JP2010042969A - Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element - Google Patents

Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element Download PDF

Info

Publication number
JP2010042969A
JP2010042969A JP2008209853A JP2008209853A JP2010042969A JP 2010042969 A JP2010042969 A JP 2010042969A JP 2008209853 A JP2008209853 A JP 2008209853A JP 2008209853 A JP2008209853 A JP 2008209853A JP 2010042969 A JP2010042969 A JP 2010042969A
Authority
JP
Japan
Prior art keywords
piezoelectric
sintered body
sintering temperature
piezoelectric ceramic
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008209853A
Other languages
Japanese (ja)
Inventor
Tomoaki Karaki
智明 唐木
Masatoshi Adachi
正利 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2008209853A priority Critical patent/JP2010042969A/en
Publication of JP2010042969A publication Critical patent/JP2010042969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barium titanate piezoelectric ceramic which has higher electromechanical coupling coefficient using a two-step resistance heating sintering method of high practicality, taking notice of barium titanate powder having nanosize, and to provide the manufacturing method and various kinds of piezoelectric elements using the ceramic at a low cost. <P>SOLUTION: The 50-200 nm barium titanate powder having the property of a piezoelectric substance is solidified to have a given shape, and is formed into a sintered body by two-step sintering temperature. A microcrystalline structure of the sintered body has subparticle structure, which is in 0.5-2 μm within crystal grain of a single body, which has an unclear crystal interface, and in which subparticle structures having different molecular structure are present, and in which the maximum grain size of the crystal grain is suppressed to be ≤10 μm. The sintered body has ≥98.5% density to the theoretical density. The piezoelectric elements are formed by the polarization treatment of the sintered body of the ceramic. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、チタン酸バリウム粉末を焼結させた圧電セラミックスであって、圧電振動子、超音波探傷用等の素子、アクチュエータ、多くのセンサ類に使用される圧電セラミックスの製造方法と圧電セラミックス、並びに圧電素子に関する。   The present invention relates to a piezoelectric ceramic obtained by sintering barium titanate powder, a piezoelectric vibrator, an element for ultrasonic flaw detection, an actuator, a method for manufacturing piezoelectric ceramics used in many sensors, piezoelectric ceramics, The present invention also relates to a piezoelectric element.

従来、圧電セラミックスとしては、鉛を含んだPZT(PbTiO3−PbZrO3)成分系が用いられてきた。PZTは、大きな圧電性と高い比誘電率を有しており、センサ,アクチュエータ,フィルター等の各用途に用いられる様々な特性の材料を容易に作製できる。ところが、PZTからなる圧電セラミックスは、優れた特性を有する一方で、その構成元素に鉛を含んでいるため、PZTを含んだ製品の産業廃棄物から有害な鉛が溶出し、環境汚染を引き起こすおそれがあった。そして、近年の環境問題に対する意識の高まりにより、PZTのように環境汚染の原因となりうる製品の製造と使用を極力抑えるようになってきている。 Conventionally, PZT (PbTiO 3 —PbZrO 3 ) component systems containing lead have been used as piezoelectric ceramics. PZT has a large piezoelectricity and a high relative dielectric constant, and can easily produce materials having various characteristics used for various applications such as sensors, actuators, and filters. However, while piezoelectric ceramics made of PZT have excellent characteristics, their constituent elements contain lead, so that harmful lead may be eluted from industrial waste of products containing PZT, causing environmental pollution. was there. With the recent increase in awareness of environmental problems, the production and use of products that can cause environmental pollution such as PZT have been suppressed as much as possible.

そこで、有害な鉛を全く含まない高性能の圧電セラミックスの開発が環境問題として望まれ、特許文献1に示すように、本発明の発明者らは、ナノサイズのチタン酸バリウム粉末に着目し、実用性の高い抵抗加熱2段焼結法を用いて、より高い比誘電率と電気機械結合係数を有するチタン酸バリウムの圧電セラミックスと、その製造方法を提案した。   Therefore, development of high-performance piezoelectric ceramics containing no harmful lead is desired as an environmental problem. As shown in Patent Document 1, the inventors of the present invention pay attention to nano-sized barium titanate powder, Using a highly practical resistance heating two-step sintering method, a barium titanate piezoelectric ceramic having a higher dielectric constant and electromechanical coupling coefficient and a method for producing the same were proposed.

特許文献1に開示された圧電セラミックスは、圧電体の性質を持つ50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、電気的な抵抗加熱等により2段階の焼結温度による2段焼結法で焼成し、平均粒径1μm〜2μmで最大粒径5μm以下に抑制され、かつ理論密度(チタン酸バリウムの理論密度は6.01g/cm)の98%以上の緻密な焼結体を焼成し、この焼結体を、室温乃至80℃で1kV/mmの電圧で30分間程度分極処理するものである。 The piezoelectric ceramic disclosed in Patent Document 1 is a two-stage sintering with a two-step sintering temperature obtained by solidifying a barium titanate powder of 50 nm to 200 nm having a piezoelectric property into a predetermined shape and electrically resistance heating. A dense sintered body having an average particle diameter of 1 μm to 2 μm and a maximum particle diameter of 5 μm or less, and having a theoretical density (theoretical density of barium titanate is 6.01 g / cm 3 ) of 98% or more is obtained. After firing, this sintered body is subjected to polarization treatment at a voltage of 1 kV / mm at room temperature to 80 ° C. for about 30 minutes.

