装置は、熱交換基板に熱伝導性の低いアモルファスカーボンを使用するため、熱交換基板の厚さを1〜3〔mm〕程度に抑え、また、グラファイト基材や補強板を組合わせた複合板として機械的強度を確保する必要があり、異材質間の接触熱抵抗により熱伝達性能が低下し、熱交換効率を高めるにも限界があるとともに、一対の熱交換基板により側部壁体を挟むことにより冷却加熱室を形成する必要があることに加え、アモルファスカーボンとグラファイト基材等を組合わせた複合板として構成する必要があることから、熱交換器全体の構造が複雑となり、部品点数の増加及び製造工程の煩雑化に伴うコスト上昇を招くとともに、異材質間での熱伸縮に伴う耐久性の低下を招きやすいなどの問題がある。しかも、劣化したシールリング(Oリング)を交換する場合、熱交換基板,サーモモジュール及び放熱ブロックなどを取り外す必要があり、メンテナンスを容易に行えないとともに、メンテナンスコストも無視できない。   However, this cooling and heating apparatus for semiconductor processing liquid uses amorphous carbon having low thermal conductivity for the heat exchange substrate, so the thickness of the heat exchange substrate is suppressed to about 1 to 3 mm, and the graphite base material It is necessary to ensure the mechanical strength as a composite plate combining a reinforcing plate and a reinforcing plate, the heat transfer performance decreases due to the contact thermal resistance between different materials, and there is a limit to increase the heat exchange efficiency, and a pair of heat In addition to the need to form a cooling and heating chamber by sandwiching the side wall with an exchange substrate, it is necessary to construct a composite plate combining amorphous carbon and a graphite base material. The structure becomes complicated, resulting in an increase in the number of parts and an increase in cost due to the complexity of the manufacturing process, and a problem in that the durability tends to decrease due to thermal expansion and contraction between different materials. In addition, when replacing a deteriorated seal ring (O-ring), it is necessary to remove the heat exchange board, the thermo module, the heat dissipation block, etc., and maintenance cannot be easily performed, and the maintenance cost cannot be ignored.

一方、この問題を解消するため、既に、本出願人は、外面に形成した熱交換面を冷却又は加熱することにより内部に流通する薬液に対して熱交換を行う薬液用熱交換器であって、内部に薬液を流通させる複数の薬液流通路を形成し、かつ少なくとも外面となる上面及び下面を熱交換面として形成するとともに、所定の焼成素材を焼結することにより全体を一体形成した熱交換ブロックを備えた薬液用熱交換器を特許文献2により提案した。この薬液用熱交換器は、単一素材となる所定の焼成素材を焼結することにより、全体を一体形成した熱交換ブロックを備えるため、複合板として構成する場合のディメリットを解消、即ち、異材質間の接触熱抵抗により熱伝達性能が低下するディメリットを解消し、熱交換器としての熱交換効率を高めることができる。しかも、熱交換器全体の構造単純化、部品点数の大幅削減及び製造工程の簡略化に伴うコストダウンを図れるとともに、異材質間での熱伸縮が生じないことから長期使用における耐久性を高めることができる。
特開平9−229587号公報 特開2008−64382号公報
On the other hand, in order to solve this problem, the present applicant has already been a heat exchanger for a chemical solution that performs heat exchange with respect to a chemical solution circulating inside by cooling or heating the heat exchange surface formed on the outer surface. , Heat exchange that forms a plurality of chemical flow passages through which the chemical liquid flows, and that at least the upper and lower surfaces serving as outer surfaces are formed as heat exchange surfaces and that a predetermined firing material is sintered to form a whole A heat exchanger for chemicals provided with a block was proposed in Patent Document 2. Since this chemical heat exchanger comprises a heat exchange block that is integrally formed as a whole by sintering a predetermined firing material that becomes a single material, it eliminates the disadvantages when it is configured as a composite plate, The disadvantage that the heat transfer performance decreases due to the contact thermal resistance between different materials can be eliminated, and the heat exchange efficiency as a heat exchanger can be improved. In addition, the overall structure of the heat exchanger can be simplified, the number of parts can be greatly reduced, and the cost can be reduced due to the simplification of the manufacturing process. Can do.
Japanese Patent Laid-Open No. 9-229587 JP 2008-64382 A

しかし、上述した特許文献2における従来の薬液用熱交換器は、次のような改善すべき課題も残されていた。   However, the conventional chemical heat exchanger in Patent Document 2 described above still has the following problems to be improved.

第一に、半導体処理液等に使用する薬品は、近年、処理スピードを速めるため、液温を常温域から中高温域に高めたり、薬液の高純度化(強酸化,強アルカリ化)を図っている。したがって、薬液による侵食性が強くなり、特に、熱交換ブロックと接続用ヘッダ間に介在させるシールリングが劣化しやすい。この場合、シールリングの太さ(幅)を大きくすればよいが、熱交換ブロックにおける端面の厚さ(面積)は、製造技術上、及び熱交換効率の観点からあまり大きくできないため、シールリングの太さ(幅)を大きくするには限界がある。結局、シールリングの早期交換を行う必要があるなど、メンテナンスに伴うコストアップが無視できない。   First, chemicals used in semiconductor processing solutions, etc. have recently been increased in order to increase the processing speed, and the temperature of the solution has been increased from the normal temperature range to a medium to high temperature range, and the chemical solution has been highly purified (strong oxidation, strong alkali). ing. Therefore, the erodibility by the chemical solution becomes strong, and in particular, the seal ring interposed between the heat exchange block and the connection header is likely to deteriorate. In this case, the thickness (width) of the seal ring may be increased. However, the thickness (area) of the end face of the heat exchange block cannot be increased so much from the viewpoint of manufacturing technology and heat exchange efficiency. There is a limit to increasing the thickness (width). After all, it is necessary to replace the seal ring at an early stage, and the cost increase associated with maintenance cannot be ignored.

第二に、アモルファスカーボン等の脆性の大きい素材により熱交換ブロックを製作した場合、熱交換ブロックに固定ボルトを直接螺着できないため、熱交換ブロックと接続ブロックの固定は、熱交換ブロックの両端を挟む一対の接続ブロック間に固定ボルトを架け渡して連結する必要があるなど、このような固定構造に伴う不具合、即ち、熱交換ブロックの両端面間の平行度を高める必要があり、平行度が低い場合は液漏れを生じやすい。固定ボルトの本数が制限されるため、固定強度を高くできない。固定ボルトが長くなるため、熱膨張による伸縮の影響が大きくなる。長手方向の長さが長くなり、熱交換器全体の大型化を招く。などの様々な不具合を生じやすい。   Secondly, when a heat exchange block is made of a brittle material such as amorphous carbon, fixing bolts cannot be screwed directly to the heat exchange block, so the heat exchange block and connection block must be fixed at both ends of the heat exchange block. It is necessary to bridge and connect a fixing bolt between a pair of sandwiched connection blocks, such as a problem with such a fixing structure, that is, it is necessary to increase the parallelism between both end faces of the heat exchange block, and the parallelism is If it is low, liquid leakage is likely to occur. Since the number of fixing bolts is limited, the fixing strength cannot be increased. Since the fixing bolt becomes longer, the influence of expansion and contraction due to thermal expansion is increased. The length in the longitudinal direction becomes long, leading to an increase in the size of the entire heat exchanger. It is easy to cause various troubles.

本発明は、このような背景技術に存在する課題を解決した薬液用熱交換器の提供を目的とするものである。   The object of the present invention is to provide a heat exchanger for chemicals that solves the problems existing in the background art.

本発明は、上述した課題を解決するため、外面に形成した熱交換面を冷却又は加熱することにより内部に流通する薬液Lに対して熱交換を行う薬液用熱交換器1を構成するに際して、所定の焼成素材Mを焼結して全体を一体形成することにより、内部に薬液Lを流通させる薬液流通路Rを設け、かつ少なくとも外面となる上面2u及び下面2dに熱交換面Cu,Cdを設けるとともに、上面2u及び下面2dの少なくとも一方に薬液流通路Rに臨む流入口Ri及び流出口Reを設けた熱交換ブロック2と、上面2u及び下面2dの少なくとも一方2u(2d)に固定し、かつ流入口Riに連通する流入側接続部Ji及び流出口Reに連通する流出側接続部Jeを設けた接続用ヘッダ3とを具備してなることを特徴とする。   In order to solve the above-described problems, the present invention configures the chemical liquid heat exchanger 1 that performs heat exchange with respect to the chemical liquid L flowing inside by cooling or heating the heat exchange surface formed on the outer surface. By sintering a predetermined firing material M and integrally forming the whole, a chemical flow path R through which the chemical liquid L is circulated is provided, and at least the upper surface 2u and the lower surface 2d serving as outer surfaces are provided with heat exchange surfaces Cu and Cd. And at least one of the upper surface 2u and the lower surface 2d is fixed to at least one of the upper surface 2u and the lower surface 2d (2d), and the heat exchange block 2 provided with the inlet Ri and the outlet Re facing the chemical flow path R. And an inflow side connection portion Ji communicating with the inflow port Ri and a connection header 3 provided with an outflow side connection portion Je communicating with the outflow port Re.