前記ナノサイズのチタン酸バリウム粉末は、その作製法が、水熱合成法、共沈殿法、部分共沈法(heterogeneous precipitation method)、アルコキシド法、蓚酸塩法、クエン酸塩法、ゾル・ゲル法及び固相反応法のいずれかから選択され、前記粉末を電気的な抵抗加熱による前記2段焼結法で焼結して成るものである。   The nano-sized barium titanate powder is prepared by hydrothermal synthesis method, coprecipitation method, heterogeneous precipitation method, alkoxide method, oxalate method, citrate method, sol-gel method. And a solid phase reaction method, and the powder is sintered by the two-stage sintering method by electrical resistance heating.

また、前記2段焼結法は、電気的な抵抗加熱により、第1焼結温度の1230℃〜1340℃に昇温した後、第2焼結温度の1150℃〜1200℃に下げて一定時間維持して焼結するものである。
特開2008−150247号公報
In the two-stage sintering method, the temperature is raised to a first sintering temperature of 1230 ° C. to 1340 ° C. by electrical resistance heating and then lowered to a second sintering temperature of 1150 ° C. to 1200 ° C. for a certain time. Maintain and sinter.
JP 2008-150247 A

特許文献1に開示された製造方法により得られる、圧電セラミックスは、従来のPZTに近い性能を有するものであるが、電気機械結合係数がPZTには及ばないものであった。   The piezoelectric ceramic obtained by the manufacturing method disclosed in Patent Document 1 has performance close to that of conventional PZT, but the electromechanical coupling coefficient does not reach that of PZT.

本発明は、上記背景技術に鑑みて成されたもので、ナノサイズのチタン酸バリウム粉末に着目し、実用性の高い抵抗加熱2段焼結法を用いて、より高い電気機械結合係数を有するチタン酸バリウムの圧電セラミックスと、その製造方法並びにそれを用いた各種の圧電素子を低コストで提供することを目的とする。   The present invention has been made in view of the above-described background art, and focuses on nano-sized barium titanate powder and has a higher electromechanical coupling coefficient using a highly practical resistance heating two-stage sintering method. An object of the present invention is to provide barium titanate piezoelectric ceramics, a manufacturing method thereof, and various piezoelectric elements using the piezoelectric ceramics at low cost.

本発明は、圧電体の性質を持つ50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、第1焼結温度の1350℃〜1450℃に昇温した後、第2焼結温度の1190℃〜1250℃に下げて一定時間維持して焼結し、理論密度の98.5%以上の密度に形成して、個々の単体の結晶粒界中に分子の配列方向の異なる結晶構造が一体に形成された結晶構造(この発明ではサブ粒子構造と言う。)を有する結晶粒を形成し、この焼結体を分極処理する圧電セラミックスの製造方法である。   In the present invention, 50 to 200 nm barium titanate powder having a piezoelectric property is solidified into a predetermined shape, heated to a first sintering temperature of 1350 ° C. to 1450 ° C., and then a second sintering temperature of 1190 ° C. Sintered by lowering to ˜1250 ° C. and maintaining for a certain period of time to form a density of 98.5% or more of the theoretical density, and crystal structures with different molecular arrangement directions are integrated into individual crystal grain boundaries. This is a piezoelectric ceramic manufacturing method in which crystal grains having a formed crystal structure (referred to as a sub-particle structure in this invention) are formed, and this sintered body is polarized.

前記第1焼結温度までの昇温速度は1分間に7℃〜15℃であり、第1焼結温度での保持時間は0.5分〜2分間である。さらに、前記第1焼結温度から1分間20℃〜40℃の速度で第2焼結温まで下げ、前記第2焼結温度での保持時間は4時間から10時間である。   The heating rate up to the first sintering temperature is 7 ° C. to 15 ° C. per minute, and the holding time at the first sintering temperature is 0.5 minute to 2 minutes. Further, the temperature is lowered from the first sintering temperature to the second sintering temperature at a rate of 20 ° C. to 40 ° C. for 1 minute, and the holding time at the second sintering temperature is 4 hours to 10 hours.

またこの発明は、圧電体の性質を持つ50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、2段階の焼結温度により形成した焼結体であって、その微細結晶構造が、圧電焼結体の単体の結晶粒内に、0.5μm〜2μmで結晶界面が明確ではないが分子の配列方向の異なるサブ粒子構造が存在し、前記結晶粒の最大粒径10μm以下に抑制され、かつ理論密度の98.5%以上の密度を持つ焼結体を形成し、これを分極処理して成る圧電セラミックスである。   The present invention is also a sintered body formed by solidifying 50 nm to 200 nm barium titanate powder having properties of a piezoelectric body into a predetermined shape at a two-step sintering temperature, and the fine crystal structure of the sintered body is piezoelectric sintering. Within the single crystal grain of the aggregate, there is a sub-particle structure with a different molecular arrangement direction although the crystal interface is not clear at 0.5 μm to 2 μm, and the crystal grain size is suppressed to 10 μm or less, and Piezoelectric ceramics formed by forming a sintered body having a density of 98.5% or more of the theoretical density and subjecting it to a polarization treatment.

前記焼結体は、比誘電率が4000以上であり、電気機械結合係数kpが0.44〜0.50である。また、前記焼結体は、圧電定数d33が460〜500pC/Nである。 The sintered body has a relative dielectric constant of 4000 or more and an electromechanical coupling coefficient kp of 0.44 to 0.50. Further, the sintered body, the piezoelectric constant d 33 is 460~500pC / N.

またこの発明は、前記チタン酸バリウム粉末の焼結体から成る圧電セラミックスを用いて、単板若しくは積層型、矩形、円盤形、ドーム形、またはリング形に形成された圧電素子である。   Further, the present invention is a piezoelectric element formed into a single plate or a laminated type, a rectangular shape, a disc shape, a dome shape, or a ring shape using the piezoelectric ceramic made of a sintered body of the barium titanate powder.

さらにこの発明は、前記チタン酸バリウム粉末の焼結体から成る圧電セラミックスを用いて、振動検出素子や振動子として用いられる振動ピックアップ、超音波洗浄機、またはブザー用等の圧電振動子である。   Furthermore, the present invention is a piezoelectric vibrator using a piezoelectric ceramic made of a sintered body of the barium titanate powder, such as a vibration pickup used as a vibration detecting element or vibrator, an ultrasonic cleaner, or a buzzer.

本発明によれば、50nmから200nmのナノサイズのチタン酸バリウム粉末を利用した圧電セラミックスとその製造方法及びそれを用いた圧電振動子を提供するものであり、焼結方法として、従来の固相法又はマイクロ波焼結法よりも圧電素子として高い電気機械結合係数を得ることができるものである。また、焼結温度の依存性もあり、適当な温度範囲を選択することで、より効果的に高密度の圧電セラミックス及びその製造方法を、低コストでしかも環境を汚染することなく提供することができる。   According to the present invention, there is provided a piezoelectric ceramic using a nano-sized barium titanate powder of 50 nm to 200 nm, a method for producing the same, and a piezoelectric vibrator using the same. A higher electromechanical coupling coefficient can be obtained as a piezoelectric element than the method or the microwave sintering method. In addition, there is also a dependency on the sintering temperature, and by selecting an appropriate temperature range, it is possible to provide a more effective high-density piezoelectric ceramic and its manufacturing method at low cost and without polluting the environment. it can.

さらに、ナノサイズのチタン酸バリウム粉末と抵抗加熱2段焼結法を利用した焼結方法により、チタン酸バリウムセラミックスの焼結密度も理論密度の98.5%以上に達し、圧電定数d33も非常に大きな値を示し、圧電素子としての良好な特性を得ることができた。 Furthermore, by using a sintering method using nano-sized barium titanate powder and resistance heating two-stage sintering method, the sintering density of barium titanate ceramics also reaches 98.5% or more of the theoretical density, and the piezoelectric constant d 33 is also A very large value was exhibited, and good characteristics as a piezoelectric element could be obtained.

本発明で得られた圧電セラミックスは、他の非鉛系圧電セラミックスや、同じくナノサイズチタン酸バリウム粉末をマイクロ波焼結したものよりも高性能であり、図1に示すように、鉛系圧電セラミックスに匹敵する性能を備えたものとなっている。よって、この発明の圧電セラミックスは、高d33又は高d31特性を求められる各種の圧電振動子としてより好適なものである。 The piezoelectric ceramic obtained by the present invention has higher performance than other lead-free piezoelectric ceramics and also those obtained by microwave sintering of nano-sized barium titanate powder. As shown in FIG. It has a performance comparable to ceramics. Accordingly, piezoelectric ceramics of the present invention is more suitable as various piezoelectric vibrator sought high d 33 or higher d 31 properties.

以下、本発明を具体的に説明する。本発明では、チタン酸バリウム粉末を用いて、電気的抵抗を利用した加熱法であって2段階の温度による焼結法である抵抗加熱2段階焼結法によって、高性能な圧電セラミックスが得られる。これには圧電の性質を持つ素材類として、50nmから200nmのナノサイズのセラミックス粉末が必須である。ナノサイズのチタン酸バリウム粉末を焼結して、圧電セラミックスを形成することにより、圧電焼結体の単体の結晶粒内に、0.5μm〜2μmで結晶界面が明確ではないが分子の配列方向の異なるサブ粒子構造が存在し、最大粒径10μmに抑えて、サブ粒子の粒径効果による微細な分極分域構造を形成し、電気機械結合係数kpと圧電定数d33が極めて大きい圧電素子を形成することができる。 The present invention will be specifically described below. In the present invention, a high-performance piezoelectric ceramic can be obtained by using a resistance heating two-step sintering method using a barium titanate powder, which is a heating method using electric resistance and a sintering method using two-step temperatures. . For this purpose, a nano-sized ceramic powder of 50 nm to 200 nm is essential as a material having piezoelectric properties. By sintering nano-sized barium titanate powder to form piezoelectric ceramics, the crystal interface is not clear at 0.5 μm to 2 μm in a single crystal grain of the piezoelectric sintered body, but the molecular orientation direction A sub-particle structure having a different particle size, a maximum particle size of 10 μm, and a fine polarization domain structure due to the particle size effect of the sub-particle is formed, and a piezoelectric element having an extremely large electromechanical coupling coefficient kp and piezoelectric constant d 33 is formed. Can be formed.