この場合、発明の好適な態様により、熱交換ブロック2と接続用ヘッダ3は、薬液流通路Rが存在しない部位を貫通する複数の固定ボルト4…により固定することができる。また、焼成素材Mには、アモルファスカーボン素材又は炭化珪素素材(SiC)が好適である。さらに、薬液流通路Rは、一方向に形成した複数の直線流通孔Rx…の組合わせ、又は二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成することができるとともに、薬液流通路Rにおける熱交換ブロック2の側面2sに臨む開口部Rh…は、当該熱交換ブロック2と同一の素材又は異なる素材により形成した閉塞部材5…により閉塞することができる。なお、接続用ヘッダ3は、流入側接続部Jiを有する第一ヘッダ部3iと流出側接続部Jeを有する第二ヘッダ部3eの二つのヘッダ部により構成してもよいし、或いは流入側接続部Ji及び流出側接続部Jeを有する単一ヘッダ部3mにより一体に構成してもよい。   In this case, according to a preferred aspect of the invention, the heat exchange block 2 and the connection header 3 can be fixed by a plurality of fixing bolts 4 penetrating a portion where the chemical liquid flow path R does not exist. Moreover, an amorphous carbon material or a silicon carbide material (SiC) is suitable for the firing material M. Furthermore, the chemical liquid flow passage R can be configured by a combination of a plurality of linear flow holes Rx ... formed in one direction or a combination of a plurality of linear flow holes Rx ..., Ry ... formed in two directions. The openings Rh that face the side surface 2s of the heat exchange block 2 in the chemical flow passage R can be blocked by a closing member 5 that is formed of the same material as that of the heat exchange block 2 or a different material. The connection header 3 may be composed of two header parts, a first header part 3i having an inflow side connection part Ji and a second header part 3e having an outflow side connection part Je, or an inflow side connection. You may comprise integrally by the single header part 3m which has the part Ji and the outflow side connection part Je.

このような構成を有する本発明に係る薬液用熱交換器1によれば、次のような顕著な効果を奏する。   The chemical solution heat exchanger 1 according to the present invention having such a configuration has the following remarkable effects.

(1) 熱交換ブロック2と接続用ヘッダ3間の対向面積は特に制限されないため、熱交換ブロック2と接続用ヘッダ3間に介在させるシールリングの太さ(幅)を大きくすることができる。したがって、半導体処理液等に使用する薬品の高温化や高純度化(強酸化,強アルカリ化)が進んだ場合であってもシールリングの劣化による液漏れリスクを低減できるため、シールリングの使用期間を延ばすことができ、メンテナンスコストの削減を図れるとともに、信頼性向上に寄与できる。   (1) Since the opposed area between the heat exchange block 2 and the connection header 3 is not particularly limited, the thickness (width) of the seal ring interposed between the heat exchange block 2 and the connection header 3 can be increased. Therefore, even if the chemicals used in semiconductor processing liquids are heated to high temperatures and have become highly purified (strong oxidation, strong alkalinity), the risk of leakage due to deterioration of the seal ring can be reduced. The period can be extended, maintenance costs can be reduced, and reliability can be improved.

(2) 単一素材となる所定の焼成素材Mを焼結することにより、全体を一体形成した熱交換ブロック2を備えるため、複合板として構成する場合のディメリットである異材質間の接触熱抵抗による熱伝達性能の低下や異材質間での熱伸縮による耐久性低下を解消でき、もって、熱交換器としての熱交換効率を高めることができるとともに、熱交換器全体の構造単純化による部品点数の削減及び製造工程の簡略化に伴うコストダウンを図れるなど、熱交換ブロック2を用いたことに基づく基本的な効果を享受できる。   (2) Since a predetermined calcined material M, which is a single material, is sintered to provide the heat exchange block 2 integrally formed as a whole, contact heat between different materials, which is a demerit when it is configured as a composite plate Reduced heat transfer performance due to resistance and reduced durability due to thermal expansion and contraction between dissimilar materials, improving heat exchange efficiency as a heat exchanger and simplifying the structure of the entire heat exchanger A basic effect based on the use of the heat exchanging block 2 can be enjoyed, such as reduction in the number of points and cost reduction associated with simplification of the manufacturing process.

(3) 好適な態様により、熱交換ブロック2と接続用ヘッダ3を、薬液流通路Rが存在しない部位を貫通する複数の固定ボルト4…により固定すれば、固定ボルト4…を可及的に短くできるとともに、固定ボルト4…の使用数量に対する選定自由度を高めることができる。したがって、熱交換ブロック2の両端面間の平行度が要求されないため、製作の容易化及びこの部位での液漏れ解消を実現できるとともに、固定ボルト4…を短くできるため、熱膨張による伸縮の影響を小さくできる。また、固定ボルト4…の本数を増やせるため、固定強度を高めることができるとともに、長手方向の全体長を短くできるため、熱交換器全体の小型コンパクト化を図れるなど、従来の固定構造に伴う様々な不具合を解消できる。   (3) If the heat exchange block 2 and the connection header 3 are fixed by a plurality of fixing bolts 4 penetrating a portion where the chemical liquid flow passage R does not exist, the fixing bolts 4. While being able to shorten, the freedom degree of selection with respect to the usage-amount of fixing bolt 4 ... can be raised. Therefore, since parallelism between both end faces of the heat exchange block 2 is not required, it is easy to manufacture and can eliminate liquid leakage at this part, and the fixing bolts 4 can be shortened. Can be reduced. In addition, since the number of fixing bolts 4 can be increased, the fixing strength can be increased, and the overall length in the longitudinal direction can be shortened, so that the entire heat exchanger can be made compact and compact. Can solve the problem.

(4) 好適な態様により、焼成素材Mとして、アモルファスカーボン素材又は炭化珪素素材を用いれば、少なくとも薬液に対して化学的及び物理的に強い耐薬品性、更には発生するガスの漏れを阻止するガスに対する非透過性に優れる熱交換ブロック2、即ち、薬液用熱交換器1を構成する最適な熱交換ブロック2を得ることができる。   (4) According to a preferred embodiment, when an amorphous carbon material or a silicon carbide material is used as the firing material M, at least chemically and physically strong chemical resistance with respect to a chemical solution, and further, leakage of generated gas is prevented. The heat exchange block 2 excellent in gas impermeability, that is, the optimum heat exchange block 2 constituting the chemical liquid heat exchanger 1 can be obtained.

(5) 好適な態様により、薬液流通路Rを、一方向に形成した複数の直線流通孔Rx…の組合わせ又は二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成すれば、焼成素材Mとしてアモルファスカーボン素材又は炭化珪素素材等の成形しにくい素材を用いた場合であっても薬液流通路Rを容易かつ確実に設けることができるとともに、熱交換面積,最大流量,圧力損失等を考慮した熱交換器の設計を容易に行うことができる。   (5) According to a preferred embodiment, the chemical flow path R is configured by a combination of a plurality of linear flow holes Rx ... formed in one direction or a combination of a plurality of linear flow holes Rx ..., Ry ... formed in two directions. In this case, the chemical flow passage R can be easily and surely provided even when an amorphous carbon material or a silicon carbide material such as an amorphous carbon material is used as the firing material M, and the heat exchange area, the maximum flow rate, The heat exchanger can be easily designed in consideration of pressure loss and the like.

(6) 好適な態様により、薬液流通路Rにおける熱交換ブロック2の側面2sに臨む開口部Rh…を、当該熱交換ブロック2と同一の素材又は異なる素材により形成した閉塞部材5…により閉塞すれば、上述した二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成することと併せて、より容易かつ確実に薬液流通路Rを設けることができる。   (6) According to a preferred embodiment, the opening Rh... Facing the side surface 2 s of the heat exchange block 2 in the chemical flow passage R is blocked by a closing member 5 formed of the same material as that of the heat exchange block 2 or a different material. For example, the chemical flow passage R can be provided more easily and reliably in combination with the combination of the plurality of linear flow holes Rx... Ry.

(7) 好適な態様により、接続用ヘッダ3を、別体となる流入側接続部Jiを有する第一ヘッダ部3iと流出側接続部Jeを有する第二ヘッダ部3eの二つのヘッダ部により構成すれば、第一ヘッダ部3iと第二ヘッダ部3e間の断熱性を高めることができるため、通常、10〔℃〕前後の温度差を有する第一ヘッダ部3iと第二ヘッダ部3e間の無用な熱伝達(熱漏れ)を阻止し、熱交換効率の向上に寄与できる。また、温度差により生じる熱変形を抑制し、流入側接続部Ji及び流出側接続部Jeからの液漏れを阻止することができる。   (7) According to a preferred embodiment, the connection header 3 is composed of two header parts, a first header part 3i having a separate inflow side connection part Ji and a second header part 3e having an outflow side connection part Je. Then, since the heat insulation between the 1st header part 3i and the 2nd header part 3e can be improved, normally between the 1st header part 3i and the 2nd header part 3e which have a temperature difference around 10 [degreeC]. It can prevent unnecessary heat transfer (heat leakage) and contribute to the improvement of heat exchange efficiency. Moreover, the thermal deformation which arises by a temperature difference can be suppressed and the liquid leakage from the inflow side connection part Ji and the outflow side connection part Je can be prevented.

(8) 好適な態様により、接続用ヘッダ3を、流入側接続部Ji及び流出側接続部Jeを有する単一ヘッダ部3mにより一体に構成すれば、流入側接続部Jiと流出側接続部Je間の温度差が小さい用途などにおいては、部品点数の半減によりコストダウン及び製造容易性に寄与できる。   (8) According to a preferred embodiment, if the connection header 3 is integrally formed by the single header portion 3m having the inflow side connection portion Ji and the outflow side connection portion Je, the inflow side connection portion Ji and the outflow side connection portion Je. In applications where the temperature difference between them is small, it is possible to contribute to cost reduction and ease of manufacture by halving the number of parts.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る薬液用熱交換器1に用いる熱交換ブロック2と接続用ヘッダ3について、図1〜図4を参照して説明する。   First, the heat exchange block 2 and the connection header 3 used in the chemical liquid heat exchanger 1 according to the present embodiment will be described with reference to FIGS.

熱交換ブロック2は、図4に示すように、全体を所定の焼成素材M、望ましくはアモルファスカーボン素材により、偏平な直方体状(プレート状)に一体に形成する。熱交換ブロック2の外面となる上面2u及び下面2dは、平坦な熱交換面Cu,Cdとして形成し、熱交換ブロック2の内部には、薬液Lを流通させる薬液流通路Rを設ける。薬液流通路Rは、二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成する。図4に例示する薬液流通路Rは、長手方向(X方向)に沿って形成した八本の直線流通孔Rx…と、この直線流通孔Rx…に直交する短手方向(Y方向)に形成した四本の直線流通孔Ry…を組合わせて構成する。この場合、各直線流通孔Rx…は、一端側を熱交換ブロック2の側面2sに開口部Rh…として形成するとともに、他端側は熱交換ブロック2の側面2sに臨ませることなく側面2sの近傍で袋小路状に形成する。また、各直線流通孔Ry…は、長手方向の一端側に配し、一端側を熱交換ブロック2の側面2sに臨ませることにより開口部Rh…として形成するとともに、他端側は熱交換ブロック2の側面2sに臨ませることなく側面2sの近傍で袋小路状に形成する。なお、各直線流通孔Rx…,Ry…は断面円形に形成し、各直線流通孔Rx…,Ry…と熱交換面Cu間、及び各直線流通孔Rx…,Ry…と熱交換面Cd間における最も薄くなる部位の厚さは、2〔mm〕以下に選定することが望ましい。このように、薬液流通路Rを、二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成すれば、焼成素材Mとしてアモルファスカーボン素材又は炭化珪素素材等の成形しにくい素材を用いた場合であっても薬液流通路Rを容易かつ確実に設けることができるとともに、特に、熱交換面積,最大流量,圧力損失等を考慮した熱交換器設計を容易に行うことができる。   As shown in FIG. 4, the heat exchange block 2 is integrally formed in a flat rectangular parallelepiped shape (plate shape) with a predetermined firing material M, preferably an amorphous carbon material. The upper surface 2u and the lower surface 2d which are the outer surfaces of the heat exchange block 2 are formed as flat heat exchange surfaces Cu and Cd, and a chemical solution flow path R through which the chemical solution L is circulated is provided inside the heat exchange block 2. The chemical flow passage R is constituted by a combination of a plurality of linear flow holes Rx... Ry. 4 is formed in eight straight flow holes Rx formed along the longitudinal direction (X direction) and in a short direction (Y direction) orthogonal to the straight flow holes Rx. The four straight flow holes Ry... In this case, each linear flow hole Rx is formed with one end side as an opening Rh in the side surface 2s of the heat exchange block 2, and the other end side of the side surface 2s without facing the side surface 2s of the heat exchange block 2. A bag path is formed in the vicinity. Each linear flow hole Ry is arranged on one end side in the longitudinal direction, and one end side is formed as an opening Rh by facing the side surface 2s of the heat exchange block 2, and the other end side is a heat exchange block. It forms in the shape of a bag path in the vicinity of the side surface 2s without facing the second side surface 2s. Each straight flow hole Rx ..., Ry ... is formed in a circular cross section, and between each straight flow hole Rx ..., Ry ... and the heat exchange surface Cu, and between each straight flow hole Rx ..., Ry ... and the heat exchange surface Cd. It is desirable to select the thickness of the thinnest part in 2 [mm] or less. In this way, if the chemical flow passage R is configured by a combination of a plurality of linear flow holes Rx..., Ry... Formed in two directions, a material that is difficult to be molded such as an amorphous carbon material or a silicon carbide material as the fired material M. Even in the case of using the chemical liquid flow path R, it is possible to easily and reliably provide the chemical liquid flow path R, and in particular, it is possible to easily perform the heat exchanger design considering the heat exchange area, the maximum flow rate, the pressure loss, and the like.

そして、各開口部Rh…は別途用意した閉塞部材5…により閉塞する。この場合、図4に示すように、各開口部Rh…から内周面にネジ孔部Rhn…を設け、外周面にネジ部5s…を設けた円柱形の閉塞部材5…を螺着して密閉する。この閉塞部材5…は、熱交換ブロック2と同一の素材により形成してもよいし、他の素材により形成してもよい。同一の素材で形成した場合には、熱交換ブロック2の焼結処理を行う前に、各開口部Rh…に閉塞部材5…を螺着し、この後、熱交換ブロック2と一緒に焼結処理することができる。また、他の素材としては、耐薬品性に優れたフッ素系樹脂(PTFE,PFA等)等により形成できる。このように、各開口部Rh…を閉塞部材5…により閉塞すれば、上述した二方向に形成した複数の直線流通孔Rx…,Ry…の組合わせにより構成することと併せて、より容易かつ確実に薬液流通路Rを設けることができる。   Each opening Rh is closed by a separately prepared closing member 5. In this case, as shown in FIG. 4, a cylindrical occlusion member 5 provided with screw holes Rhn... On the inner peripheral surface from the openings Rh. Seal. The closing members 5 may be formed of the same material as the heat exchange block 2 or may be formed of other materials. When the same material is used, before the heat exchange block 2 is sintered, the closing member 5 is screwed into each opening Rh, and then sintered together with the heat exchange block 2. Can be processed. Further, as other materials, it can be formed of a fluorine-based resin (PTFE, PFA, etc.) having excellent chemical resistance. Thus, if each opening part Rh ... is obstruct | occluded by the obstruction | occlusion member 5 ..., it combines with the structure of several linear flow hole Rx ..., Ry ... formed in the two directions mentioned above, and it is easier and more easily. The chemical liquid flow path R can be reliably provided.

さらに、熱交換ブロック2の上面2uであって、長手方向における他端側、即ち、各直線流通孔Ry…を設けた側に対して反対側には、薬液流通路Rに臨む流入口Ri及び流出口Reを設ける。この場合、流入口Riは細長く形成し、熱交換ブロック2の短手方向一側に配した四本の直線流通孔Rx…に跨がるように設けるとともに、流出口Reも細長く形成し、熱交換ブロック2の短手方向他側に配した四本の直線流通孔Rx…に跨がるように設ける。また、流入口Riを等間隔で囲む位置であって直線流通孔Rx…が存在しない位置には、上下面に貫通する四つのボルト挿通孔11…を設けるとともに、流出口Reを等間隔で囲む位置であって直線流通孔Rx…が存在しない位置には、上下面に貫通する四つのボルト挿通孔11…を設ける。なお、12…は、熱交換ブロック2の短手方向中央に形成した複数のボルト挿通孔であり長手方向に一定間隔おきに設ける。   Further, on the upper surface 2u of the heat exchange block 2, on the other end side in the longitudinal direction, that is, on the opposite side to the side where each linear flow hole Ry is provided, the inlet Ri facing the chemical liquid flow path R and An outlet Re is provided. In this case, the inflow port Ri is formed in an elongated shape so as to straddle the four straight flow holes Rx arranged on one side in the short direction of the heat exchange block 2, and the outflow port Re is also formed in an elongated shape. It is provided so as to straddle the four straight flow holes Rx arranged on the other side in the short direction of the exchange block 2. In addition, four bolt insertion holes 11 penetrating the upper and lower surfaces are provided at positions where the inflow ports Ri are surrounded at equal intervals and the straight flow holes Rx are not present, and the outflow ports Re are surrounded at equal intervals. Four bolt insertion holes 11 penetrating the upper and lower surfaces are provided at positions where the straight flow holes Rx are not present. In addition, 12 ... is a plurality of bolt insertion holes formed in the center in the short direction of the heat exchange block 2, and is provided at regular intervals in the longitudinal direction.