このナノサイズのチタン酸バリウム粉末は、公知の水熱合成法、共沈殿法、部分共沈法、アルコキシド法、蓚酸塩法、クエン酸塩法、ゾル・ゲル法及び固相反応法等によって得られる。特に、高性能な圧電セラミックスに適するのは、粉末の粒径分布がシャープで均一なものが望ましい。また、粒径サイズは、50nmから200nmのものがよい。例えば、水熱合成法は、高温高圧の水溶液を利用して無機化合物または有機化合物を合成する方法を基本としたものである。この方法を応用して、ナノサイズのチタン酸バリウム粉末を作製することができる。   This nano-sized barium titanate powder is obtained by a known hydrothermal synthesis method, coprecipitation method, partial coprecipitation method, alkoxide method, oxalate method, citrate method, sol-gel method, solid phase reaction method, etc. It is done. Particularly suitable for high-performance piezoelectric ceramics is a powder having a sharp and uniform particle size distribution. The particle size is preferably 50 nm to 200 nm. For example, the hydrothermal synthesis method is based on a method of synthesizing an inorganic compound or an organic compound using a high-temperature and high-pressure aqueous solution. By applying this method, nano-sized barium titanate powder can be produced.

次に、50nmから200nmのナノサイズのチタン酸バリウム粉末を焼結して形成する圧電セラミックスの製造方法について述べる。焼成に先立ち、目的とする用途、形状等で決定された成型体を作製する。バインダーとしてポリビニールアルコールの水溶液を用いて、チタン酸バリウム粉末と均一に混合してから金型成型により成型した。成型圧力は200MPaで、成型体の寸法は直径12mmから20mm、厚みは1mmから5mmとした。その後、600℃で保持2時間の脱バインダーを行ってから、抵抗加熱2段焼結法による本焼成に使う。他の成型方法、例えば押出し成型、ドクターブレード成型などで成形したものでも、最適焼結条件で焼結が可能である。   Next, a method for manufacturing a piezoelectric ceramic formed by sintering 50 nm to 200 nm nano-sized barium titanate powder will be described. Prior to firing, a molded body determined by the intended use, shape, etc. is prepared. Using an aqueous solution of polyvinyl alcohol as a binder, the mixture was uniformly mixed with barium titanate powder and then molded by molding. The molding pressure was 200 MPa, the dimensions of the molded body were 12 to 20 mm in diameter, and the thickness was 1 to 5 mm. Thereafter, the binder is removed at 600 ° C. for 2 hours, and then used for the main firing by the resistance heating two-stage sintering method. Even those molded by other molding methods such as extrusion molding and doctor blade molding can be sintered under optimum sintering conditions.

次に、抵抗加熱2段焼結法について述べる。図2はチタン酸バリウム粉末を焼結し圧電セラミックスの製造を行う際の焼結スケジュールを示したものである。図は縦軸が焼結温度、横軸が焼結時間である。T1が第1焼結温度、T2が第2焼結温度である。室温から1000℃までの昇温速度は圧電セラミックスの性能に影響しないが、実施例としては1分間10℃で行った。1000℃から第1焼結温度の1350℃〜1450℃までの昇温速度は、1分間に7℃〜15℃、例えば1分間10℃である。第1焼結温度での保持時間は0.5分〜2分、例えば1分間であり、第1焼結温度から第2焼結温度の1190℃〜1250℃までの降温速度は、1分間に20℃〜40℃、例えば1分間30℃である。第2焼結温度での保持時間は4時間から10時間、第2焼結温度から室温までの冷却速度は1分間4℃〜5℃である。   Next, the resistance heating two-stage sintering method will be described. FIG. 2 shows a sintering schedule when barium titanate powder is sintered to produce piezoelectric ceramics. In the figure, the vertical axis represents the sintering temperature and the horizontal axis represents the sintering time. T1 is the first sintering temperature and T2 is the second sintering temperature. Although the temperature increase rate from room temperature to 1000 ° C. does not affect the performance of the piezoelectric ceramic, it was performed at 10 ° C. for 1 minute as an example. The heating rate from 1000 ° C. to the first sintering temperature of 1350 ° C. to 1450 ° C. is 7 ° C. to 15 ° C. per minute, for example, 10 ° C. per minute. The holding time at the first sintering temperature is 0.5 minutes to 2 minutes, for example, 1 minute, and the temperature decreasing rate from the first sintering temperature to the second sintering temperature of 1190 ° C. to 1250 ° C. is 1 minute. 20 ° C. to 40 ° C., for example, 30 ° C. for 1 minute. The holding time at the second sintering temperature is 4 to 10 hours, and the cooling rate from the second sintering temperature to room temperature is 4 ° C. to 5 ° C. for 1 minute.

第1焼結温度での保持時間は1分間であるが、これは制御プログラムの関係で抵抗加熱による焼結炉内の温度が均一になるまで必要な時間であり、炉の構造及び焼結量により延長する場合もある。第2焼結温度での保持時間はその温度によるもので、理論密度の98.5%以上になるまでの保持時間が必要である。   The holding time at the first sintering temperature is 1 minute, but this is the time required until the temperature in the sintering furnace becomes uniform by resistance heating due to the control program, and the furnace structure and the amount of sintering It may be extended by The holding time at the second sintering temperature depends on the temperature, and a holding time until it reaches 98.5% or more of the theoretical density is necessary.