一方、熱交換ブロック2の製造においては、アモルファスカーボン素材に係わる公知の製法を利用できる。例えば、フェノール樹脂,ポリイミド樹脂,エポキシ樹脂,フラン樹脂等で代表される熱硬化性樹脂を、射出成形機或いは圧縮成形機などを用いて賦型するとともに、この後、不活性ガス雰囲気中において千数百℃の高温下で焼成することにより炭素化したアモルファスカーボン成形体としての熱交換ブロック2を得ることができる。焼成素材Mとしては、アモルファスカーボン素材以外に、炭化珪素素材(シリコンと炭化物の化合物:SiC)を用いても、当該アモルファスカーボン素材と同様に良好な結果を得ることができる。このように、焼成素材Mとして、アモルファスカーボン素材又は炭化珪素素材を用いれば、少なくとも薬液に対して化学的及び物理的に強い耐薬品性、更には発生するガスの漏れを阻止するガスに対する非透過性に優れる熱交換ブロック2、即ち、薬液用熱交換器1を構成する最適な熱交換ブロック2を得ることができる。   On the other hand, in the manufacture of the heat exchange block 2, a known manufacturing method related to an amorphous carbon material can be used. For example, a thermosetting resin represented by a phenol resin, a polyimide resin, an epoxy resin, a furan resin, or the like is molded using an injection molding machine or a compression molding machine. A heat exchange block 2 as a carbonized amorphous carbon molded body can be obtained by firing at a high temperature of several hundred degrees Celsius. Even if a silicon carbide material (a compound of silicon and carbide: SiC) is used as the firing material M in addition to the amorphous carbon material, good results can be obtained similarly to the amorphous carbon material. As described above, when an amorphous carbon material or a silicon carbide material is used as the firing material M, at least chemically and physically strong chemical resistance with respect to a chemical solution, and also impervious to gas that prevents leakage of generated gas. It is possible to obtain the heat exchange block 2 that is excellent in performance, that is, the optimum heat exchange block 2 that constitutes the chemical liquid heat exchanger 1.

他方、接続用ヘッダ3は、図1〜図3に示すように、流入側接続部Jiを有する第一ヘッダ部3iと流出側接続部Jeを有する第二ヘッダ部3eの二つのヘッダ部により構成する。第一ヘッダ部3iと第二ヘッダ部3eは同一に構成できるため、二つの第一ヘッダ部3i,3iを用意することにより、一方を第一ヘッダ部3iとし、他方を第二ヘッダ部3eとして用いればよい。このように、接続用ヘッダ3を、別体となる流入側接続部Jiを有する第一ヘッダ部3iと流出側接続部Jeを有する第二ヘッダ部3eの二つのヘッダ部により構成すれば、第一ヘッダ部3iと第二ヘッダ部3e間の断熱性を高めることができるため、通常、10〔℃〕前後の温度差を有する第一ヘッダ部3iと第二ヘッダ部3e間の無用な熱伝達(熱漏れ)を阻止し、熱交換効率の向上に寄与できるとともに、更に、温度差により生じる熱変形を抑制し、流入側接続部Ji及び流出側接続部Jeからの液漏れを阻止できる利点がある。   On the other hand, as shown in FIGS. 1 to 3, the connection header 3 is composed of two header parts, a first header part 3i having an inflow side connection part Ji and a second header part 3e having an outflow side connection part Je. To do. Since the first header part 3i and the second header part 3e can be configured identically, by preparing two first header parts 3i, 3i, one is the first header part 3i and the other is the second header part 3e. Use it. In this way, if the connection header 3 is constituted by two header parts, ie, the first header part 3i having the inflow side connection part Ji and the second header part 3e having the outflow side connection part Je, Since the heat insulation between the one header part 3i and the second header part 3e can be improved, normally unnecessary heat transfer between the first header part 3i and the second header part 3e having a temperature difference of about 10 [° C.]. (Heat leakage) can be prevented, contributing to the improvement of heat exchange efficiency, and further, the heat deformation caused by the temperature difference can be suppressed, and the liquid leakage from the inflow side connection portion Ji and the outflow side connection portion Je can be prevented. is there.

この場合、第一ヘッダ部3iは、熱交換ブロック2の上面2uに面接触可能となるように、例えば、耐薬品性に優れたフッ素系樹脂(PTFE,PFA等)等により全体を直方体状に一体成形する。第一ヘッダ部3iは、図3に示すように、上面2uにおける流入口Riに接続するため、接続時に、上述した四つのボルト挿通孔11…に位置が一致する四つのボルト挿通孔22…を設ける。また、第一ヘッダ部3iの中央には上下方向に貫通する液通路23を設ける。液通路23は熱交換ブロック2に組付けた際に下端部が流入口Riに接続されるとともに、液通路23の上端部は流入側接続部Jiとなる。この流入側接続部Jiには、フッ素系樹脂等により形成した薬液チューブTiの先端を嵌め込み、接着剤等により固定して接続できる。さらに、第一ヘッダ部3iの下面には、凹溝によるシールリング収容部24を設ける。このシールリング収容部24は、流入口Riの開口縁と各ボルト挿通孔11…間に、当該流入口Riの開口縁に沿って形成する。なお、流入側について説明したが、第二ヘッダ部3eを用いる流出側も流入側と同様に構成できる。   In this case, the first header portion 3i is formed in a rectangular parallelepiped shape with, for example, a fluorine resin (PTFE, PFA, etc.) having excellent chemical resistance so that the first header portion 3i can come into surface contact with the upper surface 2u of the heat exchange block 2. One-piece molding. As shown in FIG. 3, the first header portion 3 i is connected to the inflow port Ri on the upper surface 2 u, and therefore, at the time of connection, the four bolt insertion holes 22, whose positions coincide with the four bolt insertion holes 11. Provide. Further, a liquid passage 23 penetrating in the vertical direction is provided in the center of the first header portion 3i. When the liquid passage 23 is assembled to the heat exchange block 2, the lower end portion is connected to the inflow port Ri, and the upper end portion of the liquid passage 23 serves as the inflow side connection portion Ji. The inflow side connection portion Ji is fitted with a tip of a chemical liquid tube Ti formed of a fluorine resin or the like, and can be fixed and connected with an adhesive or the like. Furthermore, a seal ring housing portion 24 is provided on the lower surface of the first header portion 3i. The seal ring accommodating portion 24 is formed between the opening edge of the inflow port Ri and each bolt insertion hole 11 along the opening edge of the inflow port Ri. In addition, although the inflow side was demonstrated, the outflow side using the 2nd header part 3e can also be comprised similarly to an inflow side.

次に、本実施形態に係る薬液用熱交換器1の組立方法について、図1〜図6を参照して説明する。   Next, a method for assembling the chemical heat exchanger 1 according to the present embodiment will be described with reference to FIGS.

最初に、熱交換ブロック2に対して接続用ヘッダ3(第一ヘッダ部3i,第二ヘッダ部3e)を組付ける。まず、フッ素系樹脂等により一体形成した二つのシールリング41…を用意し、各ヘッダ部3i,3eのシールリング収容部24…に収容するとともに、各ヘッダ部3i,3eは、熱交換ブロック2の上面2u上に、シールリング41…側を対面させて載置する。この際、第一ヘッダ部3iは流入口Riを覆うように配するとともに、第二ヘッダ部3eは流出口Reを覆うように配する。そして、図1及び図2に示すように、第一ヘッダ部3iの上面に、金属素材により形成した規制板42を載せるとともに、熱交換ブロック2の下面2dに樹脂素材等により形成した保護板43を当て、さらに、介在板43の下面にナット板44を当てる。この場合、規制板42と介在板43には、四つのボルト挿通孔11…に位置を一致させた四つの挿通孔を有するとともに、ナット板44には、四つのボルト挿通孔11…に位置を一致させた四つのネジ孔44n…を有する。また、規制板42の中央には薬液チューブTiを通すための開口を設ける。一方、四本の固定ボルト4…を用意し、各固定ボルト4…にスプリング45…を装填するとともに、各固定ボルト4…は先端側から、規制板42,第一ヘッダ部3i(ボルト挿通孔22…),熱交換ブロック2(ボルト挿通孔11…),保護板43の順に挿入し、先端をナット板44のネジ孔44n…に螺着する。なお、固定ボルト4…は、ステンレス等の金属製が望ましいが、特に素材は限定されない。このような規制板42及びナット板44により第一ヘッダ部3iを挟むことにより第一ヘッダ部3iの熱変形を防止でき、熱変動に強い組付構造を構成できる。第一ヘッダ部3i側について説明したが、第二ヘッダ部3e側も同様に組付けることができる。これにより、熱交換ブロック2に接続用ヘッダ3(第一ヘッダ部3i,第二ヘッダ部3e)を組付けて一体化した熱交換ユニットUを得ることができる。   First, the connection header 3 (first header part 3i, second header part 3e) is assembled to the heat exchange block 2. First, two seal rings 41... Integrally formed of fluorine resin or the like are prepared and accommodated in the seal ring accommodating portions 24 of the header portions 3i, 3e, and the header portions 3i, 3e are provided in the heat exchange block 2. Is placed with the seal ring 41 side facing each other. At this time, the first header portion 3i is arranged so as to cover the inflow port Ri, and the second header portion 3e is arranged so as to cover the outflow port Re. As shown in FIGS. 1 and 2, a regulating plate 42 formed of a metal material is placed on the upper surface of the first header portion 3i, and a protective plate 43 formed of a resin material or the like on the lower surface 2d of the heat exchange block 2. Further, the nut plate 44 is applied to the lower surface of the intervening plate 43. In this case, the restriction plate 42 and the interposition plate 43 have four insertion holes whose positions coincide with the four bolt insertion holes 11, and the nut plate 44 has a position in the four bolt insertion holes 11. There are four screw holes 44n. In addition, an opening for passing the chemical liquid tube Ti is provided in the center of the regulation plate 42. On the other hand, four fixing bolts 4 are prepared, and each fixing bolt 4 is loaded with a spring 45, and each fixing bolt 4 is connected to the regulating plate 42, the first header portion 3i (bolt insertion hole) from the tip side. 22..., The heat exchange block 2 (bolt insertion holes 11...) And the protective plate 43 are inserted in this order, and the tip is screwed into the screw holes 44 n. The fixing bolts 4 are desirably made of metal such as stainless steel, but the material is not particularly limited. By sandwiching the first header portion 3i between the restriction plate 42 and the nut plate 44, thermal deformation of the first header portion 3i can be prevented, and an assembly structure that is resistant to thermal fluctuation can be configured. Although the 1st header part 3i side was demonstrated, the 2nd header part 3e side can also be assembled | attached similarly. Thereby, the heat exchange unit U which assembled | attached and integrated the header 3 for a connection (1st header part 3i, 2nd header part 3e) to the heat exchange block 2 can be obtained.

また、図5及び図6に示すように、熱交換ブロック2の一方の熱交換面Cuに、ペルチェ素子を用いたサーモモジュール51u…を付設するとともに、このサーモモジュール51u…の放熱面(吸熱面)に冷却部52uを付設する。同様に、熱交換ブロック2の他方の熱交換面Cdに、ペルチェ素子を用いたサーモモジュール51d…を付設するとともに、このサーモモジュール51d…の放熱面(吸熱面)に冷却部52dを付設する。この場合、熱交換ブロック2内には二方向(X方向及びY方向)に形成した複数の直線流通孔Rx…,Ry…を設けたため、矩形状となる複数のサーモモジュール51u…,51d…を熱交換面Cu,Cdのほぼ全面に効率的に配することができるとともに、各サーモモジュール51u…,51d…に対して同寸法(同形状)の冷却部52u,52dを配することにより効率的な冷却を行うことができる。図中、53u,53dは、冷却部52u,52dに冷却水を循環させる配水管を示す。なお、冷却部52u,52dは、冷却水を循環させる水冷式であるが、温水を循環させることにより加熱部として機能させることができる。   As shown in FIGS. 5 and 6, a thermo module 51u using a Peltier element is attached to one heat exchanging surface Cu of the heat exchanging block 2, and a heat dissipating surface (heat absorbing surface) of the thermo module 51u. ) Is provided with a cooling part 52u. Similarly, a thermo module 51d using a Peltier element is attached to the other heat exchange surface Cd of the heat exchange block 2, and a cooling unit 52d is attached to the heat radiation surface (heat absorption surface) of the thermo module 51d. In this case, since the plurality of linear flow holes Rx..., Ry... Formed in two directions (X direction and Y direction) are provided in the heat exchange block 2, a plurality of rectangular thermo modules 51u. The heat exchange surfaces Cu and Cd can be efficiently disposed on almost the entire surface, and the cooling modules 52u and 52d having the same dimensions (same shape) are disposed on the thermo modules 51u. Cooling can be performed. In the figure, reference numerals 53u and 53d denote water distribution pipes for circulating cooling water through the cooling parts 52u and 52d. The cooling units 52u and 52d are water-cooled types that circulate cooling water, but can function as heating units by circulating hot water.

そして、固定ボルト61…により冷却部52uと52d間を結合する。例示の場合、十五本の固定ボルト61…を用意し、短手方向中央の五個所、この両側の各五個所を固定する。各固定ボルト61…にはスプリング62…を装填するとともに、各固定ボルト61…は先端側から、冷却部52uに設けた挿通孔を通した後、冷却部52dに設けたネジ孔に螺着する。この際、短手方向中央の五個所における固定ボルト61…は、熱交換ブロック2に設けた五つのボルト挿通孔12…に挿通させるとともに、両側の各五個所における固定ボルト61…は、図6に示すように、熱交換ブロック2の外方を通すことができる。これにより、図5及び図6に示す薬液用熱交換器1を得ることができる。   Then, the cooling parts 52u and 52d are coupled by the fixing bolts 61. In the case of the illustration, fifteen fixing bolts 61 are prepared, and the five points in the center in the short direction and the five points on both sides are fixed. The fixing bolts 61 are loaded with springs 62, and the fixing bolts 61 are threaded into the screw holes provided in the cooling part 52d after passing through the insertion holes provided in the cooling part 52u from the tip side. . At this time, the fixing bolts 61 at the five positions in the center in the short direction are inserted into the five bolt insertion holes 12 provided in the heat exchange block 2, and the fixing bolts 61 at the five positions on both sides are shown in FIG. As shown in FIG. 3, the outside of the heat exchange block 2 can be passed. Thereby, the heat exchanger 1 for chemical | medical solutions shown in FIG.5 and FIG.6 can be obtained.

よって、このような本実施形態に係る薬液用熱交換器1によれば、熱交換ブロック2と接続用ヘッダ3間の対向面積は特に制限されないため、熱交換ブロック2と接続用ヘッダ3間に介在させるシールリング41…の太さ(幅)を大きくすることができる。したがって、処理スピードを速めるために、半導体処理液等に使用する薬品の高温化や高純度化(強酸化,強アルカリ化)が進んだ場合であっても、シールリング41…の劣化による液漏れリスクを低減できるため、シールリング41…の使用期間を延ばすことができ、メンテナンスコストの削減を図れるとともに、信頼性向上に寄与できる。また、シールリング41…を交換する場合であっても、サーモモジュール51…及び冷却部52…を取り外すことなく作業を行うことができるため、この観点からもメンテナンスコストの削減に寄与できる。しかも、単一素材となる所定の焼成素材Mを焼結することにより、全体を一体形成した熱交換ブロック2を備えるため、複合板として構成する場合のディメリットである異材質間の接触熱抵抗による熱伝達性能の低下や異材質間での熱伸縮による耐久性低下を解消でき、もって、熱交換器としての熱交換効率を高めることができるとともに、熱交換器全体の構造単純化による部品点数の削減及び製造工程の簡略化に伴うコストダウンを図れるなど、熱交換ブロック2を用いたことに基づく基本的な効果を享受できる。   Therefore, according to the chemical solution heat exchanger 1 according to the present embodiment, the facing area between the heat exchange block 2 and the connection header 3 is not particularly limited, and therefore, between the heat exchange block 2 and the connection header 3. The thickness (width) of the interposed seal rings 41 can be increased. Therefore, in order to increase the processing speed, even if the chemicals used in the semiconductor processing liquid or the like are heated to a high temperature or highly purified (strong oxidation, strong alkalinization), liquid leakage due to deterioration of the seal ring 41. Since the risk can be reduced, the use period of the seal rings 41 can be extended, the maintenance cost can be reduced, and the reliability can be improved. In addition, even when the seal rings 41 are exchanged, the work can be performed without removing the thermo modules 51 and the cooling units 52. Therefore, it is possible to contribute to the reduction of the maintenance cost from this viewpoint. Moreover, since the heat exchange block 2 is integrally formed as a whole by sintering a predetermined firing material M that is a single material, contact thermal resistance between different materials, which is a disadvantage when it is configured as a composite plate Reduced heat transfer performance due to heat, and reduced durability due to thermal expansion and contraction between different materials, thereby improving heat exchange efficiency as a heat exchanger and simplifying the structure of the entire heat exchanger The basic effects based on the use of the heat exchanging block 2 can be enjoyed, such as a reduction in cost due to the reduction of the cost and the simplification of the manufacturing process.

さらに、本実施形態に係る薬液用熱交換器1は、熱交換ブロック2と接続用ヘッダ3を、薬液流通路Rが存在しない部位を貫通する複数の固定ボルト4…により固定するようにしたため、固定ボルト4…を可及的に短くできるとともに、固定ボルト4…の使用数量に対する選定自由度を高めることができる。したがって、熱交換ブロック2の両端面間の平行度が要求されないため、製作の容易化及びこの部位での液漏れ解消を実現できるとともに、固定ボルト4…を短くできるため、熱膨張による伸縮の影響を小さくできる。また、固定ボルト4…の本数を増やせるため、固定強度を高めることができるとともに、長手方向の全体長を短くできるため、熱交換器全体の小型コンパクト化を図れるなど、従来の固定構造に伴う様々な不具合を解消できる。   Furthermore, since the chemical liquid heat exchanger 1 according to the present embodiment fixes the heat exchange block 2 and the connection header 3 with a plurality of fixing bolts 4 penetrating a portion where the chemical liquid flow path R does not exist, The fixing bolts 4 can be shortened as much as possible, and the degree of freedom in selecting the number of the fixing bolts 4 can be increased. Therefore, since parallelism between both end faces of the heat exchange block 2 is not required, it is easy to manufacture and can eliminate liquid leakage at this part, and the fixing bolts 4 can be shortened. Can be reduced. In addition, since the number of fixing bolts 4 can be increased, the fixing strength can be increased, and the overall length in the longitudinal direction can be shortened, so that the entire heat exchanger can be made compact and compact. Can solve the problem.

次に、本実施形態に係る薬液用熱交換器1の機能について、図1〜図6を参照して説明する。   Next, functions of the chemical liquid heat exchanger 1 according to the present embodiment will be described with reference to FIGS.