この発明の圧電セラミックスは、50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、上述の段階の焼結温度により形成した焼結体である。この圧電セラミックスの微細結晶構造は、その結晶粒単体中に、0.5μm〜2μmで、結晶界面が明確ではないが分子の配列方向の異なるサブ粒子構造が存在する。図3は、この発明の実施例の圧電セラミックス表面を30秒間エッチングした表面の電子顕微鏡写真である。図3に示すように、単体の結晶粒界中に、組織の方向が異なる配列が見られ、その異なる個々の配列がサブ粒子構造であり、その粒界がサブ粒界と言えるものである。図4に、サブ粒子構造におけるサブ粒界sを示す拡大電子顕微鏡写真を示す。図左上と右下の各サブ粒子の結晶構造の配列方向がサブ粒界sを境に異なることが分かる。各サブ粒子構造の配列方向は、図左上と右下の模式図の通りである。そして、この実施例のセラミックスは、結晶粒の最大粒径10μm以下に抑制され、かつ理論密度の98.5%以上の密度を持つ焼結体を構成している。   The piezoelectric ceramic according to the present invention is a sintered body formed by solidifying a barium titanate powder of 50 nm to 200 nm in a predetermined shape at a sintering temperature in the above-described stage. The piezoelectric ceramic has a fine crystal structure of 0.5 μm to 2 μm in a single crystal grain, and there are sub-particle structures with different molecular arrangement directions although the crystal interface is not clear. FIG. 3 is an electron micrograph of the surface of a piezoelectric ceramic surface according to an embodiment of the present invention etched for 30 seconds. As shown in FIG. 3, in a single crystal grain boundary, arrangements having different texture directions are observed, and the different individual arrangements have a sub-grain structure, and the grain boundary can be said to be a sub-grain boundary. FIG. 4 shows an enlarged electron micrograph showing the sub-grain boundary s in the sub-particle structure. It can be seen that the arrangement directions of the crystal structures of the sub-grains at the upper left and lower right of the figure are different at the sub-grain boundary s. The arrangement direction of each subparticle structure is as shown in the schematic diagrams on the upper left and lower right of the figure. The ceramic of this example constitutes a sintered body having a maximum crystal grain size of 10 μm or less and having a density of 98.5% or more of the theoretical density.

この焼結体は、比誘電率が4000以上であり、電気機械結合係数kpが0.44〜0.50である。また、圧電定数d33が460〜500pC/Nである。 This sintered body has a relative dielectric constant of 4000 or more and an electromechanical coupling coefficient kp of 0.44 to 0.50. The piezoelectric constant d 33 is 460 to 500 pC / N.

この発明のチタン酸バリウム粉末の焼結体から成る圧電セラミックスは、その用途として、単板若しくは積層型、矩形、円盤形、ドーム形、またはリング形に形成された圧電素子を形成することができる。   The piezoelectric ceramic comprising the sintered body of barium titanate powder of the present invention can be used to form a piezoelectric element formed in a single plate or laminated type, rectangular shape, disc shape, dome shape, or ring shape. .

この発明による圧電セラミックスは、振動検出素子や振動子として用いられる。特に、高密度、高誘電率、高d33、高d31の優れた圧電セラミックスを用いた非鉛系圧電振動子として、例えば、高感度振動子ピックアップ、圧電ブザー、超音波洗浄機、探傷器等としての極めて高性能な振動子として期待される。これらの振動子の製造は公知のそれぞれの手段によって得られ、低コストで、さらに環境を汚染することなく製造することができる。 The piezoelectric ceramic according to the present invention is used as a vibration detecting element or a vibrator. In particular, as a lead-free piezoelectric vibrator using an excellent piezoelectric ceramic with high density, high dielectric constant, high d 33 , and high d 31 , for example, a high sensitivity vibrator pickup, a piezoelectric buzzer, an ultrasonic cleaner, a flaw detector It is expected as a very high performance vibrator. These vibrators can be manufactured by known means, and can be manufactured at low cost and without polluting the environment.

次にこの発明の実施例について以下に述べる。ここで、形成される圧電セラミックスの結晶粒の粒径は主に第1焼結温度に依存する。図5は第1焼結温度が1350℃で1分間保持後、第2焼結温度1190℃で4時間保持後の電子顕微鏡写真である。   Next, embodiments of the present invention will be described below. Here, the grain size of the crystal grains of the formed piezoelectric ceramic mainly depends on the first sintering temperature. FIG. 5 is an electron micrograph after holding the first sintering temperature at 1350 ° C. for 1 minute and then holding the second sintering temperature at 1190 ° C. for 4 hours.

図6は第1焼結温度が1410℃で1分間保持後、第2焼結温度1190℃で4時間保持後の電子顕微鏡写真である。   FIG. 6 is an electron micrograph after holding the first sintering temperature at 1410 ° C. for 1 minute and then holding the second sintering temperature at 1190 ° C. for 4 hours.