薬液用熱交換器1により薬液Lを冷却する場合には、図5及び図6に示すサーモモジュール51u…,51d…に通電して熱交換ブロック2の熱交換面Cu,Cdを冷却する。この際、サーモモジュール51u…,51d…の放熱面からの放熱は、冷却部52u,52dにより吸収される。   When the chemical liquid L is cooled by the chemical liquid heat exchanger 1, the heat exchange surfaces Cu and Cd of the heat exchange block 2 are cooled by energizing the thermo modules 51u. At this time, the heat radiation from the heat radiation surfaces of the thermo modules 51u, 51d,... Is absorbed by the cooling parts 52u, 52d.

一方、薬液Lは、不図示の被冷却機器等から薬液チューブTiを通して流入側接続部4iに流入し、流入口Riを介して熱交換ブロック2の短手方向一側に配した四本の直線流通孔Rx…に流入する。そして、この直線流通孔Rx…を流れた薬液Lは、直交方向の直線流通孔Ry…を通って熱交換ブロック2の短手方向他側に配した四本の直線流通孔Rx…に流入する。また、この直線流通孔Rx…を流れた薬液Lは、流出口Reを介して流出側接続部4eに至り、薬液チューブTeを通して不図示の被冷却機器等に供給される。なお、各図において、薬液Lの流通経路を点線矢印で示す。よって、このような流通経路により薬液流通路Rを流れる薬液Lは、熱交換面Cu,Cdを介して冷却部52u,52d側と熱交換され、薬液Lに対する冷却が行われる。   On the other hand, the chemical liquid L flows into the inflow side connection portion 4i from the uncooled device (not shown) through the chemical liquid tube Ti and is arranged on one side in the short direction of the heat exchange block 2 through the inflow port Ri. It flows into the flow holes Rx. And the chemical | medical solution L which flowed through this linear flow hole Rx ... flows in into the four linear flow holes Rx ... arranged on the other side in the short direction of the heat exchange block 2 through the orthogonal linear flow holes Ry .... . Moreover, the chemical | medical solution L which flowed through this linear flow hole Rx ... reaches the outflow side connection part 4e via the outflow port Re, and is supplied to a to-be-cooled apparatus etc. not shown through the chemical | medical solution tube Te. In addition, in each figure, the distribution route of the chemical | medical solution L is shown with a dotted-line arrow. Accordingly, the chemical liquid L flowing through the chemical liquid flow path R through such a flow path is heat-exchanged with the cooling units 52u and 52d via the heat exchange surfaces Cu and Cd, and the chemical liquid L is cooled.

他方、薬液Lを加熱する場合には、サーモモジュール51u…,51d…に対して逆方向に通電して熱交換ブロック2の熱交換面Cu,Cdを加熱すればよい。この際、冷却部52u,52dには温水を循環させることにより、サーモモジュール51u…,51d…の放熱面を加熱(放冷)する。   On the other hand, when the chemical liquid L is heated, the heat exchange surfaces Cu and Cd of the heat exchange block 2 may be heated by energizing the thermo modules 51u. At this time, hot water is circulated through the cooling units 52u and 52d to heat (cool) the heat radiation surfaces of the thermo modules 51u.

次に、本発明の変更実施形態に係る薬液用熱交換器1について、図7〜図13を参照して説明する。   Next, the chemical heat exchanger 1 according to the modified embodiment of the present invention will be described with reference to FIGS.

図7(a)〜(c)は、熱交換ブロック2の変更例を示す。図1〜図6に示した熱交換ブロック2は、薬液流通路RがU形経路により構成した場合を示したが、図7(a)は、薬液流通路Rが二つのI形経路により構成する場合を示す。したがって、図7(a)の場合は、熱交換ブロック2の長手方向一端側に二つの流入口Ri,Riを並設するとともに、熱交換ブロック2の長手方向他端側に二つの流出口Re,Reを並設する。図7(a)の場合には、短手方向の直線流通孔Ry…を設けない形態となり、一方向に形成した複数の直線流通孔Rx…の組合わせによる薬液流通路Rを構成する。また、図7(b)は、薬液流通路Rが一つのI形経路により構成する場合を示す。したがって、図7(b)の場合は、熱交換ブロック2の長手方向一端側に一つの流入口Riを設けるとともに、熱交換ブロック2の長手方向他端側に一つの流出口Reを設ける。図7(b)の場合には、熱交換ブロック2の長手方向一端側と他端側にそれぞれ短手方向の直線流通孔Ry…を設け、この直線流通孔Ry…により流入口Riと全直線流通孔Rx…の一端側を連通させるとともに、流出口Reと全直線流通孔Rx…の他端側を連通させる。さらに、図7(c)は、薬液流通路Rが図1〜図6に示した熱交換ブロック2と同じU形経路により構成する場合を示すが、流入口Riと流出口Reの形状を円形に形成したものである。したがって、図7(b)の場合と同様に、短手方向の直線流通孔Ry…を設け、流入口Riと対応する直線流通孔Rx…の一端側を連通させるとともに、流出口Reと対応する直線流通孔Rx…の一端側を連通させる。このように、熱交換ブロック2に設ける薬液流通路Rの経路パターンは様々な形態により実施することができる。   7A to 7C show a modification example of the heat exchange block 2. Although the heat exchange block 2 shown in FIGS. 1-6 showed the case where the chemical | medical solution flow path R was comprised by the U-shaped path | route, Fig.7 (a) has comprised the chemical | medical solution flow path R by two I-shaped paths. Indicates when to do. Accordingly, in the case of FIG. 7A, two inflow ports Ri and Ri are arranged in parallel on one end side in the longitudinal direction of the heat exchange block 2, and two outflow ports Re are disposed on the other end side in the longitudinal direction of the heat exchange block 2. , Re. In the case of Fig.7 (a), it becomes the form which does not provide the straight flow hole Ry ... of a transversal direction, and comprises the chemical | medical solution flow path R by the combination of several linear flow hole Rx ... formed in one direction. FIG. 7B shows a case where the chemical liquid flow path R is constituted by one I-shaped path. Accordingly, in the case of FIG. 7B, one inflow port Ri is provided on one end side in the longitudinal direction of the heat exchange block 2, and one outflow port Re is provided on the other end side in the longitudinal direction of the heat exchange block 2. In the case of FIG.7 (b), the linear flow hole Ry ... of a transversal direction is provided in the longitudinal direction one end side and other end side of the heat exchange block 2, respectively, and inflow port Ri and all straight lines are provided by this straight flow hole Ry ... One end side of the circulation holes Rx... Is communicated, and the other end side of the outflow port Re and all the straight circulation holes Rx. Furthermore, FIG.7 (c) shows the case where the chemical | medical solution flow path R comprises the same U-shaped path | route as the heat exchange block 2 shown in FIGS. 1-6, but the shape of the inflow port Ri and the outflow port Re is circular. Is formed. Accordingly, as in the case of FIG. 7B, straight flow holes Ry in the short direction are provided, and one end sides of the straight flow holes Rx corresponding to the inflow ports Ri are communicated with and correspond to the outflow ports Re. One end side of the straight flow holes Rx. Thus, the route pattern of the chemical liquid flow path R provided in the heat exchange block 2 can be implemented in various forms.

図8は、接続用ヘッダ3を、流入側接続部Ji及び流出側接続部Jeを有する単一ヘッダ部3mにより一体に構成したものである。したがって、流入側接続部Jiと流出側接続部Je間の温度差が小さい用途などにおいては、部品点数の半減によりコストダウン及び製造容易性に寄与できる。図9は、接続用ヘッダ3の第一ヘッダ部3i(3e側も同じ)における流入側接続部Jiの向きを異ならせた変更例を示す。図1〜図6に示した第一ヘッダ部3iは、内部に上下方向に貫通する直線状の液通路23を設け、流入側接続部Jiの向きを鉛直方向上方に向けた場合を示したが、図9に示す第一ヘッダ部3iは、内部にL形の液通路23mを設け、流入側接続部Jiを水平方向に向けたものである。このように、流入側接続部Jiの向きは、第一ヘッダ部3iに設ける液通路23の形態により任意に設定できる。   In FIG. 8, the connection header 3 is integrally formed by a single header portion 3m having an inflow side connection portion Ji and an outflow side connection portion Je. Therefore, in applications where the temperature difference between the inflow side connection portion Ji and the outflow side connection portion Je is small, it is possible to contribute to cost reduction and manufacturability by halving the number of parts. FIG. 9 shows a modified example in which the orientation of the inflow side connection portion Ji in the first header portion 3i (the same for the 3e side) of the connection header 3 is changed. Although the 1st header part 3i shown in FIGS. 1-6 provided the linear liquid channel | path 23 penetrated to an up-down direction inside, the case where the direction of the inflow side connection part Ji was orient | assigned to the perpendicular direction upper direction was shown. The first header portion 3i shown in FIG. 9 is provided with an L-shaped liquid passage 23m inside and the inflow side connection portion Ji oriented in the horizontal direction. Thus, the direction of the inflow side connection portion Ji can be arbitrarily set by the form of the liquid passage 23 provided in the first header portion 3i.

図10及び図11は、接続用ヘッダ3と熱交換ブロック2の接続形態の変更例を示す。図1〜図6に示した流入口Ri(Re側も同じ)は、複数の直線流通孔Rx…に対して跨がるように細長く形成したが、図10及び図11は、流入口Ri…を各直線流通孔Rx…毎に設けるとともに、第一ヘッダ部3i側に各流入口Ri…に連通する液通路(23w,23f…)を設けたものである。この場合、図10は、第一ヘッダ部3iの下面に各流入口Ri…に跨がる細長い液通路23wを設け、この液通路23wを第一ヘッダ部3iの内部に設けた上下に貫通する液通路23に連通させたものであり、図10(b)に第一ヘッダ部3iの断面を示すとともに、図10(a)に熱交換ブロック2の上面2uを示す。また、図11は、第一ヘッダ部3iの内部に設けた液通路23を、各流入口Ri…に対応させて分岐させ、分岐させた複数の液通路23f,23fを各流入口Ri…に接続するようにしたものであり、図11(b)に第一ヘッダ部3iの断面を示すとともに、図11(a)に熱交換ブロック2の上面2uを示す。   10 and 11 show a modification example of the connection form between the connection header 3 and the heat exchange block 2. The inflow ports Ri (same on the Re side) shown in FIGS. 1 to 6 are formed so as to straddle the plurality of linear flow holes Rx... Are provided for each of the straight flow holes Rx, and liquid passages (23w, 23f,...) Communicating with the inflow ports Ri are provided on the first header portion 3i side. In this case, FIG. 10 is provided with an elongated liquid passage 23w straddling each inflow port Ri ... on the lower surface of the first header portion 3i, and penetrates the liquid passage 23w up and down provided inside the first header portion 3i. FIG. 10 (b) shows a cross section of the first header portion 3i, and FIG. 10 (a) shows the upper surface 2u of the heat exchange block 2. The upper surface 2u of the heat exchange block 2 is shown in FIG. Further, FIG. 11 shows that the liquid passage 23 provided in the first header portion 3i is branched corresponding to each inflow port Ri ..., and a plurality of branched liquid passages 23f, 23f are provided to each inflow port Ri ... FIG. 11 (b) shows a cross section of the first header portion 3i, and FIG. 11 (a) shows the upper surface 2u of the heat exchange block 2.

図12(a),(b)は、接続用ヘッダ3における第一ヘッダ部3i(3e側も同じ)の基本形態が異なる変更例を示す。図12(a)は、ドーナツ形(リング盤形)の取付部3ifにパイプ形の流入側接続部Jiを結合し又は一体形成したものである。したがって、図12(a)の第一ヘッダ部3iは、図7(c)の熱交換ブロック2に組付けることができる。図12(a)の第一ヘッダ部3iは、特に、素材として熱交換ブロック2と同一の素材(焼成素材)を用いることができる。この場合、同一素材となるため、熱膨張率の相違による熱変形の悪影響を防止できる。なお、この流入側接続部Jiは、直接薬液チューブに差し込んで、又は継手等を介して薬液チューブに接続することができる。また、取付部3ifは一定の厚さにより形成し、下面にはシールリング収容部24を設ける。図12(b)は、図12(a)に対して厚さを薄くした取付部3ifsを用いたものである。図12(b)の場合、シールリング収容部24を設けることができないため、シールリング収容部24は熱交換ブロック2の上面2uに設ければよい。このように、接続用ヘッダ3の形態(形状)は任意に実施することができる。   FIGS. 12A and 12B show a modification in which the basic form of the first header portion 3i (the same for the 3e side) in the connection header 3 is different. FIG. 12A shows a pipe-shaped inflow side connection portion Ji coupled to or integrally formed with a donut-shaped (ring board-shaped) attachment portion 3if. Accordingly, the first header portion 3i in FIG. 12A can be assembled to the heat exchange block 2 in FIG. In the first header portion 3i in FIG. 12A, the same material (baking material) as that of the heat exchange block 2 can be used as the material. In this case, since the same material is used, it is possible to prevent an adverse effect of thermal deformation due to a difference in thermal expansion coefficient. In addition, this inflow side connection part Ji can be directly inserted in a chemical | medical solution tube, or can be connected to a chemical | medical solution tube via a coupling. The attachment portion 3if is formed with a constant thickness, and a seal ring accommodating portion 24 is provided on the lower surface. FIG.12 (b) uses the attachment part 3ifs which made thickness thinner compared with Fig.12 (a). In the case of FIG. 12B, the seal ring accommodating portion 24 cannot be provided, and therefore the seal ring accommodating portion 24 may be provided on the upper surface 2 u of the heat exchange block 2. Thus, the form (shape) of the connection header 3 can be arbitrarily implemented.

図13(a),(b)は、接続用ヘッダ3の組付形態の変更例を示す。図13(a)は、図7(a),(b)の形態において、第二ヘッダ部3eを熱交換ブロック2の下面2dに組付けたものである。したがって、この場合、流出口Reを熱交換ブロック2の下面2dに設ければよい。また、図13(b)は、図13(a)の形態において、熱交換ブロック2の上面2uに組付けた第一ヘッダ部3iに対して、更に、もう一つの第一ヘッダ部3idを下面2dに追加したものである。したがって、この場合には、熱交換ブロック2の上下面を貫通する流入口Ricを設ければよい。なお、Tidは第一ヘッダ部3idに接続した薬液チューブを示す。   FIGS. 13A and 13B show a modification example of the assembly form of the connection header 3. FIG. 13A is a view in which the second header portion 3e is assembled to the lower surface 2d of the heat exchange block 2 in the form of FIGS. 7A and 7B. Therefore, in this case, the outlet Re may be provided on the lower surface 2d of the heat exchange block 2. Further, FIG. 13 (b) shows that in the form of FIG. 13 (a), another first header portion 3id is further provided on the lower surface of the first header portion 3i assembled on the upper surface 2u of the heat exchange block 2. This is in addition to 2d. Therefore, in this case, an inflow port Ric that penetrates the upper and lower surfaces of the heat exchange block 2 may be provided. In addition, Tid shows the chemical | medical solution tube connected to the 1st header part 3id.

図7〜図13において、他の構成及び機能等は、図1〜図6に示した実施形態に準じて実施することができる。このため、図7〜図13の実施形態において、図1〜図6に示した実施形態と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   7 to 13, other configurations and functions can be implemented according to the embodiment shown in FIGS. 1 to 6. For this reason, in the embodiment of FIGS. 7 to 13, the same parts as those of the embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

以上、各種実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,数量,数値,素材等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、薬液流通路Rは、数量を変更することにより、層流にしたり乱流にすることができるとともに、薬液流通路Rの内面を粗すことにより、乱流効果を更に高めることができる。なお、薬液Lには、半導体処理液をはじめ、各種薬液を適用できるとともに、必要により水等の薬液以外の溶液にもそのまま利用することができる。   Although various embodiments have been described in detail above, the present invention is not limited to such embodiments, and details, configurations, shapes, quantities, numerical values, materials, and the like do not depart from the spirit of the present invention. It can be changed, added, or deleted arbitrarily. For example, the chemical flow passage R can be made into a laminar flow or a turbulent flow by changing the quantity, and the turbulent flow effect can be further enhanced by roughening the inner surface of the chemical flow passage R. In addition, as the chemical solution L, various chemical solutions including a semiconductor processing solution can be applied, and if necessary, the chemical solution L can be used as it is for a solution other than the chemical solution such as water.

本発明の最良の実施形態に係る薬液用熱交換器の熱交換ユニットの一部断面側面図、A partial cross-sectional side view of a heat exchange unit of a chemical heat exchanger according to the best embodiment of the present invention, 同熱交換ユニットの一部断面正面図、A partial cross-sectional front view of the heat exchange unit, 同熱交換ユニットの平面図、A plan view of the heat exchange unit, 同熱交換ユニットの熱交換ブロックの一部断面平面図、A partial cross-sectional plan view of the heat exchange block of the heat exchange unit, 同薬液用熱交換器の平面図、Top view of the heat exchanger for the chemical solution, 同薬液用熱交換器の側面図、Side view of the chemical liquid heat exchanger, 本発明の変更実施形態に係る薬液用熱交換器の熱交換ブロックの変更例(a),(b)及び(c)を示す平面図、The top view which shows the modification examples (a), (b) and (c) of the heat exchange block of the heat exchanger for chemicals according to the modified embodiment of the present invention, 同薬液用熱交換器の接続用ヘッダの変更例を示す平面図、The top view which shows the example of a change of the header for connection of the heat exchanger for chemical | medical solutions, 同薬液用熱交換器の接続用ヘッダの他の変更例を示す一部断面側面図、Partial cross-sectional side view showing another modification example of the connection header of the chemical liquid heat exchanger, 同薬液用熱交換器の熱交換ブロックと接続用ヘッダの接続形態の変更例を示す(a)熱交換ブロックの平面図及び(b)接続用ヘッダの断面正面図、(A) a plan view of the heat exchange block and (b) a sectional front view of the connection header, showing a modification of the connection form of the heat exchange block and the connection header of the chemical liquid heat exchanger, 同薬液用熱交換器の熱交換ブロックと接続用ヘッダの接続形態の他の変更例を示す(a)熱交換ブロックの平面図及び(b)接続用ヘッダの断面正面図、(A) a plan view of the heat exchange block and (b) a sectional front view of the connection header, showing another modification of the connection form of the heat exchange block and the connection header of the chemical liquid heat exchanger, 同薬液用熱交換器の接続用ヘッダの他の変更例(a)及び(b)を示す斜視図、The perspective view which shows the other modification (a) and (b) of the header for connection of the heat exchanger for chemical | medical solutions, 同薬液用熱交換器の接続用ヘッダの組付形態の変更例(a)及び(b)を示す側面図、Side views showing modified examples (a) and (b) of the assembly form of the connection header of the chemical liquid heat exchanger,