図7は第1焼結温度が1410℃で1分間保持後、第2焼結温度1250℃で4時間保持後の電子顕微鏡写真である。   FIG. 7 is an electron micrograph after holding the first sintering temperature at 1410 ° C. for 1 minute and then holding the second sintering temperature at 1250 ° C. for 4 hours.

図5〜図7から分かるように、セラミックス焼結体の単体の結晶粒界中に、組織の方向が異なる配列が見られ、その異なる個々の配列がサブ粒子構造であり、その粒界がサブ粒界である。特に、焼結体表面の粒界内に現れる凹凸は、サブ粒子構造の存在を示し、各凹部または凸部領域の大きさは、その粒界内にあるサブ粒子の大きさを示すものである。   As can be seen from FIG. 5 to FIG. 7, in the single crystal grain boundary of the ceramic sintered body, an array having different texture directions is seen, and the different individual arrays have a sub-particle structure, and the grain boundary is a sub-grain boundary. It is a grain boundary. In particular, the irregularities appearing in the grain boundaries on the surface of the sintered body indicate the presence of the sub-particle structure, and the size of each concave or convex region indicates the size of the sub-particles in the grain boundary. .

以下の表1に、第1焼結温度と第2焼結温度を変化させたときの焼結体の密度を示す。表2には、第1焼結温度と第2焼結温度を変化させたときの焼結体の電気機械結合係数を示す。
Table 1 below shows the density of the sintered body when the first sintering temperature and the second sintering temperature are changed. Table 2 shows the electromechanical coupling coefficient of the sintered body when the first sintering temperature and the second sintering temperature are changed.

得られた焼結体は、80〜100℃で1kV/mmの電圧をかけ、30分間分極処理してから、24時間後に誘電、圧電特性を測定した。ただし、電極として、銀ペイントを試料に塗布し、600℃で30分間焼き付けたものを使用した。   The obtained sintered body was applied with a voltage of 1 kV / mm at 80 to 100 ° C., subjected to polarization treatment for 30 minutes, and then measured for dielectric and piezoelectric properties after 24 hours. However, as the electrode, a silver paint applied to a sample and baked at 600 ° C. for 30 minutes was used.

表1と表2から分かるように、焼結体の密度が5.93g/cm3以上であれば、電気機械結合係数kpが0.44以上になる。例えば、第1焼結温度が1350℃、第2焼結温度が1190℃、保持時間が4時間で得た理論密度の98.5%の試料には、kp=0.50に達し、その圧電定数d33=500pC/Nであった。 As can be seen from Tables 1 and 2, when the density of the sintered body is 5.93 g / cm 3 or more, the electromechanical coupling coefficient kp is 0.44 or more. For example, a sample having a first sintering temperature of 1350 ° C., a second sintering temperature of 1190 ° C., a holding time of 48.5 hours and a theoretical density of 98.5% reaches kp = 0.50. The constant d 33 was 500 pC / N.

各種圧電セラミックスの電気結合係数kpと比誘電率の関係を示す図。The figure which shows the relationship between the electrical coupling coefficient kp of various piezoelectric ceramics, and a dielectric constant. 本発明の抵抗加熱2段焼結法の焼結スケジュール図。The sintering schedule figure of the resistance heating two-step sintering method of this invention. この発明の実施例の圧電セラミックス表面を30秒エッチングした後の表面の電子顕微鏡写真である。It is the electron micrograph of the surface after etching the piezoelectric ceramic surface of the Example of this invention for 30 seconds. 図3の写真をさらに拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the photograph of FIG. 3 further. この発明の実施例の圧電セラミックスの製造方法により、第1焼結温度1350℃で1分間保持後、第2焼結温度1190℃で4時間保持後の電子顕微鏡写真である。It is the electron micrograph after hold | maintaining at the 1st sintering temperature of 1350 degreeC by the manufacturing method of the piezoelectric ceramic of the Example of this invention for 1 minute, and hold | maintaining at the 2nd sintering temperature of 1190 degreeC for 4 hours. この発明の実施例の圧電セラミックスの製造方法により、第1焼結温度1410℃で1分間保持後、第2焼結温度1190℃で4時間保持後の電子顕微鏡写真である。It is the electron micrograph after hold | maintaining for 4 hours at the 1st sintering temperature of 1190 degreeC after hold | maintaining at the 1st sintering temperature of 1410 degreeC by the manufacturing method of the piezoelectric ceramic of the Example of this invention. この発明の実施例の圧電セラミックスの製造方法により、第1焼結温度1410℃で1分間保持後、第2焼結温度1250℃で4時間保持後電子顕微鏡写真である。FIG. 4 is an electron micrograph after holding for 1 minute at a first sintering temperature of 1410 ° C. and holding for 4 hours at a second sintering temperature of 1250 ° C. by a method for manufacturing a piezoelectric ceramic according to an embodiment of the present invention.

Claims (7)

圧電体の性質を持つ50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、第1焼結温度の1350℃〜1450℃に昇温した後、第2焼結温度の1190℃〜1250℃に下げて一定時間維持して焼結し、理論密度の98.5%以上の密度に形成して、個々の結晶粒界中に分子の配列方向の異なるサブ粒子構造を有する結晶粒を形成し、この焼結体を分極処理することを特徴とする圧電セラミックスの製造方法。   A barium titanate powder of 50 nm to 200 nm having piezoelectric properties is solidified into a predetermined shape, heated to a first sintering temperature of 1350 ° C. to 1450 ° C., and then increased to a second sintering temperature of 1190 ° C. to 1250 ° C. Lowering and maintaining for a certain period of time, forming to a density of 98.5% or more of the theoretical density, forming crystal grains having sub-grain structures with different molecular arrangement directions in individual grain boundaries, A method for producing a piezoelectric ceramic, comprising subjecting the sintered body to polarization treatment. 前記第1焼結温度までの昇温速度は1分間に7℃〜15℃であり、第1焼結温度での保持時間は0.5分〜2分間であり、前記第1焼結温度から1分間20℃〜40℃の速度で第2焼結温まで下げ、前記第2焼結温度での保持時間は4時間から10時間である請求項1記載の圧電セラミックスの製造方法。   The heating rate up to the first sintering temperature is 7 ° C. to 15 ° C. per minute, the holding time at the first sintering temperature is 0.5 minutes to 2 minutes, and from the first sintering temperature, The method for producing a piezoelectric ceramic according to claim 1, wherein the temperature is lowered to the second sintering temperature at a rate of 20 ° C to 40 ° C for 1 minute, and the holding time at the second sintering temperature is 4 hours to 10 hours. 圧電体の性質を持つ50nm〜200nmのチタン酸バリウム粉末を所定形状に固めて、2段階の焼結温度により形成した焼結体であって、その微細結晶構造が、圧電焼結体の単体の結晶粒内に、0.5μm〜2μmで結晶界面が明確ではないが分子の配列方向の異なるサブ粒子構造が存在し、前記結晶粒の最大粒径10μm以下に抑制され、かつ理論密度の98.5%以上の密度を持つ焼結体を形成し、これを分極処理して成ることを特徴とする圧電セラミックス。   A sintered body obtained by solidifying a barium titanate powder of 50 nm to 200 nm having the properties of a piezoelectric body into a predetermined shape and formed by a two-step sintering temperature. Within the crystal grains, there are sub-particle structures with different molecular arrangement directions, although the crystal interface is not clear at 0.5 μm to 2 μm, the maximum grain size of the crystal grains is suppressed to 10 μm or less, and the theoretical density is 98. A piezoelectric ceramic characterized in that a sintered body having a density of 5% or more is formed and subjected to polarization treatment. 前記焼結体は、比誘電率が4000以上であることを特徴とする請求項3記載の圧電セラミックス。   The piezoelectric ceramic according to claim 3, wherein the sintered body has a relative dielectric constant of 4000 or more. 前記焼結体は、電気機械結合係数kpが0.44〜0.50であることを特徴とする請求項3記載の圧電セラミックス。   The piezoelectric ceramic according to claim 3, wherein the sintered body has an electromechanical coupling coefficient kp of 0.44 to 0.50. 前記焼結体は、圧電定数d33が460〜500pC/Nであることを特徴とする請求項3記載の圧電セラミックス。 The sintered body according to claim 3, wherein the piezoelectric ceramic, characterized in that the piezoelectric constant d 33 is 460~500pC / N. 前記チタン酸バリウム粉末の焼結体から成る圧電セラミックスを用いて、振動検出素子または振動子として用いられる請求項3,4,5または6記載の圧電セラミックスからなる圧電素子。
The piezoelectric element made of a piezoelectric ceramic according to claim 3, 4, 5, or 6, wherein the piezoelectric ceramic made of a sintered body of the barium titanate powder is used as a vibration detecting element or a vibrator.
JP2008209853A 2008-08-18 2008-08-18 Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element Pending JP2010042969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209853A JP2010042969A (en) 2008-08-18 2008-08-18 Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209853A JP2010042969A (en) 2008-08-18 2008-08-18 Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element

Publications (1)

Publication Number Publication Date
JP2010042969A true JP2010042969A (en) 2010-02-25

Family

ID=42014683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209853A Pending JP2010042969A (en) 2008-08-18 2008-08-18 Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element

Country Status (1)

Country Link
JP (1) JP2010042969A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105458A1 (en) 2010-02-26 2011-09-01 日東電工株式会社 Adhesive patch containing bisoprolol
WO2012070667A1 (en) 2010-11-26 2012-05-31 Canon Kabushiki Kaisha Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner
JP2015534667A (en) * 2012-09-04 2015-12-03 ヨアノイム リサーチ フォルシュングスゲゼルシャフト エムベーハーJoanneum Research Forschungsgesellschaft Mbh Printed piezoelectric pressure sensing foil
CN116354731A (en) * 2023-03-30 2023-06-30 基迈克材料科技(苏州)有限公司 Two-step sintering method for fine-grain submicron structure ceramic