符号の説明Explanation of symbols

1:薬液用熱交換器,2:熱交換ブロック,2u:上面,2d:下面,2s:側面,3:接続用ヘッダ,3i:第一ヘッダ部,3e:第二ヘッダ部,3m:単一ヘッダ部,4…:固定ボルト,5…:閉塞部材,L:薬液,M:焼成素材,R:薬液流通路,Ri:流入口,Ro:流出口,Rx…:直線流通孔,Ry…:直線流通孔,Rh…:開口部,Cu:熱交換面,Cd:熱交換面,Ji:流入側接続部,Je:流出側接続部   1: heat exchanger for chemical solution, 2: heat exchange block, 2u: upper surface, 2d: lower surface, 2s: side surface, 3: header for connection, 3i: first header portion, 3e: second header portion, 3m: single Header part, 4 ...: Fixing bolt, 5 ...: Blocking member, L: Chemical liquid, M: Firing material, R: Chemical liquid flow path, Ri: Inlet, Ro: Outlet, Rx ...: Straight flow hole, Ry ...: Straight flow hole, Rh ...: opening, Cu: heat exchange surface, Cd: heat exchange surface, Ji: inflow side connection portion, Je: outflow side connection portion

Claims (7)

外面に形成した熱交換面を冷却又は加熱することにより内部に流通する薬液に対して熱交換を行う薬液用熱交換器において、所定の焼成素材を焼結して全体を一体形成することにより、内部に薬液を流通させる薬液流通路を設け、かつ少なくとも前記外面となる上面及び下面に前記熱交換面を設けるとともに、前記上面及び前記下面の少なくとも一方に前記薬液流通路に臨む流入口及び流出口を設けた熱交換ブロックと、前記上面及び前記下面の少なくとも一方に固定し、かつ前記流入口に連通する流入側接続部及び前記流出口に連通する流出側接続部を設けた接続用ヘッダとを具備してなることを特徴とする薬液用熱交換器。   In the heat exchanger for the chemical liquid that performs heat exchange for the chemical liquid circulating inside by cooling or heating the heat exchange surface formed on the outer surface, by sintering a predetermined firing material and integrally forming the whole, Provided with a chemical flow passage for flowing a chemical solution therein, and provided with at least one of the upper surface and the lower surface serving as the outer surface and the heat exchange surface, and an inlet and an outlet facing the chemical flow passage on at least one of the upper surface and the lower surface And a connection header that is fixed to at least one of the upper surface and the lower surface and has an inflow side connection portion that communicates with the inflow port and an outflow side connection portion that communicates with the outflow port. A heat exchanger for chemicals, comprising: 前記熱交換ブロックと前記接続用ヘッダは、前記薬液流通路が存在しない部位を貫通する複数の固定ボルトにより固定することを特徴とする請求項1記載の薬液用熱交換器。   2. The chemical heat exchanger according to claim 1, wherein the heat exchange block and the connection header are fixed by a plurality of fixing bolts penetrating a portion where the chemical flow passage does not exist. 前記焼成素材は、アモルファスカーボン素材又は炭化珪素素材を用いることを特徴とする請求項1又は2記載の薬液用熱交換器。   The chemical heat exchanger according to claim 1 or 2, wherein an amorphous carbon material or a silicon carbide material is used as the firing material. 前記薬液流通路は、一方向に形成した複数の直線流通孔の組合わせ又は二方向に形成した複数の直線流通孔の組合わせにより構成することを特徴とする請求項1,2又は3記載の薬液用熱交換器。   The said chemical | medical solution flow channel | path is comprised by the combination of the some linear flow hole formed in one direction, or the combination of the some linear flow hole formed in two directions. Heat exchanger for chemicals. 前記薬液流通路における前記熱交換ブロックの側面に臨む開口部は、当該熱交換ブロックと同一の素材又は異なる素材により形成した閉塞部材により閉塞することを特徴とする請求項1〜4のいずれかに記載の薬液用熱交換器。   The opening part which faces the side surface of the said heat exchange block in the said chemical | medical solution flow path is obstruct | occluded by the obstruction | occlusion member formed with the raw material same as the said heat exchange block, or a different raw material. The heat exchanger for chemical | medical solutions as described. 前記接続用ヘッダは、前記流入側接続部を有する第一ヘッダ部と前記流出側接続部を有する第二ヘッダ部の二つのヘッダ部により構成することを特徴とする請求項1〜5のいずれかに記載の薬液用熱交換器。   The said connection header is comprised with two header parts of the 1st header part which has the said inflow side connection part, and the 2nd header part which has the said outflow side connection part, The any one of Claims 1-5 characterized by the above-mentioned. A heat exchanger for chemicals according to 1. 前記接続用ヘッダは、前記流入側接続部及び流出側接続部を有する単一ヘッダ部により一体に構成することを特徴とする請求項1〜5のいずれかに記載の薬液用熱交換器。   The said connection header is comprised integrally by the single header part which has the said inflow side connection part and the outflow side connection part, The heat exchanger for chemical | medical solutions in any one of Claims 1-5 characterized by the above-mentioned.
JP2008209477A 2008-08-18 2008-08-18 Chemical heat exchanger Active JP5376489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209477A JP5376489B2 (en) 2008-08-18 2008-08-18 Chemical heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209477A JP5376489B2 (en) 2008-08-18 2008-08-18 Chemical heat exchanger

Publications (2)

Publication Number Publication Date
JP2010043803A true JP2010043803A (en) 2010-02-25
JP5376489B2 JP5376489B2 (en) 2013-12-25

Family

ID=42015327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209477A Active JP5376489B2 (en) 2008-08-18 2008-08-18 Chemical heat exchanger

Country Status (1)

Country Link
JP (1) JP5376489B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648527A (en) * 1948-05-25 1953-08-11 Orson A Carnahan Heat exchanger
JPS52141666U (en) * 1976-04-22 1977-10-27
JPS59134757U (en) * 1983-02-25 1984-09-08 株式会社土屋製作所 Plate heat exchanger
JPS6082782A (en) * 1983-10-14 1985-05-10 Fujikura Ltd Carbon block type heat pipe system heat exchanger
JPH1096600A (en) * 1996-09-20 1998-04-14 Noritake Co Ltd Corrosion resistant heat exchanger with thermal impact resistance
JP2005127646A (en) * 2003-10-24 2005-05-19 Tokuyama Corp Heat exchanger
JP2008064382A (en) * 2006-09-07 2008-03-21 Orion Mach Co Ltd Heat exchanger for chemical liquid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648527A (en) * 1948-05-25 1953-08-11 Orson A Carnahan Heat exchanger
JPS52141666U (en) * 1976-04-22 1977-10-27
JPS59134757U (en) * 1983-02-25 1984-09-08 株式会社土屋製作所 Plate heat exchanger
JPS6082782A (en) * 1983-10-14 1985-05-10 Fujikura Ltd Carbon block type heat pipe system heat exchanger
JPH1096600A (en) * 1996-09-20 1998-04-14 Noritake Co Ltd Corrosion resistant heat exchanger with thermal impact resistance
JP2005127646A (en) * 2003-10-24 2005-05-19 Tokuyama Corp Heat exchanger
JP2008064382A (en) * 2006-09-07 2008-03-21 Orion Mach Co Ltd Heat exchanger for chemical liquid

Also Published As

Publication number Publication date
JP5376489B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
US8472193B2 (en) Semiconductor device
US4832118A (en) Heat exchanger
JP4820721B2 (en) Chemical heat exchanger
CN109244824B (en) LD module cooling device and laser device
JP2008171840A (en) Liquid-cooling heat sink and design method thereof
US20080179046A1 (en) Water cooling apparatus
JP5050241B2 (en) Fluid temperature controller
WO2006100690A2 (en) Selectively grooved cold plate for electronics cooling
US6666031B2 (en) Fluid temperature control apparatus
US20100051249A1 (en) Heat exchanger and its manufacturing method
US5058665A (en) Stacked-plate type heat exchanger
JP2013165096A (en) Semiconductor cooling device
JP3863116B2 (en) Fluid temperature control device
JP2008205371A (en) Liquid-cooled type cooler and unit for mounting power element
JP5376489B2 (en) Chemical heat exchanger
US20230194193A1 (en) Temperature regulation unit
JP2011226722A (en) Egr (exhaust gas recirculation) cooler
US20210247151A1 (en) Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly
JP4699964B2 (en) Heat exchanger for chemicals
US20230200006A1 (en) Temperture regulation unit and method for manufacturing temperature regulation unit
KR102477211B1 (en) Cooling-heating apparatus of semi-conductor liquid
JP2007218556A (en) Exhaust heat recovery device
JP5164140B2 (en) Heat exchanger for chemicals
JP3724763B2 (en) Cooling and heating equipment for semiconductor processing liquid
KR102069804B1 (en) Heat exchanger and heat exchanging device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5376489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250