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139744A (en) * 1991-11-21 1993-06-08 Titan Kogyo Kk Easily sinterable barium titanate fine particle powder and production therefor
JPH0940460A (en) * 1995-07-28 1997-02-10 Tokai Carbon Co Ltd Production of titanic acid based sintered body
JP2006315927A (en) * 2005-05-16 2006-11-24 Fuji Ceramics:Kk Piezoelectric ceramic having dielectric and piezoelectric property and prepared by sintering nano-size barium titanate powder, its manufacturing method, and piezoelectric vibrator using it
JP2007277031A (en) * 2006-04-05 2007-10-25 Fuji Ceramics:Kk Piezoelectric ceramic obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric property and method for manufacturing the same
JP2008127265A (en) * 2006-11-24 2008-06-05 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
JP2008150247A (en) * 2006-12-18 2008-07-03 Toyama Prefecture Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JP2010030875A (en) * 2008-06-30 2010-02-12 Hitachi Metals Ltd Ceramic sintered compact and piezoelectric element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139744A (en) * 1991-11-21 1993-06-08 Titan Kogyo Kk Easily sinterable barium titanate fine particle powder and production therefor
JPH0940460A (en) * 1995-07-28 1997-02-10 Tokai Carbon Co Ltd Production of titanic acid based sintered body
JP2006315927A (en) * 2005-05-16 2006-11-24 Fuji Ceramics:Kk Piezoelectric ceramic having dielectric and piezoelectric property and prepared by sintering nano-size barium titanate powder, its manufacturing method, and piezoelectric vibrator using it
JP2007277031A (en) * 2006-04-05 2007-10-25 Fuji Ceramics:Kk Piezoelectric ceramic obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric property and method for manufacturing the same
JP2008127265A (en) * 2006-11-24 2008-06-05 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
JP2008150247A (en) * 2006-12-18 2008-07-03 Toyama Prefecture Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JP2010030875A (en) * 2008-06-30 2010-02-12 Hitachi Metals Ltd Ceramic sintered compact and piezoelectric element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013001173; 安達 正利 ほか: '高性能チタン酸バリウム圧電セラミックス' 圧電材料・デバイスシンポジウム2008講演論文集 , 20080124, 第13〜16ページ *
JPN6013001175; Tomoaki KARAKI et al.: 'Barium titanate piezoelectric ceramics manufactured by two-step sintering' Japanese Journal of Applied Physics Published online 22 October 2007, Vol.46, No.10B, pp.7035-7038 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105458A1 (en) 2010-02-26 2011-09-01 日東電工株式会社 Adhesive patch containing bisoprolol
WO2012070667A1 (en) 2010-11-26 2012-05-31 Canon Kabushiki Kaisha Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner
JP2012126636A (en) * 2010-11-26 2012-07-05 Canon Inc Piezoelectric ceramic, method for producing the same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner
KR20130086070A (en) 2010-11-26 2013-07-30 캐논 가부시끼가이샤 Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner
US9614140B2 (en) 2010-11-26 2017-04-04 Canon Kabushiki Kaisha Piezoelectric ceramic, method for making same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner
JP2015534667A (en) * 2012-09-04 2015-12-03 ヨアノイム リサーチ フォルシュングスゲゼルシャフト エムベーハーJoanneum Research Forschungsgesellschaft Mbh Printed piezoelectric pressure sensing foil
CN116354731A (en) * 2023-03-30 2023-06-30 基迈克材料科技(苏州)有限公司 Two-step sintering method for fine-grain submicron structure ceramic

Similar Documents

Publication Publication Date Title
JP5114730B2 (en) Method for manufacturing piezoelectric ceramics
KR101541022B1 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP5716263B2 (en) Ceramic sintered body and piezoelectric element
KR101541021B1 (en) Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device
JP2007031219A (en) Bismuth sodium titanate-barium zirconium titanate base lead-free piezoelectric ceramic and its producing method
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
Nelo et al. Upside-down composites: fabricating piezoceramics at room temperature
Zhang et al. Enhanced pyroelectric and piezoelectric figure of merit of porous Bi0. 5 (Na0. 82K0. 18) 0.5 TiO3 lead‐free ferroelectric thick films
JP2777976B2 (en) Piezoelectric ceramic-polymer composite material and manufacturing method thereof
JP2010042969A (en) Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
Su et al. Routes to net shape electroceramic devices and thick films
CN104230333B (en) A kind of high temperature piezoceramics and preparation method thereof
JP6445372B2 (en) Piezoelectric / electrostrictive material, piezoelectric / electrostrictive body, and resonance driving device
JP4912616B2 (en) Piezoelectric ceramics obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric properties, a method for producing the same, and a piezoelectric vibrator using the same
JP4795633B2 (en) Method for producing a piezoelectric thick film on a substrate
JP4938340B2 (en) Piezoelectric ceramics obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric properties, and method for producing the same
JP2015110504A (en) Piezoelectric ceramic, method of manufacturing the same, and piezoelectric ceramic speaker using the same
Seo et al. Piezoelectric properties of CuO-added (Na0. 5K0. 5) NbO3 ceramic multilayers
KR101006958B1 (en) Piezoelectric thick flim for sensor containing oragnic materials and method for preparing the same
KR101029027B1 (en) Bnbt6 piezoelectric ceramics and method for manufacturing the same
JP2006335576A (en) Piezoelectric material
JP2006265055A (en) Method of manufacturing piezoelectric ceramic
KR101768585B1 (en) manufacturing method of piezoelectric ceramics in lead-free, and piezoelectric ceramics using of it
Sharif et al. The effect of sintering conditions on the microstructure and electrical properties of Pb (Zr0. 52Ti0. 48) O3 ceramic
Mercier et al. Processing and sintering of sodium-potasium niobate–based thick films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521